
Page | 1

sTrack: Secure Tracking in Community Surveillance
Chun-Te Chu, Jaeyeon Jung, Zicheng Liu and Ratul Mahajan

Microsoft

Abstract--We present sTrack, a system that can track
objects across distributed cameras without revealing any
visual information to peering cameras except whether an
object was seen by both parties. To achieve this challeng-
ing privacy goal, we build on recent advances in secure
two-party computation and multi-camera object track-
ing. Starting from two distance-metric learning tech-
niques that are foundational for many computer vision
tasks, we derive a new technique that is much more suit-
ed for secure computation because it increases the com-
putation that cameras do locally and simplifies the com-
putation that they do jointly. At the same time, the
tracking accuracy of our technique is similar or better
than the original techniques. We implement our ap-
proach in a tracking system that uses a new Boolean
circuit for secure matching. Experiments using real da-
tasets show that the performance overhead of private
tracking is small, adding only a few seconds of delay
compared to non-private tracking.

1. INTRODUCTION
Camera-based surveillance is widely employed to fight
against crime such as burglaries and vandalism. In conven-
tional surveillance systems such as those deployed in an air-
port, subway, and corporate buildings, tracking across cam-
eras is extremely useful for crime investigation. For example,
when a criminal investigator spots a suspicious person enter-
ing a building from one of the surveillance videos, the inves-
tigator wants to know where and when this person left the
building. Since a building usually has multiple entry and exit
points, tracking across the cameras at these points is needed.
In the past decade, tremendous progress has been made on
cross-camera tracking technologies [13][33][34][40], and
many commercial surveillance systems have the cross-
camera tracking capability. Since all cameras have the same
owner (a government agency or a company), there is little
need to isolate the contents of different cameras.

However, privacy concerns severely limit the applicabil-
ity of multi-camera tracking technologies to community sur-
veillance, where residential neighborhoods must be moni-
tored. Householders in many communities, including those
in high-crime neighborhood, are loath to law enforcement
deploying surveillance cameras in areas because of trust and
privacy issues [4]. A primary concern is that the camera
feeds contain many aspects of their life that have nothing to
do with crime (and are potentially embarrassing).

People are mindful of not only their own privacy but also
embarrassment that unfettered sharing, with the police or
each other, can cause to their neighbors. Suppose an expen-
sive bicycle is missing from a householder's front yard. The
victim went through his surveillance video and found the

images of the kids who took the bicycle. The victim does not
recognize the kids and would thus like to trace to which
home the kids fled. One way of doing this is to do a neigh-
borhood-wide broadcast (or sharing with the police) of the
images, but this may reveal the kids’ identities to the entire
neighborhood (or the police) and will potentially embarrass
the parents publicly, which is not intended by the victim.
Note that the only information that is needed to track the kids
is whether certain other cameras have seen the same kids
around the same time. Based on this information, the victim
can locate where the kids live and privately inform the par-
ents. The victim may also choose to warn other neighbors
whose houses the kids may have scoped out.

The concerns around sharing camera feeds are unfortu-
nate as many households already have security cameras, and
processing scenes captured across them would enable a
community-wide surveillance system to track suspicious
objects across cameras that individual cameras alone are not
able to infer (e.g., a person knocking on several doors, a car
cruising the neighborhood).

Our goal is to enable individual cameras that currently
operate in silo to cooperate in order to track suspicious ob-
jects (e.g., unknown people or cars traveling through the
neighborhood) without revealing any information about the
objects except matching outcomes. We assume that residents
have full access to the video feed from their own cameras.
Each time the camera identifies an object of interest (e.g., a
car or a human), it communicates with peer cameras to de-
termine whether the object has also been seen by them with-
in a pre-defined time window in order to track the object.
This determination can be made using a distance function
over the object features (e.g., color histogram) that individual
cameras extract. However, private information is revealed if
the cameras directly share the feature vectors to compute the
distance. For instance, it is possible to identify the object if
color histogram is shared.

To address this privacy risk, we leverage secure two-
party computation for privately matching objects. Secure
two-party computation allows two participants to compute a
publicly known function over their inputs, without revealing
any information about each other’s input except the output of
the function (and anything that can be inferred from the out-
put). Much progress [14][16][17][18][37][38] has been made
recently towards reducing the CPU and memory overhead of
Yao’s original proposal [28].

In this paper, we explore if secure two-party computation
can be applied to multi-camera object tracking problems,
such that the accuracy is high and overhead is low. We make
three contributions. First, we analyze state-of-art approaches
for multi-camera tracking [9][31] for their overhead if they
were implemented securely. We derive efficient Boolean

Page | 2

circuits for them and find that the overhead of these ap-
proaches is impractically high because of the complexity of
the computation. This result is not surprising since the ap-
proaches were not designed with secure computation in mind.

Second, we present a new technique that significantly
lowers the complexity of a Boolean circuit construction of
the distance function for secure computation than the two
state-of-the art techniques. Our technique has low overhead
because it refactors the problem such that cameras do the
complex portions of the computation (e.g., matrix multiplica-
tion) locally and the portions that are computed jointly are
highly simplified (e.g., histogram intersection instead of Eu-
clidean distance). Experiments with four real datasets show
that the overhead of our technique, measured using the num-
ber of gates in the circuit, is 6-200 times lower than existing
approaches and its accuracy is comparable or higher.

Like the other techniques that we analyzed, our technique
is based on distance metric learning, where the distance func-
tion is learned through training. Distance metric learning is
used in many other domains (e.g., matching hand-written
text, face recognition, and matching biometric features).
Thus, although we evaluate our approach for multi-camera
object tracking, we believe that it also applies to other do-
main, rendering them privacy-preserving.
 Third, we implement our technique and secure two-party
computation into a distributed community surveillance sys-
tem, presenting the first prototype of privacy-preserving mul-
ti-camera tracking.1 Our experiments show the performance
overhead of secure matching is minimal, adding only a few
seconds latency compared to a completely non-private sur-
veillance system.

2. BACKGROUND AND RELATED WORK
Our work builds on three themes of work—privacy-
preserving video surveillance, secure two-party computa-
tion, and object tracking across cameras. In this section, we
discuss (1) how previous work that combined computer vi-
sion and security influenced our work; (2) how the secure
computation with garbled circuits are integrated into our
system; and (3) how our approach compares with the state
of the art in multi-camera object tracking.

2.1. Privacy Concerns in Video Surveillance
To our knowledge, our work is the first that focuses on pri-
vacy-preserving multi-camera object tracking. Much previ-
ous effort has focused on privacy concerns with respect to
rogue operators of video surveillance deployed in the public
area. Senior et al. [23] present an architecture that generates
obfuscated images and summary data to hide privacy-
intrusive details from unauthorized operators. Upmanyu et al.
[26] propose image transformation techniques that enable a
few surveillance tasks (e.g., change detection, face detection)
on obfuscated images. Avidan et al. [1] introduce a face de-
tection system that integrates secure computing techniques to
protect the privacy of face images and the face detection
algorithm. SCiFI [22] offers secure computation of face

1 We are making our prototype available to the research community. De-
tails elided to preserve the anonymity of the submission.

recognition that can be used for detecting known suspects.
Although these proposed techniques are useful for each tar-
get setting, they are complementary to our effort and cannot
be applied directly for multi-camera object tracking in which
cameras do not trust each other.

2.2. Secure Two-Party Computation
A key contribution of our work is a new distance metric
learning approach that is suitable for efficient, secure two-
party computation. Our approach simplifies secure computa-
tion to be only composed of addition, min, and comparison
functions of small dimensional vectors instead of matrix
multiplication of large dimensional feature vectors. This al-
lows us to use a general, circuit-based approach for secure
computation without sacrificing performance, instead of us-
ing custom protocols (as is done in SCiFI [22]).

We implement secure matching using Huang et al.’s li-
brary [14] which contains garbled circuits for commonly-
used functions such as addition, subtraction, and comparison.
Our garbled circuits implement the optimizations proposed
by Kolesnikov et al. [16]. Our system, therefore, benefits
from previous works [14][16][37] and also shares their secu-
rity assumption (semi-honest adversaries). As new tech-
niques are developed to improve the security or efficiency of
the circuits for secure two-party computation (e.g., [18]), our
system will inherit these benefits.

2.3. Object Tracking across Cameras
Multi-camera object tracking consists of two subtasks—
extracting features of objects and matching the feature vec-
tors of two objects to determine if they are the same.

Feature extraction: We focus on tracking people and cars
across cameras. Many computer vision algorithms use face
or license plate features for identifying human or cars. How-
ever, in an uncontrolled environment like a neighborhood,
these features are unreliable since cameras may not always
capture a clear face or license plate. Hence, we use the
whole-body appearance as the basis of features. Global fea-
tures are easy to compute and are shown to be effective. In
particular, color histograms and texture features of the
whole-body or different parts of the body were used in vari-
ous computer vision algorithms [8] [12] [30].

Feature matching: Once feature vectors are available,
matching functions compute the distance between them to
determine object similarity. To overcome the limitation of
traditional metric functions such as Euclidean and Hamming
distance, recent computer vision algorithms employ machine
learning approaches to “learn” a distance metric that captures
the relationship of training data [6][31]. Once the metric is
learned (through training), distance evaluation is essentially
equivalent to performing distance calculation in the trans-
formed feature space. The metric learning approaches enable
effective matching to be performed using simple features like
color histograms. For instance, Zheng et al. [31] and Dikmen
et al. [6] showed that using color histograms and the learned
metric, their algorithms performed better than the existing

Page | 3

methods that rely on traditional metrics. We build on these
works to show that 1) privately implementing current meth-
ods incurs high overhead, and 2) distance computation can
be transformed such that its overhead is significantly lowered
and accuracy is not impacted.

3. GOALS AND OVERVIEW
Our target setting is a cooperative community of homes,
where each home has one or more security cameras. These
homes are interested in jointly monitoring the neighborhood
(as in neighborhood watch program) by combining the views
across all the cameras. The power of this combination stems
from the fact that collectively the cameras can infer patterns
that individual cameras cannot, such as, a car cruising the
neighborhood (a common pattern that neighborhood watch
volunteers look out for). One way to accomplish this goal is
for each home to send its feed to a central party (e.g., law
enforcement or a corporation), and for this party to run one
of the existing surveillance algorithms on the combined input.
However, many householders loathe sharing their camera
data with third-parties and prefer a communal solution [4].

Thus, we investigate an alternative, peer-to-peer ap-
proach in which cameras are completely autonomous and
communicate with each other to determine if they saw the
same object. We want to enable this determination in a pri-
vacy-preserving manner, i.e., a camera should not be able to
infer anything about what other cameras see, except whether
they also saw a particular object. Privacy is desirable even in
this cooperative setting as cameras capture many facets of
residents’ lives (e.g., times they come home, who visits them,
etc.) that they may not feel comfortable sharing. Sharing of
raw camera images (or feature vectors) would reveal such
facets to the neighbors. It also runs the risk of those images
becoming broadly available due to lax security in a neigh-
bor’s system.

The focus of this paper is developing a practical tech-
nique using which two cameras can determine if they saw
the same object without ever sharing raw images. We show
that this is possible to accomplish, with acceptable perfor-
mance and without any degradation in object matching accu-
racy compared to non-private matching. Our approach does
not require any trusted third parties and the tracking system
can grow organically as more people join.

We aim to deploy the system in the neighborhood com-
munity area where the households are willing to collaborate
in order to maintain the public security of the community.
Therefore, just like other works in privacy-preserving vision
applications [1][22][26][41][42][43], we assume an honest-
but-curious (semi-honest) adversary model in our work. This
model suffices for our setting where people in the communi-
ty area follow the regulations for keeping the community
safe. Our intent is that the tracking system does not become
an easy conduit for privacy violations by curious neighbors.

While sTrack provides the basic private matching capa-
bility, it is not a complete neighborhood watch solution yet.
Such a solution would also alert users based on matching
results and handle possible matching errors. As we show

later, these errors are inherent in the state of art vision algo-
rithms. (sTrack does not make them more likely.) One way
to handle matching errors is to release raw images of suspi-
cious objects that match, after seeking users’ approval. This
way the owners can determine if something embarrassing is
being shared. When used in this way, sTrack ensures that
users need to verify only a subset of images that do match.
Extending sTrack into a complete neighborhood watch solu-
tion is a subject of future work.

We now present the high level architecture and key com-
ponents of sTrack. Later sections describe our system in
more detail.

Object detection and tracking within a camera: Individual
camera process input frames and extracts objects. For each
frame, they keep track of time, location, and feature vectors
of all the objects appearing in it. Since the same object can
appear in multiple frames, we associate these appearances to
track objects across frames.

Feature vector preparation: The system prepares an input
feature vector of an object under two conditions: (1) when an
object exits the view--within-camera tracking allows us to
differentiate between entering and exiting objects, and (2)
when the system (or user) identifies an object of interest and
wants to sends a matching request to peer cameras. All pre-
pared input feature vectors are stored in a database for
matching. Preparing input feature vectors involve two steps:
i) extracting real-valued feature vectors (color histograms in
our case) from an object, and ii) transforming them based on
the parameters learned in the training stage and quantizing
for secure distance evaluation. All computations thus far take
place locally and do not involve any information exchange
with peering systems.

Secure matching: A camera issues a secure matching re-
quest to peers when the system records that a suspicious ob-
ject has entered the view (i.e., Condition (2) in the feature
vector preparation process). The output of secure matching
function is binary—match or no-match—based on two input
feature vectors. An individual system may use its own crite-

basic circuits non XOR gates
addition ������ � [16]

subtraction ������ � [16]
multiplication 	�
��� 2�� � � [16]
comparison
	���� � [16]
multiplexer 	����� � [17]
minimum 	����� 2� [16]

Table 1. Gate counts for basic garbled circuits

Figure 1. ADD∗�N, l� Garbled Circuit Construction

Page | 4

ria to deem an object as suspicious or labeled as such by a
human. In our current prototype, a system issues a secure
matching request for all objects and to all peering cameras.
The requester becomes a client and the responding system
becomes a server for secure function evaluation. Upon re-
ceiving a request, the responding system looks up its data-
base to count the number of candidate objects to match. The
system then opens the same number of communication
channels to perform secure function evaluation with the re-
quester. The following sections discuss in detail how our
system implements these computer vision tasks and how we
design a new distance learning technique to make the secure
matching function evaluation efficient.

4. ANALYZING EXISTING TECHNIQUES
Tracking objects across cameras is done by matching objects
seen by different cameras. Formally, two cameras collabo-
rate to evaluate a distance function �(�� , ��) where �� and ��
are the feature vectors extracted by them for the objects to be
matched. If the distance is smaller than a threshold, it is
deemed that the objects are the same. The matching accuracy
depends on the distance function �(∙,∙).
This section considers two recent techniques to learn a dis-
tance function �(∙,∙). It presents our analysis of how each
function can be decomposed into local and joint computation.
The decomposition is important as the complexity of only
the joint portion determines the complexity of secure compu-
tation. We construct efficient garbled circuits for each tech-
nique and find that they have high overhead. We also con-
sider a simple variant of one of the techniques; we find that
this variant has low complexity, but poor accuracy. Based on
these insights, we present in Section 5 a new distance metric
learning technique, called GCDC, which greatly reduces the
complexity of the joint computation while being highly accu-
rate.

4.1. Background: GC-based for Secure Computation
Yao’s garbled circuit approach provides a foundation to
construct a secure two-party protocol for computing a func-
tion represented as a Boolean circuit [28]. Security proofs
are available for GC protocols against semi-honest (i.e.,
honest but curious) adversaries [20]. Software packages are
available for constructing GC protocols [14][21][38][39].
We focus on optimizing the matching function, �(∙,∙), such
that it allows efficient Boolean circuits. Hence, our work
complements and benefits from many recent works that fo-
cus on optimizing GC systems [14][16][17][18][38][39].

The secure computation protocol starts with a Boolean
circuit for �(�� , ��). One party (the circuit generator) pre-
pares a garbled version of the circuit, and the second party
(the circuit evaluator) obliviously computes the circuit’s
output. Garbling involves generating keys to each wire and
the garbled truth table for each gate. Thus, the number of
gates determines the complexity of a GC, impacting the
performance of generating and evaluating the GC. One ex-
ception is XOR gates which come “free” as shown by Kole-
snikov et al. [17], requiring no crypto operations.

Table 1 shows the size, measured in terms of the number
of non XOR gates, of efficient circuit constructions for basic
functions that compute on two �-bit integers. A key point to
bear in mind is that the size of a GC increases roughly in the
order of �(��) for multiplication whereas it increases linear-
ly for other basic circuits. See references [16][17] for details
of how these circuits can be constructed with free XOR
gates.2 In constructing GCs, we use efficient circuits from
prior work [14][16][32] whenever applicable.

Moreover, we construct an efficient circuit for a com-
monly-used function in our domain, summation of � �-bit
integers, denoted as ���∗��, �� = 	 ∑ ���

��� , where �� is an � -bit integer. Figure 1 shows the GC construction. ADD
circuits are connected in a hierarchical fashion to minimize
table size. We assume that � is in power of 2. Appendix C
describes an algorithm to construct ���∗��, ��	when � is
not in power of 2. The output of ���∗��, �� is a �� +��
� ��-bit integer. Since the number of non XOR gates of ������	circuit is |������| = �	 as shown in Table 1, the
size of ���∗��, �� is

 |���∗��, ��| = ∑ 	�
��
∙ |����� +
 − 1�|�����

���

 = �� +� − � − 1 − ���� � . (1)

4.2. Background: Distance Metric Learning
Metric learning has been shown to be highly effective at
improving matching accuracy [6][31]. It can be described as
follows. Let �� ∈ ℝ� denote the original real-valued feature
vector extracted from the object �, where � is the number of
dimensions. Let	�� denote the positive training set consist-
ing of matched feature vector pairs, and �	 denote the nega-
tive training set consisting of unmatched feature vector pairs.
The goal of metric learning is to learn a distance function �(∙,∙) that can discriminate positive and negative examples.
That is, we would like �(�� , ��) to be small when �� and �� correspond to the same object and large otherwise. In the
following techniques, learning �(∙,∙) is equivalent to learn-
ing the parameter �.

4.3. PRDC
Zheng et al. propose [31] a distance metric earning method
called PRDC (person re-identification by Probabilistic Rela-
tive Distance Comparison), for object matching. Its distance
function is:

��(
	 ,
�) = �
	 −
��
�	�
�
	 −
�� = �	�
�
	 −
��	��, (2)

where |∙| is the entry-wise absolute function; ‖∙‖ is L2 norm; � = [�� … �
] ∈ ℝ�×
. They learn a matrix � consisting

2 The minimum circuit (which takes two l-bit integers and outputs
one of the input values that is less than or equal to the other input
value) is not discussed in [16]. However, it can be easily construct-
ed by connecting one �-bit multiplexer circuit and one	�-bit com-
parison circuit.

Page | 5

of a small set of d-dimensional basis (� ≪ �) in order to
separate different objects well.

 Note that �	����� − ���	�� needs to be computed private-
ly (i.e., jointly) as it involves both feature vectors. As a re-
sult, the computation of the function in secure two-party
computation involves subtraction, absolute value calculation,
multiplication, and addition. Moreover, the computation
often operates in high dimensional space, i.e., � is usually
quite large, which adds much overhead. Table 2 shows the
computational complexity of the secure two-party computa-
tion implementation of ��(�� , ��).

We now construct an efficient GC for PRDC. We as-
sume that each input element is quantized to be an �-bit in-
teger (We discuss in Section 6 how we picked the quantiza-
tion level, �, based on experimental results). The first step of
Table 2 requires computing the absolute value of the sub-
traction of two �-bit integers. This circuit can be constructed
by connecting 2Sorter(�) (which takes two �-bit integers,	�
and �, and outputs ���	(�, �) and ���	(�, �)) [32] and one
regular subtraction circuit. So, the Step 1 requires � num-
bers of 2Sorter(�) and ������ circuits. The Step 2 of Table
2 performs � × � multiplications of two � -bit integers
(which are the outputs of the Step 1). Then, it adds � ele-
ments of the multiplication results, which are 2�-bit integers.
The Step 3 of Table 2 first performs � multiplications of two �2� + ��
� ��-bit integers and the output of each multiplica-
tion, which is a �4� + 2 ��
� ��-bit integer is summed up (�
elements total) and the output which is a �4� + 2 ��
� � +

2 ��
� �� -bit integer is compared against a predefined
threshold estimated in the training stage. In sum, the number
of non XOR circuits is

|����| = � ∙ |2���������| + � ∙ |������|+ 	�� ∙ |������|
 +� ∙ |���∗��, 2��| +	� ∙ |����2� + 	 ���� ��|
 +|���∗��, 4� + 	2 ���� ��|
 +|����4� + 	2 ���� � + ���� ��|
 = 2���� + ��� + 8��� + 3�� + �� + 2������ ���

 +8�� ���� � − 1 . (3)

Since � is large and multiplication is expensive in secure
two-party computation, PRDC incurs high overhead.

One possible remedy is to get rid of the absolute-value
function as shown in (4)

��(
	 ,
�) = �
	 −
��
��
�
	 −
�� = ��

	 − �

� 	��, (4)

where � = [�� … �
] ∈ ℝ�×
 and � ≪ � . Note that ���� and ���� can be computed locally by each camera
(without secure two-party computation). As a result, the
computational complexity is reduced significantly (Table 3).
However, we find that matching accuracy also degrades
significantly (Section 6). In constructing an efficient GC for
this function, we again assume that 	���� is quantized to be
an �-bit integer and construct the circuit for each step of
Table 3. We omit the details of circuit construction as they
are similar to above. The circuit size is

|����_�����| = � ∙ |������| + 	� ∙ |������| + |���∗��, 2��|
 +|����2� + 	 ���� ��|
 = 2��� + 2�� + � − 1. (5)

4.4. MCC
In order to lower complexity without sacrificing accuracy,
we consider a different approach, MCC (Metric learning by
Collapsing Classes) [9], which has been shown to have good
performance for visual matching [31]. Since the method in
[9] requires large amount of computation in the training
stage, especially if the feature space is high dimensional, we
use Principal Component Analysis (PCA) [15] for dimen-
sionality reduction. Assume ��� ∈ ℝ� (≪ �) is the new
feature vector after PCA,

 	 = !
(
	 −
"), (6)

where ! ∈ ℝ�×� is projection matrix that maps the original �-dimension space into dimensions (≪ �); �" ∈ ℝ� is the
mean vector over the training data. The distance function is
expressed as

���
 	 ,
 �� = �
 	 −
 �����
�
 	 −
 �� = ��

 	 − �

 ���, (7)

where = [�� … �
] ∈ ℝ�×
 , ≪ �, and # ≤ . Similar to
(4), ����� and ����� can be computed locally without in-
voking secure two-party computation. In addition, the di-
mensionality reduction is also performed locally. However,
secure computation still needs expensive multiplication cir-
cuits (Table 4).

In constructing a GC for MCC, we again assume
that	����� is quantized to be an �-bit integer and construct
the circuit for each step of Table 4. This circuit is similar to
PRDC_woABS but with � replaced by #. The circuit size is

|���| = # ∙ |������|+ 	# ∙ |������|+ |���∗�#, 2��|
 +|����2� + 	 ���� #�|
 = 2��# + 2�# + # − 1. (8)

 intermediate steps circuits needed

1 ��� − ���
� subtraction

� absolute value

2 	����� − ���
� ×
 multiplication
(� − 1) ×
 addition

3 �	����� − ���	�
�

 multiplication
(
 − 1) addition

Table 2. PRDC computation

 intermediate steps circuits needed
1 	���� , 	���� (local computation)
2 	���� − 	����
 subtraction

3 �	���� − 	���� 	�
�

 multiplication
(
 − 1) addition

Table 3. PRDC w/o absolute computation

Page | 6

5. OUR TECHNIQUE: GCDC
Based on experience with the analysis above, we developed
a new technique called GCDC (Garbled Circuit Distance
Computation). Our goal is to push most computation to be
local and minimize joint computation. We observe that the
distance function ���∙,∙� is equivalent to computing the Eu-
clidean distance in another space specified by �. In order to
avoid the multiplication operation, we replace the Euclidean
distance function with the histogram intersection function
after linearly projecting to a new space by �. The histo-
gram intersection function (9) has also been shown as an
effective metric in classification and pattern recognition
[19][29] and it is defined as
 $%�&	 ,&�� = ∑ '()	(ℎ	
 	, ℎ�
)�

�� , (9)

where	$� = [ℎ�
� … ℎ�

]� ∈ ℝ�

 , $� = [ℎ�
� … ℎ�

]� ∈ ℝ�

 are the
vectors with nonnegative entries. The new distance function
is:

 ���
 	 ,
 �� = −$%��

 	 + *+, 	�

 � + *+�
 = −∑ '()�,

�
 	 + *	,,

�
 � + *	��

�� , (10)

where � = [�� … �
] ∈ ℝ�×
 , ≪ � and # ≤ , and % ≥ 0 is a predefined parameter that ensures the non-
negativity of ��

���� + %		for any feature vector ���. Note that
although the value of ���∙,∙� seems to be negative, we can
always add a positive constant scalar to make it a valid dis-
tance metric, and it will not change the formulation of our
metric learning, so we discard the scalar here and in the fol-
lowing discussion. The secure two-party computation com-
plexity of distance function ���∙,∙� is shown in Table 5. Ob-
serve that significant computation is local and joint compu-
tation uses simple operations.

However, just defining ���∙,∙� is not enough. For it to be
a valid approach, we must also develop an efficient way to
learn �. Our approach for doing so is motivated by [9]. Our
goal is to learn a linear projection matrix, such that the pairs
in set �� have small distances, and the pairs in set �	 have
large distances. Define a conditional distribution over points � ≠ & such that

 -��
|(� = �������	,���

�	
=

�������	,���

∑ �������	,���
��	
								(≠
. (11)

Ideally, if all the pairs in set �� have small distance, and all
the pairs in set �	 have large distances, the distribution
would become “bi-level”, that is,

 -�(
|() ∝ .1											(/			�
 	 ,
 �� ∈ 0�

0											(/			(
 	 ,
 �) ∈ 0� (12)

Therefore, the cost function '�(�) is defined as

 /�(�) = ∑ 1�2-��
|(��-��
|(�3	

 = ∑ ∑ -�(
|() × ���	(��(�|)
��(�|)

)��		 , (13)

where (�[∙ | ∙] is K-L divergence [3] which measures the
distance between two distributions. Substituting (11) and
(12) into (13), we obtain,

 /�(�) = ∑ ���
 	 ,
 ��	,�,
���	,����∈��

+ ∑ ���(4)	 (14)

We introduce a regularization term '�(�)	to bound the val-
ues of ����� in such a way that we can always find a
nonnegative scalar % to make all the entries in 	����� + %)
nonnegative for all i (Appendix A).

 /�(�) = ∑ ,

,
 = *�(�
�)

�

�� (15)

Moreover, to satisfy the equality of self-distance, that is,

 ���

 ,

� = ���
 � ,
 ��									∀		5 ≠ � (16)

an additional term '�(�) is added (Appendix B),

 /�(�) = ∑ (∑ ,

 	�

��)�	 (17)

The final objective function is the sum of the above three
terms:

 6��� = /���� + /���� + /���� (18)

The metric learning problem is formulated as finding � that
minimizes the objective function *(�):

 �7 = argmin� 6(�) (19)

Gradient descent method is employed to solve the optimiza-
tion problem. The gradient vector is

��(�)

���
= ∑ ∑ ((-��
|(� − -�(
|()) × �(
 	 ,
 � ,,
))��		

 +2,
 + 2∑ ((∑ ,�

)�

���	
), (20)

where

(���, ���,��) = +−���																								�'			��
���� < ��

����
−���																								�'			��

���� > ��
����

−
�

�
,��� + ���-							�'			��

���� = ��
����

We now describe an efficient GC for GCDC. We first
discuss preprocessing steps (Steps 1 and 2 of Table 5) and
then discuss circuit size. Given any real-valued feature vec-

Table 4. MCC computation

 intermediate steps circuits needed
1 ��� = ��(�� − ��) (local computation)
2 	����� , 	����� (local computation)
3 	����� − 	����� subtraction

4 �	����� − 	����� 	�
�

 multiplication
 − 1 addition

 intermediate steps circuits needed
1 ��� = ��(�� − ��) (local computation)
2 	����� + !", 	����� + !" (local computation)
3 min(.) min operation
4 ∑ min�. ��

��	 (− 1) addition

Table 5. Our GCDC computation

Page | 7

tor �� ∈ ��, it will be transformed into �� ∈ �� with much
lower dimension based on PCA and linear mapping,

 �� � ������� � ��	
 ��, (21)

where � , � , �� and � are the parameters obtained in the
training stage, and each party knows them. Since the secure
two-party computation only takes integer input, each entry
of �� is first normalized to a real number from 0 to 1 and
further quantized into an 	-bit integer value to form a
-
dimensional input vector ���. Finally, the matching between
input vectors ��� and ��� is performed through secure two-
party computation. Through the secure two-party computa-
tion [14], there is no information leakage, so the privacy is
guaranteed. GCDC simplifies the GC needed for secure
function evaluation, as it only requires integer comparison
(CMP), min (MIN), and addition (ADD). The circuit re-
quires two vectors, ��� and ��� (
 	-bit integers) and the com-
parison threshold, �̂ . Figure 2 shows the GC of GCDC
method. The circuit size is

|����| � � ∙ |�����	|
	 |���∗��, �	|
 |�����
 	 ���� �	|
 � 3��
 � � 1 . (22)

6. COMPARING THE TECHNIQUES
We now use four real datasets to evaluate GCDC and the
three techniques in Section 4. We show that 1) GCDC has
comparable or better accuracy, and 2) the number of gates
for GCDC is 6x fewer than MCC and over 200x fewer than
PRDC. PRDC_woABS has fewer gates than GCDC but has
very poor accuracy.

Test datasets: We use two public datasets, VIPeR [11] and
i-LIDS [24][25], and two of our own datasets, which we call
human dataset and car dataset. VIPeR is the world largest
publicly available person re-identification dataset. It consists
of the well-cropped snapshot images of 632 people under
outdoor scene, e.g., Figures 3(a) and 3(b). For each person,
two images are captured under different viewing angles and
lighting conditions which make the appearance vary and
increase the difficulty of the re-identification. i-LIDS is ex-
tracted from a multiple-camera tracking video scenario [25]
captured in an airport area. We use the subset iLIDS-AA,
which has images of 100 people. Example images are
shown in Figures 3(c) and 3(d).

To collect our datasets, we set up two cameras in our
building pointing at two different adjacent streets and col-
lect multiple video clips.3 The clips are captures at different

3 The cameras deployed in our experiment recorded videos of passers-by,
making them implicit human subjects in our video data set. To allay priva-

times of the day and total 207 minutes. Because the cameras
are at different locations, the size and perspective of the
objects they capture is different. Some cropped images are
shown in Figures 3(e)-(h). From the video clips that we cap-
tured, we form two datasets, one with humans and one with
cars. For the human dataset, we extract 114 people from 100
minutes video clips. For the car dataset, we extract 83 cars
from 40 minutes video clips.

Experimental methodology: To focus on the effectiveness
of various distance metric learning methods, we ran the ex-
periments by using manually-cropped snapshots of objects
(e.g., Figure 3), so the within-camera tracking errors do not
affect the results. For VIPer and iLIDS dataset, the cropped
objects are already provided; for our two datasets, we man-
ually cropped objects from video frames. In Section 8.1, we
will quantify the end-to-end error of our system in realistic
settings where the objects are extracted automatically by
sTrack.
 For each dataset, we randomly select 80 objects (68 for
our car dataset) as the training set and 15 objects as the test-
ing set in each trial. The training set and testing set do not
overlap, i.e., each object only appears either in training set
or testing set. In the training set, a pair of snapshots of each
person or car under different views form the positive set ��,
and all pairs of images of different people are the negative
set ��. They are used in learning the parameters mentioned
in Section 5. While doing the testing, we evaluate the
matching functions against 15 objects based on the learned
parameters. However, in real settings, a camera may capture
objects at a faster (slower) rate if pointed at a busy (quite)
street. We use 15 to represent a moderately busy street. We
report the average of ten trials for each dataset.

As mentioned earlier, for humans, we use color histo-
gram as the input feature because it is resilient against the
scale of the object. For cars, the feature is extracted in the
similar manner except that the multiple stripes are extracted
based on the principal axis of the car. In this way, the fea-
ture representation is rotation invariant.

cy concerns, one author was stationed at the site explaining that the video
would be used to evaluate human and car tracking algorithms. While our
institution does not require ethics board approval, had we been required to,
we would have noted that the observations were made in a public place, are
not dissimilar to other surveillance in public places, and that the observa-
tions would be used exclusively for training and testing the effectiveness of
algorithms-not to identify specific individuals or behaviors.

(a) (b) (c) (d) (e) (f)

(g)

(h)
Figure 3. Examples of the snapshots in the database. (a) and (b) are from

VIPeR database, and (c) and (d) are from iLIDS dataset. In these two

datasets, the images are already normalized into the same size. (e) and (f)

are from our human database, and (g) and (h) are from our car dataset.

Figure 2. Garbled Circuit of GCDC

Page | 8

 We use the Receiver Operational Characteristic (ROC)
curve as the accuracy evaluation metric4. ROC curve is
commonly used for binary classification evaluation. In our
case, we adjust the threshold and evaluate the true positive
rate (TPR) and the false positive rate (FPR) for each thresh-
old. The more accurate the method is, the ROC curve would
be close to the upper-left corner, which corresponds to high
TPR and low FPR. For the computation of PCA, we choose
the principal components so that the cumulative energy ex-
ceeds 0.95. The scalar � in (21) is set as 1.5.

Impact of the training set on accuracy: Before presenting
comparison results, we describe how we determined training
set size and quantization levels in our experiment (and our
system). The size of the training set of course affects match-
ing accuracy. The ROC curves under different training set
sizes are presented in Figure 4. It shows that the accuracy
goes up as the training set size increases from 20 to 120.
However, the accuracy improves only slightly when the size
of training set increases beyond 80. We thus use 80 as the
size of training data in our experiments.

Impact of quantization on accuracy: To generate integer
inputs to a Boolean circuit for secure computation, we quan-
tize the input vector into one of a finite set of prescribed

4 When raw distance value between inputs is available (which is not in our
case), it is better to use the Cumulative Matching Characteristics (CMC)
curve [31] as the accuracy evaluation metric.

integer values. The larger the quantization level, the smaller
the impact on accuracy. Figure 5 shows the ROC under dif-
ferent quantization levels of the tests on iLIDS. We also
include the result of using original real value without quan-
tization for comparison. As shown in the figure, the quanti-
zation level should be at least 128 levels for good accuracy;
that is, 7-bit or above is required to represent each entry of
the input vector to secure two-party computation. To mini-
mize the loss of accuracy, we use 256 levels(� 8) in all
our experiments.

6.1 Accuracy results
First, we present the accuracy results for the VIPeR dataset.
Figure 6 shows the ROC curves under different matching
functions. Interestingly, the PRDC_woABS method incurs
low cost for secure computation, but the accuracy drops
significantly compared to the rest. On the other hand,
GCDC has similar accuract to MCC while reducing the
computational cost (next section).
 Figure 7 shows the results for the iLIDS dataset. As for
the VIPeR dataset, GCDC has no accuracy degradation. The
performance of all methods in the iLIDS dataset is lower
than the VIPeR dataset due to occlusions (e.g., the person
with a luggage in Figure 3(c)).
 Finally, we study our two datasets. Figures 8 and 9 again
show that GCDC has comparable accuracy to PRDC and
MCC, the two state of the art methods. Since the size of the

Figure 7. ROC curve of iLIDS database.

Figure 6. ROC curve of VIPeR database.

Figure 4. ROC curve with varying training set sizes (VIPeR)

Figure 5. ROC curve with varying quantization levels (iLIDS) Figure 8. ROC curve of our human database.

Figure 9. ROC curve of our car database.

Page | 9

object is larger in our database than in the others, the histo-
gram-based features are more representative to the objects,
leading to better performance for most methods than in the
VIPeR and iLIDS datasets.

6.2. Trade-off between Accuracy and Overhead
Tables 6-9 summarize the matching accuracy and overhead
for different methods. As the measure of overhead, we com-
pute the number of non-XOR gates using the equations
(3)(5)(8)(22) and the parameters shown in each table. We
use AUC (Area Under the Curve) to represent accuracy
characteristics of each method. AUC value ranges from 0 to
1. As ROC curves get closer to the upper-left corner (low
false positive rate with high true positive rate), AUC in-
creases. For each table, we shade the cell of the smallest
number of non XOR gates or the largest AUC value to make
the comparison easier.
 The followings are highlights of the comparison results:

• PRDC_woABS results in the smallest number of non
XOR gates for three datasets, but it has very poor accu-
racy. Thus, we do not consider it to be a viable method.

• Both PRDC and MCC provide accurate object match-
ing results. GCDC provides similarly accurate results
for all four datasets and even outperforms PRDC and
MCC for two datasets.

• The number of non XOR gates for GCDC is on average
261 times smaller than PRDC and 6 times smaller than
MCC.

Thus, we conclude that GCDC is a promising alternative
to PRDC or MCC for secure object matching. In the next
section, we show how GCDC performs in a real prototype
system.

7. sTrack: DESIGN & IMPLEMENTATION
We now describe our prototype of the sTrack community
surveillance system. We first describe how we implement
various key tasks and then how we integrate individual
components into a working system.

7.1. Implementation of Key Tasks
Each site (i.e., camera) in our system is configured with
information about one or more peer sites against which ob-
ject matching should be done. This information includes the
peer’s location relative to the site and how to contact it (IP
address and port) when matching is needed. Each site inde-
pendently keeps track of objects’ information, including
location, entry and exit timestamps, and feature vectors.

Tracking within a camera: We employ state of the art
computer vision algorithms for background subtraction and
estimating object states between frames. All of this computa-
tion involves only local processing (i.e., no information ex-
change needed), and thus does not affect secure computation.
Figure 10 shows the flowchart of the modules that we devel-
oped for tracking objects within a single camera. For each
new frame, we first perform background subtraction fol-
lowed by blob extraction. The background subtraction mod-
ule determines whether the pixel belongs to the background
or foreground based on a statistical background model rep-
resented as a Gaussian distribution per pixel. After back-
ground subtraction, we can extract the blobs that represent
the foreground objects [10]. The output is a binary image
(0=background, 1=foreground).

The tracking module keeps tracking the states of the ob-
jects including their location, size, and velocity. Given the
extracted blobs of a new frame, we use Kalman filter [27] to
estimate the current state of each tracked object. The module
then determines whether a tracked object is under occlusion

Figure 10. Tracking objects within a single camera module.

VIPeR dataset non XOR gates AUC
PRDC 499,623 0.8515

PRDC_woABS 579 0.7468
MCC 10,298 0.9059
GCDC 1,778 0.9017

Table 6. Summary table for VIPeR dataset

(� =864;
 =4; =71)

iLIDS dataset non XOR gates AUC
PRDC 499,623 0.8151

PRDC_woABS 579 0.6404
MCC 11,022 0.8697
GCDC 1,902 0.8653

Table 7. Summary table for iLIDS dataset

(� =864;
 =4; =76)

human dataset non XOR gates AUC
PRDC 379,902 0.8473

PRDC_woABS 2,175 0.7643
MCC 10,009 0.9062
GCDC 1,729 0.9272

Table 8. Summary table for the human dataset

(�=864;	 =69;
=3 for PRDC;
=15 for PRDC_woABS)

car dataset non XOR gates AUC
PRDC 379,902 0.8877

PRDC_woABS 579 0.8395
MCC 7,831 0.9471
GCDC 1,351 0.9567

Table 9. Summary table for the car dataset
(�=864;	 =54;
=3 for PRDC;
=4 for PRDC_woABS)

Page | 10

by checking if its predicted state is consistent with the obser-
vation in the new frame. If the object is not occluded, the
result from blob extraction is deemed reliable, and the near-
est blob is selected as the corresponding measurement. Oth-
erwise, mean-shift method [5] is used to obtain the meas-
urement. By using these measurements, we update the Kal-
man filter and obtain the current state of the object.

Each camera performs tracking as above and stores entry
and exit time stamps, tracking history, and feature vectors of
all the objects in a local database. This stored information is
used when the camera performs the evaluation of the match-
ing function between a local object and objects captured by
other cameras.

Generating feature vectors: Since color information has
been demonstrated to be one of the most robust features that
is invariant to different scales and perspectives [31][12], we
adopt the color histogram as the basis of our feature vectors.
One can always include more features, e.g., texture, edge
features or even biometric features like faces, to enhance the
accuracy, and our proposed metric learning method can still
be applied without change. As in [31], we divide an object
into six horizontal regions. In each region, the color histo-
grams of RGB, YCbCr, and HSV color spaces are extracted.
Each channel has 16 bins, and the histograms are concate-
nated into the feature vector in a 864-dimension feature
space. The feature vectors are transformed into the valid
input vectors which have low dimensional integer entries
before the matching function is evaluated via secure two-
party computation.

Tracking object across cameras: When an object enters
the view of Site A, the feature vector is extracted and the
matching process is initialized against all peer sites. (We
currently issue match requests for all objects entering the
view, but in the future, it could be limited to suspicious ob-
jects such as those that the camera has never seen before or
those specified by users.) For these processes, we term the
initiator of the process (Site A) as the client and other sites
as servers. Each server performs a match against each of the
objects that appeared within a 10 minute time window. The
length of the time window can be determined based on the
user’s interest or the prior knowledge about the topology of
the cameras. For instance, in a community area with moder-
ate size, it normally takes no more than 10 minutes for a
people walking acorss the cameras. The output (obtained by
both parties) is a binary value indicating if the client’s ob-
ject matched against any of the server’s objects. Note that in

the secure two-party computation, neither the server nor the
client learns the real distance value but only a binary value
representing the match or nonmatch, so the feature vectors
from the other party cannot be inferred, i.e., there will be no
information leakage.

This lets Site A learn where the object came from. Match
requests can also be issued sometime after the object exits
the camera’s view, to learn where the object went. But we
do not implement it yet and instead rely on incoming match
requests from other peers to learn this information. Based on
the results of incoming and outgoing match requests, each
site can independently infer the activity pattern of suspi-
cious objects that come under its view.

Training: As described earlier, matching requires an offline
training phase to learn the distance metric. This learning is
done in a pairwise manner. That is, a set of parameters is
learned for each pair of cameras, rather than learning global
parameters. As inputs for the learning, we use objects that
the site owners have whitelisted for the purposes of learning
out of a pool of all objects seen by the camera. As explained
earlier, a set of around 80 objects is enough for robust learn-
ing.

7.2. System Integration
Our system is developed as an application on top of Home-
OS [7]. HomeOS applications are written primarily in C#,
but for performance reasons, we implemented image pro-
cessing functionality (e.g., background subtraction, blob
extraction, and tracking) as a C++ library. This allows us to
perform these functions in real time even on weak PCs such
as netbooks. The secure matching functionality is imple-
mented in Java by extending Huang et al.’s library [14].
This code is invoked as a separate process that takes the
feature vector that needs to be secretly matched as input. For
each potential match, there is one process on the client side
that communicates with a process on the server side. These
two processes communicate with each other to determine if
their respective input feature vectors match.

When the server receives a match request from the client,
it starts one process per potential match. Each process is
started with a feature vector that belongs to a different ob-
ject and uses a different TCP port for communication. Then
the server returns to the client the list of ports where each
process is listening. Upon receiving this list, the client starts

0

10

20

30

40

50

0 5 10 15 20T
im

e
to

 m
at

ch
 (

se
cs

)

objects to match
Figure 12. Mean and standard deviation of the time to securely

match objects. Standard deviation is too small to show when # of

objects to match is less than 10.

Figure 11. Online tracking performance.

Page | 11

one process for each port. The feature vector that is input to
client-side processes is the same, corresponding to the ob-
ject that triggered the matching process. The client and
server read the outputs (binary values) of these processes to
determine if any of the pairwise matches yielded a positive
result.

This way of doing things reveals to the client how many
(but not which) objects were seen by the server in the
matching time window. If this information is sensitive, to
hide it, the server can always initiate matches against a fixed
number of objects. This fixed number should be an upper
bound on the number of objects that can be seen in the
matching time period. When fewer objects have been seen,
the remaining processes can be supplied random feature
vectors as input.

8. EXPERIMENTAL RESULTS
This section evaluates our prototype for its accuracy of
tracking and the computation time of secure object matching.

8.1. Object Matching Accuracy
In Section 6, what we studied was the accuracy of matching
objects across cameras assuming that object extraction in
individual cameras was perfect. In practice, however, object
extraction may not be perfect as extra pixels (which do not
belong to the object) may be attributed to the object or some
object pixels may be missing. In this section, we quantify
the end-to-end accuracy of our system, which includes inac-
curacies due to imperfect object extraction. For this experi-
ment, we use the video clips from our datasets with total
length 47 minutes as the input to our system. The system
has two sites and each site is fed the video gathered by one
of the cameras in the datasets. As in the actual system, each
site performs independently single camera tracking within
its own view and store objects’ information (e.g., feature
vectors and timestamps) in its local database. The sites per-
form object matching using parameters from offline training.
 Figure 11 shows the matching accuracy. We see that there
is only a slight loss in accuracy compared to offline testing
due to errors caused by tracking within a single camera.
These errors result from the cluttering background, severe
occlusion, and abrupt change of the lighting condition.

8.2. Performance of Secure Matching
We now benchmark the performance of secure matching

in our system. For this benchmark, we use two netbooks
with 1 GHz processor and 2 GB memory that run Windows
8. We use this relatively cheap and weak computer on pur-
pose; we expect that many camera sites will not be equipped
with a powerful computer and will instead use small, head-
less PCs or with embedded processors like smart cameras.
We configure the netbooks to use each other as peers for
matching. Using a network emulator, we introduce a round-
trip network delay of 100 ms between the netbooks to mim-
ic real-world situations in which sites may not have low-
latency network paths between them.

We measure the total time from the client issuing the
match request to it recovering the result of the match. Thus,
this time includes the time for initial handshake in which the
client learns about the ports on which the server processes
are running and the time to start client and server processes.
We use randomly selected feature vectors for matching.
Matching performance does not depend on the values in the
feature vector; it only depends on the size of the feature
vector, which is independent of the objects being matched.
We use # = 128, � = 8, and .̂ = 9280 for the experiments.
Thus, the number of non XOR gates is 3,199 using Equation
(22). We conduct ten different trials with each number of
objects and plot the mean the standard deviation across
those trials. Figure 12 shows the results as a function of the
number of objects against which a match is performed (i.e.,
the number of objects that the server saw in the specified
time period). We see that the time it takes to securely match
objects increases linearly with the number of objects that
need to be matched. For single-object matches, the time is
roughly 4 seconds. For matching 4-16 objects, the total time
amounts to roughly 3 seconds per match. Thus, even if as
many as 20 objects need to be matched, secure matching
will complete in under a minute.

This level of performance, which was obtained on a rela-
tively weak computer, can lead to a practical, real-time sur-
veillance system. Consider the following back-of-the-
envelope analysis. Let the community be such that one new
object enters every 0 minutes on average, each camera
needs to consult � neighboring, and that the time period of
interest is 1 minutes. In this community, a camera will issue
�

�
 requests per minute for matching, where each request will

involve
�

�
 object matches. Thus, a camera needs to perform

2 ×
�

�
×

�

�
 matches per minute. The factor of two is due to

the fact that a camera will answer match requests as well.
With 0 = 5, � = 10, 1 = 10, this number is 8 per minute,
well within the performance bounds of our system.

To shed light on where time is spent during the match
process, Table 10 shows the breakdown of the time to match
one pair of objects. Since our secure computation protocol is
built on [14], we used the same parameters as in [14] (e.g.,
80-bit wire labels and|#| = 128 and |2| = 128 for the
Naor-Pinkas oblivious-transfer (OT) protocol [35]). As the
table shows, a large portion of the overhead (1.4 – 1.8 sec-
onds) results from the computation intensive OT preparation

Table 10. Secure computation overhead for matching a pair of ob-

jects: Note that total is greater than the sum of individual overheads

since we only report a few expensive steps.

 circuit evaluator circuit generator
circuit preparation 638 (ms) 655 (ms)

OT preparation 1,442 (ms) 1,765 (ms)
circuit garbling &

evaluation
765 (ms) 816 (ms)

total 3,722 (ms) 3,875 (ms)

Page | 12

step since the netbooks only have a moderate CPU. Since
[14] implements oblivious transfer extension [36], which
enable a pair of sites to run any number of oblivious trans-
fers at a small cost after preparation, we can hide this setup
latency by having a pair of sites go through this OT prepara-
tion only once (instead of every object match instance as is
currently implemented). We find that the computational
overhead of local computation of GCDC (e.g., matrix multi-
plications) is negligible and so is the bandwidth overhead of
secure computation. On average, machines exchanged 542
packets for secure matching.

9. DISCUSSION
This section discusses limitations of the current prototype
and remaining challenges in realizing privacy-preserving
distributed community surveillance systems.

Proving the security of the entire system: We assume that
each site is semi-honest and pairwise object matching can be
secured using secure two-party computation. However, the
surveillance system as a whole involves multiple pairwise
object matching tasks across many pairs of sites. Thus, our
system is secure only if the secure two-party computation
protocol is composable. We defer the investigation of this
issue to future work.

Scaling secure object matching to a large number of
peers: As shown in Section 8, the performance overhead of
secure matching increases linearly in the number of objects
to match. Hence, as more neighbors join the surveillance
system, the overhead will increase, requiring individual sites
to equip with better CPUs and more memory. However, like
some computer vision works [33][34], we can potentially
utilize the topology of cameras and the traveling time be-
tween the cameras to improve matching efficiency. Based
on the object’s time and spatial information, cameras only
need to send matching requests to the neighboring cameras
since the object is likely to travel to the areas covered by
these cameras. Plus, given the average traveling time be-
tween two cameras, the matching time window can be ad-
justed accordingly. According to the recent development of
the video surveillance research [44], the topology infor-
mation and the average traveling time can be obtained with-
out human efforts. This way, we can not only make com-
munity surveillance systems to scale better but also reduce
false positives.

Weakness against querying attacks: Secure object match-
ing can stop nosy neighbors from collecting the other par-
ty’s input feature vectors to de-identify objects. However, it
cannot prevent them from tracking the appearance of a cer-
tain object in others’ camera by continuously querying other
cameras with the feature vector of the target object. In an
ideal setting, a participating camera should be only allowed
to initiate matching for the object that is actually captured
by the camera. However, in practice, this is almost impossi-
ble to ensure e.g., an adversary can launch an “analogue”
attack by staging a photograph. We can guard against such
nosy queries to some extent by requiring that neighbors who

issue a disproportionally large number of queries share raw
footage of the object if there is a match. We believe that
such targeted sharing of footage of suspicious objects with
other neighbors who have also seen the object poses few
privacy concerns.

On combining computer vision and privacy: The most
challenging aspect of our work was that it needed deep un-
derstanding of both vision algorithms and Boolean circuit
construction. Individual authors were experts in at most one
of these areas. One of our hopes with this work is to lower
the bar for developing privacy-preserving algorithms for a
range of vision-related problems. Our analysis and circuit
construction of various algorithms should help privacy re-
searchers analyze and modify other vision algorithms for
secure computation and vision researchers to develop new
algorithms that permit low-overhead secure computation.

10. CONCLUSION
We presented a distributed surveillance system that can
track objects (e.g., human, cars) across multiple cameras
without leaking any visual information about the objects
other than the binary matching output. Our system is based
on a new distance metric learning approach that, compared
to state-of-art approaches, has 1) 6-200 times lower com-
plexity of a Boolean circuit for secure two-party computa-
tion, and 2) similar or better tracking accuracy. Experiments
using our prototype show that the performance overhead of
private tracking is moderate, taking around 3 seconds even
on a netbook. Distance metric learning is a powerful ap-
proach for matching that applies to a range of other domains
(e.g., face recognition, matching hand-written text, and bi-
ometric matching); we hope that our work will spur future
research into privacy-preserving matching techniques and
systems in such domains.

11. REFERENCES
[1] S. Avidan and M. Butman, “Blind vision,” ECCV, May,

2006.

[2] M. Bauml and R. Stiefelhagen, “Evaluation of local
features for person re-identification in image
sequences,” IEEE Intl. Conf. on Advanced Video and
Signal Based Surveillance, Sep, 2011.

[3] C.M. Bishop, Pattern Recognition and Machine
Learning, Springer, 2006.

[4] A.J. Brush, J. Jung, R. Mahajan, and F. Martinez,
“Digital Neighborhood Watch: Investigating the
Sharing of Camera Data amongst Neighbors”, CSCW,
Feb, 2013.

[5] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based
object tracking,” IEEE Trans. PAMI, vol. 25, no. 5, pp.
564-577, May 2003.

[6] M. Dikmen, E. Akbas, T. S. Huang, and N. Ahuja,
“Pedestrian recognition with a learned metric,” ACCV,
2010.

Page | 13

[7] C. Dixon, R. Mahajan, S. Agarwal, A.J. Brush, B. Lee,
S. Saroiu, and P. Bahl, “An operating system for the
home,” Proc. NSDI, 2012.

[8] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and
M. Cristani, “Person re-identification by symmetry-
driven accumulation of local features,” Proc. CVPR,
2010.

[9] A. Globerson and R. Roweis, “Metric learning by
collapsing classes,” Proc. NIPS, 2005.

[10] R. C. Gonzalez, and R. E. Woods, Digital Image
Processing, Springer, ch.6, 2006.

[11] D. Gray, S. Brennan, and H. Tao, "Evaluating
Appearance Models for Recognition, Reacquisition,
and Tracking," Proc. IEEE International Workshop on
Performance Evaluation for Tracking and Surveillance
(PETS), October, 2007.

[12] D. Gray and H. Tao, “Viewpoint invariant pedestrian
recognition with an ensamble of localize features,”
Proc. ECCV, 2008.

[13] http://www.videosurveillance.com/neighborhoods.asp.
Last accessed in November 2012.

[14] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster
secure two-party computation using garbled circuits,”
20th USENIX Security Symposium, Aug, 2011.

[15] I. Jolliffe, “Principal component analysis,” John Wiley
& Sons, Ltd, 2005.

[16] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider,
“Improved Garbled Circuit Building Blocks and
Applications to Auctions and Computing Minima”,
Proc. CANS 2009.

[17] V. Kolesnikov and T. Schneider, “Improved garbled
circuit: Free XOR gates and applications”, Proc.
ICALP, 2008.

[18] B. Kreuter, a. shelat, and C.-H. Shen, “Billion-Gate
Secure Computation with Malicious Adversaries”,
Proc. USENIX Security, 2012.

[19] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing
Natural Scene Categories,” Proc. CVPR, 2006.

[20] Y. Lindell and B. Pinkas, “A proof of security of Yao’s
protocol for two-party computation”, Journal of
Cryptology, 22(2):161–188, 2009.

[21] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay
— A Secure Two-Party Computation System”, Proc.
USENIX Security, 2004.

[22] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich,
“SCiFI-A system for secure face identification,” IEEE
Symposium on Security and Privacy, 2010.

[23] A. Senior, S. Pankanti, A. Hampapur, L. Brown, Y.-L.
Tian, A. Ekin, J. Connell, C. F. Shu, and M. Lu,
“Enabling Video Privacy through Computer Vision”,
IEEE Security and Privacy 3, 3 (May 2005), 50-57.

[24] Bak Slawomir, Corvee Etienne, Bremond Francois,
Thonnat Monique, "Boosted Human Re-identification

using Riemannian Manifolds", Image and Vision
Computing, Special Issue on Manifolds for Computer
Vision, 2011.

[25] UK Home Office, “The Image Library for Intelligent
Detection Systems (i-LIDS): Multiple Camera Tracking
(MCT),” 2008.

[26] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and
C.V. Jawahar, “Efficient Privacy Preserving Video
Surveillance”, Proc. ICCV, 2009.

[27] G. Welch and G. Bishop, “An introduction to the
kalman filter,” Technical Report, University of North
Carolina at Chapel Hill, 1995.

[28] A. C. Yao, “How to Generate and Exchange Secrets”,
Proc. FOCS, 1986.

[29] W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang,
“Local gabor binary pattern histogram sequence
(lgbphs): A novel non-statistical model for face
representation and recognition,” Proc. ICCV, 2005.

[30] Y. Zhang and S. Li, “Gabor-LBP based region
covariance desciptor for person rei-identification,”
IEEE Intl. Conf. on Image and Graphics, pp. 368-371,
2011.

[31] W. Zheng, S. Gong, and T. Xiang, “Person re-
identification by probabilistic relative distance
comparison,” Proc. CVPR , 2011.

[32] Y. Huang, D. Evans, and J. Katz, “Private Set
Intersection: Are Garbled circuits Better than Custom
Protocol?”, Proc. NDSS, 2012.

[33] A. Gilbert and R. Bowden, “Tracking objects across
cameras by incrementally learning inter-camera colour
calibration and patterns of activity,” Proc. ECCV, 2006.

[34] K. Chen, C. Lai, Y. Hung, and C. Chen, “An adaptive
learning method for target tracking across multiple
cameras,” Proc. CVPR, 2008.

[35] M. Naor and B. Pinkas, “Computationally Secure
Oblivious Transfer”, Journal of Cryptology, 18(1),
2005.

[36] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank,
“Extending Oblivious Transfers Efficiently,” Proc.
Crypto, 2003.

[37] M. Naor, B. Pinkas and R. Sumner. Privacy Preserving
Auctions and Mechanism Design. Proc. Electronic
Commerce, 1999.

[38] L. Malka, "VMCrypt: Modular Software Architecture
for Scalable Secure Computation", Proc. CCS, 2011.

[39] W. Henecka, S. Kogl3 ,A.-R. Sadeghi, T. Schneider, and
I. Wehrenberg, "TASTY: Tool for Automating Secure
Two-partY computations", Proc. CCS, 2010.

[40] O. Javed, K. Shafique, and M. Shah, “Appearance
modeling for tracking in multiple non-overlapping
cameras,” Proc. CVPR , 2005.

[41] S. Avidan, A. Elbaz, and T. Malkin, “Privacy
preserving pattern classificaton,” IEEE Conf. on Image
Processing, 2008.

Page | 14

[42] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I.
Lagendijk, and T. Toft, “Privacy-preserving face
recognition,” Privacy Enhancing Technologies (PET),
2009.

[43] A. Sadeghi, T. Schneider, and I. Wehrenberg,
“Effieiecnt privacy-preserving face recognition,”
Information, Security and Cryptology, 2009.

[44] C. Chu, K. Lee, and J. Hwang, “Self-organized and
scalable camera networks for systematic human
tracking across nonoverlapping cameras,” ICASSP,
2013.

APPENDIX A
Denote the original high dimensional feature vector as

�� � ����⋮����. Since we use the histogram-based feature, each

entry is a real number from zero to one. Because the princi-
pal component matrix � � ��� …��� is an unitary matrix,
the entries of the new vector after dimensional reduction

 ��� � !���⋮!���# � ����� � ��	 (A.1)

are bounded. Assume ‖���‖	 � �, and according to Cauchy-
Schwarz inequality,

 �$�
����	� % ‖$�‖��‖���‖�� % ‖$�‖�� ' (� (A.2)

In order to confine the dynamic range of �
 , we add the
term ∑ �

��
 � ������ �

�� as another cost function in
our objective function to make ‖�
‖		 bounded. If ‖�
‖		
is bounded, ��

���� 	 is bounded; that is, for all the vectors ��� , we can always find a nonnegative scalar � such that
make �

���� ! � " 0, ∀	&.

APPENDIX B
In order to make the distance metric function '
�∙,∙ valid,
self-distance of all the given feature vectors ��� should be the
same.

 ������ , �� �	 � �)������ �
 �1,���� �
 �1	
 � �∑ +,-	

�
�
�$�

����
 �	,$�
����
 �		

 � �∑ $�
����	

�
�
 �� (B.1)

If we assume ∑ �

�����

�� equals to zero for all * , '
���
, ��
 is equal to '
����, ��� for all & + 	 . Thus, we

introduce the cost function ∑ �∑ �

���� �

��

	

� in the objec-
tive function.

APPENDIX C
We present the algorithm (Algorithm C.1) for constructing
the ,''∗�-, 	 � 	∑ ���

��� circuit and computing the num-
ber of gates when - is not in power of 2.

First, we decompose - into the summation of a set of
numbers consisting of power of 2.

. � /	01	 -2 , - � ∑ 2�����
��� , 	01	 - "4��� 5 ⋯ 5 4� "0. For * � 0 to . 7 1, we compute the summation of 2��

numbers by constructing sub-circuits ,''∗�2�� , 	 . By us-
ing ,''�. , the outputs of these sub-circuits are further
added up sequentially in the order from the one with small-
est number of bit to the one with largest number of bit. The
size of ,''∗�-, 	 is equal to gateN. Figure C.1 shows an
example when - � 7.

Figure C.1. Example circuit when N = 7

1. Initial � $ �, % $ 0, ' $ (� 1, and gateN = 0.
 � $ ∑ 2
���	

��
 , log�� ,-��	 . ⋯ . -
 , 0
2. while(� . 1)
3. m = 2
�
4. construct sub-circuit ���∗�m, ��
5. roots[%] = output of ���∗�m, ��
6. gateN = gateN + |���∗�m, ��|,
 where |���∗�m, ��| is obtained by Eq.(1)
7. � $ � �m
8. % $ % 2 1
9. ' $ ' � 1
10. end while
11. if(� $$ 1)
12. roots[%] = the remaining 3�
13. end if
14. Initial 4 $ (� 1, right_tree = roots[(� 1]
15. while(4 , 1)
16. Connect roots[r-1] and right_tree with an

ADD�� 2 -���� circuit.
17. right_tree = output of the above ADD circuit
18. gateN = gateN + |ADD�� 2 -����|
19. 4 $ 4 � 1
20. end while

Algorithm C.1. The algorithm of ���∗��, �� when � is not in

power of 2.

