
Proving Memory Safety of Floating-Point Computations
by Combining Static and Dynamic Program Analysis

Patrice Godefroid

Microsoft Research
Redmond, WA, USA

pg@microsoft.com

Johannes Kinder ∗

Technische Universität Darmstadt
Darmstadt, Germany

kinder@cs.tu-darmstadt.de

Abstract

Whitebox fuzzing is a novel form of security testing based on
runtime symbolic execution and constraint solving. Over the
last couple of years, whitebox fuzzers have found dozens of
new security vulnerabilities (buffer overflows) in Windows
and Linux applications, including codecs, image viewers
and media players. Those types of applications tend to use
floating-point instructions available on modern processors,
yet existing whitebox fuzzers and SMT constraint solvers do
not handle floating-point arithmetic. Are there new security
vulnerabilities lurking in floating-point code?

A naive solution would be to extend symbolic execu-
tion to floating-point (FP) instructions (months of work), ex-
tend SMT solvers to reason about FP constraints (months
of work), and then face more complex constraints and an
even worse path explosion problem. Instead, we propose
an alternative approach, based on the rough intuition that
FP code should only perform memory-safe data-processing
of the “payload” of an image or video file, while the non-
FP part of the application should deal with buffer alloca-
tions and memory address computations, with only the lat-
ter being prone to buffer overflows and other security critical
bugs. Our approach combines (1) a lightweight local path-
insensitive “may” static analysis of FP instructions with (2)
a high-precision whole-program path-sensitive “must” dy-
namic analysis of non-FP instructions. The aim of this com-
bination is to prove memory safety of the FP part of each
execution and a form of non-interference between the FP part
and the non-FP part with respect to memory address compu-
tations.

We have implemented our approach using two existing
tools for, respectively, static and dynamic x86 binary analysis.
We present preliminary results of experiments with standard
JPEG, GIF and ANI Windows parsers. For a given test suite
of diverse input files, our mixed static/dynamic analysis is
able to prove memory safety of FP code in those parsers for

∗ The work of this author was done mostly while visiting Microsoft.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

a small upfront static analysis cost and a marginal runtime
expense compared to regular runtime symbolic execution.

1. Introduction

Whitebox fuzzing [10] is a promising new form of security
testing based on dynamic test generation [3, 8]. Starting with
a well-formed input, whitebox fuzzing executes the program
under test while simultaneously performing symbolic exe-
cution to generate input constraints from conditional state-
ments that capture the program execution path. Those con-
straints are then systematically negated and solved with a
constraint solver, generating new test inputs to exercise dif-
ferent execution paths of the program. This process is re-
peated with the goal of exercizing many program paths and
finding many bugs. Over the last couple of years, white-
box fuzzers have found dozens of new security vulnera-
bilities (buffer overflows) in Windows [10] and Linux [14]
applications, including codecs, image viewers and media
players. Notably, whitebox fuzzing was recently credited
to have found roughly one third of all the bugs discovered
by file-fuzzing during the development of Microsoft’s Win-
dows 7 [7].

Many image and video codecs use floating-point instruc-
tions available on modern processors. Yet existing whitebox
fuzzers do not generate constraints for floating-point code,
perhaps because current mainstream SMT solvers (such as
STP, Yices, and Z3, to name a few) do not handle floating-
point arithmetic.

In this paper, we present a new technique for proving
memory safety of floating-point (FP) computations that does
not require precise symbolic reasoning about FP code. The
basic idea is to treat all FP values as a single special sym-
bolic value “FP-tag” during symbolic execution, and to lever-
age existing symbolic evaluation rules to perform a dynamic
taint-flow analysis of FP-tags. If an FP-tag is ever used to
compute a memory address dereferenced during execution,
a runtime error is generated as a warning.

Our intuition is that such warnings should be rare as
floating-point computations should be involved only in the
processing of the “payload” of an image or video input file,
not in buffer allocations and memory address computations,
with only the latter being prone to buffer overflows and other
security critical bugs. Indeed, it would be intuitively surpris-
ing if processing, say, a JPEG image of a white flower would
result in a memory safe execution, while processing the exact
same image but with a red flower would trigger a buffer over-
flow. A related but simpler phenomenon is data independence
in communication protocols [19]: only the control part (i.e.,

the header and footer) of a packet influences the behavior
of protocol entity, while the packet content is just forwarded
to a lower or higher protocol layer and is irrelevant to prove
correctness. In contrast, image and media formats are usually
much more complex, and the distinction between control and
payload is made at runtime by treating differently different
parts of the input. For instance, a movie file may start with a
declaration that it contains 10,000 chunks of data. After this
global header, a stream of all chunks follows, with each hav-
ing its own private header describing whether it contains au-
dio or video data, its size and encoding. Moreover, assuming
we define the payload of a file as the bytes that are processed
by FP code, payload data may influence the control flow of
the image or movie processor whenever floating-point val-
ues are tested in conditional statements.

To prove memory safety of a conditional statement tainted
by an FP-tag during symbolic execution, we use a lightweight
static analysis for conservatively over-approximating all pos-
sible executions of the if-then-else block and then skip the en-
tire block during symbolic execution, provided that statically-
computed checks are satisfied at runtime. The satisfiability
of those checks guarantee that all possible executions inside
the block do not access any memory address computed us-
ing FP-tags or input values, and that all their side-effects are
conservatively represented by new FP-tags injected when
symbolic execution resumes at the end of the block.

We have implemented our approach using two existing
tools for static and dynamic x86 binary analysis, respec-
tively. We present preliminary results of experiments with
standard JPEG, GIF and ANI processors embedded in Win-
dows (and deployed on nearly a billion machines world-
wide). For a given test suite of diverse input files, our mixed
static/dynamic analysis is able to prove memory safety of
FP code in the observed executions of those parsers for a
small upfront static analysis cost and a marginal runtime
expense compared to regular runtime symbolic execution,
hence avoiding costly FP constraint generation and solving,
and additional tests to cover FP code.

2. Background: Systematic Dynamic Test
Generation

Dynamic test generation (see [8] for further details) consists
of running the program P under test both concretely, ex-
ecuting the actual program, and symbolically, calculating
constraints on values stored in program variables x and ex-
pressed in terms of input parameters. Side-by-side concrete
and symbolic executions are performed using a concrete
store M and a symbolic store S , which are mappings from
memory addresses (where program variables are stored) to
concrete and symbolic values, respectively. A symbolic value
is any expression e in some theory T where all free variables
are exclusively input parameters. For any program variable
x, M(x) denotes the concrete value of x in M, while S (x) de-
notes the symbolic value of x in S . For notational convenience,
we assume that S (x) is always defined and is simply M(x)
by default if no expression in terms of inputs is associated
with x in S . When S (x) is different from M(x), we say that
the program variable x is “symbolic”, meaning that its value
is a function of some input(s), which is represented by the
symbolic expression S (x) associated with x in the symbolic
store. We also extend this notation to allow M(e) to denote
the concrete value of symbolic expression e when evaluated
with the concrete store M. The notation + for mappings de-

notes updating; for example, M′ = M + [m 7→ v] is the same
map as M, except that M′(m) = v.

The program P manipulates the memory (concrete and
symbolic stores) through statements or commands, which are
abstractions of the machine instructions actually executed. A
command can be an assignment of the form v := e (where v
is a program variable and e is an expression) or [e1] := e2

(where [e1] is a memory address dereference at the address
defined by evaluating expression e1, and e2 is an expression),
a conditional statement of the form if e then C′ else C′′

(where e denotes a Boolean expression, and C′ and C′′ denote
the unique1 next command to be evaluated when e holds or
does not hold, respectively), or stop (which corresponds to
a program error or normal termination).

Given an input vector I assigning a value Ii to the i-th in-
put parameter, the evaluation of a program defines a unique

finite2 program execution s0
C1
→ s1 . . .

Cn
→ sn that executes the fi-

nite sequence C1 . . .Cn of commands and goes through the fi-
nite sequence s1 . . . sn of program states. Each program state is
a tuple 〈C,M, S , pc〉 where C is the next command to be eval-
uated, and pc is a special meta-variable that represents the
current path constraint. For a finite sequence w of commands
(i.e., a control path w), a path constraint pcw is a formula of
theory T that characterizes the input assignments for which
the program executes along w. To simplify the presentation,
we assume that all the program variables have some unique
initial concrete value in the initial concrete store M0, and that
the initial symbolic store S 0 identifies the program variables
v whose values are program inputs (for all those, we have
S 0(v) = Ii where Ii is the corresponding input parameter).
Initially, pc is defined to true.

Systematic dynamic test generation [8] consists of system-
atically exploring all feasible program paths of the program
under test by using path constraints and a constraint solver.
By construction, a path constraint represents conditions on
inputs that need to be satisfied for the current program path
to be executed. Given a program state 〈C,M, S , pc〉 and a con-
straint solver for theory T , if C is a conditional statement
of the form if e then C′ else C′′, any satisfying assign-
ment to the formula pc∧ e (respectively pc ∧¬e) defines pro-
gram inputs that will lead the program to execute the then
(respectively else) branch of the conditional statement. By
systematically repeating this process, such a directed search
can enumerate all possible path constraints and eventually
execute all feasible program paths.

The search is exhaustive provided that the generation of
the path constraint (including the underlying symbolic exe-
cution) and the constraint solver for the given theory T are
both sound and complete, that is, for all program paths w, the
constraint solver returns a satisfying assignment for the path
constraint pcw if and only if the path is feasible (i.e., there ex-
ists some input assignment leading to its execution). In this
case, in addition to finding errors such as the reachability of
bad program statements (like assert(false)), a directed
search can also prove their absence, and therefore obtain a
form of program verification.

Theorem 1. (adapted from [8]) Given a program P as defined
above, a directed search using a path constraint generation and

1 We assume program executions are sequential and deterministic.
2 We assume program executions terminate. In practice, a timeout
prevents non-terminating program executions and issues a runtime
error.

1 evalSymbolic (e) =
2 match (e) :
3 case v : // Program variable v
4 return S (&v)
5 case +(e1 , e2) : // Addition
6 f1 = evalSymbolic (e1)
7 f2 = evalSymbolic (e2)
8 if f1 and f2 are constants
9 return evalConcrete (e)

10 else
11 return createExpression(′+′ , f1 , f2)
12 case [e1] : // Address dereference
13 c =evalConcrete (e1)
14 mrc =getMemoryRegion (c)
15 if mrc is undefined // passive check
16 error (’memory access violation at address c ’)
17 f1 = evalSymbolic (e1)
18 if f1 is not a constant
19 pc = pc ∧ (0 ≤ (f1 − mrc.base) ≤ mrc.size) // active check
20 return S (c)
21 etc .

Figure 1. Symbolic expression evaluation.

1 Procedure executeSymbolic(P , I) =
2 initialize M0 and S 0

3 path constraint pc = true
4 C = getNextCommand ()
5 while (C , stop)
6 match (C) :
7 case (v := e) :
8 M = M + [& v 7→evalConcrete(e)]
9 S = S + [& v 7→evalSymbolic(e)]

10 case ([e1] := e2) :
11 M = M + [evalConcrete(e1) 7→evalConcrete(e2)]
12 evalSymbolic([e1]) // passive and active check
13 S = S + [evalConcrete(e1) 7→evalSymbolic(e2)]
14 case (if e then C′ else C′′) :
15 b =evalConcrete(e)
16 c =evalSymbolic(e)
17 if b then pc = pc ∧ c
18 else pc = pc ∧ ¬c
19 C = getNextCommand () // end of while loop

Figure 2. Symbolic execution.

a constraint solver that are both sound and complete exercises all
feasible program paths exactly once.

In this case, if a program statement has not been executed
when the search is over, this statement is not executable in
any context. In practice, path constraint generation and con-
straint solving are usually not sound and complete. When a
program expression cannot be expressed in the given theory
T decided by the constraint solver, it can be simplified using
concrete values of sub-expressions, or replaced by the con-
crete value of the entire expression.

Note that the above formalization and theorem do ap-
ply to programs containing loops or recursion, as long as all
program executions terminate. However, in the presence of
a single loop whose number of iterations depends on some
unbounded input, the number of feasible program paths be-
comes infinite. In practice, termination can always be forced
by bounding input values, loop iterations, or recursion, at the
cost of potentially missing bugs.

Figure 1 illustrates how to symbolically evaluate expres-
sions e involved in program instructions; Figure 2 shows
how to generate a path constraint while symbolically execut-
ing a program. &v denotes the address at which the value of
v is stored. As in [9], all symbolic expressions e ever used in
the left hand-side (lines 9 and 13 of Figure 2) or right hand-
side (line 12 of Figure 2) of an assignment statement or in

the Boolean expression of a conditional statement (line 16 of
Figure 2) are checked for memory access violations. When-
ever a memory address is dereferenced during execution, an
expression of the form [e] is evaluated to compute that ad-
dress. The concrete value c of the address is checked “pas-
sively” (in line 15 of Figure 1) to make sure it points to a
valid memory region mrc; then the symbolic expression e is
also checked “actively” by injecting a new constraint in the
path constraint (line 19 of Figure 1) to make sure other in-
put values cannot trigger a buffer overflow or underflow at
this point of the program execution [9]. How to keep track
of the base address mrc.base and size mrc.size of each valid
memory region mrc during the execution of the program P is
discussed in [5]. To simplify the presentation, Figure 1 only
handles single symbolic pointer dereferences (by returning
the value S (c) in line 20), but could be extended to handle
multiple levels of pointer indirections [5].

Given two program executions w and w′, we write w ≡P w′

if they execute the same (finite) sequence of commands. Ob-
serve that w ≡P w′ implies pcw = pcw′ since both execute the
same control path. Let an extended path constraint epc denote
a path constraint extended with buffer-overflow checks in-
jected as in line 19 of Figure 1. We write w ≡P+B w′ if w ≡P w′

and epcw = epcw′ . Thus, two executions w and w′ are equiv-
alent with respect to ≡P+B if they execute the same control
path in the extended program P + B which extends the orig-
inal program P with bound checks for all memory accesses.
Such bound checks are useful to prove memory safety.

Theorem 2. (adapted from [9]) Given an extended program P+ B
as defined above, a directed search using an extended path con-
straint generation and a constraint solver that are both sound and
complete exercises all feasible program paths exactly once. More-
over, if no runtime error is ever generated by line 16 of Figure 1, all
program executions are memory safe.

3. Problem Definition

For security analysis, the advantages of binary analyses are
well established: static [2,12] or dynamic [10,14] binary anal-
yses allow to analyze the exact program that is being shipped
to customers and that includes important details such as
code transformations performed by compilers. In this work,
we adopt a similar approach and build upon two existing
tools for, respectively, static and dynamic x86 binary analy-
sis of Windows applications. Specifically, the tool we extend
for runtime symbolic execution handles a large set of x86 in-
structions, but no floating-point (FP) instructions.

We use the term FP instructions to refer to the about 100
floating point and over 300 SIMD instructions in the x86
architecture [11]. Floating point instructions execute on the
x87 FPU, which used to be a separate physical unit on early
x86 platforms. They primarily read from and write to the
FPU’s own register stack (st(0) to st(7)) and its status-,
control-, and tag-registers. SIMD (Single Instruction, Mul-
tiple Data) instructions have been introduced into x86 as
the MMX, 3DNow!, SSE, SSE2, SSE3, SSSE3, and SSE4 ex-
tensions [17]. These instructions also use special registers
(mmx0-7 as aliases of the FPU register stack, xmm0-15, and
the control- and status register) and are specifically tailored
towards fast vector operations. We refer to all registers used
exclusively by floating point and SIMD instructions as FP-
registers. Thus, the value stored in an FP-register can only be
moved to memory or a regular register by an FP instruction.

For instance, here is an example of floating point code that
loads a variable, multiplies it with a constant, and stores the
result:

fld qword ptr x
x := x * 2.3; fmul qword ptr flt2 3

fstp qword ptr x
Formally, we now assume that the program P to be ana-

lyzed actually executes two types of assignment statements:
(1) floating-point (FP) assignments of the form v := e or [e′] := e
where v is a floating-point program variable (register) or e
is an expression in some larger, possibly undecidable, theory
T ′ ⊃ T including the decidable theory T ; and (2) regular
(i.e., non-FP) assignment statements as defined in the previ-
ous section. For simplicity, we will use the terms FP assign-
ments and non-FP assignments to distinguish both assignment
types in what follows.

For a 32-bit processor, x86 memory addresses [e′] are de-
fined by expressions e′ of the form “base+index*scale+offset”,
where base and index are general-purpose 32-bit registers,
scale is the constant 1, 2, 4, or 8, and offset is a 32-bit constant
value. This convention holds regardless of the type of the
value being stored at the address (e.g., a single byte, a 32-bit
value, or a floating-point value).

After executing FP assignments, a subsequent conditional
statement if e then C′ else C′′ may have its expres-
sion e be dependent on an FP value. We then call it an FP-
dependent conditional statement.

For instance, the conditional statement in the code below
is FP-dependent:

double x; int c;

...
if (x > 2.3) {

c: = 1;
}

...

...
fld qword ptr x
fcomp flt2_3
fnstsw ax
and ah, 41h
jnz l
mov dword ptr c, 1

l:
...

Note that there are no branching FP instructions in x86.
There are different idioms for implementing FP-dependent
conditional structures in assembly language, one of which is
illustrated in the above example. All idioms have in common
that the EFLAGS register is set according to the result of an
FP computation. This is required since all x86 conditional
jumps (and moves) depend on EFLAGS.

Still, extending symbolic execution to handle all or most
FP instructions would require adding hundreds of cases to
Figure 1, as well as a constraint solver to solve those con-
straints, which would generate many new tests with new FP
input values and would make path explosion even worse.

Our goal is to obtain a theorem similar to Theorem 2 to
prove memory safety of executions involving FP computa-
tions, even though we cannot precisely symbolically reason
about the larger FP theory T ′. How can we achieve this?

4. Dealing with FP Instructions

We now describe an approach to proving memory-safety of
FP computations without expanding symbolic execution, con-
straint generation, and constraint solving to theory T ′. Our
approach combines a local, lightweight, path-insensitive,
“may” static analysis of FP instructions with a global, high-
precision, context and path-sensitive, “must” dynamic anal-
ysis of non-FP instructions. The aim of this combination is (1)
to prove the memory-safety of each individual FP instruction
in their specific run-time execution context, and (2) to prove a

1 ∗ Procedure checkAssignment (C) =
2 ∗ if C is an FP−assignment // new case
3 ∗ ∀m ∈ WriteAddrOrReg(C) : S = S + [m 7→FP−tag]
4 ∗ return
5

6 Procedure executeSymbolicFP (P , I) =
7 initialize M0 and S 0
8 path constraint pc = true
9 C = getNextCommand ()

10 while (C , stop)
11 match (C) :
12 case (v := e) :
13 M = M + [& v 7→evalConcrete(e)]
14 S = S + [& v 7→evalSymbolicFP(e)]
15 ∗ checkAssignment (C)
16 case ([e1] := e2) :
17 M = M + [evalConcrete(e1) 7→evalConcrete(e2)]
18 evalSymbolicFP([e1]) // passive and active check
19 S = S + [evalConcrete(e1) 7→evalSymbolicFP(e2)]
20 ∗ checkAssignment (C)
21 case (if e then C′ else C′′) :
22 b =evalConcrete(e)
23 c =evalSymbolicFP(e)
24 ∗ if c = FP−tag
25 ∗ error (’FP−tag−dependent test detected ’)
26 if b then pc = pc ∧ c
27 else pc = pc ∧ ¬c
28 C = getNextCommand () // end of while loop

Figure 3. New symbolic execution extended to FP assign-
ments.

form of non-interference between the FP-part and the non-FP
part of the program in order to prove memory safety of in-
direct FP-dependencies through conditional statements and
casts from FP-values to non-FP values. In this section, we
present a simple algorithm following this general approach,
while the next section presents a refined algorithm.

The first algorithm starts by computing statically for each
FP-assignment command C a set WriteAddrOrReg(C) of mem-
ory addresses or regular (non-FP) registers that are being written
to during the execution of C.

Example 1. For the FP assignment C

fld [esi+eax]

which loads the FP value stored at address esi+eax into the
FP stack, WriteAddrOrReg(C) = ∅. �

Example 2. For the FP assignment C

fstp qword ptr [edi+ecx]

which loads the FP value stored on top of the FP stack
into memory at address edi+ecx, WriteAddrOrReg(C) =
{(edi+ecx) . . . (edi+ecx+7)} (where (e) denotes the address
obtained by evaluating the expression e and [x . . . y] denotes
an interval from address x to address y). �

Example 3. For the FP assignment C

movd eax, xmm0

which loads part of the FP value stored in the FP regis-
ter xmm0 into the non-FP register eax, WriteAddrOrReg(C) =
{eax}. �

The sets WriteAddrOrReg(C) can be computed for each FP-
assignment C statically at compile time or on-demand at
run time. These sets are much easier to define and compute
than a precise symbolic execution of C. In fact, they provide
a conservative approximation of the side-effects of C during
symbolic execution as shown in Figure 3.

1 evalSymbolicFP (e) =
2 match (e) :
3 case v : // Program variable v
4 return S (&v)
5 case +(e1 , e2) : // Addition
6 f1 = evalSymbolicFP (e1)
7 f2 = evalSymbolicFP (e2)
8 ∗ if f1 =FP−tag or f2 =FP−tag
9 ∗ return FP−tag

10 if f1 and f2 are constants
11 return evalConcrete (e)
12 else
13 return createExpression(′+′ , f1 , f2)
14 case [e1] : // Address dereference
15 f1 = evalSymbolicFP (e1)
16 ∗ if f1 =FP−tag
17 ∗ error (’FP−tag−dependent address detected ’)
18 c =evalConcrete (e1)
19 mrc =getMemoryRegion (c)
20 if mrc is undefined // passive check
21 error (’memory access violation at address c ’)
22 if f1 is not a constant
23 pc = pc ∧ (0 ≤ (f1 − mrc.base) ≤ mrc.size) // active check
24 return S (c)
25 etc .
26 ∗ default : // any FP−specific expression
27 ∗ return FP−tag

Figure 4. New symbolic expression evaluation with FP-tag.

Figure 3 is similar to Figure 2 except for the lines prefixed
by *. Whenever an assignment statement C is encountered
during symbolic execution, the function checkAssign-
ment() is called (in lines 15 or 20) to check whether C is
an FP-assignment. If so, regular symbolic execution of the
assignment C is replaced3 as follows: the symbolic value of
every memory address and register in WriteAddrOrReg(C) be-
comes the special symbolic value FP-tag in the symbolic store
(line 3).

FP-tag is a single symbolic value that represents all pos-
sible floating-point (concrete) values during symbolic execu-
tion, as well as all symbolic expressions that depend on an
FP value, hence including all possible symbolic expressions
in theory T ′ \T . Symbolic expression evaluation is easily ex-
tended to handle FP-tags as illustrated in Figure 4. The new
value FP-tag is an “absorbing element” with respect to sym-
bolic expression evaluation: the value of any expression con-
taining FP-tag is FP-tag (e.g., see lines 8-9 of Figure 4). Also,
any FP-specific expression (i.e., in T ′ \ T) also returns FP-tag
(lines 26-27 of Figure 4).

As in regular symbolic execution, all memory address
dereferences are checked both passively and actively for
memory access violations (see Section 2). If any memory ad-
dress ever depends on an FP-tag, an error is (conservatively)
generated in line 17 of Figure 4.

The algorithm of Figure 3 also generates an error if the
Boolean expression of any conditional statement ever be-
comes the value FP-tag (lines 24-25).

Let M(m, s) and S (m, s) denote the value of memory loca-
tion m in state s in the concrete store M or symbolic store S ,
respectively. Given any two states s and s′, we write s ≡FP s′

if ∀m : M(m, s) = M(m, s′) or S (m, s) = S (m, s′) = FP-tag.
Thus, the ≡FP equivalence is very tight: two states that are
≡FP equivalent can only differ in any memory location by

3 To keep the notation simple, in case of FP assignments, we assume
the symbolic store updates in lines 14 and 19 of Figure 3 are no-ops
(e.g., when v is a FP variable) that are subsumed by the updates in
line 3 of checkAssignment().

the concrete floating-point value abstracted by the symbolic
value FP-tag.

We extend the notation to define equivalence classes of

program executions: given two program executions w = s0
C1
→

s1 . . .
Cn
→ sn and w′ = s′0

C′1
→ s′1 . . .

C′n
→ s′n, we write w ≡FP w′ if

∀i : si ≡FP s′i ∧Ci = C′i .

Theorem 3. (memory safety) Given a program P as defined above
with FP and non-FP assignments, if the algorithm of Figures 3
and 4 does not generate any error for an execution w, then for all
executions w′ such that w′ ≡FP w, we have w′ ≡P+B w, and all
executions w′ are memory safe.

Proof: We first show that if the algorithm does not gener-
ate any error for execution w, then w ≡FP w′ implies w ≡P+B

w′. First, during the execution w, no conditional statement
ever depends on an FP-tag (otherwise contradiction by lines
24-25 of Figure 3), therefore w ≡P w′. Second, all memory
accesses during the execution w are checked in lines 14-24
of Figure 4 (due to calls to evalSymbolicFP() in lines 14,
18, 19 and 23 of Figure 3); moreover, no memory address
ever depends on an FP-tag (otherwise an error would be
generated in line 17 of evalSymbolicFP()). This implies
w ≡P+B w′.

Since w is memory safe (any non-memory safe access
would trigger an error by line 21 of evalSymbolicFP()),
w ≡P+B w′ implies that w′ is memory safe, too. �

Corollary 4. If the number of program executions w that are
distinct with respect to ≡P+B is finite, all those can be enumerated
by a directed search and, if the algorithm of Figures 3 and 4 never
generates any error for any of these executions, the entire program
P is memory safe.

Note that if the algorithm of Figures 3 and 4 reports
an error of the type “FP-tag-dependent address or test de-
tected”, this does not necessarily imply that the program
is not memory safe. Indeed, the injection of FP-tags in line
3 of checkAssignment() and their propagation using
rules like in lines 8-9 of evalSymbolicFP() are conser-
vative: the FP-tag value abstracts and blends together con-
crete values that might have been otherwise distinguished
by FP constraints injected in the path constraint either in
lines 26-27 of executeSymbolicFP() or in line 23 of
evalSymbolicFP(), if symbolic execution and constraint
solving had been extended to handle FP constraints in T ′.

5. Dealing with FP-dependent Conditional
Statements

The previous algorithm reports an error whenever the Boolean
expression e of any conditional statement depends on an
FP-tag. Unfortunately, FP-dependent conditional statements
that test floating-point values are frequent in practice, as il-
lustrated in the second example in Section 3 and as will be
discussed later in the experiments Section 7. In those cases,
the previous algorithm is not sufficient, as it will generate
too many alarms.

In this section, we present a refined algorithm that can
eliminate many of those alarms. The main idea is to treat
an entire if-then-else block depending on an FP-tag as a sin-
gle FP instruction: a lightweight static analysis is used to
over-approximate all possible executions inside that block,
starting from the conditional statement C until its unique
immediate postdominator instruction ipdom(C), and to com-

1 Procedure executeSymbolicFPV2(P , I) =
2 initialize M0 and S 0
3 path constraint pc = true
4 C = getNextCommand ()
5 while (C , stop)
6 match (C) :
7 case (v := e) :
8 M = M + [& v 7→evalConcrete(e)]
9 S = S + [& v 7→evalSymbolicFP(e)]

10 checkAssignment (C)
11 case ([e1] := e2) :
12 M = M + [evalConcrete(e1) 7→evalConcrete(e2)]
13 evalSymbolicFP([e1]) // passive and active check
14 S = S + [evalConcrete(e1) 7→evalSymbolicFP(e2)]
15 checkAssignment (C)
16 case (if e then C′ else C′′) :
17 b =evalConcrete(e)
18 c =evalSymbolicFP(e)
19 ∗ if c = FP−tag
20 ∗ if (AddrReg(C) = unsa f e) or
21 ∗ (∃reg ∈ AddrReg(C) : S (®) , M(®))
22 ∗ error (’Unsafe FP−dependent conditional ’)

23 ∗ C̄ = C
24 ∗ while (C̄ , ipdom(C)) C̄ = getNextCommand ()
25 ∗ ∀m ∈ WriteAddrOrReg(C) : S = S + [m 7→FP−tag]
26 ∗ C = C̄ ; continue // end of while loop
27 else if b then pc = pc ∧ c
28 else pc = pc ∧ ¬c
29 C = getNextCommand () // end of while loop

Figure 5. New symbolic execution extended to FP assign-
ments and FP-dependent conditionals.

pute two sets AddrReg(C) and WriteAddrOrReg(C) for the en-
tire block starting at C:

• AddrReg(C) is a set of regular (non-FP) registers whose
value at the time of executing C may be used to compute a
memory address being read or written during the execu-
tion of C to ipdom(C); if any value from memory may be
used to compute an address (multiple dereference) dur-
ing the execution of C to ipdom(C), AddrReg(C) is set to a
special value “unsafe”.

• WriteAddrOrReg(C) is a set of memory addresses or regular
(non-FP) registers that may be written to during the exe-
cution of C to ipdom(C); if a memory address cannot be
expressed by the static analysis for the time immediately
before executing ipdom(C) (e.g., a pointer register is over-
written after an access), AddrReg(C) is set to “unsafe”.

ipdom(C) can be efficiently determined using standard algo-
rithms [13]; the two sets AddrReg(C) and WriteAddrOrReg(C)
are over-approximated and a default value of “unsafe” is
used for AddrReg(C) when complicated code is encoun-
tered. There are different ways to cheaply compute this
over-approximation. In Section 6 we outline a simple algo-
rithm that yields sufficiently precise approximations with-
out full-blown symbolic execution. Before executing the pro-
gram, this static analysis algorithm is run to pre-compute
ipdom(C), AddrReg(C) and WriteAddrOrReg(C) for every con-
ditional statement C in the program under test.

Figure 5 presents the refined symbolic execution algo-
rithm which is similar to the one of Figure 3 except for
the new lines 19-26 prefixed with a *. Now, whenever sym-
bolic execution hits an FP-dependent conditional statement
C, instead of immediately reporting an error, the refined
algorithm attempts to proceed by “skipping” the entire if-
then-else block. First, if any register in the statically pre-
computed AddrReg(C) has any symbolic value, i.e., is either
input-dependent or FP-tag, an error is generated (lines 20-

22). Otherwise, symbolic execution proceeds until ipdom(C)
is reached (lines 23-24). Just before resuming symbolic ex-
ecution at ipdom(C) (line 26), the symbolic value of every
memory address and register in WriteAddrOrReg(C) becomes
FP-tag in the symbolic store (line 25).

Given two program executions w and w′, we write w ≡P+FP

w′ if w ≡FP w′ except at FP-dependent conditional statements
C where they are allowed to take different branches and exe-
cute different commands until either both of them eventually
reach ipdom(C), or at least one of them never reaches ipdom(C)
(due to early termination or non-termination). Thus, the
equivalence relation ≡P+FP is weaker than ≡P and ≡FP. We
also write w ≡P+FP+B w′ if w ≡P′+FP w′ where P′ is P extended
with bound checks for all memory accesses.

A program execution w is called attacker memory safe if
every buffer access during w in the program P extended with
bound checks for all memory accesses is either within bounds
(i.e., is memory safe) or is input-independent, i.e., its address
has no input-dependent symbolic value, and hence is not
directly controllable by an attacker through the untrusted
input interface.

Thus, the notion of “attacker memory safe” is weaker than
memory safety: if a program execution is memory safe, this
implies that the execution is attacker memory safe, while the
converse does not hold. Nevertheless, in the context of secu-
rity testing, we are primarily interested in attacker memory
safety since buffer overflows where the overflow is fixed and
cannot be directly controlled by the attacker are likely much
harder to exploit. We now show that the algorithm of Fig-
ure 5 can only guarantee this weaker form of memory safety.

Theorem 5. (attacker memory safety) Given a program P as
defined above with FP and non-FP assignments and regular and
FP-dependent conditional statements, if the algorithm of Figures 5
and 4 does not generate any error for an execution w, then for all
executions w′ such that w′ ≡FP w, we have w′ ≡P+FP+B w, and all
executions w′ are attacker memory safe.

Proof: We show that if the algorithm does not gen-
erate any errors for execution w, then w ≡FP w′ implies
w ≡P+FP+B w′. Since w ≡FP w′, for each conditional state-
ment C reached by those executions, either the conditional
statement does not depend on an FP-tag and the two ex-
ecutions execute the same branch at C and subsequent in-
structions, or the conditional statement depends on an FP-
tag and the two executions are allowed to diverge until
ipdom(C) is reached. Moreover, all possible side-effects of
all possible executions between C and ipdom(C) are cov-
ered with FP-tags when ipdom(C) is executed (line 25 of
executeSymbolicFPV2()). Thus, if s and s′ denote the
states of w and w′ when they both reach ipdom(C), respec-
tively, we have s ≡FP s′. This implies that w ≡P+FP w′.

During the execution of w, all memory accesses per-
formed during symbolic execution are checked to be mem-
ory safe in lines 14-24 of evalSymbolicFP() (called in
lines 9, 13, 14 and 18 of executeSymbolicFPV2()). More-
over, all memory accesses that can possibly happen during all
possible program executions between every FP-conditional
statement C and ipdom(C) are conservatively represented by
AddrReg(C), and all those memory accesses are checked in
lines 20-21 to be both input- (i.e., attacker-) independent and
FP-tag-independent (otherwise an error would be generated
in line 22). Therefore, no memory access ever depends on an
FP-tag and we have w ≡P+FP+B w′.

Furthermore, all memory accesses in w are either mem-
ory safe during symbolic execution or input-independent

between FP-dependent conditional statements C and their
ipdom(C). By definition, w is then attacker memory safe. Since
w ≡P+FP+B w′, w′ is attacker memory safe too. �

The correctness guarantees provided by Theorem 5 are
weaker than those provided by Theorem 3, since attacker
memory safety is weaker than memory safety. Indeed, exe-
cutions w′ such that w ≡FP w′ can take different executions
paths between FP-dependent conditional statements C and
their ipdom(C), and some of those other paths may trigger
memory access violations or other runtime errors (such as
division-by-zero or infinite loops). Since we do not generate
FP constraints for those conditional statements C, we can-
not generate tests to exercise those paths and hit those errors.
Nevertheless, our algorithm can guarantee that no such path
ever contains an input or FP-dependent memory access.

6. Prototype Implementation

We have implemented our approach as an extension to the
existing whitebox fuzz testing tool SAGE [10]. For exploring
execution paths of a program under test, the tool starts from a
well-formed input file and systematically manipulates input
bytes to drive execution into new branches.

We extended the symbolic execution engine of SAGE to
incorporate our new algorithm in Figure 5. To calculate the
AddrReg and WriteAddrOrReg sets, we built a separate static
analysis tool that processes the binary under test and all ref-
erenced dynamic libraries. The static analysis tool is based on
Microsoft Vulcan [4], a mature framework for parsing, an-
alyzing, and instrumenting compiled binaries. Dynamic li-
braries (DLLs) can be conditionally loaded at runtime, and
it is not always possible to statically determine the full set of
DLLs that may be accessed. If symbolic execution encounters
an instruction belonging to the address space of a library for
that no static information has been generated, the static anal-
ysis has to be invoked on that particular library to generate
the missing information.

Static Information. For an executable or DLL, our tool
computes the AddrReg and WriteAddrOrReg sets for all in-
dividual FP instructions and for all conditional jumps. We
tried to keep the static analysis as fast and simple as possible
but as precise as necessary to prove FP dependent condi-
tional jumps to be attacker memory safe (provided that the
values of registers in AddrReg are input-independent and not
FP-tag). Without knowledge about the actual semantics of an
instruction, disassemblers such as the one included in Vulcan
are still able to extract source and destination operands from
it by decoding the relevant bytes in the instruction stream.
Typically, elaborate tables are used for mapping bytes to
instructions, which also expose implicit register operands
(e.g., eax is an implicit source and target in mul cx). When
processing an individual FP instruction, target operands are
added to the WriteAddrOrReg set.

The WriteAddrOrReg and AddrReg sets for conditionals
need to capture the effects of all control-dependent instruc-
tions. We have implemented a flow insensitive interproce-
dural analysis for determining both sets. Both branches of
each conditional jump are explored up to but not includ-
ing the immediate postdominator of the jump. For each in-
struction in the branches, its destination operands are added
to WriteAddrOrReg, and the base and index registers of any
memory operands are added to AddrReg. If the intersection
of both sets is non-empty, i.e., if any of the dereferenced reg-
isters is manipulated in the control-dependent block, our

analysis reports the conditional as unsafe. For example, con-
sider the following loop controlled by an FP expression:

input double x;
int a[10]; int i=0;
while (x > 2.3)

x = x/2.4;
a[i++] = (int)x;

Our static analysis would return “unsafe” for the condition
controlling the loop when analyzing it up to its immediate
postdominator (which is the next statement after the while
loop). This is necessary, since pointer manipulation in an FP-
dependent control block could be vulnerable to an attack that
might not be detected by the dynamic analysis .

When all pointers are constant within a conditional block,
all target memory addresses can be easily determined and
represented in a single pass. No special treatment of loops
is required, since the analysis is flow and path insensitive.
In our implementation, memory locations in WriteAddrOrReg
can be of the form [base + offset], where base is a register
and offset an integer. The restriction that pointers remain
constant also excludes multiple dereference within a single
block, which in x86 requires assigning an address to an inter-
mediate register.

Disallowing any changes to dereferenced registers is too
strict for handling the stack pointer (esp) and push/pop.
E.g., parameters of function calls are pushed onto the stack
in Windows standard calling convention, thereby modifying
and dereferencing the stack pointer in one instruction.

We use a standard path-insensitive stack-height analysis
supplied by Vulcan to determine at every instruction the
offset of esp from the base of the procedure’s stack frame.
In compiler generated code, this offset is always constant
for a certain instruction. We can thus replace references to
esp-based local variables with equivalent stack frame based
memory locations in the WriteAddrOrReg set. At the imme-
diate postdominator of the conditional jump, these locations
are then translated back to esp based addresses.

Function calls within in the control-dependent block
are allowed. Our tool recursively calculates AddrReg and
WriteAddrOrReg for complete procedures in standard bottom
up fashion and inserts them at the call site. Care must be
taken to correctly translate stack frame relative addresses in
the WriteAddrOrReg set of the callee into the stack frame of
the caller. Some procedures set up and use a frame pointer in
ebp for referencing local variables, so ebp would show up
in both sets. We solve this problem by using the same trans-
lation as for esp, and express all ebp based local variables as
stack frame relative addresses (in Visual C, ebp always has
an offset of 4 from the stack frame).

This approach also handles recursive or mutually recur-
sive functions, since it is not necessary for WriteAddrOrReg to
record updates to stack frames which have become invalid
at the immediate postdominator of the original conditional
statement. Any other side effects are over-approximated by
one pass of a function, since other pointers than the stack and
frame pointer have to remain constant.

Control Flow Information. The calculation of immedi-
ate postdominators for conditional jumps requires precise
control flow information. Our prototype correctly handles
procedures with multiple exits, non-returning procedure
calls (e.g., ExitProcess), inter-procedure jumps (e.g., from
shared error handling code), and the tail-jump optimization;
it currently does not support implicit control flow through
exceptions raised by instructions or in callees. If an imme-

diate postdominator cannot be statically determined for a
conditional jump (e.g., because one branch terminates), the
implementation reports the conditional to be unsafe.

We rely on Vulcan to decode instructions, identify proce-
dures, and provide control flow information. Soundness of
our implementation therefore depends on the soundness of
Vulcan’s analysis.

SSA optimizations in the C runtime library. With our as-
sumption that floating point and SSE instructions are used
exclusively for payload processing, we did not expect point-
ers to be modified by them. However, it turned out that the
implementations of memset and memcpy in Microsoft’s C
runtime use SSA instructions for speed, if the CPU supports
them and if the memory blocks happen to be 16-byte aligned.

Both cases lead to memory locations falsely being tagged
as floating point data (set to FP-tag), including pointers in-
side larger structures. For memset, we extended the static
analysis to understand the PXOR (16-byte XOR) and MOVDQA
(16-byte move) instructions and to perform a simple in-
traprocedural constant propagation. This suffices to identify
the SSA move instructions inside memset as assignments of
a constant integer value, for which WriteAddrOrReg is empty.
For memcpy, the symbolic execution should be aware that
memory areas are being copied, since whenever a portion of
input-dependent data is copied, its symbolic value should be
preserved. We handle this as a special case during symbolic
execution of the specific code sequence of memcpy to keep
track of the size, source and target addresses of the memory
to be copied.

7. Experimental Results

We report in this section detailed results of experiments with
our implementation and test drivers that invoke the built-in
parsers for JPEG, GIF, and ANI image files embedded in Win-
dows Vista. Those parsers are implemented in code spread
across various Windows DLLs. For each parser, we first pre-
processed all required libraries using our static analysis tool.
Many of the libraries are unrelated to the actual parsing but
are used for purposes like file access or setting up the Mi-
crosoft COM services. This foundation of common library
code is shared by all parsers, so there is a rather large overlap
in the static information used for them.

Static Preprocessing. Table 1 gives a breakdown of the re-
sults for the static analysis phase, both individually for each
DLL and as a total for each parser. We analyzed 20 DLLs
in total; the JPEG parser loaded 16, the one for GIF 19, and
the one for ANI 15 DLLs. Processing all required DLLs per
parser took about 5 to 10 min on a regular desktop machine.
One of the DLLs, shell32.dll, unfortunately was protected by
binary obfuscation and could not be processed by our proto-
type.

Our tool created the static information for all conditional
jumps in the program, not only for those which are FP de-
pendent at runtime, since it is not generally possible to stat-
ically determine the set of FP-dependent conditionals. For
over 80% of the conditional jumps, our lightweight static
analysis is not precise enough to prove anything, and has to
flag the conditional as unsafe. However, we do not try to stat-
ically prove memory safety of arbitrary code, but are only
interested in those conditional statements which become FP-
dependent at runtime. All other conditionals should even-
tually be explored by the algorithm for directed testing and
are thus already covered. We designed the static analysis to-
wards the patterns we saw for conditional jumps inside float-

ing point program logic, extending its power as required to
cover all or almost all cases. In particular, our static anal-
ysis reports as unsafe a conditional statement if in one of
the branches the same pointer is both modified and deref-
erenced (with the exception of the stack and frame pointers,
as explained in the previous section). This includes multiple
pointer dereferences (e.g., expressions such as **p), loops
over arrays, and long code sequences where the same regis-
ter is used for different pointers. FP-dependent conditionals
in the file parsers we looked at are usually relatively short
and/or limit their effects on FP registers, so we were able
to avoid implementing a more expensive analysis. We did,
however, have to make our analysis interprocedural, as some
of the FP-dependent conditionals contained function calls.

About 6% of all conditional jumps are determined to
be unconditionally memory safe, which is the case if the
conditional block contains no dereferences in either branch
and AddrReg is empty. The remaining conditionals do con-
tain dereferences and are conditionally safe: their AddrReg is
nonempty and the registers it contains need to be checked
for FP-dependent values during symbolic execution.

Symbolic Execution. In designing our experiments, we
were interested in checking whether the missing floating
point support could have caused our existing whitebox
fuzzer to miss bugs. If our assumption that FP instructions
do not interfere with security critical code is correct, ignoring
FP instructions did not miss any security bugs. We therefore
focused on replaying the symbolic execution of interesting
input files to determine whether all executions terminate
without issuing warnings, which could be raised due to un-
safe FP-dependent conditionals or FP-dependent memory
accesses.

We ran SAGE’s symbolic execution on diverse seed files
and disabled constraint solving, so that for each seed file we
observed one complete symbolic execution trace. We used
twelve different seed files per format, randomly selected
from a suite of regression tests. The files were of various
sizes, to a combined total size of 238 kB in the case of JPEG.
Only for JPEG we saw a significant amount of new instruc-
tions being covered compared to a single seed file, and in
fact some of the seed files caused more DLLs to be loaded
by the parser. Still, no new warnings were raised compared
to the symbolic execution of the trace for a single seed file
per format. Overall, our implementation of symbolic ex-
ecution with FP tags and processing of static information
consistently implies a 20% runtime overhead compared to
symbolic execution without FP tags, and therefore comes at
an overall marginal runtime cost.

Table 2 lists the results obtained from symbolically execut-
ing the test drivers on one seed file each; as mentioned above,
results for the other input files are very similar. The total run-
time for the extended symbolic execution were 101 secs for
JPEG, 73 secs for GIF, and 5 seconds for ANI. These execu-
tions were performed with small seed files of 1,092 bytes for
JPEG, 2,957 bytes for GIF, and 2,512 bytes for ANI. Num-
bers in Table 2 are split between occurrences of instructions
(including repeated executions) and unique instructions, and
also between instructions in the full trace from initialization
to termination and instructions executed after at least one in-
put byte has been read in the execution trace.

For instance, we ran the JPEG test driver and traced 26.7
million instructions (86763 unique), of which 22 million oc-
curred after reading input. It executed only 89 unique FP in-
structions after the input was read, a large portion of which
was part of an inner loop of optimized SSE2 instructions to

DLL JPEG GIF ANI All instr. FP instr. Conditionals Safe Cond. Safe Unsafe Time

advapi32 X X X 156442 75 13370 3.6% 10.0% 86.3% 27s
clbcatq X X 114240 100 12668 24.5% 7.8% 67.7% 27s
comctl32 X X 376620 344 31335 6.1% 14.6% 79.3% 47s
gdi32 X X X 81834 366 8785 3.6% 9.9% 86.5% 11s
GdiPlus X 476642 32147 42154 5.4% 13.4% 81.3% 184s
imm32 X X X 26178 0 2712 5.3% 4.9% 89.9% 6s
kernel32 X X X 15958 12 15958 4.1% 12.4% 83.4% 33s
lpk X X X 5389 45 658 8.1% 16.1% 75.8% 2s
msctf X X X 159228 357 13985 4.5% 8.3% 87.1% 31s
msvcrt X X X 147640 5757 16260 6.0% 12.1% 81.9% 35s
ntdll X X X 207815 649 18876 5.1% 12.6% 82.3% 40s
ole32 X X 367226 99 32677 4.8% 7.1% 88.1% 81s
oleaut32 X X 148777 1335 15484 7.1% 9.6% 83.3% 25s
rpcrt4 X X X 240231 57 18603 5.6% 9.5% 84.9% 31s
shell32 X X - - - - - - -
shlwapi X X 73092 0 6914 7.5% 12.3% 80.3% 9s
user32 X X X 121223 0 11314 7.3% 12.6% 80.0% 16s
usp10 X X X 79990 2 8394 7.7% 11.9% 80.5% 11s
uxtheme X X X 62276 110 5488 5.9% 10.9% 83.2% 7s
WindowsCodecs X 193415 6370 16926 4.4% 7.4% 88.2% 35s

JPEG (Total) 2127862 15334 212158 6.4% 9.8% 83.8% 418s
GIF (Total) 2860801 41455 275635 6.4% 11.1% 82.5% 623s
ANI (Total) 1753916 7774 172652 5.5% 11.7% 82.8% 306s

Table 1. Results from static analysis of DLLs used by the parsers.

All instructions FP instructions Total FP cond. Safe FP cond. Unsafe FP cond.
Full Input Full Input Full Input Full Input Full Input

JPEG
Occurrences 26712705 21983468 7826 7320 45 4 39 (87%) 4 6 (13%) 0
Unique 86763 104 89 28 1 26 (93%) 1 2 (7%) 0

GIF
Occurrences 8952406 4786801 3856 0 435 0 299 (69%) 0 136 (31%) 0
Unique 133958 68 0 36 0 32 (89%) 0 4 (11%) 0

ANI
Occurrences 1581268 1207886 134 39 41 21 35 (85%) 15 6 (15%) 6
Unique 29722 16 13 27 7 25 (93%) 5 2 (7%) 2

Table 2. Results from FP-extended symbolic execution for one input file per parser.

perform a discrete cosine transform. All three parsers exe-
cuted FP instructions at some point; in the case of GIF, how-
ever, all FP instructions occurred before any input was read.
None of the FP instructions and also none of the regular non-
branch instructions was found to be unsafe, i.e., no instruction
ever dereferenced an FP-dependent value.

All three parsers executed conditional jumps where the
EFLAGS register was tagged as being FP-dependent, thus
confirming the need for the over-approximating static anal-
ysis we introduced in Section 5. Table 2 shows the total
number of such FP-dependent conditional jumps, as well
as the number of safe and unsafe FP conditionals. An FP-
dependent conditional C is listed as safe if the block up
to ipdom(C) was successfully over-approximated using C’s
static information and was found to be memory safe. It is
listed as unsafe if static analysis has failed and AddrReg in its
static information was set to unsafe, or if AddrReg contains
registers holding FP-tagged values at the time of the jump
(we never encountered the latter case in our experiments).
The JPEG trace contained 45 occurrences of FP-dependent
conditional jumps, of which 6 (corresponding to 2 unique
jumps) had an unsafe precomputed AddrReg and 39 were
found to be safe. However, all unsafe conditionals were ex-
ecuted before any data was read from the input file; if the

attacker is only able to control the input file, which corre-
sponds to our threat model, it is not possible for him to con-
trol the branching behavior of these instructions. Hence, a
bug in these conditionals would surface for all or no inputs,
and the entire execution is attacker memory safe.

In the GIF trace 4 out of 36 unique FP-dependent condi-
tionals raised warnings, but similar to JPEG, all of them oc-
curred before any input was read.

For ANI, however, we observed two unsafe unique condi-
tional jumps after reading the input file. These were the same
two conditional jumps from the same DLL (uxtheme.dll) as
in the JPEG trace. Both jumps had an “unsafe” value for
AddrReg; the static analysis was unable to deduce memory
safety because in both cases one of the branches called a
rounding function containing sophisticated error handling
code that involves multiple functions for notifying an at-
tached debugger and setting a global error status. However,
after a careful visual inspection of the disassembled code, we
are confident the function containing both jumps belongs to
initialization code common with the JPEG parser, the only
difference being that this initialization code is invoked later
in the ANI case, after some inputs have already been read
from the input files. Regular runtime symbolic execution also
indicates that no regular input ever flows in the entire DLL

containing this initialization code, although it cannot prove
that no regular inputs are ever being cast into some un-
tracked FP-value that later influences the execution of this
initialization code. We nevertheless believe that it is unlikely
that this code is ever called with attacker controllable inputs.
A more sophisticated static and/or dynamic analysis would
be needed to prove this automatically.

Although our static analysis declares 80% of all (FP-
dependent and FP-independent) conditional jumps as being
unsafe, it is good enough to reduce the number of runtime
warnings about unsafe FP-dependent conditional statements
to zero or two in the case of ANI. For the benchmarks consid-
ered, the algorithms of section 4 and 5 meet our initial goal
of designing an ’as lightweight as possible’ static analysis
to prove non-interference between floating point code and
security critical computations.

Preliminary experiments with other Windows media
parsers confirm the key observation made in this paper: for
most programs in the application domain we consider, in-
teractions between floating-point computations and mem-
ory allocation and indexing are extremely rare. For instance,
parsing a sample small WMV (Windows Media Video) file
with 27,401 bytes executes 252,715,214 instructions (includ-
ing 247,256,201 after the first input byte is read), but executes
only 499 FP-instructions (i.e., less than 0.001% of the total
number of instructions) and 29 FP-tainted conditional state-
ments, which are proved attacker memory safe with our ex-
tended symbolic execution in 350 secs. We plan to optimize
the memory usage of our current prototype implementation
in order to handle longer execution traces and hence larger
files and more complicated parsers.

8. Related Work and Discussion

There are many other algorithms combining static and dy-
namic program analysis, some also aimed at proving mem-
ory safety [16] or type checking [1, 6]. Our work can be
viewed as following the same general strategy of “prove
statically as much as possible, and use runtime checks as a
fallback”. However, a perhaps unique feature of our analysis
is that the abstract domains used for the static and dynamic
parts are quite distinct: we use a simple path-insensitive
static analysis targeting FP instructions and tracking mem-
ory usage of individual if-then-else blocks, while we use a
(bit-)precise runtime symbolic execution to reason about the
non-FP part of the program. The key novelty of our approach
is the interplay between these two analyses and abstract do-
mains, and the new notion of attacker memory safety that
this combination is able to prove. Our analysis also attempts
to prove a form of non-interference [18] between FP com-
putations and memory accesses: FP values do not influence
memory accesses.

In principle, the general strategy of over-approximating
instructions not handled by symbolic execution could be
used to prove memory safety in presence of instructions
other than FP instructions, or to deal with any theory T ′ of
constraints outside T for which we do not want to generate
constraints (because T ′ is too complex, undecidable, expen-
sive, or a solver is simply not readily available for what-
ever reason). However, this strategy seems to work well for
FP instructions because of the expected non-interference of
FP values (payload) with address computations (control). In
practice, it is unclear if this strategy would work for other
sets of unhandled instructions or constraints.

The static part of our analysis is conservative and handles
multi-pointer dereferences (by returning ’unsafe’). However,

the dynamic part as presented in Section 2 does not. To han-
dle multiple levels of pointer dereferences and symbolic
writes, the memory model used in Section 2 would need
to be extended as discussed in [5] for instance. We did not
consider this option here to simplify the exposition, as it is
an orthogonal issue, and also because multi-pointer derefer-
ences involving untrusted inputs are rare.

Recent work has started to address industrial-strength
analysis of FP programs whose functional correctness is crit-
ical in some application domains like avionics [15]. Also,
there is no doubt that SMT solvers will one day be extended
to FP arithmetic. But for proving only memory safety of FP
programs in the application domain we considered here, our
work shows that precise FP reasoning is often not necessary,
which is good news.

Note that our technique is based on the idea that floating
point code does not influence (attacker) memory safety. We
specifically do not aim to prove correctness of the floating
point computations. We also do not consider other applica-
tion domains (from avionics, spec FP benchmarks, JavaScript
programs where variables have floating-point value types by
default, etc.) where the non-interference we seek may not
hold. It is also trivial to write down toy programs for which
our analysis technique would fail (simply cast a double to an
integer and then index a buffer with that integer). The goal
of our work is specifically to prove attacker memory safety
of “nearly-secure” image and video parsers, that are part of
Windows and deployed on a billion PCs worldwide. Today,
we are not aware of any other practical analysis and tool that
can do this for the class and size of applications we consider.

9. Conclusions

In this paper, we introduced a new proof technique for at-
tacker memory safety, which combines lightweight static
analysis of floating-point parts of a program with a precise
runtime symbolic execution of the rest of the program.

We do not require theorem prover support for floating
point, since our goal is not to reason precisely about the float-
ing point logic of the program, but to prove attacker memory
safety. Our intuition was verified in the examples we con-
sidered: the FP part does not interact in any dangerous way
with buffer allocation and indexing.

As future work we plan to extend our combined analy-
sis to cover the remaining cases of FP-dependent condition-
als considered unsafe by our prototype. We also plan experi-
ments with more file parsers, including more complex media
players. Furthermore, since the combined proof strategy we
propose is not generally linked to FP code, we will investi-
gate other areas where dynamic test generation can benefit
from replacing precise symbolic execution by a coarse and
cheap over-approximation.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing

in a statically-typed language. In Proceedings of POPL’89, pages
213–227, 1989.

[2] G. Balakrishnan and T. W. Reps. Analyzing memory accesses
in x86 executables. In 13th Int’l Conf. Compiler Construction (CC
2004), volume 2985 of LNCS, pages 5–23. Springer, 2004.

[3] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically Generating Inputs of Death. In
ACM CCS, 2006.

[4] A. Edwards, A. Srivastava, and H. Vo. Vulcan: Binary
transformation in a distributed environment. Technical Report

MSR-TR-2001-50, Microsoft Research, 2001.

[5] B. Elkarablieh, , P. Godefroid, and M. Levin. Precise Pointer
Reasoning for Dynamic Test Generation. In Proceedings of
ISSTA’09, pages 129–139, Chicago, July 2009.

[6] C. Flanagan. Hybrid type checking. In Proceedings of POPL’06,
January 2006.

[7] P. Godefroid. Software Model Checking Improving Security
of a Billion Computers. In Proceedings of SPIN’09, page 1,
Grenoble, June 2009.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proceedings of PLDI’2005, pages
213–223, Chicago, June 2005.

[9] P. Godefroid, M. Levin, and D. Molnar. Active Property
Checking. In Proceedings of EMSOFT’08, pages 207–216,
Atlanta, October 2008. ACM Press.

[10] P. Godefroid, M. Levin, and D. Molnar. Automated Whitebox
Fuzz Testing. In Proceedings of NDSS’2008 (Network and
Distributed Systems Security), pages 151–166, San Diego,
February 2008.

[11] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, 2009.

[12] J. Kinder and H. Veith. Jakstab: A static analysis platform for
binaries. In 20th Int’l Conf. Computer Aided Verification (CAV
2008), volume 5123 of LNCS, pages 423–427. Springer, 2008.

[13] T. Lengauer and R. Tarjan. A fast algorithm for finding
dominators in a flowgraph. ACM Trans. Program. Lang. Syst.,
1(1):121–141, 1979.

[14] D. Molnar, X. C. Li, and D. Wagner. Dynamic test generation to
find integer bugs in x86 binary linux programs. In Proc. of the
18th Usenix Security Symposium, Aug 2009.

[15] D. Monniaux. The pitfalls of verifying floating-point computa-
tions. ACM Transactions on Programming Languages and Systems
(TOPLAS), 30(3):1–41, May 2008.

[16] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-Safe
Retrofitting of Legacy Code. In Proceedings of POPL’02, pages
128–139, Portland, January 2002.

[17] S. K. Raman, V. M. Pentkovski, and J. Keshava. Implementing
Streaming SIMD Extensions on the Pentium III Processor. IEEE
Micro, 20(4):47–57, 2000.

[18] A. Sabelfeld and A. C. Myers. Language-based information-
flow security. JSAC, 21(1):5–19, Jan. 2003.

[19] P. Wolper. Expressing interesting properties of programs in
propositional temporal logic. In Proceedings of POPL’86, pages
184–192, St. Petersburgh, January 1986.

