The DYNAMOS Approach to Support
Context-aware Service Provisioning
in Mobile Environments

Oriana Riva®* Santtu Toivonen

& Helsinki Institute for Information Technology
P.O. Box 9800, FIN-02015 TKK, Finland

YVTT Technical Research Centre of Finland
P.O. Bozx 1000, FIN-02044 VTT, Finland

Abstract

To efficiently make use of information and services available in ubiquitous environ-
ments, mobile users need novel means for locating relevant content, where relevance
has a user-specific definition. In the DYNAMOS project, we have investigated a hy-
brid approach that enhances context-aware service provisioning with peer-to-peer
social functionalities. We have designed and implemented a system platform and
application prototype running on smart phones to support this novel conception of
service provisioning. To assess the feasibility of our approach in a real-world sce-
nario, we conducted field trials in which the research subject was a community of
recreational boaters.

Key words: service provisioning, context-awareness, recommender systems, mobile
devices

1 Introduction

With their small size format and constant connectivity mobile devices such as
smart phones and PDAs can offer interesting opportunities for novel services
and applications in ubiquitous computing environments. On the other hand,
given the huge amount of information and services potentially available in such

* Corresponding author. Tel.: 4358 9 191 51296; fax: +358 9 191 51120
Email addresses: oriana.riva@hiit.fi (Oriana Riva),
santtu.toivonen@vtt.fi (Santtu Toivonen).

Preprint submitted to Elsevier 23 February 2007

environments, and the limitations anyway present in such devices (e.g., small-
sized screens, limited processing power), the ways of searching content and
discovering services are also evolving. Mobile users need to locate anytime,
anywhere “relevant” content which is available in their daily environments,
where relevance has a user-specific definition (e.g., cost, location, accessibil-
ity, etc.). According to the I-centric model proposed by the WWRF (Wireless
World Research Forum), personalization, ambient awareness, and adaptability
are the three core properties that set functional requirements on future ser-
vice platforms (Arbanowski et al., 2004). For instance, a smart tourist guide
should dynamically retrieve maps and information about shops, restaurants,
and monuments located in the user’s vicinity and depending on the current
task, preferences, and social context.

Various research proposals seek to accomplish this user-centric paradigm in
mobile environments. Context and context-awareness (Dey et al., 2001) allow
services to dynamically adapt to their computing environment. Sensed con-
text information permits inferring user’s requirements and needs in order to
make applications more personalized, friendly, selective, and responsive (Chen
and Kotz, 2000). For example, mobility-aware recommenders such as the PIL-
GRIM system (Brunato and Battiti, 2003) use the user’s location to filter
web links of interest. Context-based applications such as tourism information
services (Cheverst et al., 2000) or remembrance agents (Rhodes, 1997) proac-
tively retrieve content of interest based on the user’s current task. Although
these systems target different needs, they share a common design: the system
collects different types of (contextual) information characterizing the user, and
uses it to filter and rank relevant content items. However, this approach does
not always reflect our daily life practice. Let us consider this example !

I don’t pay much attention to movie reviewers or restaurant critics. I've been
disappointed by them too many times. Instead, I ask a friend I can trust,
“Have you seen any good movies lately?” Frequently, people call or e-mail
to tell me that they’ve eaten at a restaurant, or read a magazine article
that they know I’ll love. Businesses thrive or whither based on this informal
method of marketing. But is there a way to harness and direct the power of
word-of-mouth advertising?

This extract highlights two motivations behind our work. Many information
retrieval, information filtering, and recommendation systems are based on the
construction of preference models; preferences can be built by directly asking
the user to fill out a form, by collecting feedbacks upon system usage, or by
observing her behavior over time. We argue that in many cases, systems sup-

! From the article “Dynamos: Figuring Friends into the Services Equation” ap-
peared in the The Feature (http://www.thefeaturearchives.com/101445.html), Feb
2005.

porting context-based content provisioning cannot assume to have complete
access to user’s personal and contextual information. Reasons for this could
be user’s reluctance due to privacy, security, and trust concerns, or mere lazi-
ness. Conversely, we observe that information about the user that the system
cannot acquire might be known by other users such as friends, colleagues or
persons in the proximity.

Our second motivation originates from the observation that the success of
systems like Amazon have demonstrated the importance for customers to
browse reviews and ratings expressed by previous clients. Typically, service
content provided by professional content providers (meaning commercial ser-
vice providers or public administration bodies) is officially expressed, imper-
sonal, and utility-oriented. In addition, the information space easily becomes
static and out of date as updating information has a cost and is time con-
suming. Rather than being a monolithic and static concept, we consider the
service space as a dynamic and malleable region of interaction and experi-
ence, in which occupants or visitors are able to capture their live experience
and create a record to other users for later access and review (Abowd, 1999;
Espinoza et al., 2001).

Stemming from these considerations, we propose a hybrid model of context-
aware service provisioning. It is our intention to complement the common
user-centric model of content provisioning with peer-to-peer social function-
alities?, which are largely successful in Internet communities and on which
we commonly rely in our daily life. Moreover, it is our objective to concretely
evaluate such an approach in real-world daily scenarios involving mobile users
equipped with off-the-shelf mobile devices, such as smart phones.

This paper?® describes the system platform together with an application pro-
totype running on smart phones that we designed and implemented in the
DYNAMOS project* to support our hybrid model of service provisioning.
The DYNAMOS system allows mobile users (i) to be proactively provided
with a subset of relevant services available in the territory; (ii) to generate
several types of contextual notes, attach them to geographical locations, and
eventually share them with other users; and (7ii) to annotate official service
descriptions with personal observations, comments, or ratings to be shared
with others. To evaluate the feasibility and usefulness of the hybrid model,
we conducted field trials where a community of recreational boaters used our
application during a sailing regatta in the Helsinki region.

2 Hereinafter we refer to peer-to-peer more as a model of social communication and
interaction between persons than as the architectural design of P2P networks

3 A preliminary version of this paper appeared in (Riva and Toivonen, 2006)

4 Dynamic Composition and Sharing of Context-Aware Mobile Services. URL:
http://virtual.vtt.fi/virtual /proj2/dynamos/

Service Provider

User

Service-generated content
t User-generated content

Service- generated, but

user-annotated, contentV

Fig. 1. Hybrid model of context-aware service provisioning

}

‘.»

i
ONeX XOI.

The rest of the paper is organized as follows. Section 2 describes the hybrid
model of context-aware service provisioning. Section 3 gives insights on how
such an approach has been accomplished by the DYNAMOS platform and
Section 4 details its implementation. Section 5 describes the investigated use
case and discusses results from the field trials we conducted. Section 6 reviews
related work. The paper concludes in Section 7.

2 Hybrid Model of Context-aware Service Provisioning

As Fig. 1 depicts, our hybrid model combines the service provider to consumer
(B2C) and the consumer to consumer (C2C) models. The resulting model
allows users to receive official content describing available services (service-
generated content) and to generate unofficial content such as observations and
personal opinions (user-generated content), attach it to service descriptions
(service-generated, but user-annotated, content), and eventually share it in a
small /medium -sized community of users (e.g., among members of a sports
club, friends, or colleagues). For instance, after visiting a sports center a user
can create a comment stating “Today 50% discount on trekking equipment”
and send it to a friend along with the pointer to the shop.

To describe context-based service provisioning models, metadata can be used
to characterize capabilities and requirements of users, devices, and services.
Among the several possible types of metadata, profile and policies have been
largely exploited in distributed systems and also in supporting context man-
agement (e.g., Bellavista et al., 2003; Capra et al., 2003)). In our case, profile
and context information are metadata describing the user instance. Profile
represents the nearly static characterization of the user, whereas context is its

System-
inaccessible
User User
- u1
profile context

Traditional
p— o
provisioning
description
System-

accessible 31

System- —
inacessible Service instance 1

System-
inaccessible,
User User
profile context
U2 knows /
something about
U1 and creates a '/

service annotation q 3
Hybrid service

directed to U1 i
Servpe) provisioning
annotation

system

p1 Ser_/lc_e
description

System-
accessible

service

System- _ - - -

—— link recognized by the system
——- link recognized by the user
lzl entity
metadata generated by
the entity E

Fig. 2. Comparison of a traditional service provisioning model and the hybrid model

dynamic characterization. In other words, users can decide to disclose some
aspects of their internal representation by specifying preferences, interests,
and control policies into profiles, and by granting the access to context in-
formation such as location, activity, and social surrounding. Likewise, service
descriptions represent metadata elements characterizing services. This infor-
mation is usually supplied by official service providers.

As the upper part of Fig. 2 shows, a traditional service provisioning system
decides whether to establish a “link” between a user Ul and a service S1 (i.e.,
provide the user Ul with the service S1) upon matching metadata elements
that are system-accessible. In this case, accessible metadata are user profile,
user context, and service descriptions. These metadata are either explicitly
submitted by users and service providers or implicitly learned by the system
based on previous observations and inference algorithms. In our hybrid model,
the matching involves a larger variety of metadata, which are provided also by
other users. In addition to links entirely recognized by the system, our model
allows also other peers to establish (implicitly or explicitly) links between
services and users. As depicted in the bottom part of Fig. 2, two additional
links are established.

e In the case U1-U2-S1, U1 receives a recommendation about S1 from U2. U2

could be a friend, colleague or even somebody unknown, but who knows
something about Ul (e.g., because he is in the proximity of U1). The po-
tential value of this kind of recommendations resides in the capability of
other people to access implicit profile and context data characterizing the
user (i.e., content that is system-inaccessible). For instance, think that U2 is
visiting a shopping mall and wants to notify her friend U1 that in the shop
S1, the sporting shoes she was looking for are now 50% discounted. Or con-
sider a person Ul attending a conference who is informed by an unknown
participant U2 that books written by the invited speaker can be bought
at the university bookstore S1. We call this kind of recommendations that
users create, attach to services, and share with others service annotations.

e The case U1-U3-S1 involves another type of user-generated content that
does not explicitly refer to a service description. We call this content user
note. A user note can contain warnings notifying dangerous situations, ob-
servations related to the environment, notifications about special happen-
ings, etc. Users generate user notes and attach them to the environment.
Later on, other users can be automatically provided with this content if it is
of interest to them (e.g., it is in their proximity). In particular, a user note
attached to a certain location can contain some information that is related,
even though not explicitly, to the status of nearby services. Therefore, this
information can further help users to take decisions about which service to
access. For instance, if a driver U3 discovers a traffic jam on the highway he
can create a message to warn upcoming drivers. A driver Ul who is directed
to a certain restaurant located in the area of the traffic jam, upon finding
this warning, might decide to drive to a similar restaurant S1, but located
in a less crowded area.

The benefits of supporting generation and sharing of metadata such as service
annotations and user notes are twofold: (i) they permit enriching the descrip-
tion of services with information not always supplied by official organizations
or providers (such as personal experiences, description of the current status of
the service or present state-of-affairs); and (7i) they offer a means to share in
a context-aware manner information about services and the surrounding en-
vironment (hence, each user becomes a potential service provider for others).

3 DYNAMOS Platform

In the context of the DYNAMOS project, we built a system platform and
application prototype designed for smart phones to support the functionalities
of the hybrid model. This section gives insights on the design of such a system.

i

-] O
T ServiceContent

Ever;t server UserContent
Internet

Smart phone +

SRR DYNAMOS Core
Moedules
Uee——
ptop Web server
Clients Distribution Servers DYNAMOS Core

Fig. 3. DYNAMOS overall reference architecture

3.1 Overview

As Fig. 3 shows, the DYNAMOS overall reference architecture consists of three
major parts: Clients, Distribution Servers, and DYNAMOS Core.

Mobile users can interact with the system using a common web browser or by
installing and running an application on their smart phone. Accordingly, the
communication occurs through two different types of Distribution Servers:
Web Servers and Event Servers. Given the resource constraints of mobile
phones, in terms of power, memory storage, screen size, etc., the applica-
tion running on mobile phones needs to constantly adapt based on the client’s
execution context. Several types of sensors can be connected to the phone so
that sensed context changes are constantly notified to the DYNAMOS Core
(through the Event Server) and are used to accomplish context-aware ser-
vice interactions. Moreover, as in any publish-subscribe system, Event Servers
also allow clients (publishers) to publish into the system new user-generated
content to be made available for usage to other active users (subscribers).

The Distribution Servers support the access to DYNAMOS Core. This con-
sists of several DYNAMOS software modules and Content Servers. The mod-
ules composing DYNAMOS Core provide key functionalities for supporting
context-based content provisioning in highly dynamic environments. The User
Content Server stores user-related information (profile and context). The Ser-
vice Content Server stores content provided by service providers (service de-
scriptions) and user-generated content (user notes and service annotations).
The service content can be distributed across different repositories according
to different logics. For example, single databases can store items relatively
to a certain location or topic, and a synchronization mechanism is deployed
among all local servers. Or, the distribution of context information can also
follow a distribution logic based on the type of stored context data, like done
in (Grofimann et al., 2005).

Fig. 4 shows in more detail the architectural components of DYNAMOS

: DYNAMOS Core)

Security/Trust
Controller
Service i
add(service description) Register saL Service Content
Metadata , (Se"‘”cetsyt,
service annotations,
register(profile) Profile Managers user notes)
Register
add(service annotation) ’7 Sal
add(user note) User Content
notify (context change) (profile and context)
notify (profile change) Metadata Matcher Matching
Listeners functions
get(content)
Context Content
Manager Dispatcher

User

Context
Service

get(matched content)

Fig. 4. DYNAMOS core architecture

Core. DYNAMOS Core provides the following functionalities: Registration and
Profiling, Context Management, Proactive and Reactive Service Provisioning,
Content Matching, and Security and Trust. In the following, we shed some
light on how these functionalities have been accomplished.

3.2 Registration and Profiling

In order to get access to the system services, the user needs to register her
profile through the ProfileRegister. In the profile, the user specifies personal
information such as preferences, interests, and control policies (i.e., rules that
control the system’s behaviour). Profile updates can be communicated to the
system anytime through the profile MetadataListener. The following example
sketches the description of a common user profile along with typical content
items provided by the system.

<Service rdf:about="SuomiForeca">
<hasCategory rdf:resource="Weather"/>
</Service>

<Service rdf:about="KokarGuestHarbor">
<hasCategory rdf:resource="GuestHarbor"/>
</Service>

<ServiceAnnotation rdf:about="Annotation220">
<hasCreator rdf:resource="Setoivon"/>
<refersTo rdf:resource="KokarGuestHarbor"/>

</ServiceAnnotation>

<UserNote rdf:about="Emergency389">
<hasCategory rdf:resource="Emergency"/>
<hasCreator>
<Community rdf:about="TurkuSailingClub"/>
</hasCreator>
</UserNote>

<Activity rdf:about="Sailing">
<hasInterest>
<ServiceCategory rdf:about="Weather"/>
</hasInterest>
<hasInterest>
<ServiceCategory rdf:about="GuestHarbor"/>
</hasInterest>
<hasInterest>
<UserNoteCreator rdf:about="TurkuSailingClub"/>
</hasInterest>
</Activity>

<Activity rdf:about="Outdoor">
<hasInterest>
<ServiceCategory rdf:about="Restaurant"/>
</hasInterest>
<hasInterest>
<UserNoteCategory rdf:about="Routine"/>
</hasInterest>
</Activity>

<User rdf:about="Setoivon">
<belongsToCommunity rdf:resource="TurkuSailingClub"/>
<hasActivity rdf:resource="Sailing"/>
<hasActivity rdf:resource="0Outdoor"/>

</User>

The profile is specifically structured to support efficient matching between
available service content and user. In their profile, users specify several types
of activities and status, and associate multiple interests to each of them. Ac-
tivity names are user-defined. Interest names are predefined based on the
service taxonomy. In the example, the user Setoivon expresses his interest
in Weather and GuestHarbor services as well as user notes provided by the
TurkuSailingClub, when in Sailing activity; when in Outdoor activity, his
interests are for Restaurant services and user notes of category Routine.

3.3 Context Management

While profile information represents the nearly static characterization of a
user, context information represents the dynamic characterization. In Dey’s
terms (Dey et al., 2001), context consists of any information that can be used
to characterize the situation of an entity. Specifically, context consists of spa-
tial information (location, speed, orientation), temporal information (time,
duration), user activity (physical activity, social surroundings), environmen-
tal information (temperature, light, noise), and resource availability (nearby
devices, device status).

(DYNAMOS Client Application

cxtltem cxtQuery publishedCxtitem
| v v

Contory

Context Query Context
Publisher Manager Repository

AdHoc] Local I Infra ‘
Facade Facade Facade
= lJE \'P = |AE l.P = |AE l.P
d d
I Adrocot| [Losetcat || [iracn
e s Provider Provider Provider
[El periodic query H
Smart phone
A ks

L.,

|-
i ‘ * \\‘
i .
= =

; _eT ==

Ad hoc nelworks of Local context DYNAMOS
context providers Sensors Context Manager

Fig. 5. Contory architecture

Context provisioning on smart phones is achieved using Contory (Riva, 2006).
Contory is a middleware specifically designed to provide alternative mecha-
nisms of context provisioning on resource-constrained devices such as smart
phones. As shown in Fig. 5, three context provisioning strategies are avail-
able: internal sensor-based provisioning (through LocalCxtProvider and Lo-
calFacade modules), external infrastructure-based provisioning (through In-
fraCxtProvider and InfraFacade modules), and distributed context provision-
ing in ad hoc networks (through AdHocCxtProvider and AdHocFacade mod-
ules). The advantage of employing this middleware is that to gather context
information of interest, the application can (i) rely on its own sensors, if
available; (i7) interact with an external context infrastructure such as the
DYNAMOS ContextManager and ContextServices; or (iii) exploit neighbor-
ing devices willing to share their context information. The other architectural
modules perform query management, provide means to remotely store context
data, and allow publishing context data in ad hoc networks.

Contory offers an SQL-like interface to generate context queries, in which
applications can specify type and quality of the desired context items, context
sources, push or pull mode of interaction, and other properties. The query
template has the following format:

SELECT <context name>

FROM <source>

WHERE <predicate clause>

FRESHNESS <time>

DURATION <duration>

EVERY <time> | EVENT <predicate clause>

10

SELECT specifies the type of the requested context items. DURATION specifies
the query lifetime as time (e.g, 1 hour) or as the number of samples that must
be collected in each round (e.g., 50 samples). The FROM clause can either be
unspecified thus allowing the middleware to autonomously and dynamically
select the context provisioning mechanism to be employed. Alternatively, the
FROM clause specifies which context provisioning mechanism to employ: in-
ternal sensor-based (intSensor), external infrastructure-based (extInfra),
and distributed context provisioning in ad hoc networks (adHocNetwork). In
the case of adHocNetwork provisioning, the FROM clause also tells multiplic-
ity (numNodes) and distance (numHops) of the context source nodes. WHERE
permits specifying additional filters to apply to the selection of context items
(e.g., accuracy, correctness, precision, etc.). FRESHNESS specifies how recent the
context data must be. Finally, long running queries are expressed by means
of EVERY and EVENT clauses. The EVERY clause allows the application to spec-
ify the rate at which context data should be collected (periodic query). The
EVENT clause determines the set of conditions that must be met at the context
provider’s node before a new result is returned (event-based query).

In the example below, the client application specifies a query requesting, for
one hour and every 10 seconds, wind data collected from at least one node at
maximum distance of 2 hops; data must not be older than 50 seconds and be
accurate.

<query name="wind20648"
select="wind"
<struct name="from">
<String name="typeSource">"adHocNetwork"</String>
<int name="numNodes">1</int>
<int name="numHops">2</int>
</struct>
<struct name="where">
<boolean name="accurate">true</boolean>
</struct>
freshness=50
duration=3600
every=10
</query>

Along with the simplicity of its programming interface, Contory provides more
flexibility and reliability to context provisioning. For example, temporary dis-
connections of GPS devices from the phone can be compensated by relying on
other neighboring devices. Moreover, the context sensing range of the appli-
cation can be extended to any geographical region and service. For example,
weather information collected by a network of local devices in a certain re-
gion is stored in the remote infrastructure and later accessed by remote users
interested in getting information about such a region.

The possibility of gathering different types of information from a network of

mobile devices in the same proximity can provide useful support in terms of
service provisioning, e.g., to find out more about dynamic service informa-

11

tion. For example, consider a user who wants to know about the status of a
restaurant service in terms of free parking places in the vicinity, number of
free tables, and estimated waiting time. An ad hoc network of mobile phones
owned by persons who are already in the restaurant can be used to infer how
many empty places are left and how long those people have already spent in the
restaurant. An ad hoc network of parking meters and cars outside the restau-
rant can compute where free parking lots are available at the moment. This
kind of information can be collected and processed by intermediate stations,
like the restaurant in this case, and then be transferred to the DYNAMOS
repositories.

Context data collected on the mobile phone are communicated to the DY-
NAMOS system through the context MetadataListener. The ContextManager
is then responsible for processing received context data and making them avail-
able for usage to the Matcher. In order to infer higher-level context informa-
tion, several reasoning mechanisms can be supported by the ConteztManager.
Additionally, the ContextManager can rely on external ContextServices (e.g.,
weather stations, office infrastructure) to gather additional context informa-
tion.

3.4 Proactive and Reactive Service Provisioning

Along with profile and context, service descriptions, service annotations, and
user notes are the service metadata at the basis of the hybrid model. Ser-
viceRegister and MetadataListeners allow the specification and update of
metadata content. Anytime a Listener receives a new notification, it invokes
the corresponding MetadataManager. The MetadataManager processes the re-
ceived information and stores it in the appropriate ContentServer. User and
service content is stored respectively into the UserContent and ServiceCon-
tent relational databases. MetadataManagers are responsible for coordinating
the access to these databases and for translating database queries into SQL
format, and vice versa. Additionally, content that needs to be frequently ac-
cessed (e.g. context data of active users) is also kept in memory, thus avoiding
time consuming MySQL operations.

The user can interact with the system in a proactive or reactive manner. In
the proactive mode, the client is constantly provided with content of interest
based on the associated profile and context information. Every time a notifi-
cation is received by a MetadataManager, this invokes the Matcher module,
which in turns can use the ContentDispatcher to communicate new content
to the client. Alternatively, the client can submit on-demand queries to the
MetadataListener, for example to receive more information about a specific
service item (e.g., to retrieve all service annotations attached to a certain

12

service description) or about a certain region (e.g., to be informed with the
weather conditions in proximity of a certain service).

3.5 Content Matching

The Matcher is responsible for matching available service content and user’s
profile/context in order to extract a list of relevant items to pass to the Con-
tentDispatcher. When necessary, the MetadataManagers or MetadataListeners
invoke the Matcher module. For example, if a notification reports changes to
the context of active users, it is necessary to invoke the Matcher in order to
verify whether new matched content has be sent. If a notification carries infor-
mation about non-matched services, no matching needs to be triggered, but
such an information must be stored in the repositories. The Matcher accom-
plishes its task by performing category-based and context-based matching.

To identify service items of interest, the matching process consists of two steps.
Let I be the set of possible user interests, S the set of available service descrip-
tions, and C the set of possible context types characterizing a certain user wu.
First, each active interest i (i.e., valid in the current activity) is matched with
the set S, of service categories, which are associated to each available service
s; € S. As shown in the previous example, service categories generally spec-
ify the business branches of the service (e.g., GuestHarbor, News). If we call
M:1 xS — {0, 1} the function for matching interests and service categories,
and we define the function s*: R™ — P(S) which returns the set of matched
service items at a certain time ¢, we can express the filtering process as:

s*(t) = {s € s(t) | M(i(t),sc) = 1} (1)

If the service content is organized in a hierarchy, such as a service taxonomy,
the Matcher can recognize also close matches. A way to acknowledge close
matches is to resort the relationships in the taxonomy, and use various al-
gorithms for recognizing these relationships. Examples of such can be found
in (Stojanovic et al., 2001; Corby et al., 2006). As an example, consider the
functioning of the Object Match (Stojanovic et al., 2001) algorithm. It recog-
nizes the paths from two concepts in a hierarchy to a “root” concept, and calcu-
lates the match as a ratio between the number of shared concepts found in the
paths (intersection), and the total number of concepts after combining both
paths (union). Suppose a service taxonomy consisting of the following seven
concepts: Service, Restaurant, ItalianRestaurant, Trattoria, Pizzeria,
JapaneseRestaurant, and SushiBar. The relationships between these are
so that Restaurant is a subcategory of Service, ItalianRestaurant and
JapaneseRestaurant are subcategories of Restaurant, SushiBar is a sub-
category of JapaneseRestaurant, and finally Trattoria and Pizzeria are

13

subcategories of TtalianRestaurant. The user in this case has expressed di-
rect interest in Pizzerias. The object match algorithm assigns the relevance of
g to a service identified as a Trattoria, whereas a SushiBar would receive
the relevance of % = % Restaurants described on a more general level would
receive the following relevance values: ItalianRestaurant would receive the
relevance of % and JapaneseRestaurant the relevance of %

Once category-based matching has been performed, context-based matching
assigns to each service sj a matching rank value rg:. This is calculated by
matching every available user’s context information ¢, € C' and the service
description s}. Specialized filters f,(c., s) are deployed for each type of con-
text information. For example, Close(location,s) uses the location to fil-
ter nearby services, Open(time,s) uses the time to filter open services, and
MatchWeather (weather,s) establishes if a certain service is compliant to the
weather conditions (e.g., indoor services if it rains). Moreover, to each type of
context information ¢, € C' a different weight wy, is associated, so that more
relevant context information can have a major impact on the final matching
rank. Formally:

N
Ter = > wy * frler, s7) (2)

k=1

Therefore, matched service items are ordered and further filtered based on
the computed r, values and then delivered to the user. The weights wj can
be statically specified by the user in her profile or dynamically computed by
the system. The second solution provides more flexibility and efficiency. For
example, if there is plenty of content available in the near surroundings, more
weight can be given to the results of Open and MatchWeather functions. On
the other hand, in a remote area with few content items available, location-
based matching becomes more relevant. One way to infer user’s wy without
relying on explicit user’s feedbacks is to monitor the type of content the user
produces. It is likely that the user produces service annotations for services
whose category and characteristics are of more interest to her.

Service annotations available to anybody (that is, of public use) are filtered ac-
cording to the matching result of the associated service items. As far as user
note items, the matching process consists only of category-based matching
(like for service items), time-based filtering, and location-based filtering. Ser-
vice annotations directed to single recipients or a community and user notes
are then filtered based on the control policies specified in the user profile (this
will be discussed in the following section).

The Matcher module is designed as a Strategy pattern (Gamma et al., 1995).
Different matching algorithms are appropriate at different times and for differ-
ent types of content. Hence, it is necessary to easily interchange these match-

14

ing algorithms. The system can perform exact-match based on simple boolean
logic or best-match (i.e., provides a ranked list of content items based on rel-
evance and close matches). Furthermore, the system must be able to employ
different matching algorithms based on the quality and quantity of context
information available. For example, certain sources of context could be tem-
porarily unavailable thus rendering not applicable all f, matching functions.

3.6 Security and Trust

The risk of attacks from malicious users, spamming, and trust are crucial
issues in our system (Wang et al., 2002; Dimmock et al., 2005). For example,
a malicious user could create wrong warning notes to her advantage or attach
false recommendations to certain services. In the case of many users of this
type, the system would be filled with too many spam messages and thus
become too intrusive and in the end unusable. To address these and other
security issues, we decided to partly rely on a central authority which controls
and authenticates the content of exchange and partly deploy both autonomous
and collaborative decision-making mechanisms. Therefore, we utilized both
infrastructure-specific and client-specific control mechanisms.

Infrastructure-specific control mechanisms ensure authentication and content
integrity. Authentication aims to verify the identity of the content origina-
tor. This can be carried out outside the DYNAMOS domain. If a public key
infrastructure (PKI) exists, DYNAMOS users can sign messages using their
private keys. The Security/Trust Controller can then verify the identity of the
originator by checking the digital signature attached to the message. Digital
signatures also enable content integrity. The reception of a signed message
indicates that the content has not been changed since it is signed and that the
message originated from that source. For other security issues, we assume that
users trust the DYNAMOS system to maintain information confidentiality and
user anonymity.

Client-specific control mechanisms utilize autonomous and collaboration-based
control policies. Individual clients specify autonomous control policies based
on user preferences and needs. These policies are directly enforced by the Con-
tentDispatcher. Control policies express conditions about which type of content
the user wishes to receive, from which type of content providers, and at which
frequency. For example, a user can request to be informed about emergency
warnings anytime, but about leisure happenings only when in free time. Ad-
ditionally, the user can choose to operate in different modes of interaction:
she can instruct the system to deliver only official service content (i.e., coming
from service providers), only informal service content (i.e., coming from other
peers), or both. Resolution of conflicts among different control policies can be

15

performed partly statically and partly dynamically. The dynamic resolution
selects the action that satisfies the largest number of conditions.

To accomplish collaboration-based control and increase opportunities for user
collaboration, we offer the user the possibility of specifying buddy-lists and
communities (Singh et al., 2001). To each person present in the personal
buddy-list, a trust grade is assigned. The user can then also decide to group
persons of her buddy-list in different communities and assign different filters
and priorities to each community. For example, content coming from some
communities is blocked in some situations, while higher priority is given to
other communities. In addition, personal details of the content’s creator can
be combined with the details of the community he is representing.

An extensive model capturing several aspects which influence trust establish-
ment can be incorporated to our hybrid model. Trust is explained in terms of
a relationship between a trustor, who trusts a certain entity, and a trustee,
the trusted entity (Grandison and Sloman, 2000). In our case, based on his
trust in the trustee, a trustor can decide whether to accept or refuse content
provided by the trustee. (Toivonen et al., 2006) gives a formalized description
of the trust model we adopt. The basic idea of such a model is that trust
is established by combining profile, context aspects, reputation information,
and recommendations. Reputation indicates one’s own opinion of the content
creator in question, and is accumulated by each interaction instance with it.
Reputation introduces a history-dependent dimension to the trust evaluation.
Recommendation is communicated reputation information, meaning that it is
the reputation of the same content creator, but as observed by someone else.
Formally:

trust o : Quality x Context x TV alues x 27" — TV alues (3)

The function trusts , returns a measure m € T'Values of A’s trust in relation
to a target 0. T'Values can be a set of binary values (e.g., trusted, not trusted)
or discrete (e.g., strong/weak trust, strong/weak distrust). In the function’s
inputs, the trustee is described using: (i) a set of quality attributes of the
trustee, such as profile and any other known information about the trustee;
(ii) a set of context aspects that concern the trustor, the trustee, and their
interaction; (7ii) a trust value which represents the trustee’s reputation in the
viewpoint of A; and (iv) a set of trust values which represent recommenda-
tions about the trustee in the viewpoints of some recommenders. Note that
the adoption of some context information in this case can help adapt the
trustworthiness evaluation depending on the situation. For example, a posi-
tive recommendation might be directed to someone’s role as a professional in
a certain domain, but might be of low value in another domain.

The model can be further complicated by weighting recommendations about

16

the trustees (i.e., the TValues) expressed by other recommenders based on
the trust of A on those recommenders. For each recommender j, the trustor A
locally stores a (c;,w;) pair. ¢; is the number of times the recommender j has
given a correct trust value to a certain item and w; is the number of times
the trust evaluation was wrong. The probability that j gives a correct trust

evaluation to a certain item is then given by c:jw_.
J J

It can also be the case that no prior knowledge about the content creator is
available, nor any (previously known) person giving recommendations (Toivo-
nen et al., 2006). In these cases, social or professional networks can be utilized.
One well-known solution in the literature is to ask for recommendations. Alter-
natively, similarities between entities or contexts can be exploited. For exam-
ple, if the current content creator has no reputation in the current context, he
might have it in similar enough conditions and that could be used. Or, if he is
completely unknown, maybe some other entity like him was previously known
and information characterizing him can be utilized. The same approach can
be applied also to unknown recommenders. In addition, the ”distance to the
unknown recommender can be considered. By distance we mean the number
of links in the network of entities, either weighted or not. Weighting indicates
that more emphasis is put to a kind of link that is relevant with regard to
the current task. For example, when seeking for advices about guest harbors,
more emphasis is given to links related to boating than to kinship. The benefit
of having a trust grade assigned to every (known or unknown) content origi-
nator permits ordering received content items based on the trust grade of the
sender.

Cases of spam occur when in the queue of items to be delivered to a certain
user there are many unwanted items. This means that there is an active filter
or profile rule or context status that matches many unwanted items, but that
it is also supposed to match interesting items. To prevent these situations from
occurring, the client can specify more specific filters, can use spam detector
filters, and can maintain blacklists. However, client-specific rule-based mecha-
nisms cannot entirely solve spam problems, even when advanced mechanisms
based on Bayesian inference are employed (Dimmock et al., 2005). Conversely,
a collaborative network of peers can be used to detect spam. The method pro-
posed in (Dimmock and Maddison, 2004) to detect spam in incoming e-mail
can be extended to recommender systems. To identify potential creators of
spam items, each user locally maintains triplets in the form (u;, ms, my): for
each content originator u;, mg indicates how many spam items such a user
sent, while m, represents the total number of items received by the user in a
certain time interval. When m/m; exceeds a certain threshold, u; is added to
a blacklist and a warning is sent to the DYNAMOS system.

17

4 Implementation

The DYNAMOS system and the prototype application on mobile phones have
been implemented in Java. Event-based communication is realized through
the Fuego Core Event Server (Tarkoma et al., 2006). The Fuego middleware is
implemented in Java and provides a scalable distributed event framework and
XML-based messaging services. This middleware also runs on mobile phones
supporting Java MIDP 1.0. The application running on mobile phones has
been implemented using Java 2 Micro-Edition (J2ME) with the Connected
Limited Device Configuration (CLDC) 1.0 and Mobile Information Device
Profile (MIDP) 2.0 APIs. All the development was done using Nokia Series 60
phones running Symbian OS. Symbian OS is the de facto standard operating
system for smartphones. It has a lightweight 32-bit pre-emptive kernel that is
based on a hybrid design combining characteristics from both micro-kernel and
monolithic kernel architectures. Symbian OS design focuses on open mobile
phones and thus is optimized for efficient resource constrained operation.

Currently, the whole DYNAMOS application’s jar size is 307KB (the size of
Contory and the Fuego Core middleware architectures is 257KB). The appli-
cation has been tested on Nokia 6630 (Symbian OS 8.0a, 220 MHz processor,
WCDMA/EDGE, 9 MB of RAM), Nokia 6680 (Symbian OS 8.0a, 220 MHz
processor, WCDMA /EDGE, 9 MB of RAM), and Nokia 7610 (Symbian OS
7.0s, 123 MHz processor, GPRS, 9 MB of RAM) phones.

The mobile phone platform was selected since it currently represents a rela-
tively powerful computing platform which is already widely carried by many
people. Smart phones offer already the functionalities of a music player or a
digital camera and this permitted supporting not only textual, but also multi-
media content. Disadvantages of this platform are limited debugging support,
limited programming environment, slow storage access, and not yet available
sensor API® to manage and control sensors connected to the phone. Never-
theless, it has proven very difficult experimenting with real-world sensors that
can be connected to the phone. Despite common BT-GPS devices, there is a
scarce availability of (price-contained) sensors that can be connected to the
mobile phone for gathering context information in real-time (many available
sensors can record context data and produce logs for later analysis).

> The JSR 256 (“Mobile Sensor API”) will be available in the near future:
http://jep.org/en/jsr/detail7id=256.

18

5 Case Study: Recreational Boaters in the Turku Archipelago

To demonstrate the feasibility and usefulness of our hybrid model, we selected
a community of recreational boaters as scenario of study. Recreational boaters
are people who have either sailboating or motor boating as a hobby. We chose
this scenario since it represents a typical case in which, given the intensiveness
of the task and the dynamism of the situation, proactive and context-aware
service provisioning can provide significant benefits.

Boaters constantly need up-to-date information about the surrounding envi-
ronment. Typically this information is related to routes and weather condi-
tions, but it can concern other services too. For example, in the evening, the
boaters are likely interested in nearby guest harbors and the availability of
spaces in them. The boaters can take advantage of the functionalities of our
system before a trip (for planning an itinerary and select places of interest),
during a trip (for being informed about available services and their real-time
status as well as weather forecasts and ongoing events), and after a trip (for
sharing their boating experience with others). In our study, we first conducted
user interviews to gather requirements for the application design, and then im-
plemented an application prototype running on smart phones, which specifi-
cally targets the needs of recreational boaters. Such an application prototype
was used during a sailing regatta in the Helsinki region.

5.1 Requirements Study

In carrying out the requirements study, we followed a process of semi-structured
interviews. We interviewed 20 Finnish boaters. We first described the basic
concepts behind our model and presented the case application in more detail
by means of several mock-ups illustrating the client interface ® . The motivation
was to learn about their habits and activities while boating and thus identi-
fying crucial requirements for scoping the development of the application. In
addition, as it is typically the case with qualitative research (Shadish et al.,
2002), the interviews aimed at discovering and exploring possible explanations
for their habits.

The interviews were carried out in a one-to-one fashion between the inter-
viewer and the interviewee. The applied research method was ethnographic
and qualitative. The interviewer asked open questions and wrote the answers
down. With the interviewee’s permission the session was also recorded in order
to aid further analysis. One interview lasted approximately 50 minutes. After

6 Questionnaires and mock-ups in Finnish are available at
http://virtual.vtt.fi/virtual /proj2/dynamos/interviews/

19

some general questions (i.e., age, occupation, hobbies), the interviewees were
asked 30 general questions related to their boating habits and conventions,
and also their opinion about the proposed application.

All interviewees mentioned using a mobile phone as a communication device
while boating. In addition, the phone was used for checking weather conditions
and forecasts (95%), following news (40%), and finding out about services
(40%). The interviewees were explicitly asked about “boating intensiveness”,
and whether it has an impact on getting in touch with someone while boating
or not. The boating intensiveness was defined as a phenomenon that varies
based on certain factors, such as weather conditions and traffic intensity in
the current route. 95% of the interviewees indicated that in poor conditions
(such as stormy weather or a narrow and heavily trafficked route) it is better
to postpone the communication.

80% of the interviewees reported the usage of specific methods to find out
about services in the territory, while 20% stated to uniquely rely on their
own knowledge and experience. Specifically, 70% of the interviewees consult
mainly printed material of some kind (maps, sightseeing guides) to find out
about services and 92% of these explicitly mentioned the usage of an annual
harbor book. Generally, people praise these harbor books 7 ; the only downside
to them is the lack of event-related information, their outdating in general,
and their inefficiency in dynamically guiding sailboaters when, during the trip,
they are forced to change their routes for some reason. Finally, the intervie-
wees were asked about their frequency of visiting guest harbors (or in general
harbors offering services of some kind) as opposed to nature harbors: 90% of
the boaters’ visits are to harbors with services.

5.2 Design Principles

Based on the requirements study, we derived the following design principles
to guide the development of the prototype application:

e always-on, always running service: to be considered useful and updated, the
users must have the impression that the system is always online.

e present status of services: in some situations, users are mostly interested
in knowing about the current status of services such as special happenings,
waiting times, parking availability, weather information, traffic conditions,
etc.

e personalization: users must have means for personalizing their interaction
with the system; preferences are saved in the user profile, and the most

T See, for example: http://www.satamakirja.fi/

20

important settings must be accessible also through the phone application
so that the user can anytime change mode of interaction.

e control access: avoid privacy concerns by disclosing only information that
the user agrees to share and let the user control how and for how long the
content he generated is shared with other peers.

e trust and social collaboration: the support for buddy-lists and communities
can greatly improve the trust the user has in the application; furthermore
they help stimulate collaboration, generation of new content, and sharing
of information.

e friendly and easy user interface: given that users are typically involved in
other activities while using such a kind of applications, it is necessary to pro-
vide means for quick generation of new content; moreover, open connections
with external sensors such as GPS devices should be totally transparent to
the user.

5.8 Application Prototype

The main functionality of the sailing prototype application is to proactively
inform users about services of interest in the surrounding environment. A ser-
vice description object contains the category to which the service belongs, a
textual description of the service characteristics, its location, opening times,
and contact information. Upon receiving a service description of an available
service the user can take different actions. The most evident usage is to use the
suggested service. Service descriptions often offer hyperlinks to some further
material characterizing the service in question or to additional functionali-
ties. For example, a restaurant service description can contain a link to allow
booking a table.

The user can also annotate received service descriptions and share them with
other users who might be interested in those services. A service annotation
object contains information in textual and multimedia format. The possibility
to include multimedia content, such as images and audio clips, allows users
to quickly and easily generate comments without the need to type on a small
keyboard, especially if this needs to be done while involved in other activi-
ties. An annotation also contains a hyperlink to the service to which it refers.
Moreover, in an annotation, the author can express a rating for the quality
of the service, provide his signature, and specify the recipient(s) to whom the
annotation is directed. The recipient can be the author himself, if the anno-
tation is meant for private use (typically as a reminder), or it can be anyone,
if the annotation is meant to be public. Alternatively, other recipients can be
single users or a restricted community such as a club, a team, or a group of
friends. Location (if the user allows) and time of creation are also included in
the annotation. A default or user-specified lifetime is associated to each ser-

21

Nl b O
Weather at Location: e
Latitude Sunny to partly cloudy. Storm

6007.1207 N coming in the next 12 hours.
FEEKEERRERRRRRR AR RR
Longitude More Information:
02458.1336 E : Temperature = 13
Humidity = 61
nlind fenm canthonmnect Qe
Options Close Options Stop

Fig. 6. WeatherWatcher screenshots

vice annotation in order to guarantee temporal relevance of the information.
Service annotations can range from very light additions to very rich comments
on the service. The light annotations can sometimes be automatically gener-
ated without the active input by the user. For example, if a user decides to
forward an interesting service description to her friend, she can do so without
any active annotating. Still, when sending the description, it is annotated for
example with the fact that it is she who sent it. And when her friend receives
it, she will notice that the service description did not come straight from the
service provider, but from a friend instead.

Along with service annotations, the user can generate user notes, which are
similar to annotations with the main difference that they do not contain links
to any service. User notes have different priorities and belong to different cate-
gories that can be further specialized based on the scenario of use. For example,
in a sailing scenario, user notes can be routine messages, safety warnings, and
emergency alarms.

Most of the interactions with the system occur in a proactive manner. How-
ever, on-demand interactions are also supported. One example is the Weather-
Watcher (see Fig. 6). This service allows users to retrieve weather information
in a certain geographical region (specified in terms of latitude and longitude).
In a sailing scenario, where weather conditions can vary rather quickly, this
represents an important element to select the sailing route. Weather informa-
tion consists of temperature, wind, speed, humidity, and atmospheric pressure.

To summarize, Fig. 7 shows an example illustrating the main functions sup-
ported by our prototype application. The sailboater is first provided with a
safety message that warns him about the narrow passage next to him. Subse-
quently, he receives a recommendation from his friend Sami who suggests him
to try sightseeing tours (Kiertoajelut in Finnish) organized in some islands
in the surroundings. The sailboater checks the location and can also use the
WeatherWatcher to know about weather conditions in that region. Finally, he
decides to follow the advice of his friend and try the place out. Once he has
visited the place, he can also annotate the service description and share it
with other friends.

22

Annotation
j‘__ Content

Kiertoajelut
T RetaiiSantaminiied
ks
& Sac - Category = Retket/
Kiertoajelut ting: 4
Service Hame = TURKU cation: (60,094, 24.92)
d Options Backg

Optior

= Exit
L { "IEJ";{"
Select CBnpp[E.)

-
} i m Safety Warning
s d] eima Laamanen, 35
e ~ Ll NE wind, be careful
2,

Fig. 7. Example of sailing scenario and screenshots of the phone interface

5.4 Field Trials Evaluation

Two field trials were conducted in order to evaluate the feasibility and tech-
nical deployability of our hybrid approach through the implemented sailing
application. On a meta-level, we were interested in finding out whether our
approach was effective in supporting sharing of information about services
in the surrounding environment, especially when people are engaged in other
activities (in our case sailing). On a technical level, we were interested in
investigating how reliable and robust our application was.

The archipelago in the South-Western Finland has over twenty thousand is-
lands and skerries. Many of the bigger islands are partly inhabited and provide
services the boaters can make use of. In addition, the coastline has cities and
harbors which provide a number of services. We provided our ServiceCon-
tentServer with a database of about 1000 tourist services located in the Turku
archipelago® . In June and August 2005, we conducted field trials. A first pre-
liminary trial consisted of a short excursion on sailboat with 4 users. The
second trial was a one-day regatta, which is organized every year by a club
of sailboaters of Helsinki; this involved 9 sailboats with a total of 28 people.
Both trials took place in the archipelago of the Helsinki region. The applica-
tion prototype employed during the trials did not include context management
and did not support the WeatherWatcher service, which were developed dur-
ing the second phase of software development. Location-awareness was simply
achieved by connecting GPS devices via Bluetooth to the phone. In the trails,

8 TurkuTouring, URL: http://www.turkutouring.f

23

Nokia 6630 phones and Bluetooth GPS Receivers InsSirf 1119 were used.

The first experiment was mostly aimed to investigate technical problems and
performance of our application. The application was in use for 5 hours by
two users while sailing. The performance of the application was affected by
the continuous and not-optimized traffic of events sent to/from the phone.
In some cases, this caused problems with phone memory consumption. Fur-
thermore, occasionally, the GPS device disconnected from the phone due to
Bluetooth (BT) disconnections (reported as a known issue in the NOKIA
Forum (FORUM NOKIA, 2005)), and thus causing the system to collapse.

To improve our prototype application we highly reduced the traffic of events
by transmitting only relevant location changes (e.g., only reliable and suffi-
ciently different location updates were transmitted) and by delivering matched
content as a differential from the previously delivered content. Since we could
not solve reliability issues of the BT connection between phone and GPS,
we simplified the client interface for connecting the GPS device to the phone
and memorized addresses of previously accessed GPS devices. This allowed to
quickly reconnect the phone to the GPS device and avoid time consuming BT
service discovery, every time a disconnection occurred. We also introduced an
alert message to notify the user every time a GPS disconnection was detected
by the client application. The downside with alert messages in intensive envi-
ronments such as a boat on the move is that they do not always manage to
get the user’s attention.

The second trial was of major impact. 28 persons participated to the event.
Among those, 9 expert sailboaters from 30-40 years old installed and used
our application. The rest of the people had varying sailing expertise, ranging
from very low to very experienced. The day before the event, sailboaters were
instructed about how to use our application and connect the GPS via BT to
the phone. A 2-page instruction to consult on the boat was also distributed.
The regatta lasted approximately 7 hours.

At the beginning of the regatta, sailboaters easily connected their phone to
the GPS device and logged into the system. However, during the sailing route,
2G/3G handover caused some technical problem. Every time a 2G/3G han-
dover occurred while a HTTP connection was open, the smart phone switched
off permanently, thus requiring the user to re-login and re-connect the GPS.
2 sailboaters who had set their phone to operate in 2G network mode did
not encounter this problem, and their location track was fairly continuous.
Occasionally, some BT disconnection problems still occurred (typically an av-
erage of 1 disconnection every hour). However, thanks to the modifications
introduced after the previous regatta, sailors could quickly reconnect the GPS

9 http://www.insmat.com

24

and the interruption in the location monitoring was of irrelevant duration.
Therefore, despite these network problems, from a technical point of view, the
system performed successfully and sailboaters were constantly provided with
available matched content.

The sailing activity alternates periods of extreme intensiveness (e.g., tacking
against a heavy wind) to periods of low activity (e.g., cruising on a mild
tailwind). The field study revealed how sailboaters enjoyed filling those not-
busy time intervals by creating observations, posting contextual messages, and
thus generating a sort of user trace in the environment, as if it was a message
like “I passed from here, I saw this, and I visited this”. Almost all generated
content had at least one image as attachment and generally a short text. This
revealed how the possibility of leaving social traces, especially in unknown
and vast territories, is rather appealing in these kind of activities. This is
also associated to a sense of “curiosity” in knowing what others are doing
(e.g., “Are they moving faster?”), or they have done in the same situation
(e.g., “Have they visited this guest harbor or taken this route?”). During the
regatta, there was a reciprocal interest in people passing by. Moreover, people
found the possibility of knowing about past experience and finding signs left
by others especially useful in this kind of silent, not highly populated, and
typically unknown places.

During the regatta, people were advertised about services in a range of 5km.
Even though all sailing boats followed the same route and thus passed closed
the same services, the presence of contextual notes attached to the environ-
ment and annotations attached to services was considered a potential means
for decision-making regarding which route to take, which guest harbor to visit,
or in which phase of the trip explore new places. For this kind of activity,
finding out about services in the surroundings is generally not a trivial task,
especially for people not very experienced or new to the region. Because going
ashore with a sailboat requires a lot of work (such as taking down the sails and
packing them, taking out the chest ropes, starting the engine, and so forth),
people considered highly important to know in advance about the status of
some services that they intended to visit.

People who (directly or indirectly) used our application during the sailing tri-
als and in other public demonstrations of the system, were asked to fill in
a questionnaire concerning usefulness of the system, privacy and trustwor-
thiness, advantages and disadvantages, technical problems encountered while
using the application. The feedback we received was very positive. Summariz-
ing, among the functionalities offered by the system, people found particularly
interesting the possibility of expressing and sharing recommendations about
services (80%) and of creating informative notes for other users (75%), for
personal use as reminders (62%) or for coordinating a trip with friends (60%).
They also said that a system like ours (also applied to different scenarios) could

25

be very useful in many daily situations and they would be ready to pay some-
thing to use it. The risk of spam as well as untrustworthy recommendations
were the main threats and disadvantages observed about the system.

6 Related Work

Our research shares some concepts and techniques typically used in conven-
tional recommender systems. With the emergence of e-services, recommenders
have been often applied in various forms and fields, and especially in infor-
mation retrieval. Recommenders are capable of ranking a list of similar items
with respect to a certain criteria in order to provide recommendations, predic-
tions, opinions that can assist users in evaluating items (Resnick and Varian,
1997; Schafer et al., 2002).

The two most applied recommendation techniques are the content-based ap-
proach (Mostafa et al., 1997; Jian et al., 2005) and the collaborative filtering
approach (Resnick et al., 1994; Shardanand and Maes, 1995; Terveen et al.,
1997; Breese et al., 1998; Herlocker et al., 1999). In content-based recommen-
dation, the system suggests items that best match a specified criteria. The
system has to understand the main features describing the items of interest
in order to establish their relevance, and it usually maintains domain-specific
user profiles. Collaborative filtering aims to find a neighborhood for a target
user through other users who share the same tastes. If the interests of a certain
user a or a community A are similar to those of an another user b, the items
preferred by b can be recommended to a. Pearson correlation (Resnick et al.,
1994) is often used to calculate the similarity. Hybrid systems (Balabanovic;
and Shoham, 1997; Rucker and Polanco, 1997; Good et al., 1999; Shahabi et al.,
2001; Burke, 2002) combine collaborative filtering, content-based querying and
other recommendation techniques to achieve higher accuracy.

In recent years, some attempts have also moved towards the integration of
context-awareness in recommenders. In (Brunato and Battiti, 2003), the au-
thors employ a historical database of user locations and URLs to determine
where and how often certain links have been accessed and use this information
to provide accurate recommendations. In the recommender system described
in (Yap et al., 2005), the authors exploit a wide and dynamic range of con-
text information, and specifically focus on designing a learning algorithm to
identify the user contextual preferences when ranking items. (Adomavicius
et al., 2005) presents a multidimensional approach to provide recommenda-
tions based on several types of context information and accomplish hierarchical
aggregation of recommendations.

Compared to this kind of recommender systems, our approach goes beyond by

26

combining the ranking process of recommenders with peer-to-peer social func-
tionalities. Moreover, the most consistent part of research on recommender
systems has traditionally been applied to relatively static scenarios and to
Internet communities, while the objective of our study was a community of
mobile users in highly dynamic mobile environments. Also from a technical
point of view, with the exception of some recent example (Yu et al., 2006), rec-
ommender systems have never been implemented on smart phone platforms.

The use of context information in applications running on mobile devices has
received large attention in many research areas such as ubiquitous computing,
mobile computing, augmented reality, and human-computer interaction. In
particular, the most publicized context-aware systems are location-based sys-
tems such as navigator assistants, location-aware information services (e.g.,
weather services and tourist guides), and location-sensitive games. For ex-
ample, GUIDE'? is a context-sensitive tourist guide for visitors in the city
of Lancaster; WebPark ' provides location-based services in protected and
recreational areas, such as coastal, rural, and mountainous regions; LoVEUS 2
aims to provide users with location- and orientation-sensitive multimedia in-
formation; and EurEauWeb '3 seeks to increase the commercial viability of
Europe’s waterways.

However, except for few exceptions, most of the context-aware applications so
far implemented are based on technologies that are not supported by common
smart phones, or they assume more resources than those that smart phones
can offer. Most of the existing prototypes run on laptops and PDAs, while in
our work, all the development was done using a real mobile phone platform.
The ContextPhone (Raento et al., 2005) is an open-source prototyping plat-
form built on the Nokia Series 60 phones platform. It can be used to sense,
process, store, and transfer context data. The blackboard-based framework
of Korpipaa (Korpipaa, 2005) implements a ContextManager which provides
a publish-subscribe mechanism and a database for context data on mobile
devices. However, in both works the context sensing relies on information lo-
cally available on the device or through BT sensors, whereas Contory provides
flexible access to various types of internal and external sensors. In addition,
Contory permits exploiting not only location information, but a wider range
of contextual information, to accomplish more diversified content matching.

Finally, as far as mobile technologies for tourism, (Brown and Chalmers, 2003)
pointed out how typical location-based systems do not allow “pre-visiting”
and “post-visiting”. Pre-visiting is about planning the visit; post-visiting is
about reminiscing and sharing the experience. To accomplish this, our work

10 GUIDE Project. URL: http://www.guide.lancs.ac.uk

H'WebPark Project. URL: http://www.webparkservices.info

12LoVEUS Project. URL: http://loveus.intranet.gr/

13 EurEauWeb Project. URL: http://www.softeco.it/softeco/en /eureauweb1.html

27

reuses past research experiences on attaching signs or leaving marks to visited
environments as done in the tour of Disneyland application of Pascoe (Pascoe,
1997), GeoNotes (Espinoza et al., 2001), E-graffiti (Burrell and Gay, 2001),
and virtual graffiti (Jarvensivu et al., 2004). The possibility to attach content
of different types to contextual situations permits storing content for future
usage by the user herself, friends, or anyone else.

7 Conclusions

The hybrid model of context-aware service provisioning represents a novel ap-
proach to access and share information about services and content available in
our daily environments. We designed and implemented a platform along with a
prototype application running on smart phones, which support this model. We
evaluated the feasibility of our approach through field trials in which the re-
search subject was a community of recreational boaters. Our model has proved
so far to be an interesting and useful approach to support a novel conception
of service provisioning in mobile environments. Experiences in the real field
of action allowed us to investigate the user’s reception to a system like this
in real-world use. Based on numerous feedbacks we received when present-
ing the system to (both boaters and non-boaters) potential users, many of the
functionalities of the sailing application were found interesting and potentially
extensible to other daily life scenarios. Interviewees themselves suggested to
integrate similar functionalities in systems for traffic information, nature trail,
journey planner, sport games, cultural events, conferences, and travel guides.
Additionally, the field trials allowed us to identify and solve many technical
problems of location detection, context provisioning, network connectivity,
and general system performance which will help us improve future application
development on mobile phones.

Acknowledgments

The authors would like to thank Tekes, ICT-Turku, Suunto, TeliaSonera, and
VTT for funding the DYNAMOS Project. Thanks also to the Research and
Training Foundation of TeliaSonera.

References

Abowd, G., 1999. Classroom 2000: An Experiment with the Instrumentation
of a Living Educational Environment. IBM System Journal 38 (4), 508-530.

28

Adomavicius, G., Sankaranarayanan, R., Sen, S., Tuzhilin, A., 2005. Incorpo-
rating Contextual Information in Recommender Systems Using a Multidi-
mensional Approach. ACM Trans. Inf. Syst. 23 (1), 103-145.

Arbanowski, S., Ballon, P., David, K., Droegehorn, O., Eertink, H., Kellerer,
W., van Kranenburg, H., Raatikainen, K., Popescu-Zeletin, R., 2004. I-
centric Communications: Personalization, Ambient Awareness, and Adapt-
ability for Future Mobile Services. IEEE Communications Magazine 42 (9),
63-69.

Balabanovic;, M., Shoham, Y., 1997. FAB: Content-Based, Collaborative Rec-
ommendation. Commununication of ACM 40 (3), 66-72.

Bellavista, P., Corradi, A., Montanari, R., Stefanelli, C., 2003. Context-Aware
Middleware for Resource Management in the Wireless Internet. IEEE Trans-
actions on Software Engineering 29 (12), 1086-1099.

Breese, J., Heckerman, D., Kadie, C., 1998. Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. In: Proceedings of the 14th Confer-
ence on Uncertainty in Artificial Intelligence (UAT’98). pp. 43-52.

Brown, B., Chalmers, M., 2003. Tourism and Mobile Technology. In: K. Ku-
utti, E. H. K. e. a. (Ed.), Proceedings of the 8th European Conference on
Computer Supported Cooperative Work (ECSCW’03). Kluwer Academic
Publishers, pp. 335-355.

Brunato, M., Battiti, R., 2003. PILGRIM: A Location Broker and Mobility-
Aware Recommendation System. In: Proceedings of the First IEEE Inter-
national Conference on Pervasive Computing and Communications (Per-
Com’03). IEEE Computer Society, Fort Worth, Texas, USA, pp. 265-272.

Burke, R., 2002. Hybrid Recommender Systems: Survey and Experiments.
User Modeling and User-Adapted Interaction 12 (4), 331-370.

Burrell, J., Gay, G., 2001. E-Graffiti: Evaluating Real-World Use of a Context-
aware System. Interacting With Computers: Special Issue on Universal Us-
ability 14, 301-312.

Capra, L., Emmerich, W., Mascolo, C., 2003. CARISMA: Context-Aware Re-
flective mIddleware System for Mobile Applications. IEEE Transactions on
Software Engineering 29 (10), 929-945.

Chen, G., Kotz, D.,; 2000. A Survey of Context-Aware Mobile Computing
Research. Tech. rep., Hanover, NH, USA.

Cheverst, K., Davies, N., Mitchell, K., Friday, A., Efstratiou, C., 2000. De-
veloping a Context-aware Electronic Tourist Guide: Some Issues and Ex-
periences. In: Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI’00). ACM Press, New York, USA, pp. 17-24.

Corby, O., Dieng-Kuntz, R., Faron-Zucker, C., Gandon, F., 2006. Searching
the Semantic Web: Approximate Query Processing Based on Ontologies.
IEEE Intelligent Systems 21 (1), 20-27.

Dey, A. K., Salber, D., Abowd, G., 2001. A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context-Aware Applica-
tions. Human-Computer Interaction 16 (2-4), 97-166.

Dimmock, N., Bacon, J., Ingram, D., Moody, K., 2005. Risk Models for Trust-

29

Based Access Control (TBAC). In: Proceedings of the 3rd International
Conference on Trust Management (iTrust’05). pp. 364-371.

Dimmock, N., Maddison, I., 2004. Peer-to-peer Collaborative Spam Detection.
ACM Crossroads 11 (2), 4-4.

Espinoza, F., Persson, P., Sandin, A., Nystrom, H., Cacciatore, E., Bylund,
M., 2001. GeoNotes: Social and Navigational Aspects of Location-Based
Information Systems. In: Proceedings of the 3rd International Conference
on Ubiquitous Computing (Ubicomp’01). Springer-Verlag, pp. 2-17.

FORUM NOKIA, 2005. 2nd Edition Platforms: Known Issues.
http://www.forum.nokia.com/main/0,6566,58_10,00.html, version 2.8.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley.

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker,
J., Riedl, J., 1999. Combining Collaborative Filtering with Personal Agents
for Better Recommendations. In: Proceedings of the 16th National Confer-
ence on Artificial Intelligence and the 11th Conference on Innovative Appli-
cations of Artificial Intelligence (AAAT’99/TAAI'99). American Association
for Artificial Intelligence, Menlo Park, CA, USA, pp. 439-446.

Grandison, T., Sloman, M., 2000. A Survey of Trust in Internet Applications.
IEEE Communications Surveys and Tutorials 3 (4).

Grofimann, M., Bauer, M., Honle, N., Kappeler, U.-P.; Nicklas, D., Schwarz,
T., 2005. Efficiently Managing Context Information for Large-Scale Scenar-
ios. In: Proceedings of the 3rd IEEE International Conference on Pervasive
Computing and Communications (PerCom’05). pp. 331-340.

Herlocker, J. L., Konstan, J. A., Borchers, A., Riedl, J., 1999. An Algorithmic
Framework for Performing Collaborative Filtering. In: Proceedings of the
22nd annual international ACM SIGIR conference on Research and devel-
opment in information retrieval (SIGIR’99). ACM Press, New York, NY,
USA, pp. 230-237.

Jarvensivu, R., Pitkanen, R., Mikkonen, T., 2004. Object-oriented middleware
for location-aware systems. In: Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC’04). pp. 1184-1190.

Jian, C., Jian, Y., Jin, H., 2005. Automatic Content-Based Recommendation
in e-Commerce. In: Proceedings of the 2005 IEEE International Conference
on e-Technology, e-Commerce and e-Service (EEE’05) on e-Technology, e-
Commerce and e-Service. IEEE Computer Society, Washington, DC, USA,
pp. 748-753.

Korpipaa, P., 2005. Blackboard-based Software Framework
and Tool for Mobile Device Context Awareness. PhD
Thesis. VTT Publications: 579, VTT Electronics, Espoo,
http://www.vtt.fi/inf/pdf/publications/2005/P579.pdf.

Mostafa, J., Mukhopadhyay, S., Palakal, M., Lam, W., 1997. A Multilevel Ap-
proach to Intelligent Information Filtering: Model, System, and Evaluation.
ACM Transactions on Information Systems 15 (4), 368-399.

Pascoe, J., 1997. The Stick-e Note Architecture: Extending the Interface Be-

30

yond the User. In: Proceedings of the 1997 International Conference on
Intelligent User Interfaces. ACM Press, pp. 261-264.

Raento, M., Oulasvirta, A., Petit, R., Toivonen, H., 2005. ContextPhone: a
Prototyping Platform for Context-aware Mobile Applications. IEEE Perva-
sive Computing 4 (2).

Resnick, P., Tacovou, N., Sushak, M., Bergstrom, P., Riedl, J., 1994. Grou-
pLens: An Open Architecture for Collaborative Filtering of Netnews. In:
Proceedings of the ACM Conference on Computer Supported Collaborative
Work. Chapel Hill, North Carolina, USA, pp. 175-186.

Resnick, P., Varian, H. R., 1997. Recommender Systems. Commun. ACM
40 (3), 56-58.

Rhodes, B. J., 1997. The Wearable Remembrance Agent: A System for Aug-
mented Memory. In: Proceedings of the 1st IEEE International Symposium
on Wearable Computers (ISWC’97). pp. 123-128.

Riva, O., 2006. Contory: A Middleware for the Provisioning of Context In-
formation on Smart Phones. In: Proceedings of the 7th ACM International
Middleware Conference (Middleware’06). Vol. 4290 of LNCS. Springer, pp.
219-239.

Riva, O., Toivonen, S., 2006. A Model of Hybrid Service Provisioning Imple-
mented on Smart Phones. In: Proceedings of the 3rd IEEE International
Conference on Pervasive Services (ICPS’06). IEEE Computer Society, pp.
47-56.

Rucker, J., Polanco, M. J.,; 1997. SiteSeer: Personalized Navigation for the
Web. Commununication of ACM 40 (3), 73-76.

Schafer, J. B., Konstan, J. A., Riedl, J., 2002. Meta-Recommendation Systems:
User-Controlled Integration of Diverse Recommendations. In: Proceedings
of the 11th international conference on Information and knowledge manage-
ment (CIKM’02). ACM Press, New York, NY, USA, pp. 43-51.

Shadish, W. R., Cook, T. D., Campbell, D. T., 2002. Experimental and Quasi-
Experimental Designs for Generalized Causal Inference. Houghton Mifflin,
New York.

Shahabi, C., Kashani, F. B., Chen, Y.-S., McLeod, D., 2001. Yoda: An Ac-
curate and Scalable Web-Based Recommendation System. In: Proceedings
of the 9th International Conference on Cooperative Information Systems
(CooplS’01). Springer-Verlag, London, UK, pp. 418-432.

Shardanand, U., Maes, P., 1995. Social information filtering: Algorithms for
automating word of mouth. In: Proceedings of the SIGCHI conference
on Human factors in computing systems (CHI'95). ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, pp. 210-217.

Singh, M., Yu, B., Venkataraman, M., 2001. Community-Based Service Loca-
tion. Comm. ACM 44 (4), 49-54.

Stojanovic, N., Maedche, A., Staab, S., Studer, R., Sure, Y., 2001. SEAL: A
framework for developing SEmantic PortALs. In: Proceedings of the inter-
national conference on Knowledge capture (K-CAP’01). ACM Press, New
York, NY, pp. 155-162.

31

Tarkoma, S., Kangasharju, J., Lindholm, T., Raatikainen, K., 2006. Fuego:
Experiences with Mobile Data Communication and Synchronization. In:
Proceedings of the 17th Annual IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC’06). pp. 1-5.

Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J., 1997. PHOAKS:
A System for Sharing Recommendations. Commun. ACM 40 (3), 59-62.
Toivonen, S., Lenzini, G., Uusitalo, 1., 2006. Context-aware Trustworthiness
Evaluation with Indirect Knowledge. In: Proceedings of 2nd International
Semantic Web Policy Workshop (SWPW’06), held in conjunction with the

5th International Semantic Web Conference (ISWC 2006).

Wang, C., Carzaniga, A., Evans, D., Wolf, A., 2002. Security Issues and Re-
quirements for Internet-Scale Publish-Subscribe Systems. In: Proceedings
of the 35th Annual Hawaii International Conference on System Sciences
(HICSS’02). Vol. 9. IEEE Computer Society, Washington, DC, USA.

Yap, G.-E., Tan, A.-H., Pang, H.-H., 2005. Dynamically-Optimized Context in
Recommender Systems. In: Proceedings of the 6th International Conference
on Mobile Data Management (MDM’05). ACM Press, New York, NY, USA,
pp. 265-272.

Yu, Z., Zhou, X., Zhang, D., Chin, C.-Y., Wang, X., Men, J., 2006. Supporting
Context-Aware Media Recommendations for Smart Phones. IEEE Pervasive
Magazine 5 (3), 68-75.

32

