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In a replicated database, updates arrive 
in different orders at different copies of 
a data item, 

but eventually 

the copies converge to the same value.
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Origin: Thomas’ majority consensus algorithm, 
published in 1979 (ACM TODS).

Was used in Grapevine (PARC, early 1980’s) 
and in numerous systems since then.

Doug Terry et al. coined the term in a 1994 
Bayou paper

Werner Vogels at Amazon promoted it in 
Dynamo (2007)

Cover topic of February 2012 IEEE Computer
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Most of what we’ll say was known in 1995

There are many published surveys
But this talk has a rather different spin

We’ll often cite old references to remind you 
where the ideas came from
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Ideally, replication is transparent

In the world of transactions:

One-Copy Serializability - The system behaves like a 
serial processor of transactions on a one-copy database
[Attar, Bernstein, & Goodman, IEEE TSE 10(6), 1984]

In the world of operations:

Linearizability - A system behaves like a serial processor 
of operations on a one-copy database
[Herlihy & Wing, ACM TOPLAS 12(3), 1990]
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But you can’t in many practical situations

Let’s review the three main types of solutions

Primary Copy

Multi-Master

Consensus Algorithms
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Only the primary copy is 
updatable by clients

Updates to the primary flow 
downstream to secondaries

What if there’s a network  
partition?

Clients that can only access 
secondaries can’t run updates
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Primary

Client 
updates

Downstream 
updates

Secondary copies

[Alsberg & Day, ICSE 1976] [Stonebraker & Neuhold, Berkeley Workshop 1979]



Copies are independently 
updatable

Conflicting updates on 
different copies are allowed

Doesn’t naturally support 1SR.

To ensure eventual consistency 
or linearizability of copies:

Either updates are designed to 
be commutative

Or conflicting updates are 
detected and merged
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Client 
updates

Downstream updates

Client 
updates

• “The partitioned DB problem” in late 1970’s.
• Popularized by Lotus Notes, 1989



Copies can be a replicated-state machine
Essentially, a serial processor of operations

Can be primary-copy or multi-master

Uses quorum consensus to achieve 1SR or linearizability. 
Ensures conflicting ops access at least one copy in common

9
Write quorum = 4

Read quorum = 2

Each downstream update 
is applied to a quorum of 
secondaries

Secondaries

Primary



You can have only two of Consistency-of-Replicas, 

Availability, and Partition-Tolerance

Can get C & A, if there’s no partition

Can get C & P but only one partition can accept updates 

Can get A & P, but copies in different partitions won’t be 

consistent
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Conjecture by [Brewer, PODC 2000] 

Proved by [Gilbert & Lynch, SIGACT News 33(3) 2002]



“Partitioning - When communication failures break all 
connections between two or more active segments of the 
network ... each isolated segment will continue … 
processing updates, but there is no way for the separate 
pieces to coordinate their activities. Hence … the database 
… will become inconsistent. This divergence is unavoidable 
if the segments are permitted to continue general 
updating operations and in many situations it is essential 
that these updates proceed.” 

[Rothnie & Goodman, VLDB 1977]

So the CAP theorem isn’t new, but it does focus attention 
on the necessary tradeoff 
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Parallel snapshot isolation

Consistent prefix

Monotonic reads

Timeline consistency

Linearizability

Eventually consistent 
transactions

Causal consistency

Causal+ consistency

Bounded staleness

Monotonic writes

Read-your-writes

Strong consistency
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• There have been many attempts at defining stronger 
but feasible consistency criteria:



We’ll try to eliminate the confusion by

Characterizing consistency criteria

Describing mechanisms that support each one

And summarizing their strengths and weaknesses
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There are many excellent surveys of replication 
We don’t claim ours is better, just different

S.B. Davidson, H. Garcia-Molina, D. Skeen: Consistency in Partitioned Networks. 
ACM Computing Surveys. Sept. 1985

S-H Son: Replicated data management in distributed database systems, 
SIGMOD Record 17(4), 1988.

Y. Saito, M. Shapiro: Optimistic replication. ACM Comp. Surveys. Jan. 2005

P. Padmanabhan, et al.: A survey of data replication techniques for mobile ad 
hoc network databases. VLDB Journal 17(5), 2008

D.B. Terry: Replicated Data Management for Mobile Computing. 
Morgan & Claypool Publishers 2008

B. Kemme, G. Alonso: Database Replication: a Tale of Research across 
Communities. PVLDB 3(1), 2010

B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez: Database Replication. 
Morgan & Claypool Publishers 2010

P.A. Bernstein, E. Newcomer: Principles of Transaction Processing 
(2nd edition). Chapter 9 on Replication. Elsevier, 2009. 14



There’s a huge literature on replication. 
Please tell us if we missed something important

We’ll cover replication mechanisms in database systems, 
distributed systems, programming languages, and 
computer-supported cooperative work

We won’t cover mechanisms in computer architecture
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Multi-master is designed to handle partitions

With primary copy, during a partition
Majority quorum(x) = partition with a quorum of x’s 
copies

Majority quorum can run updates and satisfy all 
correctness criteria

Minority quorum can run reads but not updates, 
unless you give up on consistency

So an updatable minority quorum is just like 
multi-master
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Eventual consistency – there are many good ways 
to achieve it

For isolation and session goals, the solution space 
is more complex

Strengthens consistency, but complicates 
programming model

Improves availability, but not clear by how much

If a client rebinds to another server, ensuring these 
goals entails more expense, if they’re attainable at all.

No clear winner
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App needs to cope with arbitrary states during a 
partition

Offer a range of isolation and session guarantees 
and let the app developer choose among them

Possibly worthwhile for distributed systems experts
Need something simpler for “ordinary programmers”

Encapsulate solutions that offer good isolation for 
common scenarios

Use data types with commutative operations
Convergent merges of non-commutative operations
Scenario-specific classes
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Partition?

Consistent & Available

N

Y

Start  here

Not available
for update 
transactions

We’ll start with the world of operations, and 
then look at the world of transactions
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Partition?

Quorum of 
replicas?

Consistent 
& Available

N

Y

Y N

Start  here

Not available
for updates

The partition with a quorum of replicas can 
run writes
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Partition?

Quorum of 
replicas?

Consistent 
& Available

N

Y

Y N

Start  here

Not available
for updates

To do better, 
we need to 
give up on 
consistency



Eventual consistency is one popular proposal

The copies will be identical … someday

App still needs to handle arbitrary intermediate states

How to get it

Commutative downstream operations

Mergeable operations

Vector clocks
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[Thomas, ACM TODS 4(2), 1979]

Assign a timestamp to each client write 
operation

Each copy of x stores 
timestamp(last-write-applied)

Apply downstream-write(x) only if 
downstream-write(x).timestamp > x.timestamp

So highest-timestamp wins at every copy
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Final value:
X=70, TS:5

W(X=40), TS:1
W(X=70), TS:5
W(X=30), TS:3

Downstream writes 
arrive in this order

Thomas’ Write Rule:



Pros

Updates can be applied 
anywhere, anytime

Downstream updates 
can be applied in any 
order after a partition is 
repaired

Cons
Doesn’t solve the problem 
of ordering reads & updates

For fairness, requires 
loosely-synchronized clocks
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Convergent & Commutative Replicated Data Types

[Shapiro et al., INRIA Tech. Report, Jan 2011]

Set operations add/remove don’t commute, 

[add(E), add(E), remove(E)] ≢ [add(E), remove(E), add(E)] 

But for a counting set, they do commute

Each element E in set S has an associated count

Add(set S, element E) increments the count for E in S.

Remove(S, E) decrements the count
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Pros

Updates can be applied 
anywhere, anytime

Downstream updates 
can be applied in any 
order after a partition is 
repaired

Cons

Constrained, unfamiliar 
programming model

Doesn’t solve the problem of 
ordering reads & updates

Some app functions need 
non-commutative updates
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Custom merge procedures for downstream operations 
whose client operations were not totally ordered.

Takes two versions of an object and creates a new one

For eventual consistency, merge must be commutative 
and associative

Notation: M(O2, O1) merges the effect of O2 into O1

Commutative: O1  M(O2, O1)  O2  M(O1, O2)

Associative: M(O3, O1M(O2, O1))  M(M(O3, O2)  O1)

[Ellis & Gibbs, SIGMOD 1989]
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Pros

Enables concurrent 
execution of conflicting 
operations without the 
synchronization expense 
of total-ordering

Cons

Requires application-
specific logic that’s hard 
to generalize
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In multi-master, each copy assigns a monotonically 
increasing version number to each client update

Vector clock is an array of version numbers, one per copy

Identifies the set of updates received or applied

Use it to identify the state that a client update depends 
on and hence overwrote

If two updates conflict but don’t depend on one another, 
then merge them.
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• [Fischer & Michael, PODS 1982]
• [Parker et al., IEE TSE 1983]
• [Wuu & Bernstein, PODC 1984]



Ci

Update1[x]

Ck

Update2[x]

w1[x]

Cm

w2[x]

w1[x]
Discard
or Merge?
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A vector clock can be used to identify the state that a client 
update depends on (“made-with knowledge”)
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[Ladin et al., TOCS, 1992] 
[Malkhi & Terry, Dist. Comp. 20(3), 2007]

– If VC1[k] ≥ vn2, then x2 was “made from” x1 & should overwrite it

– If VC2[i] ≥ vn1, then x1 was “made from” x2, so discard x2

– Else the updates should be reconciled

x1:[ [k,vn2], VC2 ]

Copy Cm

Produced by client update u2 at copy Ck

Produced by client update u1 at copy Ci

x2:[ [i,vn1], VC1 ]

Downstream-write sent to Cm



A copy can use it to identify the updates it has received
When it syncs with another copy, they exchange vector clocks 
to tell each other which updates they already have.

Avoids shipping updates the recipient has already seen

Enables a copy to discard updates that it knows all other 
copies have seen
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Partition?

Quorum of 
replicas?

Consistent 
& Available

N

Y

Y N

Start  here

Ops are 
commutative 
or mergeable

Y N

Not available
for updates 

Eventually Consistent 
& Available
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Admissible executions
Causality constraints

Session constraints

34The case we can strengthen

Partition?

Quorum of 
replicas?

Consistent 
& Available

N

Y

Y N

Start  here

Ops are 
commutative 
or mergeable

Y N

Not available
for updates 

Eventually Consistent 
& Available



Definition – The sequence of operations on each replica is 
consistent with session order and reads-from order.

Example: User 1 stores a photo P and a link L to it. 
If user 2 reads the link, then she’ll see the photo. 

Causality imposes write-write orders

Causal relationships: 

WW Session order: w1[y] executes after w0[x] in session S

WR Session order: w3[z] executes after r2[y] in session V

Reads-from order: r2[y] in session V reads from w1[y] in session S

Causality is transitive: Hence, w0[x] causally precedes w3[z]
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S

w1[y]

w0[x]

V

r2[y]

w3[z]

[Lamport, CACM 21(7), 1978]



If all atomic operations preserve database integrity, 
then causal consistency with eventual consistency 
may be good enough

Store an object, then a pointer to the object

Assemble an order and then place it

Record a payment (or any atomically-updatable state)

Scenarios where causal consistency isn’t enough
Exchanging items: Purchasing or bartering require each party 
to be credited and debited atomically

Maintaining referential integrity: One session deletes an 
object O while another inserts a reference to O 
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Enforce it using dependency tracking and vector clocks

COPS: Causality with convergent merge [Lloyd et al., 
SOSP 2011]

Assumes multi-master replication

Session context (dependency info) = <data item, version#> of 
the last items read or of the last item written.

Each downstream write includes its dependent operations. 

A write is applied to a copy after its dependencies are satisfied

Merge uses version vectors

With additional dependency info, it can support snapshot reads

Limitation: No causal consistency if a client rebinds to another 
replica due to a partition
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Read your writes – a read sees all previous writes

Monotonic reads – reads see progressively later states

Monotonic writes – writes from a session are applied 
in the same order on all copies

Consistent prefix – a copy’s state only reflects writes 
that represent a prefix of the entire write history

Bounded staleness – a read gets a version that was 
current at time t or later
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[Terry et al., PDIS 1994]



Client session maintains IDs of reads and writes

 Accurate representation of the constraints

 High overhead per-operation

Client session maintains vector clocks for the last 
item read or written

 Compact representation of the constraints

 Conservative
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The operation world ignores 
transaction isolation

To get the benefits of 
commutative or mergeable
operations, need a weaker 
isolation level

Partition?

Consistent 
& Available

N

Y

Y N

Start  here

Quorum 
of replicas?
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Read committed
Transaction reads committed values

Snapshot reads
Transaction reads committed values that were 
produced by a set of committed transactions

All of a transaction’s updates must be installed 
atomically to ensure the writeset is consistent 
in the minority partition
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People do it all the time for better performance
Throughput of Read-Committed is 2.5x to 3x that of Serializable

Weaker isolation produces errors. Why is this OK?

No one knows, but here are some guesses:

DB's are inconsistent for many other reasons.

Bad data entry, bugs, duplicate txn requests, disk errors, ….

Maybe errors due to weaker isolation levels are infrequent

When DB consistency matters a lot, there are external controls. 

People look closely at their paychecks

Financial information is audited

Retailers take inventory periodically 
42
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Partition?

Quorum of 
replicas?

Y

N

Start  here

Ops are 
commutative 
or mergeable

Y N

Not available
for updates 

Read 
Committed or 

Snapshot Reads

Y N

Consistent 
& Available

N
Y

Eventually 
Consistent 
& Available



Admissible executions
Causality constraints

Session constraints

Isolation constraints
RedBlue Consistency [Li et al., OSDI 2012]

1-SR, Read-committed, Snapshot Isolation

Parallel Snapshot Isolation [Sovran et al, SOSP 2011]

Concurrent Revisions [Burckhardt et al., ESOP 2012]
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Blue operations commute with all other operations and 
can run in different orders on different copies. 

Red ones must run in the same order on all copies.

Use a side-effect-free generator operation  to transform 
a red operation to a blue one that is valid in all states

Example
Deposit(acct, amt): acct.total = acct.total + amt

EarnInterest(acct): acct.total = acct.total * 1.02

Deposit is blue, EarnInterest is red

Transform EarnInterest into:
Interest = acct.total * 1.02  // runs locally at acct’s copy

Deposit(acct, Interest)         // blue operation runs at all copies

4545[Li et al., OSDI 2012]



The history is equivalent to one of this form:
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r1[readset1] w1[writeset1]

  r2[readset2]

r3[readset3]

w2[writeset2]

w3[writeset3]

r4[readset4] w4[writeset4]

r5[readset5]

r6[readset6]

w5[writeset5]

w6[writeset6]

ws1  ws2  ws3 =  ws4  ws5  ws6 = 

Benefit of SI: Don’t need to test read-write conflicts
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Transaction
Boundaries

Two threads with
non-overlapping writesets

Merge updates of 
two threads

• Parallel SI - Execution is equivalent to one that allows 
parallel threads with non-conflicting writesets running SI

• Allows a transaction to read stale copies

[Sovran, Power, Aguilera, & Li, SOSP 2011]



Site 1 Site 2
r1(x,y) r3(x,y)
w1(x) w3(y)
c1                                  c3

r2(x,y) r4(x,y)
w2(x) w4(y)
c2 c4

w3[y]                 w1[x]
w4[y]                 w2[x]
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• But the result is not 
equivalent to 
T1 T2 T3 T4 or
T3 T4 T1 T2 or

T1     T2 
T3     T4 

  

• A parallel SI execution 
may not be equivalent to 
a serial SI history

• Site 1 and Site 2 are 
each snapshot isolated.

Site 1 has x’s primary
Site 2 has y’s primary



Each arrow is an operation or transaction

A fork defines a new private snapshot and a branch

A join causes all updates on the branch to be applied

Ops are pure reads or pure writes. Writes never fail.

[Burckhardt, et al., ESOP 2012]
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Mainline

Branches
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Partition?

Quorum of 
replicas?

Y

N

Start  here

Y N

Not available
for updates 

Y
N

Consistent 
& Available

N
Y

Eventually 
Consistent 
& Available

Ops are 
commutative 
or mergeable

Other
Isolation

Levels

Y

Read 
Committed or 

Snapshot Reads

N



RETURNING TO CAP …
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If the system guarantees only eventual consistency, 
then be ready to read nearly arbitrary database states.

Use commutative operations whenever possible.
System needn’t totally order downstream writes, which 
reduces latency

Else use convergent merges of non-commutative ops
Enables updates during partitioned operation and in multi-
master systems
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If availability and partition-tolerance are required, 
then consider strengthening eventual consistency 
with admissibility criteria

If possible, use consistency-preserving operations, 
in which case causal consistency is enough

Hard case for all admissibility criteria is rebinding a 
session to a different replica

Replica might be older or newer than the previous one it 
connected to.
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Primary Copy or
Quorum-based

Multi-
master

Primary Copy or
Quorum-based

Multi-
master

   ?W  ?W

    ?W

   

   

   ?R  ?R

   

Session maintains 
connection to server

Session migrates to 
another replica

Read-Your-Writes

Monotonic Writes

Bounded staleness

Consistent Prefix

Monotonic Reads

Causality

?W: Only if the session caches its writes
?R:  Only if the session caches its reads

Writes disabled



Encapsulate solutions that offer good isolation for 
common scenarios

Commutative Replicated Data Types

Convergent merges of non-commutative operations

Research: Scenario-specific design patterns

Overbooking with compensations

Queued transactions

  
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Probably not to enterprise developers

Spanner [OSDI 2012] “Many applications at Google … 
use Megastore because of its semi-relational data 
model and support for synchronous replication, 
despite its relatively poor write throughput.”

Mike Stonebraker [blog@ACM, Sept 2010]: 
“No ACID Equals No Interest” for enterprise users

Same comment from a friend at Amazon
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The design space does matter to Einstein-level 
developers of high-value applications that need 
huge scale out.

People like you! 
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Eventual consistency
Commutative 
operations

Thomas’ write rule

Convergent data types

Custom merge
Vector clocks

Admissible executions
Causality constraints

Session constraints
Read your writes

Monotonic reads

Monotonic writes

Consistent prefix

Bounded staleness

Isolation constraints
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