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Abstract—We address the memory problem of maximum
entropy language models(MELM) with very large feature sets.
Randomized techniques are employed to remove all large, exact
data structures in MELM implementations. To avoid the dic-
tionary structure that maps each feature to its corresponding
weight, the feature hashing trick [1] [2] can be used. We also
replace the explicit storage of features with a Bloom filter.
We show with extensive experiments that false positive errors
of Bloom filters and random hash collisions do not degrade
model performance. Both perplexity and WER improvements
are demonstrated by building MELM that would otherwise be
prohibitively large to estimate or store.

I. INTRODUCTION

Language models(LM) are crucial components in automatic
speech recognition(ASR) systems. They assign probabilities to
sequences of words, usually by modeling the set of conditional
distributions {P (w|h)}, as shown in (1), where hi is the word
history preceding the ith word wi.

P (w1, w2, ..., wl) =

l∏
i=1

P (wi|hi). (1)

The n-gram LM is the conventional approach to parameterize
P (w|h), where it is assumed that the word w only depends
on its previous n − 1 words. Therefore, the number of
parameters in the model depends on the number of distinct
word sequences of length up to n. As the corpus size increases,
it is usually hard to estimate high order n-gram LMs because
of the exponential increase of the number of n-grams in the
training corpus.

The maximum entropy LM(MELM) [3] is an alternative
way to parameterize P (w|h). It provides a principled frame-
work to incorporate different knowledges sources in the form
of feature constraints. Specifically, for word w following h,
we have

P (w|h) =
exp

∑
i θifi(h,w)∑

w′∈V exp
∑

i θifi(h,w
′)
, (2)

where fi is the ith feature function defined over the word-
history pair, θi is the feature weight associated with fi. As a
starting point for building stronger LM, n-gram information is

usually included into the model by defining n-gram features
corresponding to each distinct n-grams in the training corpus,
thus the memory challenge for large scale MELM is clearly
no less severe than the standard n-gram LM. Furthermore,
besides nice theoretical properties in terms of smoothness,
the true strength of MELM lies in its flexible framework to
include constraints other than n-grams. Unfortunately, despite
the empirical success of adding more knowledge into MELM
[4], including these features together with n-gram constraints
poses considerable challenges in terms of storage. For a lot of
applications where remote or disk readings are prohibitively
expensive, it is very difficult to deploy MELM with large
feature sets because they cannot be stored in memory on a
single machine.

For the standard n-gram LM, a lot of work has focused on
reducing its size. A few examples are the entropy based prun-
ing in [5], clustering in [6], Golomb coding in [7]. People have
also used various data structures such as suffix array in [8],
tries in [9], to represent n-gram LMs compactly. Among these
techniques, the randomized schemes [10] [11] are probably
the most succinct ones. Differing from all other approaches,
the randomized models do not attempt to store n-grams ex-
plicitly, Bloom filter [12] -type structures are employed which
only store fingerprints of the n-grams. However, the drastic
space savings come with a cost – as a randomized structure
for representing sets, Bloom filters may occasionally return
nonexistent items with some small quantifiable probabilities,
known as false positives. On the other hand, false negatives
never occur. The effect of such one sided errors has proven to
be sufficiently small and does not prevent us from deriving a
quality LM.

The spectacular memory performance of randomized LM
inspires us to explore randomized techniques to encode
MELM, which is the focus of this paper. In order to reduce the
memory requirement of training and using MELM, we propose
to make use of the recently introduced feature hashing tech-
niques [1] [2]. Central to the hashing idea is allowing feature
collisions. By allowing multiple features to be mapped to the
same weight value, we no longer have to store in memory
the expensive dictionary structure to map from fi to θi. It has



been shown that given a reasonably good hash function, such
random collisions have limited impact on the resulting model
because the learning algorithms can usually deal with such
noise in the feature representation. Besides removing exact
feature mapping, as we will discuss in later sections, we also
have to avoid explicit storage of the features, for which exact
techniques are expensive as well. To solve this problem, we
employ Bloom filters. Therefore, our approach can be briefly
described as storing features with Bloom filters and mapping
them randomly to the weight vector. By avoiding all of the
large exact data structures in our MELM, we introduce two
sources of randomness: (i) Due to false positives in Bloom
filters, some features that are not defined by the model may
be invoked and contribute to the probability distribution. (ii)
Of all features that are invoked, either correctly or falsely,
some may be randomly tied to have the same weight value.

Note that perfect hashing techniques might be an alternative
to encode key-value pairs (fi, θi) without using a dictionary,
it has been successfully used for representing n-gram LM [11]
[13]. However, the procedure to compute perfect hash function
is not straightforward. As we will show in this paper, for
MELM, such exact key-value correspondence is not necessary.

It is also worth pointing out that our approach is quite
different from L1 regularization or other kinds of feature
selection techniques. We do not attempt to discard any fea-
tures, our goal is to provide a randomized representation for
arbitrary feature sets such that explicit storage and explicit
mapping are not necessary. E.g., it is possible in our method
that two very distinct and relevant features may accidentally
be forced to share a feature weight. No attempt is made to
avoid such accidents, and their consequences are measured
only empirically.

II. FEATURE HASHING

Feature hashing [1] [2] is a method to scale up linear
learning algorithms.

In linear models such as logistic regression and support
vector machines, a real-valued weight has to be learned for
each feature defined by the model. The features are constructed
from training instances and often take the form of strings that
describe certain properties of the instances. In the case of
MELM, features are defined on history-word pairs (h,w). For
example, in the training instance (hello, world), we can have
the unigram feature world and the bigram feature hello world.

In order to store and retrieve the weights associated with
these features, a dictionary structure is usually necessary to
map every string-valued feature to an integer position in a
weight vector. Such dictionary structures must, however, also
store the strings themselves for collision resolution—the task
of dealing with multiple strings mapping to the same position.
This storage requires large amounts of memory. As the feature
space becomes more complex (e.g. high-order n-grams and
skip n-grams), the number of possible features grows, as does
the number of observed features in large training sets, thus the
dictionary structure may take up considerable space.

The hashing idea does away with the storage of the input
strings, and replaces the dictionary with a hash function that
stochastically minimizes the likelihood of a collision between
feature strings without ruling it out completely. Since the hash
function is not perfect, all features that have the same hashcode
will map to the same location in the weight vector, and be
forced to share the same weight parameter.

The size of the weight vector is a parameter that can
be adjusted to control the collision rate. As described in
[1], the elimination of dictionary storage brings tremendous
memory savings, permitting space allocation for a large weight
vector. This in turn permits incorporating more features and/or
reducing the likelihood of collisions to acceptable levels.

III. STORING FEATURES WITH BLOOM FILTER

With the hashing technique, it is not necessary to store the
features. In MELM, as we described, features are defined on
the sequence of words formed by the history-word pair. Con-
sider the sequences of length n, the number of such distinct
sequences is |V |n, where |V | is the size of the vocabulary. For
a basic n-gram MELM, if we assume every word sequence
of length up to n activates a different feature, we have to
contend with |V |n+ |V |n−1+ ...+ |V | possible features, even
though the majority of them are never seen in the training data.
Unfortunately, this set of candidate features is often too large
to avoid hash collisions. For realistic weight vector sizes, such
a large number of possible features significantly exacerbates
the hash collision problem.

To further illustrate this point, we conducted a set of
experiments on the Penn Treebank corpus. Details of the
corpus are provided later when we present more results.
Figure 1 shows the perplexity from using different weight
vector sizes under feature hashing without storing the feature
definitions, where the randomized model is denoted RMELM.
The standard model contains 4.1M features derived from the
corpus, requiring about 32MB of memory for storing the
feature weights. The model contains n-gram features up to
5-grams and also a few other types of features. Consider only
5-gram features, if we allow a distinct feature to fire for every
possible 5-word sequence, the number of features implicitly
added into the model is as large as 1020. If we allocate only
4.1M bins to the weight vector, on average more than 1013

features will be forced to share the same weight. Some of the
collisions will be between the 4.1M features derived from the
corpus, but most will involve features not seen in the training
corpus (but which may be triggered on the test set).

As we can see in Figure 1, the loss in LM performance due
to hash collisions is obvious: even with a weight vector size of
10 times the number of seen features, we achieve a perplexity
of 135 for the RMELM compared to 131 for the MELM.

However, the RMELM begins to approach the perplexity
of the MELM as we allocate more memory, especially after
interpolation with the Kneser-Ney 5-gram LM, as shown by
the (blue) RMELM+KN5 and (green) MELM+KN5 curves.

Unfortunately, it is often the case that we cannot allocate
significantly more bins for the weight vector than the number



Fig. 1. Perplexity as a function of weight vector size

of seen features. For very large feature sets, such direct hashing
may therefore not be advisable. For example, the size of the
feature set exceeds 150M in one of our experiments on a 70M-
word corpus, and storing a weight vector of size 150M in
double precision would require 1.2GB of memory. If 10 times
its size is needed to approach the performance of the exact
MELM implementation, we would have to allocate a weight
vector that takes up 12GB, which may be infeasible.

An alternative is to only include features that have been seen
in the training corpus. Since the number of features observed
during training is manageable, this can alleviate the collision
problem. But to test the existence of a feature fi(·), we need to
store a table of such valid features! It would seem that storing
this table would negate the cost saving from feature hashing.
But Bloom filters can help alleviate this difficulty. Note that
unlike [10], where the Bloom filter is used to associate key-
value pairs, we only need a set structure that tests whether a
given feature fi(·) is defined in the model. Despite the risk
of some false positives, the space advantage of Bloom filters
over other data structures is very well known. It works by
maintaining a bit vector where each added item sets k bits
to 1 according to the results of k hash functions; i.e. it is
not necessary to explicitly store the feature definitions. For a
detailed description of Bloom filters used for LM, see [10].

IV. BINARIZATION AND SUBSAMPLING

MELM are known to be computationally expensive to train.
The complexity of each iteration of training is at O(V T ),
where V is the size of the vocabulary and T is the size
of the training corpus. For large datasets, standard MELM
training is often impractical. In [14], an efficient subsampling
approach is proposed to accelerate MELM training. The idea is
replace the original V -class problem with V binary problems,
where the subsampling can be done for negative examples
only. Specifically, instead of building a multi-class classifier
as in (2), for each word w in the vocabulary, we build the

binary classifier given by

Pb(w|h) =
exp

∑
i θifi(h,w)

1 + exp
∑

i θifi(h,w)
. (3)

To obtain a valid multi-class distribution, the binary proba-
bilities are explicitly normalized. Since the majority of the
complexity for each binary classifier comes from processing
negative examples, we can achieve substantial speedup by only
subsampling the negatives. The authors show with extensive
experiments that such subsampling strategy is more robust than
subsampling for the original multi-class problem.

Given the sizes of our experiments, it is not possible to
carry out the standard training efficiently, so the binarization
technique is used to train different MELM throughout our
experiments.

V. EXPERIMENTAL RESULTS

• For the hash function used in feature hashing, we use
Java’s HashCode() function modulo the intended size
of the weight vector.

• For the Bloom filter, we use the public domain implemen-
tation from http://code.google.com/p/java-Bloomfilter/.

• Online stochastic gradient descent is used for training
each of the binary classifiers, no explicit regularization is
performed [15].

A. Penn Treebank Experiments

This set of experiments is intended for a detailed com-
parison between the randomized feature representation and
the exact feature representation. The Penn Treebank corpus
contains approximately 1M word tokens–section 00-20 are
used for training(972K tokens), section 21-22 are the val-
idation set(77K), section 23-24(86K) are the test set. The
vocabulary size of the experiment is 10K. To expedite training,
we binarize the problem as described above, and subsample
only 10% of the negative examples.

Besides n-gram features up to 5-grams, we also include
skip-1 bigram, trigram and four gram features [16] . Class-
based features are also added which ask about the class
membership of the previous word. SRILM is used to obtain
the word classes. In total, we have a set of 4.1M features.

The exact storage takes about 600MB, where more than
550MB is used to maintain a hashmap from features to the
indices in the weight vector. In the randomized implementa-
tion, the Bloom filters only require 40-60MB of memory.

Figure 2 shows the perplexity results of randomized
MELM(RMELM) compared with the exact hashmap imple-
mentation. For comparison, we also build a KN smoothed 5-
gram LM, which gives a perplexity of 147.9. The results after
interpolation with it are shown in Figure 3. The false positive
rate here is the theoretical number which can be used as a
parameter to initialize the Bloom filter. As we can see, besides
the strong space advantage, the RMELM are also able to retain
most of the gain by MELM especially after interpolation. Due
to the space saving brought by removing the dictionary, we are
usually able to allocate a larger weight vector to reduce the



Fig. 2. RMELM with different false positive(FP) rates

Fig. 3. RMELM with different false positive rates (Interpolated)

hash collisions and improve the results. What’s also interesting
is that instead of increasing the vector size, the hashing trick
can in fact allow us to compress it, the perplexity differences
after interpolation are not significant as we shrink the weight
vector space.

This set of experiments provides us with some insight in
selecting parameters. For the rest of the experiments, we will
always have Bloom filters with theoretical false positive rate
at 0.01, and the weight vector sizes are always set to be equal
to the number of features in the model.

B. Fisher Topic Modeling

In [4], topic information is incorporated into the MELM
in the form of topic dependent unigram constraints. Pre-
sumably due to the memory requirement and computational
burden, topic dependent features are restricted to the unigram
frequency of a selected set of words. With our proposed
technique, we can easily define a lot more topic dependent
features, and learn them jointly with topic independent features
in a single hashed vector space.

We have an English Fisher corpus of approximately 10M
words. The training set contains 7.2M words. The dev and
test sets contain 1.2M words each. Each utterance is assigned
to one of the 40 topics. The details of the corpus and topic
assignment can be found in [17]. As vocabulary, we take the
top 20K most frequent words in the training corpus, thus we
need to train 20K binary classifiers, keeping only 2% of the
negative examples.

When processing each (h,w) pair, besides the regular fea-
tures, we also add for each feature its topic dependent version.
For example, for the bigram pair (hello, world), besides the
unigram feature world and the bigram feature hello world,
we also construct features topicID-word, topicID-hello world.
The number of features extracted this way is about 22M, the
hashmap storage takes about 4.4GB, while the Bloom filter
only requires 150MB. As we described, all features are hashed
to a 22M dimensional weight vector, despite collisions, we
are still able to benefit from the topic features added into the
model.

TABLE I
PERPLEXITY OF TOPIC RMELM

Model Dev Eval
KN4 67.5 69.3

Topic KN4 90.4 93.3
KN4 + Topic KN4 63.8 65.6

MELM 61.4 63.4
RMELM 62.1 63.9

Table I shows the perplexity results of our RMELM with
topic dependent n-gram features. As a comparison, we build
for each topic a KN smoothed 4-gram LM(Topic KN4), this
LM is then interpolated with the KN 4-gram LM trained on
all topics(KN4). The resulting model serves as a specialized
LM used only for utterances of the same topic. As we can
see, our randomized scheme performs almost the same as the
exact implementation, compared with the interpolated KN LM,
the perplexities are slightly lower. With only n-gram features,
such topic MELM is not expected to greatly outperform the
interpolated n-gram LM, however, it provides a promising and
efficient framework to carry out more complex topic dependent
modeling.

C. ASR Experiments: Wall Street Journal

We have a set of 100-best list from the DARPA WSJ93 and
WSJ92 20K open vocabulary task. The acoustic model used
to generate the n-best list can be found in [18]. We use 93et
and 93dt sets for evaluation, and 92et for optimization. The
LM training text contains 70M words from the NYT section
of English Gigaword.

Our baseline LM is a KN smoothed 5-gram LM. For the
RMELM, we use the same feature set as described for the
Penn Treebank experiments, namely n-grams, skip-1 n-grams
within the 5-word window, and the class of the previous word.
In total, we have more than 150M features, which can not fit
into memory easily. Hashmap implementation would require
approximately 30GB, with the Bloom filter, only 460MB is



needed. The weight vector takes 1.2GB. Due to the size of
the corpus, aggressive subsampling is performed, only 0.5%
of the negative examples are retained for each one of the 20K
binary classifiers.

TABLE II
WSJ RESCORING WER

Model Dev Eval
KN5 12.0 17.7

RMELM + KN5 11.5 17.1

Table II shows the word error rate(WER) results of rescoring
the 100-best list. Compared with the standard KN 5-gram, we
are able to benefit from more fine-grained features within the
5-word window, despite the fully randomized representation.
The 0.6% improvement on the test set is statistically signifi-
cant.

D. ASR Experiments: English Broadcast News

We also performed ASR experiments on the English Broad-
cast News(BN) task. The acoustic model is trained on 430h of
audio and provided by IBM as part of the 2007 IBM GALE
speech transcription system [19]. For LM, we take the 50M
words of EARS BN03 Closed Captions corpus as our training
data. Note that it is one of the 6 sources used for LM in IBM’s
system, it is also the corpus that gets the largest interpolation
weight (close to 0.5). We tune various parameters on dev04f
and evaluate WER on rt04.

We build a KN 4-gram LM on the 50M words as our
baseline. Its pruned version is used in first-pass decoding to
generate lattices. For RMELM, we again use the same kinds of
features as the Penn Treebank experiments except that instead
of 5-grams, all features are extracted from the 4-gram window.
The total number of features here is 106M. Again, heavy
subsampling is performed here, only 0.5% of the negative
examples are kept.

TABLE III
BN RESCORING WER

Model dev04f rt04
KN4 17.1 15.9

RMELM + KN4 16.1 15.0

The WER after rescoring the lattices are shown in Table III.
When interpolated with the KN 4-gram, the RMELM is able to
achieve 0.9% absolute WER improvement over our baseline.
Although randomized in nature, the useful information seems
to be retained quite well and still able to complement the stan-
dard n-gram LM nicely. Moreover, despite having more than
100M features, the memory requirement is quite moderate,
only 278MB is used for storing the features, compared to more
than 20GB using a hashmap. The weight vector takes about
800MB. We certainly have a lot of room to explore richer
feature representations and expect further improvement.

VI. CONCLUSION

We describe a randomized solution to maximum entropy
language modeling. Feature hashing is used to avoid the exact
mapping problem which usually requires large data structures.
We also replace explicit storage of the feature set with a Bloom
filter. Thus, we enable the building of maximum entropy
language models with much larger feature sets than was
previously possible, and provide empirical evidence that doing
so leads to significant improvements in predictive accuracy.
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