
ROBUST SCAREWARE IMAGE DETECTION

Christian Seifert, Jack W. Stokes
Christina Colcernian, John C. Platt

Microsoft Corp.
Redmond, WA 98052

Long Lu

Georgia Institute of Technology
Atlanta, GA 30332

ABSTRACT

In this paper, we propose an image-based detection method
to identify web-based scareware attacks that is robust to eva-
sion techniques. We evaluate the method on a large-scale data
set that resulted in an equal error rate of 0.018%. Conceptu-
ally, false positives may occur when a visual element, such as
a red shield, is embedded in a benign page. We suggest in-
cluding additional orthogonal features or employing graders
to mitigate this risk. A novel visualization technique is pre-
sented demonstrating the acquired classifier knowledge on a
classified screenshot.

Index Terms— security, scareware, social engineering

1. INTRODUCTION

Botnets with thousands of bots are controlled by cyber crim-
inals today. These bots primarily reside on the average desk-
top computer at home, at one’s work place, or in Internet
Cafes. Client-side attacks are used by these criminals to in-
fect one’s machine and join it to the botnet. In the first half of
2011, several primary client-side attack vectors exist: drive-
by-download attacks, AutoRun attacks, and social engineer-
ing attacks [1]. Web-based social engineering attacks present
false information to the user and trick her into download-
ing and executing malware herself. As Internet threats are
heavily touted in the community and media, attackers have
adopted a social engineering angle in this space to accomplish
their goal: scareware. Scareware attacks typically attempt to
trick computer users into believing their computer has been
infected and offering them a solution by purchasing a fake
anti-virus product that allegedly removes the malware from
their computer. There are numerous challenges in detecting
scareware attacks: obfuscation and a wide array of technol-
ogy that can be used to implement such an attack.

In this paper, we present a new, robust detection technol-
ogy that aims to identify the scareware social engineering at-
tack at a layer that the attacker cannot arbitrarily obfuscate:
the visual images presented to the end user. The system is
designed to be robust to evasion tactics and also independent
of the language and underlying technology used to implement
the attack.

Fig. 1. Scareware Screenshot

Important contributions in this work include: I. a robust,
language-independent image recognition algorithm that de-
tects the scareware social engineering attack. II. a classifi-
cation system that learns potential image obfuscation tech-
niques. III. a large-scale implementation that illustrates the
proposed methods are indeed effective. IV. a visualization
technique for displaying the acquired classifier knowledge is
presented.

2. BACKGROUND

Scareware: Many computer users have been affected by a
scareware attack where the operating system or an antivirus
(AV) program apparently runs a scan on their computer and
appears to detect multiple instances of malware. In reality, the
user’s browser renders a web site displays an animation pro-
viding the illusion of the AV scan as shown in Figure 1. These
animations visually try to match the look and feel of the un-
derlying operating system with the goal of selling the fake
product to the user and infect the user’s machine [2]. Note
that the visualization is entirely implemented using browser
rendering techniques (e.g. HTML, Flash, JavaScript).

Detection Countermeasures: Operators of scareware at-
tacks want to distribute malware and make money. As a re-
sult, they have a vested interest to remain undetected and be
resilient against interruption of “service”. First, the attacker
can influence where the content responsible for the scareware



animation as well as the actual malware is hosted. These – so
called scareware servers – could be running on compromised
servers or on servers with hosting providers that don’t respond
to abuse reports. Often, the infrastructure is only utilized for
a short duration of time [3] making it hard to detect and main-
tain a comprehensive list of scareware servers. Second, at-
tackers can change the content itself through polymorphism
and content obfuscation. This technique thwarts widely de-
ployed signature-based approaches to detect scareware.

As the user is presented with a scareware animation,
image-based detection techniques may be used to identify
the scareware attack. However, it appears that scareware au-
thors are aware of such techniques and are taking measures
to thwart such detection to a certain extent as well. They may
slightly modify individual images that are used to construct
the animation. For instance, they may change one pixel on
the disk drive icon or split the image into multiples blocks.
Visual elements may be rearranged or an attacker could use
different icons altogether. However, the attacker needs to
walk a fine line between presenting a user with an animation
that resembles the operating system and taking measures to
evade image-based detection. If the attacker uses different
icons altogether, the deception that the operating system or le-
gitimate AV software scans the system for threats may break
down. The result could be a decrease of conversion rates and
subsequently a smaller return of investment for the attacker.

Image-Based Detection: As mentioned in the previous
section, image-based detection may be one way to identify
scareware. Several approaches can be adopted including ex-
act match, near match, or similar match. In the exact match
image matching method, one may apply a cryptographic hash
(e.g. Sha256) of visual components. This is a rather frag-
ile. Near image matching addresses the short coming of exact
matches. In this case, visual descriptors, e.g. Daisy descrip-
tors [4], are used to match images. Even slight modifications
to the image may result in a match. However, a reordering or
changing of visual elements may result in a mismatch and, as
scareware tends to change the layout of their animation, near
image matching would not be suitable to detect scareware at-
tacks. We next describe a similar match algorithm to address
this limitation.

3. SCAREWARE IMAGE CLASSIFICATION

In this section, we describe the proposed scareware image
classification system which operates on screenshots (e.g. .jpg)
of web pages. The goals of the classifier are to capture the
common visual elements of scareware attacks and to identify
screenshots of web pages containing similar elements.

Classifier Training: The classifier is trained from a set of
web page screenshots, S. Scareware attack images are in-
cluded in SA ⊂ S. To describe an individual screenshot si, a
set of interest point descriptors D are extracted by the Daisy
detector algorithm [4]. One can assess the similarity of two

descriptors through their Euclidian distance. Each descriptor
dij ∈ RM is a histogram of gradients surrounding the region
of the interest point j in screenshot si while M is the dimen-
sion of the descriptor. In Table 1, we denote di• to be the
set of all descriptors for si, and we use M = 32 which is
the default setting for the Daisy algorithm. While the Daisy
algorithm reliably identifies the interest points, small varia-
tions from screenshot to screenshot may result in similar de-
scriptors. In order to identify descriptors which are common
among the various scareware attack images, we learn clusters
of descriptors which are important in scareware attacks. Us-
ing screenshots from the scareware attacks, we use a variation
of the simple IsoData clustering algorithm [5, 6] to learn the
clusters C. The cluster medoid, ĉj , is next determined to be
the descriptor closest to the mean of all descriptors contained
in the cluster. Once the cluster center descriptor has been de-
termined, the maximum cluster distance, TC

j , from this clus-
ter medoid to all descriptors contained within the cluster is
computed. After all clusters have been determined, a labeled
dataset containing a row for each labeled image (scareware,
benign) is created. Formally, consider the hypothesis space
X × Y , where X ∈ Rd, Y ∈ {−1, 1}. Here d is the dimen-
sion of the feature vector consisting of the number of selected
cluster features. For each observation pair 〈xi, yi〉, xi ∈ Rd,
yi ∈ {−1, 1} for i = 1..|D|. The features for the classifier
consist of a histogram where each bin represents the number
of descriptors that were assigned to the constructed clusters.
A descriptor is assigned to cluster j when its Euclidian dis-
tance from the center cluster descriptor is less than or equal to
the clusters maximum distance, TC

j . The main three steps are
explained in detail in this section and the algorithm is sum-
marized in Table 1.

With the feature vector at hand, several different classi-
fiers are trained including logistic regression with stochastic
gradient descent (SGD) optimization and early stopping [7],
logistic regression with L-BFGS optimization and L1 and L2
regularization [8], boosted decision trees using MART [9],
and the averaged perceptron [10].

Prediction: The prediction of unknown screenshots has
similar steps taken during the training phase. First the de-
scriptors need to be extracted from the unknown screenshots.
Its descriptors are assigned to the constructed clusters as de-
scribed previously. From that assignment, a feature vector is
constructed that can be fed into the classifier to generate a
score. A score larger than a predefined threshold indicates a
scareware page has been identified by the classifier whereas a
lower score would indicate the opposite.

The weights from linear classifiers (e.g. logistic regres-
sion) have the capability to identify important clusters in de-
termining whether a screenshot shows scareware. A visual
representation of the acquired classifier knowledge can there-
fore be created. A scareware example is shown in Figure 2.
Descriptors assigned to a cluster that bares a scareware weight
are shown in dark red. With the weights one can identify



Input: Labeled Set of Screenshots S
Initialize: C = φ
Extract interest points and interest point

descriptors dik from screenshot si ∀i, k
Create Clusters:
foreach si in SA do

if ||dik − cjl||2 < TD ∀j, k, l
Assign dik to cj

else
Create cluster cC+1 from dik

end foreach
Determine medoid ĉj and

distance threshold TC
j ∀j

Create Feature Vectors:
for i = 1 to S do

for k = 1 to di• do
for j = 1 to C do

if ||dik − ĉj ||2 < TC
j

Increment xij
end for

end for
end for
Train Classifier using (x,y)

Table 1. Algorithm for Classifying Scareware Webpages.

which areas of the image the classifier latches onto to deter-
mine whether the screenshot shows scareware.

4. METHODOLOGY AND RESULTS

A crawler was used to collect screenshots of benign and scare-
ware pages. Benign pages were collected by crawling the
most popular URLs from a search engine index. URLs that
were likely to harbor scareware pages were also taken from
a search engine index. These were identified using a variety
of heuristics and AV technology. As only a few unique scare-
ware sites could be identified this way, we proceeded to boost
the scareware dataset with manually constructing scareware
pages randomizing language, layout, font, color schemes, etc.
The collected screenshots were processed as described in sec-
tion 3. A 5-fold cross validation was performed. Further, the
classifier was used to evaluate four additional sets of screen-
shots to get a sense of false positive/negative rate of the clas-
sifier: 12,551 screenshots obtained from a feed of phishing
URLs, a large set of screenshots from a search engine, a set
of mocked up screenshots that contained visual elements of a
scareware attack (e.g. disk icon), but did not represent a scare-
ware attack, and lastly a set of scareware screenshots that had
undergone image transformations, such as stretching.

The classifier was trained on a set of 7475 screenshots.
In the initial round of training, 518 clusters were created.
Screenshot collection and training on a standard desktop PC

Fig. 2. Visualization of interest points assigned to a cluster

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

False Positive Rate %

F
al

se
 N

eg
at

iv
e 

R
at

e 
%

 

 

Logistic Regression − L−BFGS
Logistic Regression − SGD
Averaged Perceptron
MART

Fig. 3. DET curve for the four spyware classifiers

(Intel Xeon 3.07GHz with 12GB of RAM) took 372 minutes.
The majority of time is spent on collecting screenshots and
cluster creation. Once the feature vector is constructed, train-
ing takes little time. Classification of each screenshot takes
approximately 664 milliseconds.

The DET curves for the four algorithms are shown in Fig-
ure 3. The equal error rate for logistic regression with SGD
is the best at 0.018%. Only a few scareware screenshots are
missed by our classifier at this setting. Visual inspection re-
veals that those screenshots were not rendered completely.
Turning to the set of suspected phishing pages shows how
well the classifier performs on a completely unknown set. It
turns out that the 12,551 suspected phishing pages only had
one scareware page which was identified. In addition, 14 false
positives from 3 sites were raised. This illustrates the exter-
nal validity of the classifier. It is capable of identifying new
scareware pages from different sources with a false positive
rate of 0.1%.

Turning to a larger dataset from a search engine index,
we evaluated two days: 157,142 Urls. If a similar scareware



base rate as with the fully labeled phishing set is assumed
(1/12,551 or 0.008%), we would expect about 13 scareware
pages in the set of 157,142 URLs. We identified 37 URLs
in the .in (India) top-level domain that showed an unknown
scareware attack (score 0.68-0.88). No false positives were
raised. This experiment validates the ability of the proposed
algorithm to detect new, similar scareware attacks.

Experimenting with mocked up images reveals a scenario
in which the classifier could lead to a false positive. While
inclusion of a smaller scareware screenshot did not result in
a false positive, inclusion of visual components with a strong
weight, such as the shield, did (score 0.81). As such, there
is the risk of incorrectly detecting benign pages that share
common visual elements as scareware. Image transformation
allows us to assess how a determined attacker may evade de-
tection by our classifier. It turned out that the current training
set does not yield a classifier that is robust against brightness,
saturation, resizing and stretching. However, when retrain-
ing the classifier with images that had undergone these image
transformation, it resulted in a robust classifier.

5. DISCUSSIONS

We have developed an image-based classifier that is capa-
ble of identifying scareware attacks. The classifier is robust
in that it is capable of identifying common visual elements
of scareware attacks and correctly labeling unknown screen-
shots. Rearranging the layout, and visual elements – an eva-
sion technique that is generally effective against other image
matching techniques – are ineffective against our classifier.
Further, scareware pages in different languages were detected.

The detection accuracy of the classifier is favorable. How-
ever, false positives are possible and mitigation strategies are
recommended, such as inclusion of additional URL-based
features or validating positive classifications through human
graders. A cost-based analysis reveals that the cost of iden-
tifying scareware URLs is decreased by orders of magnitude
even when human graders are involved.

The proposed classifier is robust against rearranging lay-
out, visual elements, and language. Knowing how the clas-
sifier works, an attacker could construct a scareware anima-
tion to evade our system. For instance, one visual element or
even just one pixel is being displayed at a given time. Our
efforts to construct such a page resulted in a flickering anima-
tion that would alert most users similar to some of the other
image transformation presented. An attacker may be able to
use different images altogether, but they must do so while at
the same time maintaining the deception; E.g. inclusion of
a folder icon that is unfamiliar to the user may destroy the
illusion of the scan animation originating from the operating
system or legitimate AV software.

Further, it is possible that scareware providers identified
our crawler or crawling infrastructure and cloak the scareware
attack. In those instances, the crawler is never presented with

the scareware animation. This has been illustrated by numer-
ous researchers [11, 12, 13]. Note that our method, however,
is not tied to being deployed on a crawler. Conceivably, the
method could be implemented on the client itself.

6. RELATED WORK

Scareware has only recently received attention in the research
community. Rajab et al. performed a large scale study on
scareware sites in 2010 [3]. While the researchers do not dis-
close how scareware sites are detected, they provide informa-
tion about prevalence, network structure and lifetime of scare-
ware attacks over a period of 13 months. Symantec analyzed a
wide range of rogue security software and shown light on dis-
tribution channels and economics [14]. Several researchers
focused on the economic aspects of rogue AV campaigns to
provide a possible answer to their rising popularity [15, 16, 2].
Note that these studies appear to incorporate FakeAV malware
binaries that may be distributed through different means other
than a web page. Our detection method focuses on web pages
that show an animation of a scareware scan.

Utilizing computer vision to identify social engineering
attacks is not new. Wang et al. applied near duplicate detec-
tion to image spam [17]. Mostly, it has been applied in the
phishing context though [18, 19, 20, 21]. Medvet et al. devel-
oped a classifier that identifies phishing pages based on visual
text, images contained on the web page as well as a render-
ing of the web page [20]. An alternative approach to identify
phishing pages focuses on layout similarity [19].

7. CONCLUSIONS

In this work, we show that detecting a web-based social en-
gineering attack, such as scareware, on the final presentation
layer is an effective detection method. As our detection tech-
nology is based on the final layer presented to the end user,
the attacker has little opportunity to evade detection as the
deceptive nature of the social engineering attack needs to be
upheld. We illustrated some evasion techniques, such as re-
ordering of the icons and changing hue, as possible avenues
for evasion, but our classifier remains mostly robust. More
importantly, however, our approach is independent of the un-
derlying technology used to render the content. Whether the
social engineering attack is rendered in Silverlight within a
browser window or HTML5 is of no importance to our classi-
fier. Tackling the detection at the presentation layer abstracts
the technology away making our detection strategy robust to
new technologies. Of course, detection accuracy is of impor-
tance, and we have shown that false alerts are possible with
our approach and we touched on a variety of mitigation tech-
niques. Overall, we believe the detection approach that op-
erates on the presentation layer may be a beneficial addition
to protecting the user from a wide range of social engineering
attacks, such as phishing.



8. REFERENCES

[1] “Security intelligence threat report v11,” Mi-
crosoft Corporation, Available from http://www.
microsoft.com/sir/; last accessed 10/25/2011.

[2] Brett Stone-Gross, Ryan Abman, Richard A. Kemmerer,
Christopher Kruegel, Douglas G. Steigerwald, and Gio-
vanni Vigna, “The underground economy of fake an-
tivirus software,” in Proceedings of 10th Workshop on
Economics of Information Security (WEIS), 2011.

[3] Moheeb Abu Rajab, Lucas Ballard, Panayiotis Mavrom-
matis, Niels Provos, and Xin Zhao, “The nocebo effect
on theweb: An analysis of fake anti-virus distribution,”
in Proceedings of the 3rd Usenix Workshop on Large-
Scale Exploits and Emergent Threats, 2010.

[4] Simon Winder, Gang Hua, and Matthew Brown, “Pick-
ing the best daisy,” in Proceedings of the International
Conference on Computer Vision and Pattern Recogni-
tion, 2009.

[5] A. K. Jain and R. C. Dubes, Algorithms for Clustering
Data, Prentice Hall, 1988.

[6] J. T. Tou and R. C. Gonzalez, Pattern Recognition Prin-
ciples, Addison-Wesley, 1974.

[7] C. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[8] Galen Andrew and Jianfeng Gao, “Scalable training of
l1-regularized log-linear models,” in Proceeding of the
International Conference on Machine Learning, 2007.

[9] J. Friedman, “Greedy function approximation: a gradi-
ent boosting machine,” in Annals of Statistics, 2001, pp.
1189–1232.

[10] Y. Freund and R. Schapire, “Large margin classification
using the perceptron algorithm,” in Machine Learning,
1999, pp. 277–296.

[11] Billy Hoffman, “Circumventing automated javascript
analysis,” in Proceedings of BlackHat, 2008.

[12] Moheeb Abu Rajab, Lucas Ballard, Nav Jagpal, Panayi-
otis Mavrommatis, Daisuke Nojiri, Niels Provos, and
Ludwig Schmidt, “Trends in circumventing web-
malware detection,” in Google Technical Report rajab-
2011a, 2011.

[13] Kyle Zeeuwen, Matei Ripeanu, and Konstantin
Beznosov, “Improving malicious url re-evaluation
scheduling through an empirical study of malware
download centers,” in Proceedings of the World Wide
Web Conference, 2011.

[14] Symantec, Inc., “Symantec report on rogue
security software,” 2009, Available from
http://www4.symantec.com/Vrt/wl?tu_
id=XuOB125692283892572210; last accessed
10/17/2011.

[15] Sean-Paul Correll and Luis Corrons, “The busi-
ness of rogueware,” 2009, Available from
http://www.pandasecurity.com/img/enc/
The%20Business%20of%20Rogueware.pdf;
last accessed 10/17/2011.

[16] Marco Cova, Corrado Leita, Olivier Thonnard, Ange-
los D. Keromytis, and Dacier Marc, “An analysis of
rogue av campaigns,” in Proceedings of Recent Ad-
vances in Intrusion Detection, 2010, pp. 442–463.

[17] Zhe Wang, William K. Josephson, Lv Qin, Moses
Charikar, and Kai Li, “c,” in Conference on Email and
Anti-Spam, 2007.

[18] Teh-Chung Chen, Scott Dick, and James Miller, “De-
tecting visually similar web pages: Application to
phishing detection,” ACM Trans. Internet Technol., vol.
10, pp. 5:1–5:38, June 2010.

[19] Ieng-Fat Lam, Wei-Cheng Xiao, Szu-Chi Wang, and
Kuan-Ta Chen, “Counteracting phishing page polymor-
phism: An image layout analysis approach,” in Pro-
ceedings of the 3rd International Conference and Work-
shops on Advances in Information Security and Assur-
ance, 2009.

[20] Eric Medvet, Engin Kirda, and Christopher Kruegel,
“Visual-similarity-based phishing detection,” in Pro-
ceedings of SecureComm, 2008.

[21] Liu Wenyin, Guanglin Huang, Liu Xiaoyue, Zhang Min,
and Xiaotie Deng, “Detection of phishing webpages
based on visual similarity,” in Special interest tracks and
posters of the 14th international conference on World
Wide Web, New York, NY, USA, 2005, WWW ’05, pp.
1060–1061, ACM.


