
Phil Bernstein & Sudipto Das
Microsoft Research
June, 2013

1

Copyright © 2013 Microsoft Corp.

In a replicated database, updates arrive
in different orders at different copies of
a data item,

but eventually

the copies converge to the same value.

2

Origin: Thomas’ majority consensus algorithm,
published in 1979 (ACM TODS).

Was used in Grapevine (PARC, early 1980’s)
and in numerous systems since then.

Doug Terry et al. coined the term in a 1994
Bayou paper

Werner Vogels at Amazon promoted it in
Dynamo (2007)

Cover topic of February 2012 IEEE Computer

3

Most of what we’ll say was known in 1995

There are many published surveys
But this talk has a rather different spin

We’ll often cite old references to remind you
where the ideas came from

4

Ideally, replication is transparent

In the world of transactions:

One-Copy Serializability - The system behaves like a
serial processor of transactions on a one-copy database
[Attar, Bernstein, & Goodman, IEEE TSE 10(6), 1984]

In the world of operations:

Linearizability - A system behaves like a serial processor
of operations on a one-copy database
[Herlihy & Wing, ACM TOPLAS 12(3), 1990]

5

But you can’t in many practical situations

Let’s review the three main types of solutions

Primary Copy

Multi-Master

Consensus Algorithms

6

Only the primary copy is
updatable by clients

Updates to the primary flow
downstream to secondaries

What if there’s a network
partition?

Clients that can only access
secondaries can’t run updates

7

Primary

Client
updates

Downstream
updates

Secondary copies

[Alsberg & Day, ICSE 1976] [Stonebraker & Neuhold, Berkeley Workshop 1979]

Copies are independently
updatable

Conflicting updates on
different copies are allowed

Doesn’t naturally support 1SR.

To ensure eventual consistency
or linearizability of copies:

Either updates are designed to
be commutative

Or conflicting updates are
detected and merged

8

Client
updates

Downstream updates

Client
updates

• “The partitioned DB problem” in late 1970’s.
• Popularized by Lotus Notes, 1989

Copies can be a replicated-state machine
Essentially, a serial processor of operations

Can be primary-copy or multi-master

Uses quorum consensus to achieve 1SR or linearizability.
Ensures conflicting ops access at least one copy in common

9
Write quorum = 4

Read quorum = 2

Each downstream update
is applied to a quorum of
secondaries

Secondaries

Primary

You can have only two of Consistency-of-Replicas,

Availability, and Partition-Tolerance

Can get C & A, if there’s no partition

Can get C & P but only one partition can accept updates

Can get A & P, but copies in different partitions won’t be

consistent

10

Conjecture by [Brewer, PODC 2000]

Proved by [Gilbert & Lynch, SIGACT News 33(3) 2002]

“Partitioning - When communication failures break all
connections between two or more active segments of the
network ... each isolated segment will continue …
processing updates, but there is no way for the separate
pieces to coordinate their activities. Hence … the database
… will become inconsistent. This divergence is unavoidable
if the segments are permitted to continue general
updating operations and in many situations it is essential
that these updates proceed.”

[Rothnie & Goodman, VLDB 1977]

So the CAP theorem isn’t new, but it does focus attention
on the necessary tradeoff

11

Parallel snapshot isolation

Consistent prefix

Monotonic reads

Timeline consistency

Linearizability

Eventually consistent
transactions

Causal consistency

Causal+ consistency

Bounded staleness

Monotonic writes

Read-your-writes

Strong consistency

12

• There have been many attempts at defining stronger
but feasible consistency criteria:

We’ll try to eliminate the confusion by

Characterizing consistency criteria

Describing mechanisms that support each one

And summarizing their strengths and weaknesses

13

There are many excellent surveys of replication
We don’t claim ours is better, just different

S.B. Davidson, H. Garcia-Molina, D. Skeen: Consistency in Partitioned Networks.
ACM Computing Surveys. Sept. 1985

S-H Son: Replicated data management in distributed database systems,
SIGMOD Record 17(4), 1988.

Y. Saito, M. Shapiro: Optimistic replication. ACM Comp. Surveys. Jan. 2005

P. Padmanabhan, et al.: A survey of data replication techniques for mobile ad
hoc network databases. VLDB Journal 17(5), 2008

D.B. Terry: Replicated Data Management for Mobile Computing.
Morgan & Claypool Publishers 2008

B. Kemme, G. Alonso: Database Replication: a Tale of Research across
Communities. PVLDB 3(1), 2010

B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez: Database Replication.
Morgan & Claypool Publishers 2010

P.A. Bernstein, E. Newcomer: Principles of Transaction Processing
(2nd edition). Chapter 9 on Replication. Elsevier, 2009. 14

There’s a huge literature on replication.
Please tell us if we missed something important

We’ll cover replication mechanisms in database systems,
distributed systems, programming languages, and
computer-supported cooperative work

We won’t cover mechanisms in computer architecture

15

Multi-master is designed to handle partitions

With primary copy, during a partition
Majority quorum(x) = partition with a quorum of x’s
copies

Majority quorum can run updates and satisfy all
correctness criteria

Minority quorum can run reads but not updates,
unless you give up on consistency

So an updatable minority quorum is just like
multi-master

16

Eventual consistency – there are many good ways
to achieve it

For isolation and session goals, the solution space
is more complex

Strengthens consistency, but complicates
programming model

Improves availability, but not clear by how much

If a client rebinds to another server, ensuring these
goals entails more expense, if they’re attainable at all.

No clear winner

17

App needs to cope with arbitrary states during a
partition

Offer a range of isolation and session guarantees
and let the app developer choose among them

Possibly worthwhile for distributed systems experts
Need something simpler for “ordinary programmers”

Encapsulate solutions that offer good isolation for
common scenarios

Use data types with commutative operations
Convergent merges of non-commutative operations
Scenario-specific classes

18

19

Partition?

Consistent & Available

N

Y

Start here

Not available
for update
transactions

We’ll start with the world of operations, and
then look at the world of transactions

20

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Not available
for updates

The partition with a quorum of replicas can
run writes

21

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Not available
for updates

To do better,
we need to
give up on
consistency

Eventual consistency is one popular proposal

The copies will be identical … someday

App still needs to handle arbitrary intermediate states

How to get it

Commutative downstream operations

Mergeable operations

Vector clocks

22

[Thomas, ACM TODS 4(2), 1979]

Assign a timestamp to each client write
operation

Each copy of x stores
timestamp(last-write-applied)

Apply downstream-write(x) only if
downstream-write(x).timestamp > x.timestamp

So highest-timestamp wins at every copy

23

Final value:
X=70, TS:5

W(X=40), TS:1
W(X=70), TS:5
W(X=30), TS:3

Downstream writes
arrive in this order

Thomas’ Write Rule:

Pros

Updates can be applied
anywhere, anytime

Downstream updates
can be applied in any
order after a partition is
repaired

Cons
Doesn’t solve the problem
of ordering reads & updates

For fairness, requires
loosely-synchronized clocks

24

Convergent & Commutative Replicated Data Types

[Shapiro et al., INRIA Tech. Report, Jan 2011]

Set operations add/remove don’t commute,

[add(E), add(E), remove(E)] ≢ [add(E), remove(E), add(E)]

But for a counting set, they do commute

Each element E in set S has an associated count

Add(set S, element E) increments the count for E in S.

Remove(S, E) decrements the count

25

Pros

Updates can be applied
anywhere, anytime

Downstream updates
can be applied in any
order after a partition is
repaired

Cons

Constrained, unfamiliar
programming model

Doesn’t solve the problem of
ordering reads & updates

Some app functions need
non-commutative updates

26

Custom merge procedures for downstream operations
whose client operations were not totally ordered.

Takes two versions of an object and creates a new one

For eventual consistency, merge must be commutative
and associative

Notation: M(O2, O1) merges the effect of O2 into O1

Commutative: O1  M(O2, O1)  O2  M(O1, O2)

Associative: M(O3, O1M(O2, O1))  M(M(O3, O2)  O1)

[Ellis & Gibbs, SIGMOD 1989]

27

Pros

Enables concurrent
execution of conflicting
operations without the
synchronization expense
of total-ordering

Cons

Requires application-
specific logic that’s hard
to generalize

28

In multi-master, each copy assigns a monotonically
increasing version number to each client update

Vector clock is an array of version numbers, one per copy

Identifies the set of updates received or applied

Use it to identify the state that a client update depends
on and hence overwrote

If two updates conflict but don’t depend on one another,
then merge them.

29

• [Fischer & Michael, PODS 1982]
• [Parker et al., IEE TSE 1983]
• [Wuu & Bernstein, PODC 1984]

Ci

Update1[x]

Ck

Update2[x]

w1[x]

Cm

w2[x]

w1[x]
Discard
or Merge?

30

A vector clock can be used to identify the state that a client
update depends on (“made-with knowledge”)

31

[Ladin et al., TOCS, 1992]
[Malkhi & Terry, Dist. Comp. 20(3), 2007]

– If VC1[k] ≥ vn2, then x2 was “made from” x1 & should overwrite it

– If VC2[i] ≥ vn1, then x1 was “made from” x2, so discard x2

– Else the updates should be reconciled

x1:[[k,vn2], VC2]

Copy Cm

Produced by client update u2 at copy Ck

Produced by client update u1 at copy Ci

x2:[[i,vn1], VC1]

Downstream-write sent to Cm

A copy can use it to identify the updates it has received
When it syncs with another copy, they exchange vector clocks
to tell each other which updates they already have.

Avoids shipping updates the recipient has already seen

Enables a copy to discard updates that it knows all other
copies have seen

32

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Ops are
commutative
or mergeable

Y N

Not available
for updates

Eventually Consistent
& Available

33

Admissible executions
Causality constraints

Session constraints

34The case we can strengthen

Partition?

Quorum of
replicas?

Consistent
& Available

N

Y

Y N

Start here

Ops are
commutative
or mergeable

Y N

Not available
for updates

Eventually Consistent
& Available

Definition – The sequence of operations on each replica is
consistent with session order and reads-from order.

Example: User 1 stores a photo P and a link L to it.
If user 2 reads the link, then she’ll see the photo.

Causality imposes write-write orders

Causal relationships:

WW Session order: w1[y] executes after w0[x] in session S

WR Session order: w3[z] executes after r2[y] in session V

Reads-from order: r2[y] in session V reads from w1[y] in session S

Causality is transitive: Hence, w0[x] causally precedes w3[z]

35

S

w1[y]

w0[x]

V

r2[y]

w3[z]

[Lamport, CACM 21(7), 1978]

If all atomic operations preserve database integrity,
then causal consistency with eventual consistency
may be good enough

Store an object, then a pointer to the object

Assemble an order and then place it

Record a payment (or any atomically-updatable state)

Scenarios where causal consistency isn’t enough
Exchanging items: Purchasing or bartering require each party
to be credited and debited atomically

Maintaining referential integrity: One session deletes an
object O while another inserts a reference to O

36

Enforce it using dependency tracking and vector clocks

COPS: Causality with convergent merge [Lloyd et al.,
SOSP 2011]

Assumes multi-master replication

Session context (dependency info) = <data item, version#> of
the last items read or of the last item written.

Each downstream write includes its dependent operations.

A write is applied to a copy after its dependencies are satisfied

Merge uses version vectors

With additional dependency info, it can support snapshot reads

Limitation: No causal consistency if a client rebinds to another
replica due to a partition

37

Read your writes – a read sees all previous writes

Monotonic reads – reads see progressively later states

Monotonic writes – writes from a session are applied
in the same order on all copies

Consistent prefix – a copy’s state only reflects writes
that represent a prefix of the entire write history

Bounded staleness – a read gets a version that was
current at time t or later

38

[Terry et al., PDIS 1994]

Client session maintains IDs of reads and writes

 Accurate representation of the constraints

 High overhead per-operation

Client session maintains vector clocks for the last
item read or written

 Compact representation of the constraints

 Conservative

39

The operation world ignores
transaction isolation

To get the benefits of
commutative or mergeable
operations, need a weaker
isolation level

Partition?

Consistent
& Available

N

Y

Y N

Start here

Quorum
of replicas?

40

Read committed
Transaction reads committed values

Snapshot reads
Transaction reads committed values that were
produced by a set of committed transactions

All of a transaction’s updates must be installed
atomically to ensure the writeset is consistent
in the minority partition

41

People do it all the time for better performance
Throughput of Read-Committed is 2.5x to 3x that of Serializable

Weaker isolation produces errors. Why is this OK?

No one knows, but here are some guesses:

DB's are inconsistent for many other reasons.

Bad data entry, bugs, duplicate txn requests, disk errors, ….

Maybe errors due to weaker isolation levels are infrequent

When DB consistency matters a lot, there are external controls.

People look closely at their paychecks

Financial information is audited

Retailers take inventory periodically
42

43

Partition?

Quorum of
replicas?

Y

N

Start here

Ops are
commutative
or mergeable

Y N

Not available
for updates

Read
Committed or

Snapshot Reads

Y N

Consistent
& Available

N
Y

Eventually
Consistent
& Available

Admissible executions
Causality constraints

Session constraints

Isolation constraints
RedBlue Consistency [Li et al., OSDI 2012]

1-SR, Read-committed, Snapshot Isolation

Parallel Snapshot Isolation [Sovran et al, SOSP 2011]

Concurrent Revisions [Burckhardt et al., ESOP 2012]

44

Blue operations commute with all other operations and
can run in different orders on different copies.

Red ones must run in the same order on all copies.

Use a side-effect-free generator operation to transform
a red operation to a blue one that is valid in all states

Example
Deposit(acct, amt): acct.total = acct.total + amt

EarnInterest(acct): acct.total = acct.total * 1.02

Deposit is blue, EarnInterest is red

Transform EarnInterest into:
Interest = acct.total * 1.02 // runs locally at acct’s copy

Deposit(acct, Interest) // blue operation runs at all copies

4545[Li et al., OSDI 2012]

The history is equivalent to one of this form:

46

r1[readset1] w1[writeset1]

  r2[readset2]

r3[readset3]

w2[writeset2]

w3[writeset3]

r4[readset4] w4[writeset4]

r5[readset5]

r6[readset6]

w5[writeset5]

w6[writeset6]

ws1  ws2  ws3 =  ws4  ws5  ws6 = 

Benefit of SI: Don’t need to test read-write conflicts

47

Transaction
Boundaries

Two threads with
non-overlapping writesets

Merge updates of
two threads

• Parallel SI - Execution is equivalent to one that allows
parallel threads with non-conflicting writesets running SI

• Allows a transaction to read stale copies

[Sovran, Power, Aguilera, & Li, SOSP 2011]

Site 1 Site 2
r1(x,y) r3(x,y)
w1(x) w3(y)
c1 c3

r2(x,y) r4(x,y)
w2(x) w4(y)
c2 c4

w3[y] w1[x]
w4[y] w2[x]

48

• But the result is not
equivalent to
T1 T2 T3 T4 or
T3 T4 T1 T2 or

T1 T2
T3 T4

  

• A parallel SI execution
may not be equivalent to
a serial SI history

• Site 1 and Site 2 are
each snapshot isolated.

Site 1 has x’s primary
Site 2 has y’s primary

Each arrow is an operation or transaction

A fork defines a new private snapshot and a branch

A join causes all updates on the branch to be applied

Ops are pure reads or pure writes. Writes never fail.

[Burckhardt, et al., ESOP 2012]

49

Mainline

Branches

50

Partition?

Quorum of
replicas?

Y

N

Start here

Y N

Not available
for updates

Y
N

Consistent
& Available

N
Y

Eventually
Consistent
& Available

Ops are
commutative
or mergeable

Other
Isolation

Levels

Y

Read
Committed or

Snapshot Reads

N

RETURNING TO CAP …

51

If the system guarantees only eventual consistency,
then be ready to read nearly arbitrary database states.

Use commutative operations whenever possible.
System needn’t totally order downstream writes, which
reduces latency

Else use convergent merges of non-commutative ops
Enables updates during partitioned operation and in multi-
master systems

52

If availability and partition-tolerance are required,
then consider strengthening eventual consistency
with admissibility criteria

If possible, use consistency-preserving operations,
in which case causal consistency is enough

Hard case for all admissibility criteria is rebinding a
session to a different replica

Replica might be older or newer than the previous one it
connected to.

53

54

Primary Copy or
Quorum-based

Multi-
master

Primary Copy or
Quorum-based

Multi-
master

   ?W  ?W

    ?W

   

   

   ?R  ?R

   

Session maintains
connection to server

Session migrates to
another replica

Read-Your-Writes

Monotonic Writes

Bounded staleness

Consistent Prefix

Monotonic Reads

Causality

?W: Only if the session caches its writes
?R: Only if the session caches its reads

Writes disabled

Encapsulate solutions that offer good isolation for
common scenarios

Commutative Replicated Data Types

Convergent merges of non-commutative operations

Research: Scenario-specific design patterns

Overbooking with compensations

Queued transactions

  

55

Probably not to enterprise developers

Spanner [OSDI 2012] “Many applications at Google …
use Megastore because of its semi-relational data
model and support for synchronous replication,
despite its relatively poor write throughput.”

Mike Stonebraker [blog@ACM, Sept 2010]:
“No ACID Equals No Interest” for enterprise users

Same comment from a friend at Amazon

56

The design space does matter to Einstein-level
developers of high-value applications that need
huge scale out.

People like you! 

57

Eventual consistency
Commutative
operations

Thomas’ write rule

Convergent data types

Custom merge
Vector clocks

Admissible executions
Causality constraints

Session constraints
Read your writes

Monotonic reads

Monotonic writes

Consistent prefix

Bounded staleness

Isolation constraints

58

