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Abstract--We present sTrack, a system that can track 
objects across distributed cameras without revealing any 
visual information to peering cameras except whether an 
object was seen by both parties. To achieve this challeng-
ing privacy goal, we build on recent advances in secure 
two-party computation and multi-camera object track-
ing. Starting from two distance-metric learning tech-
niques that are foundational for many computer vision 
tasks, we derive a new technique that is much more suit-
ed for secure computation because it increases the com-
putation that cameras do locally and simplifies the com-
putation that they do jointly.  At the same time, the 
tracking accuracy of our technique is similar or better 
than the original techniques. We implement our ap-
proach in a tracking system that uses a new Boolean 
circuit for secure matching. Experiments using real da-
tasets show that the performance overhead of private 
tracking is small, adding only a few seconds of delay 
compared to non-private tracking. 

1. INTRODUCTION 
Camera-based surveillance is widely employed to fight 
against crime such as burglaries and vandalism. In conven-
tional surveillance systems such as those deployed in an air-
port, subway, and corporate buildings, tracking across cam-
eras is extremely useful for crime investigation.  For example, 
when a criminal investigator spots a suspicious person enter-
ing a building from one of the surveillance videos, the inves-
tigator wants to know where and when this person left the 
building. Since a building usually has multiple entry and exit 
points, tracking across the cameras at these points is needed. 
In the past decade, tremendous progress has been made on 
cross-camera tracking technologies [13][33][34][40], and 
many commercial surveillance systems have the cross-
camera tracking capability. Since all cameras have the same 
owner (a government agency or a company), there is little 
need to isolate the contents of different cameras.    

However, privacy concerns severely limit the applicabil-
ity of multi-camera tracking technologies to community sur-
veillance, where residential neighborhoods must be moni-
tored. Householders in many communities, including those 
in high-crime neighborhood, are loath to law enforcement 
deploying surveillance cameras in areas because of trust and 
privacy issues [4]. A primary concern is that the camera 
feeds contain many aspects of their life that have nothing to 
do with crime (and are potentially embarrassing). 

People are mindful of not only their own privacy but also 
embarrassment that unfettered sharing, with the police or 
each other, can cause to their neighbors. Suppose an expen-
sive bicycle is missing from a householder's front yard. The 
victim went through his surveillance video and found the 

images of the kids who took the bicycle. The victim does not 
recognize the kids and would thus like to trace to which 
home the kids fled. One way of doing this is to do a neigh-
borhood-wide broadcast (or sharing with the police) of the 
images, but this may reveal the kids’ identities to the entire 
neighborhood (or the police) and will potentially embarrass 
the parents publicly, which is not intended by the victim. 
Note that the only information that is needed to track the kids 
is whether certain other cameras have seen the same kids 
around the same time. Based on this information, the victim 
can locate where the kids live and privately inform the par-
ents. The victim may also choose to warn other neighbors 
whose houses the kids may have scoped out. 

The concerns around sharing camera feeds are unfortu-
nate as many households already have security cameras, and 
processing scenes captured across them would enable a 
community-wide surveillance system to track suspicious 
objects across cameras that individual cameras alone are not 
able to infer (e.g., a person knocking on several doors, a car 
cruising the neighborhood). 

Our goal is to enable individual cameras that currently 
operate in silo to cooperate in order to track suspicious ob-
jects (e.g., unknown people or cars traveling through the 
neighborhood) without revealing any information about the 
objects except matching outcomes. We assume that residents 
have full access to the video feed from their own cameras. 
Each time the camera identifies an object of interest (e.g., a 
car or a human), it communicates with peer cameras to de-
termine whether the object has also been seen by them with-
in a pre-defined time window in order to track the object. 
This determination can be made using a distance function 
over the object features (e.g., color histogram) that individual 
cameras extract. However, private information is revealed if 
the cameras directly share the feature vectors to compute the 
distance. For instance, it is possible to identify the object if 
color histogram is shared.  

To address this privacy risk, we leverage secure two-
party computation for privately matching objects. Secure 
two-party computation allows two participants to compute a 
publicly known function over their inputs, without revealing 
any information about each other’s input except the output of 
the function (and anything that can be inferred from the out-
put). Much progress [14][16][17][18][37][38] has been made 
recently towards reducing the CPU and memory overhead of 
Yao’s original proposal [28].  

In this paper, we explore if secure two-party computation 
can be applied to multi-camera object tracking problems, 
such that the accuracy is high and overhead is low. We make 
three contributions. First, we analyze state-of-art approaches 
for multi-camera tracking [9][31] for their overhead if they 
were implemented securely. We derive efficient Boolean 
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circuits for them and find that the overhead of these ap-
proaches is impractically high because of the complexity of 
the computation. This result is not surprising since the ap-
proaches were not designed with secure computation in mind. 

Second, we present a new technique that significantly 
lowers the complexity of a Boolean circuit construction of 
the distance function for secure computation than the two 
state-of-the art techniques. Our technique has low overhead 
because it refactors the problem such that cameras do the 
complex portions of the computation (e.g., matrix multiplica-
tion) locally and the portions that are computed jointly are 
highly simplified (e.g., histogram intersection instead of Eu-
clidean distance).  Experiments with four real datasets show 
that the overhead of our technique, measured using the num-
ber of gates in the circuit, is 6-200 times lower than existing 
approaches and its accuracy is comparable or higher.  

Like the other techniques that we analyzed, our technique 
is based on distance metric learning, where the distance func-
tion is learned through training. Distance metric learning is 
used in many other domains (e.g., matching hand-written 
text, face recognition, and matching biometric features).  
Thus, although we evaluate our  approach for multi-camera 
object tracking, we believe that it also applies to other do-
main, rendering them privacy-preserving. 
    Third, we implement our technique and secure two-party 
computation into a distributed community surveillance sys-
tem, presenting the first prototype of privacy-preserving mul-
ti-camera tracking.1 Our experiments show the performance 
overhead of secure matching is minimal, adding only a few 
seconds latency compared to a completely non-private sur-
veillance system. 

2. BACKGROUND AND RELATED WORK 
Our work builds on three themes of work—privacy-
preserving video surveillance, secure two-party computa-
tion, and object tracking across cameras. In this section, we 
discuss (1) how previous work that combined computer vi-
sion and security influenced our work; (2) how the secure 
computation with garbled circuits are integrated into our 
system; and (3) how our approach compares with the state 
of the art in multi-camera object tracking. 

2.1. Privacy Concerns in Video Surveillance 
To our knowledge, our work is the first that focuses on pri-
vacy-preserving multi-camera object tracking. Much previ-
ous effort has focused on privacy concerns with respect to 
rogue operators of video surveillance deployed in the public 
area. Senior et al. [23] present an architecture that generates 
obfuscated images and summary data to hide privacy-
intrusive details from unauthorized operators. Upmanyu et al. 
[26] propose image transformation techniques that enable a 
few surveillance tasks (e.g., change detection, face detection) 
on obfuscated images. Avidan et al. [1] introduce a face de-
tection system that integrates secure computing techniques to 
protect the privacy of face images and the face detection 
algorithm. SCiFI [22] offers secure computation of face 
                                                 
1 We are making our prototype available to the research community. De-
tails elided to preserve the anonymity of the submission. 

recognition that can be used for detecting known suspects. 
Although these proposed techniques are useful for each tar-
get setting, they are complementary to our effort and cannot 
be applied directly for multi-camera object tracking in which 
cameras do not trust each other. 

2.2. Secure Two-Party Computation 
A key contribution of our work is a new distance metric 
learning approach that is suitable for efficient, secure two-
party computation. Our approach simplifies secure computa-
tion to be only composed of addition, min, and comparison 
functions of small dimensional vectors instead of matrix 
multiplication of large dimensional feature vectors. This al-
lows us to use a general, circuit-based approach for secure 
computation without sacrificing performance, instead of us-
ing custom protocols (as is done in SCiFI [22]).  

We implement secure matching using Huang et al.’s li-
brary [14] which contains garbled circuits for commonly-
used functions such as addition, subtraction, and comparison. 
Our garbled circuits implement the optimizations proposed 
by Kolesnikov et al. [16]. Our system, therefore, benefits 
from previous works [14][16][37] and also shares their secu-
rity assumption (semi-honest adversaries). As new tech-
niques are developed to improve the security or efficiency of 
the circuits for secure two-party computation (e.g., [18]), our 
system will inherit these benefits. 

2.3. Object Tracking across Cameras 
Multi-camera object tracking consists of two subtasks—
extracting features of objects and matching the feature vec-
tors of two objects to determine if they are the same. 

Feature extraction: We focus on tracking people and cars 
across cameras. Many computer vision algorithms use face 
or license plate features for identifying human or cars. How-
ever, in an uncontrolled environment like a neighborhood, 
these features are unreliable since cameras may not always 
capture a clear face or license plate. Hence, we use the 
whole-body appearance as the basis of features. Global fea-
tures are easy to compute and are shown to be effective. In 
particular, color histograms and texture features of the 
whole-body or different parts of the body were used in vari-
ous computer vision algorithms [8] [12] [30]. 

Feature matching: Once feature vectors are available, 
matching functions compute the distance between them to 
determine object similarity. To overcome the limitation of 
traditional metric functions such as Euclidean and Hamming 
distance, recent computer vision algorithms employ machine 
learning approaches to “learn” a distance metric that captures 
the relationship of training data [6][31]. Once the metric is 
learned (through training), distance evaluation is essentially 
equivalent to performing distance calculation in the trans-
formed feature space. The metric learning approaches enable 
effective matching to be performed using simple features like 
color histograms. For instance, Zheng et al. [31] and Dikmen 
et al. [6] showed that using color histograms and the learned 
metric, their algorithms performed better than the existing 
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methods that rely on traditional metrics. We build on these 
works to show that 1) privately implementing current meth-
ods incurs high overhead, and 2) distance computation can 
be transformed such that its overhead is significantly lowered 
and accuracy is not impacted.  

3. GOALS AND OVERVIEW 
Our target setting is a cooperative community of homes, 
where each home has one or more security cameras. These 
homes are interested in jointly monitoring the neighborhood 
(as in neighborhood watch program) by combining the views 
across all the cameras. The power of this combination stems 
from the fact that collectively the cameras can infer patterns 
that individual cameras cannot, such as, a car cruising the 
neighborhood (a common pattern that neighborhood watch 
volunteers look out for). One way to accomplish this goal is 
for each home to send its feed to a central party (e.g., law 
enforcement or a corporation), and for this party to run one 
of the existing surveillance algorithms on the combined input. 
However, many householders loathe sharing their camera 
data with third-parties and prefer a communal solution [4].  

Thus, we investigate an alternative, peer-to-peer ap-
proach in which cameras are completely autonomous and 
communicate with each other to determine if they saw the 
same object. We want to enable this determination in a pri-
vacy-preserving manner, i.e., a camera should not be able to 
infer anything about what other cameras see, except whether 
they also saw a particular object. Privacy is desirable even in 
this cooperative setting as cameras capture many facets of 
residents’ lives (e.g., times they come home, who visits them, 
etc.) that they may not feel comfortable sharing. Sharing of 
raw camera images (or feature vectors) would reveal such 
facets to the neighbors. It also runs the risk of those images 
becoming broadly available due to lax security in a neigh-
bor’s system. 

The focus of this paper is developing a practical tech-
nique using which two cameras can determine if they saw 
the same object without ever sharing raw images. We show 
that this is possible to accomplish, with acceptable perfor-
mance and without any degradation in object matching accu-
racy compared to non-private matching. Our approach does 
not require any trusted third parties and the tracking system 
can grow organically as more people join.  

We aim to deploy the system in the neighborhood com-
munity area where the households are willing to collaborate 
in order to maintain the public security of the community. 
Therefore, just like other works in privacy-preserving vision 
applications [1][22][26][41][42][43], we assume an honest-
but-curious (semi-honest) adversary model in our work. This 
model suffices for our setting where people in the communi-
ty area follow the regulations for keeping the community 
safe. Our intent is that the tracking system does not become 
an easy conduit for privacy violations by curious neighbors. 

While sTrack provides the basic private matching capa-
bility, it is not a complete neighborhood watch solution yet. 
Such a solution would also alert users based on matching 
results and handle possible matching errors. As we show 

later, these errors are inherent in the state of art vision algo-
rithms. (sTrack does not make them more likely.) One way 
to handle matching errors is to release raw images of suspi-
cious objects that match, after seeking users’ approval. This 
way the owners can determine if something embarrassing is 
being shared. When used in this way, sTrack ensures that 
users need to verify only a subset of images that do match. 
Extending sTrack into a complete neighborhood watch solu-
tion is a subject of future work. 

We now present the high level architecture and key com-
ponents of sTrack. Later sections describe our system in 
more detail. 

Object detection and tracking within a camera: Individual 
camera process input frames and extracts objects. For each 
frame, they keep track of time, location, and feature vectors 
of all the objects appearing in it. Since the same object can 
appear in multiple frames, we associate these appearances to 
track objects across frames. 

Feature vector preparation: The system prepares an input 
feature vector of an object under two conditions: (1) when an 
object exits the view--within-camera tracking allows us to 
differentiate between entering and exiting objects, and (2) 
when the system (or user) identifies an object of interest and 
wants to sends a matching request to peer cameras. All pre-
pared input feature vectors are stored in a database for 
matching. Preparing input feature vectors involve two steps: 
i) extracting real-valued feature vectors (color histograms in 
our case) from an object, and ii) transforming them based on 
the parameters learned in the training stage and quantizing 
for secure distance evaluation. All computations thus far take 
place locally and do not involve any information exchange 
with peering systems. 

Secure matching: A camera issues a secure matching re-
quest to peers when the system records that a suspicious ob-
ject has entered the view (i.e., Condition (2) in the feature 
vector preparation process). The output of secure matching 
function is binary—match or no-match—based on two input 
feature vectors. An individual system may use its own crite-

basic circuits non XOR gates 
addition ������ � [16] 

subtraction ������ � [16] 
multiplication 	�
��� 2�� � � [16] 
comparison 
	���� � [16] 
multiplexer 	����� � [17] 
minimum 	����� 2� [16] 

 

Table 1. Gate counts for basic garbled circuits 

Figure 1. ADD∗�N, l� Garbled Circuit Construction 
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ria to deem an object as suspicious or labeled as such by a 
human. In our current prototype, a system issues a secure 
matching request for all objects and to all peering cameras. 
The requester becomes a client and the responding system 
becomes a server for secure function evaluation. Upon re-
ceiving a request, the responding system looks up its data-
base to count the number of candidate objects to match. The 
system then opens the same number of communication 
channels to perform secure function evaluation with the re-
quester. The following sections discuss in detail how our 
system implements these computer vision tasks and how we 
design a new distance learning technique to make the secure 
matching function evaluation efficient.  

4. ANALYZING EXISTING TECHNIQUES 
Tracking objects across cameras is done by matching objects 
seen by different cameras. Formally, two cameras collabo-
rate to evaluate a distance function �(�� , ��) where �� and �� 
are the feature vectors extracted by them for the objects to be 
matched. If the distance is smaller than a threshold, it is 
deemed that the objects are the same. The matching accuracy 
depends on the distance function �(∙,∙).  
This section considers two recent techniques to learn a dis-
tance function �(∙,∙). It presents our analysis of how each 
function can be decomposed into local and joint computation. 
The decomposition is important as the complexity of only 
the joint portion determines the complexity of secure compu-
tation. We construct efficient garbled circuits for each tech-
nique and find that they have high overhead. We also con-
sider a simple variant of one of the techniques; we find that 
this variant has low complexity, but poor accuracy. Based on 
these insights, we present in Section 5 a new distance metric 
learning technique, called GCDC, which greatly reduces the 
complexity of the joint computation while being highly accu-
rate. 

4.1. Background: GC-based for Secure Computation 
Yao’s garbled circuit approach provides a foundation to 
construct a secure two-party protocol for computing a func-
tion represented as a Boolean circuit [28]. Security proofs 
are available for GC protocols against semi-honest (i.e., 
honest but curious) adversaries [20]. Software packages are 
available for constructing GC protocols [14][21][38][39]. 
We focus on optimizing the matching function, �(∙,∙), such 
that it allows efficient Boolean circuits. Hence, our work 
complements and benefits from many recent works that fo-
cus on optimizing GC systems [14][16][17][18][38][39]. 

The secure computation protocol starts with a Boolean 
circuit for �(�� , ��). One party (the circuit generator) pre-
pares a garbled version of the circuit, and the second party 
(the circuit evaluator) obliviously computes the circuit’s 
output. Garbling involves generating keys to each wire and 
the garbled truth table for each gate. Thus, the number of 
gates determines the complexity of a GC, impacting the 
performance of generating and evaluating the GC. One ex-
ception is XOR gates which come “free” as shown by Kole-
snikov et al. [17], requiring no crypto operations.  

Table 1 shows the size, measured in terms of the number 
of non XOR gates, of efficient circuit constructions for basic 
functions that compute on two �-bit integers. A key point to 
bear in mind is that the size of a GC increases roughly in the 
order of �(��) for multiplication whereas it increases linear-
ly for other basic circuits. See references [16][17] for details 
of how these circuits can be constructed with free XOR 
gates.2 In constructing GCs, we use efficient circuits from 
prior work [14][16][32] whenever applicable.  

Moreover, we construct an efficient circuit for a com-
monly-used function in our domain, summation of � �-bit 
integers, denoted as ���∗��, �� = 	 ∑ ���

��� , where ��  is an � -bit integer. Figure 1 shows the GC construction. ADD 
circuits are connected in a hierarchical fashion to minimize 
table size. We assume that � is in power of 2. Appendix C 
describes an algorithm to construct ���∗��, ��	when � is 
not in power of 2. The output of ���∗��, ��  is a �� +��
� ��-bit integer. Since the number of non XOR gates of ������	circuit is |������| = �	 as shown in Table 1, the 
size of ���∗��, �� is 

             |���∗��, ��| = ∑ 	�
��
∙ |����� + 
 − 1�|�����

���   

                                   = �� +� − � − 1 − ���� � .                   (1)  

4.2. Background: Distance Metric Learning 
Metric learning has been shown to be highly effective at 
improving matching accuracy [6][31]. It can be described as 
follows. Let �� ∈ ℝ� denote the original real-valued feature 
vector extracted from the object �, where � is the number of 
dimensions. Let	�� denote the positive training set consist-
ing of matched feature vector pairs, and �	 denote the nega-
tive training set consisting of unmatched feature vector pairs. 
The goal of metric learning is to learn a distance function �(∙,∙) that can discriminate positive and negative examples. 
That is, we would like  �(�� , ��)  to be small when �� and �� correspond to the same object and large otherwise. In the 
following techniques, learning �(∙,∙) is equivalent to learn-
ing the parameter �. 

4.3. PRDC 
Zheng et al. propose [31] a distance metric earning method 
called PRDC (person re-identification by Probabilistic Rela-
tive Distance Comparison), for object matching. Its distance 
function is: 

��(
	 , 
�) = �
	 − 
��
�	�
�
	 − 
�� = �	�
�
	 − 
��	��,     (2) 

where |∙| is the entry-wise absolute function; ‖∙‖ is L2 norm; � = [ �� …  �
] ∈ ℝ�×
. They learn a matrix � consisting 

                                                 
2 The minimum circuit (which takes two l-bit integers and outputs 
one of the input values that is less than or equal to the other input 
value) is not discussed in [16]. However, it can be easily construct-
ed by connecting one �-bit multiplexer circuit and one	�-bit com-
parison circuit. 
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of a small set of d-dimensional basis (� ≪ �) in order to 
separate different objects well.  

    Note that �	����� − ���	�� needs to be computed private-
ly (i.e., jointly) as it involves both feature vectors. As a re-
sult, the computation of the function in secure two-party 
computation involves subtraction, absolute value calculation, 
multiplication, and addition. Moreover, the computation 
often operates in high dimensional space, i.e., � is usually 
quite large, which adds much overhead.  Table 2 shows the 
computational complexity of the secure two-party computa-
tion implementation of ��(�� , ��). 

We now construct an efficient GC for PRDC. We as-
sume that each input element is quantized to be an �-bit in-
teger (We discuss in Section 6 how we picked the quantiza-
tion level, �, based on experimental results). The first step of 
Table 2 requires computing the absolute value of the sub-
traction of two �-bit integers. This circuit can be constructed 
by connecting 2Sorter(�) (which takes two �-bit integers,	� 
and �, and outputs ���	(�, �) and ���	(�, �) ) [32]  and one 
regular subtraction circuit. So, the Step 1 requires � num-
bers of 2Sorter(�) and ������ circuits. The Step 2 of Table 
2 performs � × �  multiplications of two � -bit integers 
(which are the outputs of the Step 1). Then, it adds � ele-
ments of the multiplication results, which are 2�-bit integers. 
The Step 3 of Table 2 first performs � multiplications of two �2� + ��
� ��-bit integers and the output of each multiplica-
tion, which is a �4� + 2 ��
� ��-bit integer is summed up (� 
elements total) and the output which is a �4� + 2 ��
� � +

2 ��
� �� -bit integer is compared against a predefined 
threshold estimated in the training stage. In sum, the number 
of non XOR circuits is 

|����| = � ∙ |2���������| + � ∙ |������|+ 	�� ∙ |������| 
                  +� ∙ |���∗��, 2��| +	� ∙ |����2� + 	 ���� ��| 
                  +|���∗��, 4� + 	2 ���� ��|   
                  +|����4� + 	2 ���� � + ���� ��| 
              = 2���� + ��� + 8��� + 3�� + �� + 2������ ��� 

                  +8�� ���� � − 1 .                                                        (3)                         

Since � is large and multiplication is expensive in secure 
two-party computation, PRDC incurs high overhead.  

One possible remedy is to get rid of the absolute-value 
function as shown in (4)  

��(
	 , 
�) = �
	 − 
��
��
�
	 − 
�� = ��

	 − �

� 	��,  (4) 

where � = [ �� …  �
] ∈ ℝ�×
  and � ≪ � . Note that ����  and ����  can be computed locally by each camera 
(without secure two-party computation). As a result, the 
computational complexity is reduced significantly (Table 3). 
However, we find that matching accuracy also degrades 
significantly (Section 6). In constructing an efficient GC for 
this function, we again assume that 	���� is quantized to be 
an �-bit integer and construct the circuit for each step of 
Table 3. We omit the details of circuit construction as they 
are similar to above. The circuit size is 

|����_�����| = � ∙ |������| + 	� ∙ |������| + |���∗��, 2��| 
                                +|����2� + 	 ���� ��| 
                            = 2��� + 2�� + � − 1.                                   (5) 

4.4. MCC 
In order to lower complexity without sacrificing accuracy, 
we consider a different approach, MCC (Metric learning by 
Collapsing Classes) [9], which has been shown to have good 
performance for visual matching [31]. Since the method in 
[9] requires large amount of computation in the training 
stage, especially if the feature space is high dimensional, we 
use Principal Component Analysis (PCA) [15] for dimen-
sionality reduction. Assume ��� ∈ ℝ�  ( ≪ � ) is the new 
feature vector after PCA,  

                                         
 	 = !
(
	 − 
"),                                  (6) 

where ! ∈ ℝ�×� is projection matrix that maps the original �-dimension space into   dimensions ( ≪ �); �" ∈ ℝ� is the 
mean vector over the training data. The distance function is 
expressed as 

���
 	 , 
 �� = �
 	 − 
 �����
�
 	 − 
 �� = ��

 	 − �

 ���,  (7) 

where = [ �� …  �
] ∈ ℝ�×
 ,  ≪ �, and # ≤  . Similar to 
(4), �����  and �����  can be computed locally without in-
voking secure two-party computation. In addition, the di-
mensionality reduction is also performed locally. However, 
secure computation still needs expensive multiplication cir-
cuits (Table 4).  

In constructing a GC for MCC, we again assume 
that	����� is quantized to be an �-bit integer and construct 
the circuit for each step of Table 4. This circuit is similar to 
PRDC_woABS but with � replaced by #. The circuit size is 

|���| = # ∙ |������|+ 	# ∙ |������|+ |���∗�#, 2��| 
                 +|����2� + 	 ���� #�| 
            = 2��# + 2�# + # − 1.                                                    (8) 

 intermediate steps circuits needed 

1 ��� − ��� 
� subtraction 

� absolute value 

2 	����� − ��� 
� × 
 multiplication 
(� − 1) × 
 addition 

3 �	����� − ���	�
�
 


 multiplication 
(
 − 1) addition 

 

Table 2.  PRDC computation 

 intermediate steps circuits needed 
1 	���� , 	���� (local computation) 
2 	���� − 	���� 
 subtraction 

3 �	���� − 	���� 	�
�
 


 multiplication 
(
 − 1) addition 

Table 3.  PRDC w/o absolute computation 
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5. OUR TECHNIQUE: GCDC 
Based on experience with the analysis above, we developed 
a new technique called GCDC (Garbled Circuit Distance 
Computation). Our goal is to push most computation to be 
local and minimize joint computation. We observe that the 
distance function ���∙,∙� is equivalent to computing the Eu-
clidean distance in another space specified by �. In order to 
avoid the multiplication operation, we replace the Euclidean 
distance function with the histogram intersection function 
after linearly projecting to a new space by �. The histo-
gram intersection function (9) has also been shown as an 
effective metric in classification and pattern recognition 
[19][29] and it is defined as   
                             $%�&	 ,&�� = ∑ '()	(ℎ	
 	, ℎ�
 	)�


�� ,                   (9) 

where	$� = [ℎ�
� … ℎ�



]� ∈ ℝ�


 , $� = [ℎ�
� … ℎ�



]� ∈ ℝ�


  are the 
vectors with nonnegative entries. The new distance function 
is: 

  ���
 	 , 
 �� = −$%��

 	 + *+, 	�

 � + *+� 
                   = −∑ '()�,


�
 	 + *	,,

�
 � + *	��


�� ,                (10) 

where � = [ �� …  �
] ∈ ℝ�×
 ,  ≪ �  and # ≤  , and % ≥ 0  is a predefined parameter that ensures the non-
negativity of ��

���� + %		for any feature vector ���. Note that 
although the value of ���∙,∙� seems to be negative, we can 
always add a positive constant scalar to make it a valid dis-
tance metric, and it will not change the formulation of our 
metric learning, so we discard the scalar here and in the fol-
lowing discussion. The secure two-party computation com-
plexity of distance function ���∙,∙� is shown in Table 5. Ob-
serve that significant computation is local and joint compu-
tation uses simple operations.  

However, just defining ���∙,∙� is not enough. For it to be 
a valid approach, we must also develop an efficient way to 
learn �. Our approach for doing so is motivated by [9]. Our 
goal is to learn a linear projection matrix, such that the pairs 
in set �� have small distances, and the pairs in set �	 have 
large distances. Define a conditional distribution over points � ≠ & such that  

                      -��
|(� = �������	,���


�	
=

�������	,���


∑ �������	,���
��	
								( ≠ 
.      (11) 

Ideally, if all the pairs in set �� have small distance, and all 
the pairs in set �	  have large distances, the distribution 
would become “bi-level”, that is,  

                            -�(
|() ∝ .1											(/			�
 	 , 
 �� ∈ 0�

0											(/			(
 	 , 
 �) ∈ 0�                (12) 

Therefore, the cost function '�(�) is defined as  

                      /�(�) = ∑ 1�2-��
|(��-��
|(�3	   

                                  = ∑ ∑ -�(
|() × ���	(��(�|	)
��(�|	)

)��		  ,              (13) 

where (�[∙ | ∙] is K-L divergence [3] which measures the 
distance between two distributions. Substituting (11) and 
(12) into (13), we obtain,  

                  /�(�) = ∑ ���
 	 , 
 ��	,�,
���	,����∈��

+ ∑ ���(4	)	            (14) 

We introduce a regularization term '�(�)	to bound the val-
ues of �����  in such a way that we can always find a 
nonnegative scalar % to make all the entries in 	����� + %) 
nonnegative for all i (Appendix A). 

                           /�(�) = ∑ ,


,
 = *�(�
�)

�

��                (15) 

Moreover, to satisfy the equality of self-distance, that is,  

                              ���
 
 , 
 
� = ���
 � , 
 ��									∀		5 ≠ �            (16) 

an additional term '�(�) is added (Appendix B), 

                                    /�(�) = ∑ (∑ ,



 	�


�� )�	                      (17) 

The final objective function is the sum of the above three 
terms: 

                              6��� = /���� + /���� + /����                (18) 

The metric learning problem is formulated as finding � that 
minimizes the objective function *(�): 

                                       �7 = argmin� 6(�)                            (19) 

Gradient descent method is employed to solve the optimiza-
tion problem. The gradient vector is       

             
��(�)

���
= ∑ ∑ ((-��
|(� − -�(
|()) × �(
 	 , 
 � ,,
))��		   

                          +2,
 + 2∑ ((∑ ,�
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 	),                        (20) 

where                 
         


(���, ���,��) = +−���																								�'			��
���� < ��

����
−���																								�'			��

���� > ��
����

−
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�
,��� + ���-							�'			��

���� = ��
����             

We now describe an efficient GC for GCDC. We first 
discuss preprocessing steps (Steps 1 and 2 of Table 5) and 
then discuss circuit size. Given any real-valued feature vec-

Table 4.  MCC computation 

 intermediate steps circuits needed 
1 ��� = ��(�� − ��) (local computation) 
2 	����� , 	����� (local computation) 
3 	����� − 	�����   subtraction 

4 �	����� − 	����� 	�
�
 

  multiplication 
 − 1 addition 

 

 intermediate steps circuits needed 
1 ��� = ��(�� − ��) (local computation) 
2 	����� + !", 	����� + !" (local computation) 
3 min(. )   min operation 
4 ∑ min�. ��

��	   ( − 1) addition 

 

Table 5.  Our GCDC computation 
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tor �� ∈ ��, it will be transformed into �� ∈ �� with much 
lower dimension based on PCA and linear mapping, 

                                 �� � ������� � ��	 
 ��,                        (21)       

where � , � , ��  and �  are the parameters obtained in the 
training stage, and each party knows them. Since the secure 
two-party computation only takes integer input, each entry 
of �� is first normalized to a real number from 0 to 1 and 
further quantized into an 	-bit integer value to form a 
-
dimensional input vector ���. Finally, the matching between 
input vectors ���  and ���  is performed through secure two-
party computation. Through the secure two-party computa-
tion [14], there is no information leakage, so the privacy is 
guaranteed. GCDC simplifies the GC needed for secure 
function evaluation, as it only requires integer comparison 
(CMP), min (MIN), and addition (ADD). The circuit re-
quires two vectors, ��� and ��� (
 	-bit integers) and the com-
parison threshold, �̂ . Figure 2 shows the GC of GCDC 
method. The circuit size is 

|����| � � ∙ |�����	| 
	 |���∗��, �	| 
 |����� 
 	 ���� �	| 
              � 3�� 
 � � 1 .                                                             (22)  

6. COMPARING THE TECHNIQUES 
We now use four real datasets to evaluate GCDC and the 
three techniques in Section 4. We show that 1) GCDC has 
comparable or better accuracy, and 2) the number of gates 
for GCDC is 6x fewer than MCC and over 200x fewer than 
PRDC. PRDC_woABS has fewer gates than GCDC but has 
very poor accuracy.  

Test datasets: We use two public datasets, VIPeR [11] and 
i-LIDS [24][25], and two of our own datasets, which we call 
human dataset and car dataset. VIPeR is the world largest 
publicly available person re-identification dataset. It consists 
of the well-cropped snapshot images of 632 people under 
outdoor scene, e.g., Figures 3(a) and 3(b). For each person, 
two images are captured under different viewing angles and 
lighting conditions which make the appearance vary and 
increase the difficulty of the re-identification. i-LIDS is ex-
tracted from a multiple-camera tracking video scenario [25] 
captured in an airport area. We use the subset iLIDS-AA, 
which has images of 100 people. Example images are 
shown in Figures 3(c) and 3(d). 

To collect our datasets, we set up two cameras in our 
building pointing at two different adjacent streets and col-
lect multiple video clips.3 The clips are captures at different 

                                                 
3 The cameras deployed in our experiment recorded videos of passers-by, 
making them implicit human subjects in our video data set.  To allay priva-

times of the day and total 207 minutes. Because the cameras 
are at different locations, the size and perspective of the 
objects they capture is different. Some cropped images are 
shown in Figures 3(e)-(h). From the video clips that we cap-
tured, we form two datasets, one with humans and one with 
cars. For the human dataset, we extract 114 people from 100 
minutes video clips. For the car dataset, we extract 83 cars 
from 40 minutes video clips. 

Experimental methodology: To focus on the effectiveness 
of various distance metric learning methods, we ran the ex-
periments by using manually-cropped snapshots of objects 
(e.g., Figure 3), so the within-camera tracking errors do not 
affect the results. For VIPer and iLIDS dataset, the cropped 
objects are already provided; for our two datasets, we man-
ually cropped objects from video frames. In Section 8.1, we 
will quantify the end-to-end error of our system in realistic 
settings where the objects are extracted automatically by 
sTrack.  
    For each dataset, we randomly select 80 objects (68 for 
our car dataset) as the training set and 15 objects as the test-
ing set in each trial. The training set and testing set do not 
overlap, i.e., each object only appears either in training set 
or testing set. In the training set, a pair of snapshots of each 
person or car under different views form the positive set ��, 
and all pairs of images of different people are the negative 
set ��. They are used in learning the parameters mentioned 
in Section 5. While doing the testing, we evaluate the 
matching functions against 15 objects based on the learned 
parameters. However, in real settings, a camera may capture 
objects at a faster (slower) rate if pointed at a busy (quite) 
street. We use 15 to represent a moderately busy street. We 
report the average of ten trials for each dataset. 

As mentioned earlier, for humans, we use color histo-
gram as the input feature because it is resilient against the 
scale of the object. For cars, the feature is extracted in the 
similar manner except that the multiple stripes are extracted 
based on the principal axis of the car. In this way, the fea-
ture representation is rotation invariant. 

                                                                                  
cy concerns, one author was stationed at the site explaining that the video 
would be used to evaluate human and car tracking algorithms.   While our 
institution does not require ethics board approval, had we been required to, 
we would have noted that the observations were made in a public place, are 
not dissimilar to other surveillance in public places, and that the observa-
tions would be used exclusively for training and testing the effectiveness of 
algorithms-not to identify specific individuals or behaviors. 

(a) (b) (c) (d) (e) (f) 

(g) 

(h) 
Figure 3. Examples of the snapshots in the database. (a) and (b) are from 

VIPeR database, and (c) and (d) are from iLIDS dataset. In these two 

datasets, the images are already normalized into the same size. (e) and (f) 

are from our human database, and (g) and (h) are from our car dataset. 

Figure 2. Garbled Circuit of GCDC 
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      We use the Receiver Operational Characteristic (ROC) 
curve as the accuracy evaluation metric4. ROC curve is 
commonly used for binary classification evaluation. In our 
case, we adjust the threshold and evaluate the true positive 
rate (TPR) and the false positive rate (FPR) for each thresh-
old. The more accurate the method is, the ROC curve would 
be close to the upper-left corner, which corresponds to high 
TPR and low FPR. For the computation of PCA, we choose 
the principal components so that the cumulative energy ex-
ceeds 0.95. The scalar � in (21) is set as 1.5. 

Impact of the training set on accuracy: Before presenting 
comparison results, we describe how we determined training 
set size and quantization levels in our experiment (and our 
system). The size of the training set of course affects match-
ing accuracy. The ROC curves under different training set 
sizes are presented in Figure 4. It shows that the accuracy 
goes up as the training set size increases from 20 to 120. 
However, the accuracy improves only slightly when the size 
of training set increases beyond 80. We thus use 80 as the 
size of training data in our experiments. 

Impact of quantization on accuracy: To generate integer 
inputs to a Boolean circuit for secure computation, we quan-
tize the input vector into one of a finite set of prescribed 
                                                 
4 When raw distance value between inputs is available (which is not in our 
case), it is better to use the Cumulative Matching Characteristics (CMC) 
curve [31] as the accuracy evaluation metric.  

integer values. The larger the quantization level, the smaller 
the impact on accuracy. Figure 5 shows the ROC under dif-
ferent quantization levels of the tests on iLIDS. We also 
include the result of using original real value without quan-
tization for comparison. As shown in the figure, the quanti-
zation level should be at least 128 levels for good accuracy; 
that is, 7-bit or above is required to represent each entry of 
the input vector to secure two-party computation. To mini-
mize the loss of accuracy, we use 256 levels(	 � 8) in all 
our experiments. 

6.1 Accuracy results 
First, we present the accuracy results for the VIPeR dataset. 
Figure 6 shows the ROC curves under different matching 
functions. Interestingly, the PRDC_woABS method incurs 
low cost for secure computation, but the accuracy drops 
significantly compared to the rest. On the other hand, 
GCDC has similar accuract to MCC while reducing the 
computational cost (next section). 
    Figure 7 shows the results for the iLIDS dataset. As for 
the VIPeR dataset, GCDC has no accuracy degradation. The 
performance of all methods in the iLIDS dataset is lower 
than the VIPeR dataset due to occlusions (e.g., the person 
with a luggage in Figure 3(c)).  
    Finally, we study our two datasets. Figures 8 and 9 again 
show that GCDC has comparable accuracy to PRDC and 
MCC, the two state of the art methods. Since the size of the 

Figure 7. ROC curve of iLIDS database. 

Figure 6. ROC curve of VIPeR database. 

Figure 4. ROC curve with varying training set sizes (VIPeR) 

Figure 5. ROC curve with varying quantization levels (iLIDS) Figure 8. ROC curve of our human database. 

Figure 9. ROC curve of our car database. 
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object is larger in our database than in the others, the histo-
gram-based features are more representative to the objects, 
leading to better performance for most methods than in the 
VIPeR and iLIDS datasets. 

6.2. Trade-off between Accuracy and Overhead 
Tables 6-9 summarize the matching accuracy and overhead 
for different methods. As the measure of overhead, we com-
pute the number of non-XOR gates using the equations 
(3)(5)(8)(22) and the parameters shown in each table. We 
use AUC (Area Under the Curve) to represent accuracy 
characteristics of each method. AUC value ranges from 0 to 
1. As ROC curves get closer to the upper-left corner (low 
false positive rate with high true positive rate), AUC in-
creases. For each table, we shade the cell of the smallest 
number of non XOR gates or the largest AUC value to make 
the comparison easier.  
    The followings are highlights of the comparison results: 

• PRDC_woABS results in the smallest number of non 
XOR gates for three datasets, but it has very poor accu-
racy. Thus, we do not consider it to be a viable method.  

• Both PRDC and MCC provide accurate object match-
ing results. GCDC provides similarly accurate results 
for all four datasets and even outperforms PRDC and 
MCC for two datasets.  

• The number of non XOR gates for GCDC is on average 
261 times smaller than PRDC and 6 times smaller than 
MCC.  

Thus, we conclude that GCDC is a promising alternative 
to PRDC or MCC for secure object matching. In the next 
section, we show how GCDC performs in a real prototype 
system. 
 

7. sTrack: DESIGN & IMPLEMENTATION 
We now describe our prototype of the sTrack community 
surveillance system. We first describe how we implement 
various key tasks and then how we integrate individual 
components into a working system. 

7.1. Implementation of Key Tasks 
Each site (i.e., camera) in our system is configured with 
information about one or more peer sites against which ob-
ject matching should be done. This information includes the 
peer’s location relative to the site and how to contact it (IP 
address and port) when matching is needed. Each site inde-
pendently keeps track of objects’ information, including 
location, entry and exit timestamps, and feature vectors. 

Tracking within a camera: We employ state of the art 
computer vision algorithms for background subtraction and 
estimating object states between frames. All of this computa-
tion involves only local processing (i.e., no information ex-
change needed), and thus does not affect secure computation. 
Figure 10 shows the flowchart of the modules that we devel-
oped for tracking objects within a single camera. For each 
new frame, we first perform background subtraction fol-
lowed by blob extraction. The background subtraction mod-
ule determines whether the pixel belongs to the background 
or foreground based on a statistical background model rep-
resented as a Gaussian distribution per pixel. After back-
ground subtraction, we can extract the blobs that represent 
the foreground objects [10]. The output is a binary image 
(0=background, 1=foreground). 

The tracking module keeps tracking the states of the ob-
jects including their location, size, and velocity. Given the 
extracted blobs of a new frame, we use Kalman filter [27] to 
estimate the current state of each tracked object. The module 
then determines whether a tracked object is under occlusion 

Figure 10. Tracking objects within a single camera module. 

VIPeR dataset non XOR gates AUC 
PRDC 499,623 0.8515 

PRDC_woABS 579 0.7468 
MCC 10,298 0.9059 
GCDC 1,778 0.9017 

 

Table 6.  Summary table for VIPeR dataset  

(� =864; 
 =4;  =71) 

iLIDS dataset non XOR gates AUC 
PRDC 499,623 0.8151 

PRDC_woABS 579 0.6404 
MCC 11,022 0.8697 
GCDC 1,902 0.8653 

 

Table 7.  Summary table for iLIDS dataset  

(� =864; 
 =4;  =76) 

human dataset non XOR gates AUC 
PRDC 379,902 0.8473 

PRDC_woABS 2,175 0.7643 
MCC 10,009 0.9062 
GCDC 1,729 0.9272 

Table 8. Summary table for the human dataset  

(�=864;	 =69; 
=3 for PRDC; 
=15 for PRDC_woABS) 

car dataset non XOR gates AUC 
PRDC 379,902 0.8877 

PRDC_woABS 579 0.8395 
MCC 7,831 0.9471 
GCDC 1,351 0.9567 

 

Table 9. Summary table for the car dataset  
(�=864;	 =54; 
=3 for PRDC; 
=4 for PRDC_woABS) 
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by checking if its predicted state is consistent with the obser-
vation in the new frame. If the object is not occluded, the 
result from blob extraction is deemed reliable, and the near-
est blob is selected as the corresponding measurement. Oth-
erwise, mean-shift method [5] is used to obtain the meas-
urement. By using these measurements, we update the Kal-
man filter and obtain the current state of the object. 

Each camera performs tracking as above and stores entry 
and exit time stamps, tracking history, and feature vectors of 
all the objects in a local database. This stored information is 
used when the camera performs the evaluation of the match-
ing function between a local object and objects captured by 
other cameras. 

Generating feature vectors: Since color information has 
been demonstrated to be one of the most robust features that 
is invariant to different scales and perspectives [31][12], we 
adopt the color histogram as the basis of our feature vectors. 
One can always include more features, e.g., texture, edge 
features or even biometric features like faces, to enhance the 
accuracy, and our proposed metric learning method can still 
be applied without change. As in [31], we divide an object 
into six horizontal regions. In each region, the color histo-
grams of RGB, YCbCr, and HSV color spaces are extracted. 
Each channel has 16 bins, and the histograms are concate-
nated into the feature vector in a 864-dimension feature 
space. The feature vectors are transformed into the valid 
input vectors which have low dimensional integer entries 
before the matching function is evaluated via secure two-
party computation. 

Tracking object across cameras: When an object enters 
the view of Site A, the feature vector is extracted and the 
matching process is initialized against all peer sites. (We 
currently issue match requests for all objects entering the 
view, but in the future, it could be limited to suspicious ob-
jects such as those that the camera has never seen before or 
those specified by users.) For these processes, we term the 
initiator of the process (Site A) as the client and other sites 
as servers. Each server performs a match against each of the 
objects that appeared within a 10 minute time window. The 
length of the time window can be determined based on the 
user’s interest or the prior knowledge about the topology of 
the cameras. For instance, in a community area with moder-
ate size, it normally takes no more than 10 minutes for a 
people walking acorss the cameras. The output (obtained by 
both parties) is a binary value indicating if the client’s ob-
ject matched against any of the server’s objects. Note that in 

the secure two-party computation, neither the server nor the 
client learns the real distance value but only a binary value 
representing the match or nonmatch, so the feature vectors 
from the other party cannot be inferred, i.e., there will be no 
information leakage. 

This lets Site A learn where the object came from. Match 
requests can also be issued sometime after the object exits 
the camera’s view, to learn where the object went. But we 
do not implement it yet and instead rely on incoming match 
requests from other peers to learn this information. Based on 
the results of incoming and outgoing match requests, each 
site can independently infer the activity pattern of suspi-
cious objects that come under its view.  

Training: As described earlier, matching requires an offline 
training phase to learn the distance metric. This learning is 
done in a pairwise manner. That is, a set of parameters is 
learned for each pair of cameras, rather than learning global 
parameters. As inputs for the learning, we use objects that 
the site owners have whitelisted for the purposes of learning 
out of a pool of all objects seen by the camera. As explained 
earlier, a set of around 80 objects is enough for robust learn-
ing.  

7.2. System Integration 
Our system is developed as an application on top of Home-
OS [7]. HomeOS applications are written primarily in C#, 
but for performance reasons, we implemented image pro-
cessing functionality (e.g., background subtraction, blob 
extraction, and tracking) as a C++ library. This allows us to 
perform these functions in real time even on weak PCs such 
as netbooks. The secure matching functionality is imple-
mented in Java by extending Huang et al.’s library [14]. 
This code is invoked as a separate process that takes the 
feature vector that needs to be secretly matched as input. For 
each potential match, there is one process on the client side 
that communicates with a process on the server side. These 
two processes communicate with each other to determine if 
their respective input feature vectors match.  

When the server receives a match request from the client, 
it starts one process per potential match. Each process is 
started with a feature vector that belongs to a different ob-
ject and uses a different TCP port for communication. Then 
the server returns to the client the list of ports where each 
process is listening. Upon receiving this list, the client starts 
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Figure 11. Online tracking performance. 
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one process for each port. The feature vector that is input to 
client-side processes is the same, corresponding to the ob-
ject that triggered the matching process. The client and 
server read the outputs (binary values) of these processes to 
determine if any of the pairwise matches yielded a positive 
result. 

This way of doing things reveals to the client how many 
(but not which) objects were seen by the server in the 
matching time window. If this information is sensitive, to 
hide it, the server can always initiate matches against a fixed 
number of objects. This fixed number should be an upper 
bound on the number of objects that can be seen in the 
matching time period. When fewer objects have been seen, 
the remaining processes can be supplied random feature 
vectors as input. 

8. EXPERIMENTAL RESULTS 
This section evaluates our prototype for its accuracy of 
tracking and the computation time of secure object matching.  

8.1. Object Matching Accuracy 
In Section 6, what we studied was the accuracy of matching 
objects across cameras assuming that object extraction in 
individual cameras was perfect. In practice, however, object 
extraction may not be perfect as extra pixels (which do not 
belong to the object) may be attributed to the object or some 
object pixels may be missing. In this section, we quantify 
the end-to-end accuracy of our system, which includes inac-
curacies due to imperfect object extraction. For this experi-
ment, we use the video clips from our datasets with total 
length 47 minutes as the input to our system. The system 
has two sites and each site is fed the video gathered by one 
of the cameras in the datasets. As in the actual system, each 
site performs independently single camera tracking within 
its own view and store objects’ information (e.g., feature 
vectors and timestamps) in its local database. The sites per-
form object matching using parameters from offline training. 
    Figure 11 shows the matching accuracy. We see that there 
is only a slight loss in accuracy compared to offline testing 
due to errors caused by tracking within a single camera. 
These errors result from the cluttering background, severe 
occlusion, and abrupt change of the lighting condition.  

8.2. Performance of Secure Matching 
We now benchmark the performance of secure matching 

in our system. For this benchmark, we use two netbooks 
with 1 GHz processor and 2 GB memory that run Windows 
8. We use this relatively cheap and weak computer on pur-
pose; we expect that many camera sites will not be equipped 
with a powerful computer and will instead use small, head-
less PCs or with embedded processors like smart cameras. 
We configure the netbooks to use each other as peers for 
matching. Using a network emulator, we introduce a round-
trip network delay of 100 ms between the netbooks to mim-
ic real-world situations in which sites may not have low-
latency network paths between them. 

We measure the total time from the client issuing the 
match request to it recovering the result of the match. Thus, 
this time includes the time for initial handshake in which the 
client learns about the ports on which the server processes 
are running and the time to start client and server processes. 
We use randomly selected feature vectors for matching. 
Matching performance does not depend on the values in the 
feature vector; it only depends on the size of the feature 
vector, which is independent of the objects being matched. 
We use # = 128, � = 8, and .̂ = 9280 for the experiments. 
Thus, the number of non XOR gates is 3,199 using Equation 
(22). We conduct ten different trials with each number of 
objects and plot the mean the standard deviation across 
those trials. Figure 12 shows the results as a function of the 
number of objects against which a match is performed (i.e., 
the number of objects that the server saw in the specified 
time period). We see that the time it takes to securely match 
objects increases linearly with the number of objects that 
need to be matched. For single-object matches, the time is 
roughly 4 seconds. For matching 4-16 objects, the total time 
amounts to roughly 3 seconds per match. Thus, even if as 
many as 20 objects need to be matched, secure matching 
will complete in under a minute.  

This level of performance, which was obtained on a rela-
tively weak computer, can lead to a practical, real-time sur-
veillance system. Consider the following back-of-the-
envelope analysis. Let the community be such that one new 
object enters every 0  minutes on average, each camera 
needs to consult � neighboring, and that the time period of 
interest is 1 minutes. In this community, a camera will issue 
�

�
 requests per minute for matching, where each request will 

involve 
�

�
 object matches. Thus, a camera needs to perform 

2 ×
�

�
×

�

�
 matches per minute. The factor of two is due to 

the fact that a camera will answer match requests as well. 
With 0 = 5, � = 10, 1 = 10, this number is 8 per minute, 
well within the performance bounds of our system. 

To shed light on where time is spent during the match 
process, Table 10 shows the breakdown of the time to match 
one pair of objects. Since our secure computation protocol is 
built on [14], we used the same parameters as in [14] (e.g., 
80-bit wire labels and|#| = 128  and |2| = 128  for the 
Naor-Pinkas oblivious-transfer (OT) protocol [35]). As the 
table shows, a large portion of the overhead (1.4 – 1.8 sec-
onds) results from the computation intensive OT preparation 

Table 10.  Secure computation overhead for matching a pair of ob-

jects: Note that total is greater than the sum of individual overheads 

since we only report a few expensive steps. 

 circuit evaluator circuit generator 
circuit preparation 638 (ms) 655 (ms) 

OT preparation 1,442 (ms) 1,765 (ms) 
circuit garbling & 

evaluation 
765 (ms) 816 (ms) 

total 3,722 (ms) 3,875 (ms) 
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step since the netbooks only have a moderate CPU. Since 
[14] implements oblivious transfer extension [36], which 
enable a pair of sites to run any number of oblivious trans-
fers at a small cost after preparation, we can hide this setup 
latency by having a pair of sites go through this OT prepara-
tion only once (instead of every object match instance as is 
currently implemented). We find that the computational 
overhead of local computation of GCDC (e.g., matrix multi-
plications) is negligible and so is the bandwidth overhead of 
secure computation. On average, machines exchanged 542 
packets for secure matching. 

9. DISCUSSION 
This section discusses limitations of the current prototype 
and remaining challenges in realizing privacy-preserving 
distributed community surveillance systems. 

Proving the security of the entire system: We assume that 
each site is semi-honest and pairwise object matching can be 
secured using secure two-party computation. However, the 
surveillance system as a whole involves multiple pairwise 
object matching tasks across many pairs of sites. Thus, our 
system is secure only if the secure two-party computation 
protocol is composable. We defer the investigation of this 
issue to future work.  

Scaling secure object matching to a large number of 
peers: As shown in Section 8, the performance overhead of 
secure matching increases linearly in the number of objects 
to match. Hence, as more neighbors join the surveillance 
system, the overhead will increase, requiring individual sites 
to equip with better CPUs and more memory. However, like 
some computer vision works [33][34], we can potentially 
utilize the topology of cameras and the traveling time be-
tween the cameras to improve matching efficiency. Based 
on the object’s time and spatial information, cameras only 
need to send matching requests to the neighboring cameras 
since the object is likely to travel to the areas covered by 
these cameras. Plus, given the average traveling time be-
tween two cameras, the matching time window can be ad-
justed accordingly. According to the recent development of 
the video surveillance research [44], the topology infor-
mation and the average traveling time can be obtained with-
out human efforts. This way, we can not only make com-
munity surveillance systems to scale better but also reduce 
false positives. 

Weakness against querying attacks: Secure object match-
ing can stop nosy neighbors from collecting the other par-
ty’s input feature vectors to de-identify objects. However, it 
cannot prevent them from tracking the appearance of a cer-
tain object in others’ camera by continuously querying other 
cameras with the feature vector of the target object. In an 
ideal setting, a participating camera should be only allowed 
to initiate matching for the object that is actually captured 
by the camera. However, in practice, this is almost impossi-
ble to ensure e.g., an adversary can launch an “analogue” 
attack by staging a photograph. We can guard against such 
nosy queries to some extent by requiring that neighbors who 

issue a disproportionally large number of queries share raw 
footage of the object if there is a match. We believe that 
such targeted sharing of footage of suspicious objects with 
other neighbors who have also seen the object poses few 
privacy concerns. 

On combining computer vision and privacy: The most 
challenging aspect of our work was that it needed deep un-
derstanding of both vision algorithms and Boolean circuit 
construction. Individual authors were experts in at most one 
of these areas. One of our hopes with this work is to lower 
the bar for developing privacy-preserving algorithms for a 
range of vision-related problems. Our analysis and circuit 
construction of various algorithms should help privacy re-
searchers analyze and modify other vision algorithms for 
secure computation and vision researchers to develop new 
algorithms that permit low-overhead secure computation.  

10. CONCLUSION 
We presented a distributed surveillance system that can 
track objects (e.g., human, cars) across multiple cameras 
without leaking any visual information about the objects 
other than the binary matching output. Our system is based 
on a new distance metric learning approach that, compared 
to state-of-art approaches, has 1) 6-200 times lower com-
plexity of a Boolean circuit for secure two-party computa-
tion, and 2) similar or better tracking accuracy. Experiments 
using our prototype show that the performance overhead of 
private tracking is moderate, taking around 3 seconds even 
on a netbook. Distance metric learning is a powerful ap-
proach for matching that applies to a range of other domains 
(e.g., face recognition, matching hand-written text, and bi-
ometric matching); we hope that our work will spur future 
research into privacy-preserving matching techniques and 
systems in such domains. 
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APPENDIX A 
Denote the original high dimensional feature vector as 

�� � ����⋮����. Since we use the histogram-based feature, each 

entry is a real number from zero to one. Because the princi-
pal component matrix � � ��� …��� is an unitary matrix, 
the entries of the new vector after dimensional reduction  

                                 ��� �  !���⋮!���# � ����� � ��	                         (A.1) 

are bounded. Assume ‖���‖	 � �, and according to Cauchy-
Schwarz inequality, 

               �$�
����	� % ‖$�‖��‖���‖�� % ‖$�‖�� ' (�           (A.2) 

In order to confine the dynamic range of �
 , we add the 
term ∑ �


��
 � ������ �


��  as another cost function in 
our objective function to make ‖�
‖		 bounded. If ‖�
‖		 
is bounded, ��


���� 	 is bounded; that is, for all the vectors ��� , we can always find a nonnegative scalar �  such that 
make �


���� ! � " 0, ∀	&. 

APPENDIX B 
In order to make the distance metric function '
�∙,∙  valid, 
self-distance of all the given feature vectors ��� should be the 
same. 
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If we assume ∑ �

�����


��  equals to zero for all * , '
���
, ��
  is equal to '
����, ���  for all & + 	 . Thus, we 

introduce the cost function ∑ �∑ �

���� �


��

	

�  in the objec-
tive function. 

APPENDIX C 
We present the algorithm (Algorithm C.1) for constructing 
the ,''∗�-, 	 � 	∑ ���

���  circuit and computing the num-
ber of gates when - is not in power of 2.  

First, we decompose - into the summation of a set of 
numbers consisting of power of 2. 

. � /	01	 -2 , - � ∑ 2�����
��� , 	01	 - "4��� 5 ⋯ 5 4� "0. For * � 0 to . 7 1, we compute the summation of 2�� 

numbers by constructing sub-circuits ,''∗�2�� , 	 . By us-
ing ,''�.  , the outputs of these sub-circuits are further 
added up sequentially in the order from the one with small-
est number of bit to the one with largest number of bit. The 
size of ,''∗�-, 	  is equal to gateN. Figure C.1 shows an 
example when  - � 7. 

 
 

 

Figure C.1. Example circuit when N = 7 

1.   Initial � $ �, % $ 0, ' $ ( � 1, and gateN = 0. 
      � $ ∑ 2
���	

��
 , log�� ,-��	 . ⋯ . -
 , 0 
2.   while(� . 1) 
3.          m = 2
� 
4.          construct sub-circuit ���∗�m, �� 
5.          roots[%] = output of ���∗�m, �� 
6.          gateN = gateN + |���∗�m, ��|,  
             where |���∗�m, ��| is obtained by Eq.(1) 
7.          � $ � �m 
8.          % $ % 2 1 
9.          ' $ ' � 1 
10.  end while 
11.  if(� $$ 1) 
12.        roots[%] = the remaining 3� 
13. end if 
14. Initial 4 $ ( � 1, right_tree = roots[( � 1] 
15. while(4 , 1) 
16.        Connect roots[r-1] and right_tree with an 

ADD�� 2 -���� circuit. 
17.        right_tree = output of the above ADD circuit 
18.        gateN = gateN + |ADD�� 2 -����| 
19.        4 $ 4 � 1 
20. end while 

Algorithm C.1.  The algorithm of ���∗��, �� when � is not in 

power of 2. 


