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Abstract--We present sTrack, a system that can track
objects across distributed cameras without revealing any
visual information to peering camer as except whether an
object was seen by both parties. To achieve this challeng-
ing privacy goal, we build on recent advances in secure
two-party computation and multi-camera object track-
ing. Starting from two distance-metric learning tech-
niques that are foundational for many computer vision
tasks, we derive a new technique that is much mor e suit-
ed for secure computation because it increases the com-
putation that cameras do locally and simplifies the com-
putation that they do jointly. At the same time, the
tracking accuracy of our technique is similar or better
than the original techniques. We implement our ap-
proach in a tracking system that uses a new Boolean
circuit for secure matching. Experiments using real da-
tasets show that the performance overhead of private
tracking is small, adding only a few seconds of delay
compared to non-private tracking.

1. INTRODUCTION

Camera-based surveillance is widely employed tdtfig

against crime such as burglaries and vandalisncofiven-
tional surveillance systems such as those deployed air-
port, subway, and corporate buildings, trackingpssrcam-
eras is extremely useful for crime investigatiéiar example,
when a criminal investigator spots a suspiciousqeenter-
ing a building from one of the surveillance vidett® inves-
tigator wants to know where and when this persdintte
building. Since a building usually has multiplergrand exit
points, tracking across the cameras at these pisimeseded.
In the past decade, tremendous progress has beds ona
cross-camera tracking technologies [13][33][34][4@nd

images of the kids who took the bicycle. The victioes not
recognize the kids and would thus like to tracewtch
home the kids fled. One way of doing this is toadoeigh-
borhood-wide broadcast (or sharing with the policEthe
images, but this may reveal the kids’ identitieghe entire
neighborhood (or the police) and will potentialiynlearrass
the parents publicly, which is not intended by thetim.
Note that the only information that is needed &ekrthe kids
is whether certain other cameras have seen the kalwe
around the same time. Based on this informatio vibtim
can locate where the kids live and privately infdira par-
ents. The victim may also choose to warn other himigs
whose houses the kids may have scoped out.

The concerns around sharing camera feeds are unfort

nate as many households already have security asjrand

processing scenes captured across them would emable

community-wide surveillance system to track suspisi
objects across cameras that individual camera aom not
able to infer (e.g., a person knocking on seveoals| a car
cruising the neighborhood).

Our goal is to enable individual cameras that aulye
operate in silo to cooperate in order to track misps ob-
jects (e.g., unknown people or cars traveling thhothe
neighborhood) without revealing any information abthe
objects except matching outcomes. We assume thidergs
have full access to the video feed from their ovameras.
Each time the camera identifies an object of irste(e.g., a
car or a human), it communicates with peer cameerate-
termine whether the object has also been seeneny tith-
in a pre-defined time window in order to track thigject.
This determination can be made using a distancetim
over the object features (e.g., color histograra) tidividual
cameras extract. However, private information iseded if

many commercial surveillance systems have the <crosshe cameras directly share the feature vectorsrupate the

camera tracking capability. Since all cameras hheesame
owner (a government agency or a company), thetitles
need to isolate the contents of different cameras.

However, privacy concerns severely limit the agbié
ity of multi-camera tracking technologies to comiityiisur-
veillance, where residential neighborhoods mustrrimsi-
tored. Householders in many communities, includimgse
in high-crime neighborhood, are loath to law enéonent
deploying surveillance cameras in areas becausesifand
privacy issues [4]. A primary concern is that tremera
feeds contain many aspects of their life that hasthing to
do with crime (and are potentially embarrassing).

People are mindful of not only their own privacyt biso
embarrassment that unfettered sharing, with thécear
each other, can cause to their neighbors. Suppossen-
sive bicycle is missing from a householder's frgamd. The
victim went through his surveillance video and fdutine

distance. For instance, it is possible to identify object if
color histogram is shared.

To address this privacy risk, we leverage secum tw
party computation for privately matching objectec@e
two-party computation allows two participants tonpute a
publicly known function over their inputs, withorgvealing
any information about each other’s input exceptahigut of
the function (and anything that can be inferredanfrthe out-
put). Much progress [14][16][17][18][37][38] hasdemade
recently towards reducing the CPU and memory oaetiod
Yao’s original proposal [28].

In this paper, we explore if secure two-party cotapian
can be applied to multi-camera object tracking [mois,
such that the accuracy is high and overhead is\'dggzmake
three contributions. First, we analyze state-ofagqroaches
for multi-camera tracking [9][31] for their overtgd they
were implemented securely. We derive efficient Baol
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circuits for them and find that the overhead ofsthep-
proaches is impractically high because of the cexify of
the computation. This result is not surprising sirtice ap-
proaches were not designed with secure computationind.

recognition that can be used for detecting knowspsats.
Although these proposed techniques are usefuldoh ¢ar-
get setting, they are complementary to our effad eannot
be applied directly for multi-camera object trackin which

Second, we present a new technique that significant cameras do not trust each other.

lowers the complexity of a Boolean circuit constimt of
the distance function for secure computation thaa ttvo
state-of-the art techniques. Our technique hasdegrhead
because it refactors the problem such that cantbvathe
complex portions of the computation (e.g., matrixtiplica-
tion) locally and the portions that are computeithtjp are
highly simplified (e.g., histogram intersectiontesd of Eu-
clidean distance). Experiments with four real deta show
that the overhead of our technique, measured uka&gum-
ber of gates in the circuit, is 6-200 times lowsart existing
approaches and its accuracy is comparable or higher

Like the other techniques that we analyzed, ourrtiege
is based on distance metric learning, where thamls func-
tion is learned through training. Distance metdgarhing is
used in many other domains (e.g., matching hantenri
text, face recognition, and matching biometric deas).
Thus, although we evaluate our approach for nealthera
object tracking, we believe that it also appliesotber do-
main, rendering them privacy-preserving.

Third, we implement our technique and secure-party
computation into a distributed community surveitlarsys-
tem, presenting the first prototype of privacy-gresmg mul-

ti-camera tracking.Our experiments show the performance

overhead of secure matching is minimal, adding @nfgw
seconds latency compared to a completely non-grisat-
veillance system.

2. BACKGROUND AND RELATED WORK

Our work builds on three themes of work—privacy-

preserving video surveillance, secure two-party [mota-
tion, and object tracking across cameras. In thisien, we
discuss (1) how previous work that combined compuite
sion and security influenced our work; (2) how gezure
computation with garbled circuits are integratetb ilour
system; and (3) how our approach compares withsthie
of the art in multi-camera object tracking.

2.1. Privacy Concernsin Video Surveillance

To our knowledge, our work is the first that focsige pri-
vacy-preserving multi-camera object tracking. Mymievi-
ous effort has focused on privacy concerns witlpeesto
rogue operators of video surveillance deployechangublic

2.2. Secure Two-Party Computation

A key contribution of our work is a new distance trite
learning approach that is suitable for efficierdcige two-
party computation. Our approach simplifies secun@pguta-
tion to be only composed of addition, min, and carigon
functions of small dimensional vectors instead cdtnin
multiplication of large dimensional feature vectofsis al-
lows us to use a general, circuit-based approacisdoure
computation without sacrificing performance, insted us-
ing custom protocols (as is done in SCiFI [22]).

We implement secure matching using Huang et at.’s |
brary [14] which contains garbled circuits for coomty-
used functions such as addition, subtraction, andgparison.
Our garbled circuits implement the optimizationspmsed
by Kolesnikov et al. [16]. Our system, thereforgnéfits
from previous works [14][16][37] and also sharesitisecu-
rity assumption (semi-honest adversaries). As neeh-t
nigues are developed to improve the security dcieffcy of
the circuits for secure two-party computation (g18]), our
system will inherit these benefits.

2.3. Object Tracking acr oss Cameras

Multi-camera object tracking consists of two suk¢as
extracting features of objects and matching théufeavec-
tors of two objects to determine if they are themesa

Feature extraction: We focus on tracking people and cars

across cameras. Many computer vision algorithmsfase
or license plate features for identifying humarcars. How-
ever, in an uncontrolled environment like a neighbod,
these features are unreliable since cameras maglways
capture a clear face or license plate. Hence, vee the
whole-body appearance as the basis of featurehaGlea-
tures are easy to compute and are shown to betieffen
particular, color histograms and texture featurdstte
whole-body or different parts of the body were usedari-
ous computer vision algorithms [8] [12] [30].

Feature matching: Once feature vectors are available,
matching functions compute the distance betweem ttee
determine object similarity. To overcome the lirtida of

area. Senior et al. [23] present an architectusie gbnerates traditional metric functions such as Euclidean biagnming
obfuscated images and summary data to hide privacylistance, recent computer vision algorithms emphaghine

intrusive details from unauthorized operators. Upyoeet al.
[26] propose image transformation techniques thabke a
few surveillance tasks (e.g., change detectiorg fetection)
on obfuscated images. Avidan et al. [1] introdudace de-
tection system that integrates secure computifgntques to
protect the privacy of face images and the facedtien
algorithm. SCiFl [22] offers secure computation fate

1 We are making our prototype available to the neseaommunity. De-
tails elided to preserve the anonymity of the sidsion.

learning approaches to “learn” a distance metit tlaptures
the relationship of training data [6][31]. Once tmetric is
learned (through training), distance evaluatioedgsentially
equivalent to performing distance calculation ie thans-
formed feature space. The metric learning appraaehable
effective matching to be performed using simpléuess like
color histograms. For instance, Zheng et al. [31t] Bikmen
et al. [6] showed that using color histograms dredléarned
metric, their algorithms performed better than #xésting
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methods that rely on traditional metrics. We build these
works to show that 1) privately implementing cutrereth-
ods incurs high overhead, and 2) distance computaifn
be transformed such that its overhead is signifigdowered
and accuracy is not impacted.

3. GOALSAND OVERVIEW

Our target setting is a cooperative community ofnhs,
where each home has one or more security camenaseT
homes are interested in jointly monitoring the héigrhood
(as in neighborhood watch program) by combiningvikee/s
across all the cameras. The power of this comhinaiems
from the fact that collectively the cameras camiirfatterns
that individual cameras cannot, such as, a casiogithe
neighborhood (a common pattern that neighborhootthwa
volunteers look out for). One way to accomplists thoal is
for each home to send its feed to a central party.,(law
enforcement or a corporation), and for this pastyun one
of the existing surveillance algorithms on the corad input.
However, many householders loathe sharing theirecam
data with third-parties and prefer a communal sofu4].

Thus, we investigate an alternativpeer-to-peer ap-
proach in which cameras are completely autonomaus a
communicate with each other to determine if they Hae
same object. We want to enable this determinatioa pri-
vacy-preserving manner, i.e., a camera should aathte to
infer anything about what other cameras see, exgbgpther
they also saw a particular object. Privacy is @dd@ even in
this cooperative setting as cameras capture masstsfaof
residents’ lives (e.g., times they come home, wikisvthem,
etc.) that they may not feel comfortable sharingar$hg of
raw camera images (or feature vectors) would resaah
facets to the neighbors. It also runs the riskhosé images
becoming broadly available due to lax security ineggh-
bor’'s system.

The focus of this paper is developing a practiezht
nique using which two cameras can determine if they
the same object without ever sharing raw images.stéav
that this is possible to accomplish, with accemgtrfor-
mance and without any degradation in object matchitu-
racy compared to non-private matching. Our apprabms
not require any trusted third parties and the frackystem
can grow organically as more people join.

We aim to deploy the system in the neighborhood-com

munity area where the households are willing tdabolrate
in order to maintain the public security of the coumity.
Therefore, just like other works in privacy-presegvvision
applications [1][22][26][41][42][43], we assume &onest-
but-curious (semi-honest) adversary model in oukw®his
model suffices for our setting where people indbenmuni-
ty area follow the regulations for keeping the camity
safe. Our intent is that the tracking system damsbecome
an easy conduit for privacy violations by curioesghbors.
While sTrack provides the basic private matchingaca
bility, it is not a complete neighborhood watchuimin yet.
Such a solution would also alert users based orchimat
results and handle possible matching errors. Assh@w

Table 1. Gate counts for basic garbled circuits
basic circuits non XOR gates
addition ADD(D 1[16]
subtraction SUB() 1[16]
multiplication MUL(D 21> —1[16]
comparison CMP(D) 1 [16]
multiplexer MUX(D L[17]
minimum MIN (1) 21 [16]
2.
Z\l
Jj = log¥
j=2 [ ADD(Il +j — 1) |
A
j=1 [[abb(+j—1) J[aADD@+,—1) |
N ZiN ZiN ZiN

t
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Figure 1. ADD*(N, 1) Garbled Circuit Construction
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later, these errors are inherent in the state tofision algo-
rithms. (sTrack does not make them more likely. Qray
to handle matching errors is to release raw imadessispi-
cious objects that match, after seeking users’ayagbr This
way the owners can determine if something embangss
being shared. When used in this way, sTrack endhas
users need to verify only a subset of images tbamdtch.
Extending sTrack into a complete neighborhood watih-
tion is a subject of future work.

We now present the high level architecture andday-
ponents of sTrack. Later sections describe ouresysn
more detail.

Object detection and tracking within a camera: Individual
camera process input frames and extracts objectse&ch
frame, they keep track of time, location, and featectors
of all the objects appearing in it. Since the saject can
appear in multiple frames, we associate these appess to
track objects across frames.

Feature vector preparation: The system prepares an input
feature vector of an object under two conditiod$:vthen an
object exits the view--within-camera tracking albws to
differentiate between entering and exiting objeetsd (2)
when the system (or user) identifies an objechtdrest and
wants to sends a matching request to peer canfdtgse-
pared input feature vectors are stored in a datatbas
matching. Preparing input feature vectors involve steps:
i) extracting real-valued feature vectors (col@stbgrams in
our case) from an object, and ii) transforming thzamed on
the parameters learned in the training stage amahtizing
for secure distance evaluation. All computationsstfar take
place locally and do not involve any informatiorclkeange
with peering systems.

Secure matching: A camera issues a secure matching re-
quest to peers when the system records that acguspiob-
ject has entered the view (i.e., Condition (2) he feature
vector preparation process). The output of secuatzhing
function is binary—match or no-match—based on tagut
feature vectors. An individual system may use Vt® @rite-
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ria to deem an object as suspicious or labelediels By a
human. In our current prototype, a system issusscare
matching request for all objects and to all peedageras.
The requester becomes a client and the respongsigns
becomes a server for secure function evaluatioranUse-
ceiving a request, the responding system lookstaipata-
base to count the number of candidate objects tohma@he

Table 1 shows the size, measured in terms of theben
of non XOR gates, of efficient circuit constructsofor basic
functions that compute on twebit integers. A key point to
bear in mind is that the size of a GC increaseghtyun the
order of0(1?) for multiplication whereas it increases linear-
ly for other basic circuits. See references [16]fbr details
of how these circuits can be constructed with fK@R

system then opens the same number of communicatiagates? In constructing GCs, we use efficient circuitsnfro

channels to perform secure function evaluation it re-
quester. The following sections discuss in detaivhour
system implements these computer vision tasks andwe
design a new distance learning technique to makediure
matching function evaluation efficient.

4. ANALYZING EXISTING TECHNIQUES
Tracking objects across cameras is done by matdbjegts
seen by different cameras. Formally, two cameréiam
rate to evaluate a distance functio(x;, x;) wherex; andx;
are the feature vectors extracted by them for Hjeots to be
matched. If the distance is smaller than a threkhivlis
deemed that the objects are the same. The matabmgacy
depends on the distance functd(,").

This section considers two recent techniques tmlaadis-

tance functiorD(:,"). It presents our analysis of how each

function can be decomposed into local and joint patation.
The decomposition is important as the complexityonly

the joint portion determines the complexity of seccompu-
tation. We construct efficient garbled circuits fach tech-
nigue and find that they have high overhead. We atm-

sider a simple variant of one of the techniquesfina that

this variant has low complexity, but poor accurdggsed on
these insights, we present in Section 5 a newrdistanetric
learning technique, called GCDC, which greatly mxfuthe
complexity of the joint computation while being hig accu-
rate.

4.1. Background: GC-based for Secure Computation
Yao's garbled circuit approach provides a foundatio
construct a secure two-party protocol for computniync-
tion represented as a Boolean circuit [28]. Segpibofs
are available for GC protocols against semi-hor{est,
honest but curious) adversaries [20]. Software pgek are
available for constructing GC protocols [14][21][E®].
We focus on optimizing the matching functidn(,-), such
that it allows efficient Boolean circuits. Henceyrowork
complements and benefits from many recent worksftha
cus on optimizing GC systems [14][16][17][18][38%(3

The secure computation protocol starts with a Bamole
circuit for D(x;,x;). One party (the circuit generator) pre-
pares a garbled version of the circuit, and theseégarty
(the circuit evaluator) obliviously computes thecuait’'s
output. Garbling involves generating keys to eadate \and
the garbled truth table for each gate. Thus, thmbar of
gates determines the complexity of a GC, impactimg
performance of generating and evaluating the G& ©n
ception is XOR gates which come “free” as showrKbie-
shikov et al. [17], requiring no crypto operations.

prior work [14][16][32] whenever applicable.

Moreover, we construct an efficient circuit for ant
monly-used function in our domain, summationNof-bit
integers, denoted a&DD*(N, 1) = Zj?’:lxj, wherex; is an
l-bit integer. Figure 1 shows the GC constructiobDA
circuits are connected in a hierarchical fashiomtoimize
table size. We assume thitis in power of 2. Appendix C
describes an algorithm to construd@D*(N, [) whenN is
not in power of 2. The output ofDD*(N,l) is a(l+
log, N)-bit integer. Since the number of non XOR gates of
ADD (1) circuit is|ADD(l)| =1 as shown in Table 1, the
size ofADD*(N, 1) is

|ADD*(N, 1)| = y'09:N X

092N X 1ADD( +j - 1)

=Nl+N-I1l-1-log,N. Q)

4.2. Background: Distance Metric Learning

Metric learning has been shown to be highly effectat
improving matching accuracy [6][31]. It can be dé#sed as
follows. Letx; € R% denote the original real-valued feature
vector extracted from the objegtwhered is the number of
dimensions. Le®? denote the positive training set consist-
ing of matched feature vector pairs, @ denote the nega-
tive training set consisting of unmatched featwetor pairs.
The goal of metric learning is to learn a distafwection
D(:,") that can discriminate positive and negative exaspl
That is, we would likeD(x;,x;) to be small whes; and

x; correspond to the same object and large otherisibe
following techniques, learning(-,) is equivalent to learn-
ing the parametew.

4.3. PRDC
Zheng et al. propose [31] a distance metric earniethod
called PRDC (person re-identification by Probabdi&Rela-
tive Distance Comparison), for object matching.dittance
function is:

Dy (%0, %) =[x — x| "W WT[x; — x;| = || WT|x, — x| |,

)

where|-| is the entry-wise absolute functigh|| is L2 norm;
W =[w; .. w,] € R They learn a matris consisting

2 The minimum circuit (which takes twebit integers and outputs
one of the input values that is less than or etuéthe other input
value) is not discussed in [16]. However, it carehsily construct-
ed by connecting oniebit multiplexer circuit and onkbit com-
parison circuit.
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Table 2. PRDC computation
inter mediate steps circuits needed
1 % — x| d subtractiol
L d absolute valu
d x L multiplicatior
Tlx. — x;
2 W x; — x| (d — 1) x L addition
r 2 L multiplicatior
3 W7 |x; = x| (L — 1) addition

of a small set ofl-dimensional basisL(« d) in order to
separate different objects well.

Note thaf] W7 |x; — x;| ||’
ly (i.e., jointly) as it involves both feature vecs. As a re-
sult, the computation of the function in secure -fvesty
computation involves subtraction, absolute valueutation,
multiplication, and addition. Moreover, the compiaa
often operates in high dimensional space, dés, usually
quite large, which adds much overhead. Table 2vshbe
computational complexity of the secure two-partynpaoita-
tion implementation oD, (x;, x;).

We now construct an efficient GC for PRDC. We as-

sume that each input element is quantized to hieb#nin-
teger (We discuss in Section 6 how we picked trentjza-

Table 3. PRDC w/o absolute computation
inter mediate steps circuits needed

1 WTx;, WTx; (local computation)
2 WTx; — WTx; L subtraction
Te _ wTe. |2 L multiplicatior
31 [[whx— wix | (L — 1) additior

where W = [w; .. w;] € R®*L and L « d . Note that
WTx; andW’x; can be computed locally by each camera
(without secure two-party computation). As a resthie
computational complexity is reduced significantiable 3).

needs to be computed private- yowever, we find that matching accuracy also deegad

significantly (Section 6). In constructing an eifist GC for
this function, we again assume tHat’x; is quantized to be
anl-bit integer and construct the circuit for eachpstd
Table 3. We omit the details of circuit construntias they
are similar to above. The circuit size is

[PRDC_woABS| =L-|SUB(D)| + L-|MUL()| + |ADD*(L, 21)|
+|CMP(2L + log, L)|
=202L+2IL+L—1. (5)

44 MCC

tion level,l, based on experimental results). The first step ofn order to lower complexity without sacrificing agacy,

Table 2 requires computing the absolute value ef ghib-

we consider a different approach, MCC (Metric lézgrby

traction of twol-bit integers. This circuit can be constructed Collapsing Classes) [9], which has been shown ‘e lg@od

by connecting 2Sortdi) (which takes twd-bit integersx
andy, and outputsnin(x,y) andmax(x,y) ) [32] and one
regular subtraction circuit. So, the Step 1 requir@um-
bers of 2Sortet] andSUB(I) circuits. The Step 2 of Table
2 performsd x L multiplications of twol -bit integers
(which are the outputs of the Step 1). Then, itsatidle-
ments of the multiplication results, which &iebit integers.
The Step 3 of Table 2 first perforrhanultiplications of two

performance for visual matching [31]. Since the hoetin
[9] requires large amount of computation in theniray
stage, especially if the feature space is high dgiomal, we
use Principal Component Analysis (PCA) [15] for dim
sionality reduction. Assumg; € R" (r < d) is the new
feature vector after PCA,

% =PT(x; — %),

(6)

(2L + log, d)-bit integers and the output of each multiplica- WhereP € R**" is projection matrix that maps the original

tion, which is a4l + 2 log, d)-bit integer is summed ug. (
elements total) and the output which 44+ 2 log, d +

d-dimension space intodimensionsx < d); X € R? is the
mean vector over the training data. The distanoetfon is

21log, L) -bit integer is compared against a predefinedXpressed as

threshold estimated in the training stage. In sinenhumber
of non XOR circuits is

|PRDC| = d - |2Sorter(D| + d - |ISUB(D)| + dL - IMUL(D)|
+L-|ADD*(d,2D)| + L - IMUL(Q2L + log, d)|
+|ADD*(L, 4L+ 2log, d)|
+|CMP(4l + 2log,d + log, L)|
= 2dI?L + dIL + 8I?L + 3dl + dL + 2L(log, d)?
+8ILlog,d —1 . (3)

Sinced is large and multiplication is expensive in secure
two-party computation, PRDC incurs high overhead.

One possible remedy is to get rid of the absolateer
function as shown in (4)

Dz(xi,Xj) = (Xi - X]')TWWT(XL' - X]) = ”WTXL' - WTX]' ”2, (4)

D% %) = (& — %) WWT(%; - &) = W™=, - W™s)||", (7)

where= [w; ... w,] € R™? ,r <« d, andq < r. Similar to
(4), W'&; andW’g; can be computed locally without in-
voking secure two-party computation. In additione tdi-
mensionality reduction is also performed locallyowéver,
secure computation still needs expensive multipbeacir-
cuits (Table 4).

In constructing a GC for MCC, we again assume
thatWTg; is quantized to be dnbit integer and construct
the circuit for each step of Table 4. This cirdaisimilar to
PRDC_woABS but with. replaced by;. The circuit size is

IMCC| =q-|SUB(D| + q - IMUL(D| + |ADD*(q,2D)|
+|CMP2L + log, q)|

=202q+2lq+q-1. (8)
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Table 4. MCC computation Table 5. Our GCDC computation

inter mediate steps circuits needed inter mediate steps circuits needed
1 % =PT(x; — %) (local computation 1 2, =PT(x; — %) (local computatior
2 W', W'g; (local computation) 2] WTR4+T1,W'§ +T1 (local computation)
3 Wr'g, — WTg; q subtraction 3 min(.) g min operatiol
. 2 q multiplicatior 4 >7_ min(.) (g — 1) addition
41 [wgi— Wi | q — 1 additior k=l
1 if (%,%)€0P
Po(li) {0 if &%) €O 12)
5.0UR TECHNIQUE: GCDC
Based on experience with the analysis above, weldegd Therefore, the cost functighi(W) is defined as
a new technique called GCDC (Garbled Circuit Dis&an _ S NW s
Computation). Our goal is to push most computatimibe fLW) = Ei KL[po G0 [p" (i10)]
local and minimize joint computation. We observattthe = % %P0 GilD) X log(Reuldy (13)

distance functiom,(-) is equivalent to computing the Eu- PYaID

clidean distance in another space specifie#Vbyn order to  whereKL[- | ‘] is K-L divergence [3] which measures the
avoid the multiplication operation, we replace Ewelidean  distance between two distributions. Substituting) (and
distance function with the histogram intersectiomdtion  (12) into (13), we obtain,

after linearly projecting to a new space Wy The histo-

gram intersection function (9) has also been shawran AW =X i), Dy(%i %) + Lilog(Z)) (14)

effective metric in classification and pattern rgaition (o%;)c0?

[19][29] and it is defined as We introduce a regularization terfj W) to bound the val-
HI(h;, hy) = 37_ min(hf , b)), (9) ues of W', in such a way that we can always find a

1 T a 1 T a nonnegative scaldl to make all the entries iW'g; + T1
Wherehi = [ht ht] € ]R+! hj = [h] h]] € ]R+ are the nonnegative for all (Appendlx A)

vectors with nonnegative entries. The new distdnnetion

is: fo(W) = X1_ wTwy = Tr(WTW) (15)
Dy(%,%) = —HI(WT%; + T1, W%, + T1) Moreover, to satisfy the equality of self-distanitet is,
[ 2] L ’ vl
= = 39_ min(w, R + T, w8 +T), (10) Dy (Ry, Ry) = Da(%,, %)) Vik#l (16)

an additional ternf, (W) is added (Appendix B),
where W =[w, .. w,] ER™, r«d andg <r, and (W) (App )

T >0 is a predefined parameter that ensures the non- (W) = Zi(Zho, wi"%:)? 1)
negativity ofw,'&; + T for any feature vectd;. Note that  The final objective function is the sum of the abdtree
although the value dd,(-) seems to be negative, we cangrms:

always add a positive constant scalar to makevélid dis-

tance metric, and it will not change the formulatiof our JW) = fi(W) + (W) + f3(W) (18)
metric learning, so we discard the scalar hereimunide fol-  The metric learning problem is formulated as firgiMi that
lowing discussion. The secure two-party computatiom-  minimizes the objective functighfW):

plexity of distance functio®, (-,) is shown in Table 5. Ob- R

serve that significant computation is local andhjaiompu- W = argminy /(W) 19)
tation uses simple operations. Gradient descent method is employed to solve thieniga-

However, just defining, (-,-) is not enough. For it to be tjon problem. The gradient vector is
a valid approach, we must also develop an efficieay to

learnW. Our approach for doing so is motivated by [9]r Ou %L‘X) = 2 2= (oGl = pY (1)) % g(Ri, %), W)
goal is to learn a linear projection matrix, sulhttthe pairs
in set0? have small distances, and the pairs inGgehave +2wy + 2 5i((BL, Wi %) %), (20)
large distances. Define a conditional distributimer points  \yhere
i # j such that
. . —R; if w, <w,Tg;
MGl = ey ay e S
i Jexi @ D4 IR, &, W) =17 if wi X;>wg'R;
Ideally, if all the pairs in sed? have small distance, and all —%(ﬁi +%;)  if W% =w,"g;
the pairs in seD™ have large distances, the distribution _ - )
would become “bi-level”, that is, We now describe an efficient GC for GCDC. We first

discuss preprocessing steps (Steps 1 and 2 of Baldad
then discuss circuit size. Given any real-valuediufee vec-
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Figure 2. Garbled Circuit of GCDC

torx; € R4, it will be transformed inta; € R? with much
lower dimension based on PCA and linear mapping,

Z; = WTPT(Xi - )_() +T1, (21)

whereW, P, X andT are the parameters obtained in the
training stage, and each party knows them. Sineesdélcure
two-party computation only takes integer input, leaatry

of z; is first normalized to a real number from O torida
further quantized into ahbit integer value to form g-
dimensional input vectdt;. Finally, the matching between
input vectorsz; andZ; is performed through secure two-
party computation. Through the secure two-party fmatar
tion [14], there is no information leakage, so fh&vacy is

(b)
Figure 3. Examples of the snapshots in the database. (a) and (b) are from
VIPeR database, and (c) and (d) are from iLIDS dataset. In these two
datasets, the images are already normalized into the same size. (¢) and ()

(@) © (@ € O (h)

are from our human database, and (g) and (h) are from our car dataset.

times of the day and total 207 minutes. Becausedheeras
are at different locations, the size and perspectif the
objects they capture is different. Some croppedyanaare
shown in Figures 3(e)-(h). From the video clips tlie cap-
tured, we form two datasets, one with humans ardvath

cars. For the human dataset, we extract 114 péapie100

minutes video clips. For the car dataset, we ex#8a8ccars
from 40 minutes video clips.

guaranteed. GCDC simplifies the GC needed for securExperimental methodology: To focus on the effectiveness

function evaluation, as it only requires integemparison
(CMP), min (MIN), and addition (ADD). The circuitef
quires two vectorsg; andz; (g l-bit integers) and the com-
parison thresholdf. Figure 2 shows the GC of GCDC
method. The circuit size is

|GEDC| = q - IMIN(D| + |ADD*(q,D| + |CMP(l + log, q)|

=3ql+q—1. (22)
6. COMPARING THE TECHNIQUES

We now use four real datasets to evaluate GCDCtlamd

three techniques in Section 4. We show that 1) GCRaE

comparable or better accuracy, and 2) the numbeatds

for GCDC is 6x fewer than MCC and over 200x feweart

of various distance metric learning methods, wethenex-
periments by using manually-cropped snapshots ggct
(e.g., Figure 3), so the within-camera trackingesrdo not
affect the results. For VIPer and iLIDS dataset, ¢hopped
objects are already provided; for our two datasgésman-
ually cropped objects from video frames. In Sec8ah we
will quantify the end-to-end error of our systemréalistic
settings where the objects are extracted autonfigtibs

sTrack.

For each dataset, we randomly select 80 objé&sfor
our car dataset) as the training set and 15 obgexctke test-
ing set in each trial. The training set and tessegy do not
overlap, i.e., each object only appears eitheraming set
or testing set. In the training set, a pair of saps of each

PRDC. PRDC_woABS has fewer gates than GCDC but hagerson or car under different views form the pusiset0?,

very poor accuracy.

Test datasets: We use two public datasets, VIPeR [11] and
i-LIDS [24][25], and two of our own datasets, whiafe call
human dataset andcar dataset. VIPeR is the world largest
publicly available person re-identification datasetonsists
of the well-cropped snapshot images of 632 peoplieu
outdoor scene, e.g., Figures 3(a) and 3(b). Fdn pacson,
two images are captured under different viewinglesgnd
lighting conditions which make the appearance vang
increase the difficulty of the re-identificationLIDS is ex-
tracted from a multiple-camera tracking video sceng25]
captured in an airport area. We use the subsetStAB,

and all pairs of images of different people are niegative
setO™. They are used in learning the parameters mertione
in Section 5. While doing the testing, we evaluéte
matching functions against 15 objects based orleidamed
parameters. However, in real settings, a cameraaaptyre
objects at a faster (slower) rate if pointed atuayb(quite)
street. We use 15 to represent a moderately busgtsiVe
report the average of ten trials for each dataset.

As mentioned earlier, for humans, we use colorohist
gram as the input feature because it is resiligairst the
scale of the object. For cars, the feature is et¢rhin the
similar manner except that the multiple stripeseadeacted
based on the principal axis of the car. In this whe fea-

which has images of 100 people. Example images arg e representation is rotation invariant.

shown in Figures 3(c) and 3(d).

To collect our datasets, we set up two camerasum o
building pointing at two different adjacent strearsd col-
lect multiple video clip$.The clips are captures at different

% The cameras deployed in our experiment recordeeogicf passers-by,
making them implicit human subjects in our videtadset. To allay priva-

Page

cy concerns, one author was stationed at the sjtlaiaing that the video
would be used to evaluate human and car trackiggrigims.  While our
institution does not require ethics board approlvat] we been required to,
we would have noted that the observations were rimadeublic place, are
not dissimilar to other surveillance in public gag and that the observa-
tions would be used exclusively for training anstitey the effectiveness of
algorithms-not to identify specific individuals behaviors.
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Figure 4. ROC curve with varying training set sizes (VIPeR)
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Figure 5. ROC curve with varying quantization levels (iLIDS)
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Figure 6. ROC curve of VIPeR database.

We use the Receiver Operational Character{ROC)
curve as the accuracy evaluation métriROC curve is
commonly used for binary classification evaluatitm.our
case, we adjust the threshold and evaluate thepwsitive
rate (TPR) and the false positive rate (FPR) fahdaresh-
old. The more accurate the method is, the ROC cuudd
be close to the upper-left corner, which corresgdiadhigh
TPR and low FPR. For the computation of PCA, weosko
the principal components so that the cumulativegnex-
ceeds 0.95. The scal@rin (21) is set as 1.5.

Impact of the training set on accuracy: Before presenting
comparison results, we describe how we determirzeditg

set size and quantization levels in our experinfantl our

system). The size of the training set of courseca$f match-
ing accuracy. The ROC curves under different trajnéet
sizes are presented in Figure 4. It shows thattweiracy
goes up as the training set size increases froro 2IR20.

However, the accuracy improves only slightly whiea size
of training set increases beyond 80. We thus usas8the
size of training data in our experiments.

Impact of quantization on accuracy: To generate integer
inputs to a Boolean circuit for secure computatige,quan-
tize the input vector into one of a finite set okgcribed

 When raw distance value between inputs is avail@gddfech is not in our
case), it is better to use the Cumulative Match@i@racteristics (CMC)
curve [31] as the accuracy evaluation metric.
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Figure 7. ROC curve of iLIDS database.
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Figure 8. ROC curve of our human database.
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Figure 9. ROC curve of our car database.

integer values. The larger the quantization letred, smaller
the impact on accuracy. Figure 5 shows the ROC rudidie
ferent quantization levels of the tests on iLIDSe \&lso
include the result of using original real valuehmitit quan-
tization for comparison. As shown in the figureg iuanti-
zation level should be at least 128 levels for gaocuracy;
that is, 7-bit or above is required to represecheantry of
the input vector to secure two-party computatioa. iiini-

mize the loss of accuracy, we use 256 leveis8) in all

our experiments.

6.1 Accuracy results

First, we present the accuracy results for the RiBataset.
Figure 6 shows the ROC curves under different niagch
functions. Interestingly, the PRDC_woABS methoduirsc
low cost for secure computation, but the accurampsl
significantly compared to the rest. On the othendha
GCDC has similar accuract to MCC while reducing the
computational cost (next section).

Figure 7 shows the results for the iLIDS dataset.fér
the VIPeR dataset, GCDC has no accuracy degraddtien
performance of all methods in the iLIDS dataseloiser
than the VIPeR dataset due to occlusions (e.g.pérson
with a luggage in Figure 3(c)).

Finally, we study our two datasets. Figuresg8 @ again
show that GCDC has comparable accuracy to PRDC and
MCC, the two state of the art methods. Since the af the
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Table 6. Summary table for VIPeR dataset

(d =864;L =4,;q=71)

VIPeR dataset non XOR gates AUC
PRDC 499,623 0.8515

PRDC_woABS 579 0.7468
McCC 10,298 0.9059
GCDC 1,778 0.9017

Table 7. Summary table for iLIDS dataset

(d =864;L =4, q=76)

iLIDS dataset non XOR gates AUC
PRDC 499,623 0.8151

PRDC_woABS 579 0.6404
MCC 11,022 0.8697
GCDC 1,902 0.8653

Table 8. Summary table for the human dataset
(d=864;q=69; L=3 for PRDC; L=15 for PRDC_woABS)

human dataset non XOR gates AUC
PRDC 379,902 0.8473

PRDC_woABS 2,175 0.7643
MmcCC 10,009 0.9062
GCDC 1,729 0.9272

Table 9. Summary table for the car dataset
(d=864;q=54; L=3 for PRDC; L=4 for PRDC_woABS)

object is larger in our database than in the oth@eshisto-
gram-based features are more representative toljeets,
leading to better performance for most methods thahe

car dataset non XOR gates AUC
PRDC 379,902 0.8877
PRDC_wo0ABS 579 0.8395
MCC 7,831 0.9471
GCDC 1,351 0.9567
\lodel \’) ==

VIPeR and iLIDS datasets. - Bacl\ground Blob -
O/ Subtraction E\tractmn Tlr:;l:ll:g
r|.1put \J N Vearest T
6.2. Trade-off between Accuracy ar_wd Overhead Ffmme | Katman | [ Geatwion] | Nelghbor || [iaiman
Tables 6-9 summarize the matching accuracy ancheaer ~| Prediction |pe‘emon |_[Mean-Shift Update
for different methods. As the measure of overhe@adcom- Method

Figure 10. Tracking objects within a single camera module.

pute the number of non-XOR gates using the equation
(3)(5)(8)(22) and the parameters shown in eactetaMe
use AUC (Area Under the Curve) to represent acgurac
characteristics of each method. AUC value rangas 0 to
1. As ROC curves get closer to the upper-left coffmv
false positive rate with high true positive ratéd)JC in-
creases. For each table, we shade the cell of riizdlest
number of non XOR gates or the largest AUC valumaixe
the comparison easier. address and port) when matching is needed. Eazlinsie-
The fO”OWingS are h|ghl|ghts of the CompariSBBultS: pendent'y keeps track of Objects’ information' u'mhg

e PRDC_woABS results in the smallest number of noHoca‘uon, entry and exit timestamps, and featurgaors.

XOR gates for three datasets, but it has very poou-  Tracking within a camera: We employ state of the art
racy. Thus, we do not consider it to be a viabl¢ho#.  computer vision algorithms for background subtrctand
+ Both PRDC and MCC provide accurate object matchestimating object states between frames. All af doimputa-
ing results. GCDC provides similarly accurate ressul tion involves only local processing (i.e., no infation ex-
for all four datasets and even outperforms PRDC andhange needed), and thus does not affect securgutation.
MCC for two datasets. Figure 10 shows the flowchart of the modules thatdevel-
*  The number of non XOR gates for GCDC is on averageped for tracking objects within a single camerar Bach
261 times smaller than PRDC and 6 times smallar thanew frame, we first perform background subtractfoh
MCC. lowed by blob extraction. The background subtractiwod-
ule determines whether the pixel belongs to th&dpacind
or foreground based on a statistical backgroundeinmp-
resented as a Gaussian distribution per pixel. rAfeck-
ground subtraction, we can extract the blobs thptasent
the foreground objects [10]. The output is a binemage
(O=background, 1=foreground).

The tracking module keeps tracking the states efoth
jects including their location, size, and velocifiven the
extracted blobs of a new frame, we use Kalmarr fizé] to
estimate the current state of each tracked objéet.module
then determines whether a tracked object is undeusion

7.1. Implementation of Key Tasks

Each site (i.e., camera) in our system is configunéth

information about one or more peer sites againstiwbb-

ject matching should be done. This information udels the
peer’s location relative to the site and how totaohit (IP

Thus, we conclude that GCDC is a promising altéveat
to PRDC or MCC for secure object matching. In thextn
section, we show how GCDC performs in a real pyptet
system.

7.sTrack: DESIGN & IMPLEMENTATION
We now describe our prototype of the sTrack comtyuni
surveillance system. We first describe how we impat
various key tasks and then how we integrate indafd
components into a working system.
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Figure 11. Online tracking performance.

by checking if its predicted state is consisterthwiie obser-
vation in the new frame. If the object is not oded, the
result from blob extraction is deemed reliable, #rel near-
est blob is selected as the corresponding measuote@th-
erwise, mean-shift method [5] is used to obtain reas-

50
40
30
20
10

Time to match (secs)

0 5 10 15

# objects to match
Figure 12. Mean and standard deviation of the time to securely

20

match objects. Standard deviation is too small to show when # of
objects to match is less than 10.

the secure two-party computation, neither the semoe the
client learns the real distance value but onlyreatyi value
representing the match or nonmatch, so the featecwors

urement. Byusing these measurements, we update the Kafrom the other party cannot be inferred, i.e., ¢heill be no

man filter and obtain the current state of the cibje

Each camera performs tracking as above and states e

and exit time stamps, tracking history, and feauaetors of
all the objects in a local database. This storéafimation is
used when the camera performs the evaluation afntiteh-
ing function between a local object and objectstwap by
other cameras.

Generating feature vectors: Since color information has
been demonstrated to be one of the most robustré=athat
is invariant to different scales and perspecti&[[L2], we
adopt the color histogram as the basis of our featactors.
One can always include more features, e.g., texenge
features or even biometric features like facegnioance the
accuracy, and our proposed metric learning metlaodstill
be applied without change. As in [31], we divide abject
into six horizontal regions. In each region, théocdnisto-
grams of RGB, YCbCr, and HSV color spaces are etdch
Each channel has 16 bins, and the histograms areatm
nated into the feature vector in a 864-dimensioatuiie
space. The feature vectors are transformed intovéttie
input vectors which have low dimensional integetrien
before the matching function is evaluated via sedwo-
party computation.

Tracking object across cameras. When an object enters
the view of Site A, the feature vector is extractedl the
matching process is initialized against all pedessi(We
currently issue match requests for all objects rergethe
view, but in the future, it could be limited to pigous ob-
jects such as those that the camera has nevebséme or
those specified by users.) For these processesenvethe
initiator of the process (Site A) as the client anier sites
as servers. Each server performs a match agaicistoddhe
objects that appeared within a 10 minute time wimddhe
length of the time window can be determined basedhe
user’s interest or the prior knowledge about thgoltogy of
the cameras. For instance, in a community area mittler-
ate size, it normally takes no more than 10 mindibesa
people walking acorss the cameras. The output if@atey
both parties) is a binary value indicating if tHewmt's ob-
ject matched against any of the server’s objectée khat in

information leakage.

This lets Site A learn where the object came frtatch
requests can also be issued sometime after thetobjés
the camera’s view, to learn where the object wBnt. we
do not implement it yet and instead rely on incammnatch
requests from other peers to learn this informatiRased on
the results of incoming and outgoing match requesish
site can independently infer the activity pattefsaspi-
cious objects that come under its view.

Training: As described earlier, matching requires an afflin
training phase to learn the distance metric. Té&ring is
done in a pairwise manner. That is, a set of paenmes
learned for each pair of cameras, rather than ileguglobal
parameters. As inputs for the learning, we useatbjthat
the site owners have whitelisted for the purpog$dsasning
out of a pool of all objects seen by the cameraeXsained
earlier, a set of around 80 objects is enoughdbust learn-

ing.

7.2. System Integration

Our system is developed as an application on tagawhe-
OS [7]. HomeOS applications are written primarity C#,
but for performance reasons, we implemented image p
cessing functionality (e.g., background subtractibiob
extraction, and tracking) as a C++ library. Thiewk us to
perform these functions in real time even on we@k Buch
as netbooks. The secure matching functionalityniple-
mented in Java by extending Huang et al.’s libr|].
This code is invoked as a separate process thas ttile
feature vector that needs to be secretly matchatpas For
each potential match, there is one process onlighet cide
that communicates with a process on the server Sidese
two processes communicate with each other to déterih
their respective input feature vectors match.

When the server receives a match request fromlitnat,c
it starts one process per potential match. Eacloegsis
started with a feature vector that belongs to fedifit ob-
ject and uses a different TCP port for communicatibhen
the server returns to the client the list of pavtsere each
process is listening. Upon receiving this list, thient starts
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one process for each port. The feature vectorishiaput to

client-side processes is the same, correspondiribetamb-

ject that triggered the matching process. The tliamd

server read the outputs (binary values) of thesegsses to
determine if any of the pairwise matches yieldgubaitive

result.

This way of doing things reveals to the client hoany
(but not which) objects were seen by the servethim
matching time window. If this information is sem&d, to
hide it, the server can always initiate matchesresga fixed
number of objects. This fixed number should be ppen
bound on the number of objects that can be seethen
matching time period. When fewer objects have bsam,

the remaining processes can be supplied randonuréeat

vectors as input.

8. EXPERIMENTAL RESULTS
This section evaluates our prototype for its accyraf
tracking and the computation time of secure ohjesiiching.

8.1. Object Matching Accuracy
In Section 6, what we studied was the accuracyaithing
objects across cameras assuming that object egtraict
individual cameras was perfect. In practice, howegbject
extraction may not be perfect as extra pixels (Whio not
belong to the object) may be attributed to the ctbje some
object pixels may be missing. In this section, wargify
the end-to-end accuracy of our system, which iretudac-
curacies due to imperfect object extraction. Fis #xperi-
ment, we use the video clips from our datasets vathl
length 47 minutes as the input to our system. Tystem
has two sites and each site is fed the video gadhley one
of the cameras in the datasets. As in the actisésy each
site performs independently single camera trackirttin
its own view and store objects’ information (e.fpature
vectors and timestamps) in its local database.slties per-
form object matching using parameters from offlirening.
Figure 11 shows the matching accuracy. Welsasehere
is only a slight loss in accuracy compared to oéliesting

Table 10. Secure computation overhead for matching a pair of ob-
jects: Note that total is greater than the sum of individual overheads
since we only report a few expensive steps.

circuit evaluator | circuit generator
circuit preparation 638 (ms) 655 (ms)
OT preparation 1,442 (ms) 1,765 (ms)
circuit garbling &
evaluation 765 (ms) 816 (ms)
total 3,722 (ms) 3,875 (ms)

We measure the total time from the client issuihg t
match request to it recovering the result of thécmaThus,
this time includes the time for initial handshakenihich the
client learns about the ports on which the servecgsses
are running and the time to start client and sepvecesses.
We use randomly selected feature vectors for magchi
Matching performance does not depend on the vatutse
feature vector; it only depends on the size of féwture
vector, which is independent of the objects beirsgamed.
We useg = 128,1 = 8, andf = 9280 for the experiments.
Thus, the number of non XOR gates is 3,199 usingaEogn
(22). We conduct ten different trials with each toem of
objects and plot the mean the standard deviationsac
those trials. Figure 12 shows the results as atiimof the
number of objects against which a match is perfdrifie.,
the number of objects that the server saw in thexifipd
time period). We see that the time it takes to sdgumatch
objects increases linearly with the number of ofsjebat
need to be matched. For single-object matchestirie is
roughly 4 seconds. For matching 4-16 objects, dked time
amounts to roughly 3 seconds per match. Thus, dvas
many as 20 objects need to be matched, secure ingtch
will complete in under a minute.

This level of performance, which was obtained aela-
tively weak computer, can lead to a practical,-temaé sur-
veillance system. Consider the following back-ad-th
envelope analysis. Let the community be such thatrew

object enters every¥ minutes on average, each camera
needs to consulf neighboring, and that the time period of
interest is¥ minutes. In this community, a camera will issue

- requests per minute for matching, where each mouid

due to errors caused by tracking within a singlenea.
These errors result from the cluttering backgrowelere
occlusion, and abrupt change of the lighting caodit

8.2. Perfor mance of Secure Matching
We now benchmark the performance of secure matchin
in our system. For this benchmark, we use two rabo

mvolve object matches. Thus, a camera needs to perform

gx X~ Y matches per minute. The factor of two is due to

with 1 GHz processor and 2 GB memory that run Wimslo
8. We use this relatively cheap and weak computepw-
pose; we expect that many camera sites will nacwgpped
with a powerful computer and will instead use smiadlad-
less PCs or with embedded processors like smarermeean
We configure the netbooks to use each other ass feer
matching. Using a network emulator, we introduceund-
trip network delay of 100 ms between the netbookshim-
ic real-world situations in which sites may not aaew-
latency network paths between them.

the fact that a camera will answer match requestw/ell.
With X = 5, N = 10, Y = 10, this number is 8 per minute,
well within the performance bounds of our system.

To shed light on where time is spent during thecimat
process, Table 10 shows the breakdown of the tinmeatch
one pair of objects. Since our secure computatiotopol is
built on [14], we used the same parameters as4h(g.g.,
80-bit wire labels anfy| = 128 and |p| = 128 for the
Naor-Pinkas oblivious-transfer (OT) protocol [35s the
table shows, a large portion of the overhead (1148-sec-
onds) results from the computation intensive OTparation
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step since the netbooks only have a moderate CRide S
[14] implements oblivious transfer extension [3@]hich
enable a pair of sites to run any number of obligitrans-
fers at a small cost after preparation, we can thdesetup
latency by having a pair of sites go through this fepara-
tion only once (instead of every object match ins&as is
currently implemented). We find that the computaaio
overhead of local computation of GCDC (e.g., mainixiti-
plications) is negligible and so is the bandwidterthead of
secure computation. On average, machines exchaswgd
packets for secure matching.

9. DISCUSSION
This section discusses limitations of the curremttqtype
and remaining challenges in realizing privacy-preisg
distributed community surveillance systems.

Proving the security of the entire system: We assume that
each site is semi-honest and pairwise object magotan be
secured using secure two-party computation. Howeter
surveillance system as a whole involves multiplevgae
object matching tasks across many pairs of sitess,Tour
system is secure only if the secure two-party cdatmn
protocol is composable. We defer the investigatbrihis
issue to future work.

Scaling secure object matching to a large number of
peers. As shown in Section 8, the performance overhdad
secure matching increases linearly in the numberbgdcts
to match. Hence, as more neighbors join the suaveié
system, the overhead will increase, requiring irtlial sites
to equip with better CPUs and more memory. Howelikes,
some computer vision works [33][34], we can potiti
utilize the topology of cameras and the travelimget be-
tween the cameras to improve matching efficiencgsesi
on the object’s time and spatial information, caaseonly
need to send matching requests to the neighboenme@s
since the object is likely to travel to the areasered by
these cameras. Plus, given the average travelng Le-
tween two cameras, the matching time window camde
justed accordingly. According to the recent deveiept of
the video surveillance research [44], the topolagfpr-
mation and the average traveling time can be obdainith-
out human efforts. This way, we can not only maken€
munity surveillance systems to scale better bud edsluce
false positives.

Weakness against querying attacks. Secure object match-
ing can stop nosy neighbors from collecting theeotbar-
ty’s input feature vectors to de-identify objedttowever, it
cannot prevent them from tracking the appearance a#r-
tain object in others’ camera by continuously qiregyother
cameras with the feature vector of the target dbjecan
ideal setting, a participating camera should be afibwed
to initiate matching for the object that is actyatbptured
by the camera. However, in practice, this is alniogtossi-
ble to ensure e.g., an adversary can launch aricgun’
attack by staging a photograph. We can guard agsirch
nosy queries to some extent by requiring that rieghwho

o

issue a disproportionally large number of queriegrs raw
footage of the object if there is a match. We beli¢hat

such targeted sharing of footage of suspiciousathjeith

other neighbors who have also seen the object pleses
privacy concerns.

On combining computer vision and privacy: The most
challenging aspect of our work was that it needeepdun-
derstanding of both vision algorithms and Boole#&uit
construction. Individual authors were experts imaist one
of these areas. One of our hopes with this woth i®wer
the bar for developing privacy-preserving algorithfor a
range of vision-related problems. Our analysis ainduit
construction of various algorithms should help acy re-
searchers analyze and modify other vision algostior
secure computation and vision researchers to devsdov
algorithms that permit low-overhead secure comjmriat

10. CONCLUSION

We presented a distributed surveillance system taat
track objects (e.g., human, cars) across multiglmeras
without leaking any visual information about thejesits
other than the binary matching output. Our systerased
on a new distance metric learning approach thahpeawed
to state-of-art approaches, has 1) 6-200 times ricoe-
plexity of a Boolean circuit for secure two-partyngputa-
tion, and 2) similar or better tracking accuracyp&iments
using our prototype show that the performance amthof
private tracking is moderate, taking around 3 sdsogven
on a netbook. Distance metric learning is a poweafu
proach for matching that applies to a range ofrodleenains
(e.g., face recognition, matching hand-written textd bi-
ometric matching); we hope that our work will sguture
research into privacy-preserving matching techréqaad
systems in such domains.
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APPENDIX A
Denote the original high dimensional feature vecésr
Xi1
X; = :
Xid
entry is a real number from zero to one. Becausethci-
pal component matri® = [p, ... p,-] iS an unitary matrix,
the entries of the new vector after dimensionalictidn

o

[xu
Xid

are bounded. Assunjg;||, < 6, and according to Cauchy-
Schwarz inequality,

X; = (Al)

] =P (x; - %)

o 216 2 2
Wi "%:)? < Iwell2 "M% 1127 < Nwellz” x 62 (A.2)

In order to confine the dynamic rangewf, we add the
term!_, w,"w, = Tr(WTW) as another cost function in
our objective function to makéw,||,> bounded. If|w;||,>

is bounded(w, "%;)? is bounded; that is, for all the vectors
%;, we can always find a nonnegative scdlasuch that
makew, "%, + T >0, V k.

APPENDIX B
In order to make the distance metric functizyf:,) valid,
self-distance of all the given feature vectyshould be the
same.

D4(ﬁi,ﬁi) = —HI(WT)?L' + T1,WT)’Zl- + Tl)

ZZ=1 min (WkT)/Zi +T ,WkT)’il‘ + T)

=—Yp W% +qT (B.1)

If we assumeX!_,w,"%; equals to zero for alf,
D, (X, %) is equal toD,(R,,X;) for all k #1. Thus, we
introduce the cost functiof;(X7_, wkTﬁi)z in the objec-
tive function.

APPENDIX C
We present the algorithm (Algorithm C.1) for conosting
the ADD*(N, 1) = ¥, x; circuit and computing the num-
ber of gates wheN is not in power of 2.

Page

systematic human

l. Since we use the histogram-based feature, eacl

1. InitialX =N,t=0,s = K —1, andgateN = 0.
N =X 2%, loga N 2ag_q >+ > ag 20

2. while(X > 1)

3. m 2%

4, construct sub-circuliDD*(m, 1)

5. rootg t] = output ofADD*(m, )

6 gateN = gateN + |ADD*(m, 1) |,
wheréADD*(m, 1)| is obtained by Eq.(1)

7. X=X—-m

8. t=t+1

9. s=s-1

10. end while

11. if(X == 1)

12. roots[t] = the remaining;

13.end if

14. Initialr = K — 1, right_tree=rootg K — 1]

15.while(r > 1)

16. Conneatootg[r-1] and right_tree with an
ADD(l + ak_,) circuit.

17. right_tree = output of the above ADD circuit

18. gateN = gateN + [ADD(l + ag_,)|

19. r=r—1

20.end while

Algorithm C.1. The algorittm of ADD*(N, [) when N is not in

power of 2.
7

Y

1

ADD(l + 2)

level = 3 | |
level =2 [ ADD(l+1) |
roots[0] ¢ roots[1] /1\ ¢oots|2]
level=1 [ ADD*(2%,1) |[ ADD*(2%,1]) |
S, N o S -’
X1 Xy X3 Xy X5  Xg X7

Figure C.1. Example circuit when N =7

First, we decomposk into the summation of a set of
numbers consisting of power of 2.

K <[log, N1, N =YK 2% log, N > ag_4 > >ay =

0. Fori =0toK —1, we compute the summation 2f:
numbers by constructing sub-circut®D*(2%,1). By us-
ing ADD(.), the outputs of these sub-circuits are further
added up sequentially in the order from the ond wihall-
est number of bit to the one with largest numbebiofThe
size ofADD*(N, 1) is equal togateN. Figure C.1 shows an
example whenV = 7.
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