A Solver for Quantified Boolean and Linear Constraints

Lucas Bordeaux
Microsoft Research, Cambridge
Cambridge, United Kingdom

lucasb@microsoft.com

ABSTRACT

We make a number of contributions to the understanding
and practical resolution of quantified constraints. Unlike
previous work in the CP literature that was essentially fo-
cused on constraints expressed as binary tables, we focus
on Presburger Arithmetics, i.e., Boolean combinations of
linear constraints. From a theoretical perspective, we clar-
ify the problem of the treatment of universal quantifiers by
proposing a “symmetric” version of the notion of quantified
consistency. This notion imposes to maintain two constraint
stores, which will be used to reason on universal and exis-
tential variables, respectively. We then describe a branch &
bound algorithm that integrates both forms of propagation.
Its implementation is, to the best of our knowledge, the first
CP solver for this class of quantified constraints.

1. INTRODUCTION

Quantified constraints. Quantified constraints allow to
express many problems that cannot be modelled using clas-
sical constraint programming tools. Quantifiers (i.e., 3 and
V) are a powerful way to express uncertainty: when taking
a decision based on a value which is prone to some measure-
ment error, one may prefer, for instance, robust solutions
that are valid for all possible values of this variable. Quan-
tifiers are also a natural tool for reasoning about adversarial
situations: when making a decision, it is sometimes desirable
to express the objectives of other agents, for instance com-
petitors, in addition to one’s own objective and constraints.
Quantifier alternation allows to reason on the scenarios that
can arise as all agents make a sequence of decisions interac-
tively.

To be fair, it is still unclear, for these classes of appli-
cations, whether general-purpose quantified solvers will be
useful tools in the future or whether problem-specific exten-
sions of CP which use only bounded alternation, or syntacti-
cal variants of quantifiers, will be preferred. For instance, a
number of recent works on uncertainty [12] and adversarial
reasoning [8, 4] propose extensions of CP which, although

Lintao Zhang
Microsoft Research, Silicon Valley
Mountain View, California

lintaoz@microsoft.com

expressible using quantifiers, do not require a full-fledged
quantified constraint solver. As the tools for solving quanti-
fied constraints advance, we nevertheless expect to see new
applications based directly on quantified constraint solvers
instead of special extensions. What is clear in any case is
that the better understanding we get of quantifier alterna-
tion in general, the better insight we gain on all these par-
ticular cases, and on the field of uncertain and adversarial
reasoning as a whole. Following a number of works on quan-
tified CSP [3, 7], this paper focuses on the general problem
of quantified constraints, in which arbitrarily many quanti-
fier alternations are allowed.
The problem of asymmetrical treatment of 3 and V.
Unlike classical (existentially quantified) constraints, quan-
tified constraints are closed under negation'. As a conse-
quence, the reasoning performed by solvers for quantified
constraints should be symmetric, in the sense that dual
constructs like V and 3 should be treated by dual types of
reasoning. Intuitively, if a solver can easily solve a quanti-
fied formula ¢, it should as well be able to efficiently solve
the formula —¢, in which the quantifiers are reversed. Yet
most solvers fail to pass this test (see [13] for experimen-
tal evidence using the most advanced solvers for Quantified
Boolean Formulae). The reason is that these solvers inte-
grate techniques that are best adapted to only one side of
the problem, namely its existential variables. For instance,
the notion of quantified arc-consistency is essentially useful
for existential variables only [3, 2], and all the variants of
quantified consistency we are aware of (e.g., [9]) are weak
when it comes to pruning universally quantified variables.
The solution is to reason on the original formula (which
we can think of as the “viewpoint of the existential player”)
and on the negation of this formula (“viewpoint of the ad-
versary, or universal player”) at the same time. This infor-
mal idea was suggested by several authors ([3], workshop
version of [1]). In [10], the authors discussed a formulation
using Quantified Boolean Formulae (QBF) of certain classes
of planning problems that captures the views of both exis-
tential and universal parties. However, in their formulation,
called Q-ALL SAT, only two levels of quantifier alternation
are allowed. A symmetric way to solve QBF which goes
beyond this restriction was proposed recently [13] (see Sec-

Permission to make digital or hard copies of all or part of this work for tion 4.4). In this paper, we show how such a symmetric

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

!Given a CSP 3X.¢(X), it is possible to encode in CSP

bear this notice and the full citation on the first page. To copy otherwise, to the formula 3X.—¢(X) (existence of a non-solution), but it
republish, to post on servers or to redistribute to lists, requires prior specific 15 10t possible in general to encode its negation V.X.—¢(X)

permission and/or a fee.
SAC’07March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/00035.00.

absence of any solution) using an existentially quantified
formula. For QCSP, the situation is, on the contrary, totally
symmetric.

treatment can be adopted for arbitrary types of quantified
constraints, by proposing a symmetric notion of consistency
that can be used to reason on both existential and universal
variables.

A solver for bounded Presburger arithmetics. We
then describe a solver which uses the proposed symmetric
propagation mechanisms in a branch & prune (MAC-like)
algorithm. The input language of this solver is somehow
different from previous implementations (e.g., [7]) in that
we do not use a generalisation of binary CSPs, but instead
Boolean combinations of linear constraints. This language
is well-known in the Automated Reasoning literature under
the name Presburger Arithmetics.

Outline. Section 2 describes the type of quantified con-
straints we primarily focus on, i.e., Bounded Presburger
Arithmetics. Section 3 presents the symmetric notion of
consistency. Section 4 shows how this abstract notion of
consistency can be implemented in practice and maintained
during the search. Section 5 presents more details on our
implementation and Section 6 gives concluding remarks.

2. PRESBURGER ARITHMETICS

While most recent works in quantified constraints were
based on the QCSP framework [7, 11], we choose to fo-
cus on a different quantified language, namely Presburger
Arithmetics (PA, i.e., the quantified language of Boolean,
linear, and Boolean combinations of linear constraints). We
think this is an interesting quantified language, because ad-
dition and Boolean constraints are the most basic constructs
provided by most CP solvers, and an overwhelming ma-
jority of problems can be expressed using these constructs.
Furthermore, using a simple but well-defined language pre-
vents us from a number of drawbacks of CSPs, especially bi-
nary CSPs (non-readability, benchmarking typically based
on random instances). PA is extremely complex (hard for
NDTIME(2%"), which is due the fact that it can express
extremely large numbers. Since in many applications it the
numbers that are involved represent physical quantities that
cannot be arbitrarily large, we focus on a version of PA in
which every variable ranges over a finite set of values. We
call this problem Bounded Presburger Arithmetics, or BPA.
It is immediate to see that with this restriction the problem
is PSPACE-complete, and that it remains so even if we have
a single quantified linear constraint.

A formula in BPA is defined by the following grammar:

N = int.cst | var | intcst-var | N + N
B := boolcst | boolvar | -B |B AB | N <N
F == B |Vzxeitv. F|3z€itv. F

We did not specify the syntax for Boolean and numer-
ical constants (bool_cst and int_cst) or intervals (itv), but
there is little mystery surrounding them. Variables (var and
bool_var) are simply considered as names built over the al-
phabetical symbols (these are disjoint from the other math-
ematical symbols used in the syntax). For the sake of sim-
plicity, we only presented a minimal complete language but
the techniques of the paper generalise to connectives like V,
—, <, =, #. Note that the previous syntax is also limited to
formulae in prenex form; additionally it is convenient to re-
strict oneself to well-formed formula, in which every variable
name appearing in the matrix is quantified exactly once.

3. SYMMETRIC TREATMENT OF 3lv

3.1 Preliminary definitions and notations

In this section we consider a closed formula F' of the form:

Q11’1 GDl...QnCCn e D,. ¢($1xn) (1)

Where ¢ is a quantifier-free Presburger Arithmetics? for-
mula, each @Q; is a quantifier chosen among {V, 3}, and each
D, is a finite set of integer values.

Let X denote the set of variables {z1 ...xz,}; the set of
variables x; with ¢ < k will be noted Xx. The set of exis-
tential variables will be noted E and the set of existential
variables with index at most k£ will be noted E}; symmetri-
cally, the set of universal variables (with index at most k)
will be noted A (resp. Ag).

Given a set of variables V', a tuple ¢ that defines an integer
value t;, for every variable x; € V' will be called a V-tuple.
Given a subset of variables U C V| the restriction of t to U,
noted t|v, is the U-tuple which associates the same values
as t to the variables of U and is undefined on the other
variables. We say that an X-tuple satisfies the relation ¢ iff
@(tz, ... ts,) is true in the considered theory.

3.2 Game-theoretic viewpoint on alternation

Quantifier alternation can be defined precisely using a
game-theoretic viewpoint, in which a fictitious “existential
player” chooses the values for the existential variables and
tries to make the formula true, while an adversary interac-
tively assigns the universal variables and tries to make the
formula false.

DEFINITION 1 (GAME-THEORETIC SEMANTICS [5, 2]).

strategy: An J-strategy s is defined by giving, for each exis-
tential variable x;, a function s, whose domain is the
set of Ai—1-tuples and which returns values in D,.

scenario: The set of scenarios for an 3I-strategy s, moted
sce(s), is the set of X-tuples t which are such that
te;, = Sz, (t|a,_,), for each x; € E.

winning strategy: An 3-strategy s is a winning 3-strategy
if every scenario t € sce(s) satisfies the matriz ¢. The
set of winning 3-strategies of the formula F will be
noted WIN?(F).

Intuitively, an 3-strategy can be thought of as a tree defin-
ing how the existential player is planning to react to every
sequence of choices for the universal variables; this tree is
formally defined by a set of functions that specify, for each
existential variable, which value should be assigned to it
depending on the values assigned to its universal predeces-
sors. The scenarios are the X-tuples that are constrained
to “follow the rules” imposed by a strategy, they correspond
to the branches of the tree. In a winning strategy, all the
branches correspond to solutions to the formula ¢. Winning
strategies are a central concept in understanding quantifier
alternation; it is not hard to show the following:

Fact 1. A formula F is true (i.e., PA = F) iff it has a
winning 3-strategy.

2The results in this section can be adapted to other classes
of quantified constraints.

The previous definitions were mentioned in the literature,
without explicitly mentioning that they model the viewpoint
of the existential player. To allow a more symmetric reason-
ing, we propose the dual notion of (winning) V-strategy:

DEFINITION 2 (NEW, DUAL DEFINITIONS).

strategy: A V-strategy s is defined by giving, for each uni-
versal variable x;, a function sz, whose domain is the
set of Ei—1-tuples and which returns values in D.,.

scenario: The set of scenarios for a V-strategy s, moted
sce(s), is the set of X-tuples t which are such that
te; = Sz, (t|E;_,), for each z; € A.

winning strategy: A V-strategy s is a winning V-strategy
if for every t € sce(s), t does not satisfy the matriz ¢.
The set of winning V-strategies of the formula F will
be noted WINY (F)

Basically the main thing to understand about V-strategies
is that they correspond to the 3-strategies of the negation
of the formula. In particular:

Fact 2. A formula F is false (PA | —F) iff it has a
winning V-strategy.

Note that, since every formula is either true or false in clas-
sical logic, a formula will either have one or several win-
ning J-strategies, or (exclusive or) one/several winning V-
strategies.

3.3 A Symmetric Notion of Consistency

In a classical (i.e., existentially quantified) CP world, the
meaning of consistency is clear: a value is consistent for a
given variable iff at least one solution assigns the value to
this variable. In a quantified setting the meaning of consis-
tency is less trivial: under which conditions can we remove
a value from the domain of a quantified variable with proven
guarantees that the truth of the whole quantified expression
will not be altered? The notion of quantified consistency,
suggested in [3] and stated formally in [6, 2], answers this
question for the case of existential variables: a value is con-
sistent if at least one winning strategy has a scenario that
assigns the value to this variable. We complete the pic-
ture and use our symmetric notion to define a notion of
consistency which allows to deal with both existential and
universal variables:

DEFINITION 3 (SYMMETRIC CONSISTENCY).

outcome: The set of I-outcomes (resp. V-outcomes) of a
QCSP 1is the set which contains the scenarios of all
winning 3-strategies (resp. V-strategies):

out™(F) = U sce(s) out”(F) = U

SEWIN3(F) SEWINY (F)

sce(s)

consistency: A value a € D; is I-consistent w.r.t. x; iff
there is a winning 3-strategy which, in one scenario at
least, assigns z; to a, i.e., if there exists t € out> such
thatt,, = a. Symmetrically, the value a is V-consistent
w.r.t. x; iff there is a winning V-strategy which, in one
scenario at least, assigns x; to a, i.e., if there exists
t € out” such that te;, = a.

The essential property of this symmetric definition of con-
sistency is that it does indeed allow us to remove values from
the domains of the variables. In particular, the notion of V-
consistency correctly expresses the possibility of removing a
value from the domain of a universally quantified variable:

PROPOSITION 1 (CORRECTNESS). Given a formula F :
Q121 € D1 ...Qnxn € Dy. ¢(z1...2n) and avaluea € Dy, :

e if Q; = 3, then (1) if a is T-inconsistent w.r.t. x;,
then removing value a is equivalence-preserving, i.e.,
F' is equivalent to the formula Qix1 € Di...3z; €
Di\{a}...Qnzn € Dn. ¢p(z1...20); (2) if a is V-
inconsistent w.r.t. x; then the formula is true.

o if Qi =V, then (1) if a is V-inconsistent w.r.t. x;,
then removing value a is equivalence-preserving, i.e.,
F is equivalent to the formula Qix1 € Di...Vx; €
D\ {a}...Qnzn € Dy. ¢(x1...20); (2) if a is 3-
inconsistent w.r.t. x; then the formula is false.

(Proofs are omitted due to lack of space.) It was noted
in [2] that determining whether a value is (3-)consistent is
PSPACE-complete; it is straightforward to see that the same
complexity result holds for V-consistency, and remains true
even when the matrix is reduced to a single quantified linear
constraint. Last, we note the following:

FAcT 3. A walue a is V-inconsistent for variable x; w.r.t.
a quantified formula F iff it is 3-inconsistent for x; w.r.t.
-F.

4. DETECTING INCONSISTENT VALUES
DURING THE SEARCH

Since the problem of detecting inconsistent values is com-
plex, it is wise, within a branch & prune framework, to
detect inconsistent values only incompletely. We focus on
one approach, which is to use local consistency techniques
for this purpose. In this approach, classical in CP, a com-
plex formula is broken into a set of small constraints for
which the solver natively defines a set of propagators. Some
new technicalities arise, however, if we want to prune both
existential and universal variables.

In this section we explain the approach in detail; we first
recall how the matrix of a BPA formula can be syntactically
decomposed, then analyse how the information obtained
from each constraint of the decomposition can be used to
make deductions on the original formula. This analysis calls
for a framework in which two constraint stores are main-
tained. We conclude this section with a comparison with a
technique recently proposed in QBF.

4.1 Decomposition of BPA

Since it is impossible to deal with a complex Boolean ex-
pression (in the sense of Section 2) as a whole, we can de-
compose it using the following (informal) rules:

olk.x] ~ Fz. p[z] Nz = (k- z);

oz +y]~ Jz. P[] Az = (z +y);

oz Vyl~ 3z €[0,1]. p[z] Az = (zVy);

o[~o] ~ 3z € [0,1]. 6[2] A 2 = (~a);

oo <y~ 3z € [0,1). Gz Az = (@ < p).
where we use a notation ¢[s] to denote the fact that formula
¢ has a subterm s (in practice ¢ will typically be the matrix

of the formula). The initial domains of the variables intro-
duced when decomposing a multiplication or addition are
computed in the usual way, by simple interval evaluation.
Applying these rules it is easy to see that any BPA formula
rewrites into the “conjunctive primitive form”:

Qiz1...Qnxn.F21 ... I2p. (/\z‘el..mci)

where each ¢; is a primitive constraint of the form z = (k.z),
z=(z+vy), z=(xVy), z=(x), or z = (z <y). The
interest of this decomposition is that treating each of these
primitive constraints becomes tractable.

4.2 Detecting inconsistency locally

How do deductions made on each formula of a decompo-
sition relate to the original formula? The following proposi-
tion is a symmetric version of a result in [2]; it states under
which conditions it is possible to detect inconsistent values
by reasoning on each constraint independently:

PROPOSITION 2
Given a formula F of the form Q1x1..Qnxn. ¢ :

o Ifop= /\jel_'m ¢j, then the following is true for everyi:
if a value is J-inconsistent w.r.t. Q1x1..Qnxn.c; then
it is also -inconsistent w.r.t. F'.

o Ifop= Vjel_'m ¢j, then the following is true for everyi:
if a value is V-inconsistent w.r.t. Q1x1..Qnxn.c; then
it is also V-inconsistent w.r.t. F'.

Given a conjunction of constraints, it is therefore not pos-
sible in general to detect V-inconsistency by having a look at
a subset of the constraints of the formula. What is possible,
however, is to use Fact 3 and to reason on the negation of
the formula. Any means to detect I-inconsistent values on
formula = F will allow us to detect V-inconsistent values on
formula F'.

4.3 Maintaining Consistency During the Search

Our approach therefore maintains two constraint stores:
let S denote the store of constraints obtained by decom-
posing the original formula F' using the rules of Section 4.1,
and let S denote the store obtained by decomposing for-
mula —F using these rules, and in which the quantification
is reversed. Note that both stores are conjunctions of con-
straints. Each of these stores has its own copy of the original
variables of the problem (z1...zy).

We detect 3-inconsistent values by running a propagation
algorithm on store S1 and V-inconsistent values by running
a propagation algorithm on store S>. A classical (domain
or interval) propagation algorithm can be used in each case.
For certain quantifier patterns one can design slightly im-
proved propagation rules. For instance, if a store contains
a primitive constraint of the form x +y = z (z, y, and z
appearing in this order in the prefix) where z is quantified
existentially, y universally and z existentially, we can use
the following propagation rules:

I,

LNz —y 2" —y*]
I. n

-
- ‘IZ [‘7’.7 +yiax++y+}

where I, = [z, "] denotes the interval of values for vari-
able x. These rules compute a correct interval approxi-
mation of the values that are J-consistent w.r.t. formula

(CONDITIONS FOR LOCAL INCONSISTENCY).

dxVy3dz. x +y = z, and the bounds computed for variable x
are tighter than the ones obtained using the classical rule,
ie., I, N[z~ —yt, 2t —y~]. This is an improvement of
the same kind as what is done in QBF, where quantified
unit propagation can be used to do more deductions than in
SAT.

The main algorithm for the resolution of a quantified for-
mula Qiz1 € D1...Qnxn € Dn. ¢(x1...2,) is described
below; it shows how to exploit 3-propagation (propagation
on original store, or S1) and V-propagation (propagation on
negated store, or S2) during the search.

Algorithm eval
return rec_eval(1)
where
function rec_eval (i:variable_index): bool
propagate()
if inconsistent(S1) then return false
if inconsistent(S2) then return true
if Q; = 3 then
for each a € D; do
if instantiate(x;,a, S1) then
if ~instantiate(x;,a, S2) V rec_eval(i 4 1) then
return true
done
return false
else % Q; =V
for each a € D; do
if instantiate(z;,a, S2) then
if —instantiate(z;,a, S1) V —rec_eval(i + 1) then
return false
done
return true
fi
end
end algorithm

A last remark needed to prove the correctness of the al-
gorithm is the following:

FAacT 4. Let Flz; < v], where v € D; represent the BPA
formula obtained by fizing the value of z; to v (i.e., fixing
the domain D; to the singleton {v}). We have (—F)[z; <
v] = =(Flz; < v]).

4.4 Comparison with combined
disjunctive/conjunctive forms

A related approach to the symmetric treatment of 3 and
V was recently proposed by the second author in the context
of QBF [13]. We briefly describe how it can be formulated
in the context of BPA and compare it to our approach. The
idea is, instead of maintaining a classical conjunctive form,
to preprocess the problem in order to obtain a disjunction
of two matrices: one in conjunctive form and one in dis-
junctive form. More precisely, let ¢(z1..2n) be quantifier
free formula; using the decomposition technique sketched in
Section 4.1 we see that:

e ¢(x1..2n) can be decomposed into a primitive conjunc-
tive form: we can compute an equivalent formula of the
form 3z1..2p. A(21..2n, 21..2p) where A is a conjunction
of primitive constraints;

e —¢(x1..xz,) can also be decomposed into a primitive
conjunctive form: we can compute an equivalent for-
mula of the form 3zy..z4. B(z1..Zn, 21..24) where B is
a conjunction of primitive constraints.

Now taking a quantified formula F' of the form Q11 ... Qnxy.

¢(x1..x5), we can rewrite it in a Combined Conjunctive Dis-
Junctive Normal Form: because ¢(z1..x,) is equivalent to
o(x1..20n) V 7m@(z1..n), we can express F as:

Q121 ...QnTn. (O(z1..2n) V 2 (mp(x1..20)))

which rewrites to:

(Fz1.2zp. N\, ai(1..%0, 21..2p))
lel"'Q"mn'< Vo a(Jz1zg. N\ bi(T1.Tn, 21..24))

and ultimately to:

Orzr ... Quit. < (Fz1..2¢. N\, ai(@1..Tn, 21..2q)) >

Vo (Vai.zg. V,bi(z1..2n, 21..2))

where b; denotes the negation of the primitive constraint
b;. In this approach, V-inconsistent values are detected by
reasoning on the disjunctive part of the matrix; a dual form
of reasoning is needed because in the disjunctive part we deal
with the negation of primitive constraints (in QBF these
are known as cubes i.e., conjunctions of literals, and dual
techniques to unit propagation have been developed to make
deductions on cubes).

The approach we have developed throughout Section 4.2,
on the other hand, will maintain the two formulae, repre-
senting respectively F' and —F:

Q171 ... Qnan.321..2p. N\, ai(T1..70, 21..2p)
Q1z1...Qnxn.321..2. N\, bi(z1..2n, 21..2¢)

where Q; denotes the dual quantifier to @;. Compared to
[13] this approach is more lightweight in the sense that the
language of primitive constraints does not need to be closed
under complement. The two stores that are maintained are
conjunctions and the deduction technique applied to both of
them is a classical propagation (possibly enhanced to take
into account quantifier patterns as suggested in Section 4.3).
To use the approach of [13] we would require to define propa-
gators of V-inconsistent values for each of the negated primi-
tive constraints z # (k.x), z # (z+vy), z # (xVy), z # (—z),
and z # (z < y).

5. THE SOLVER

We developed a solver for bounded Presburger arithmetics
that implements the search algorithm described through-
out the paper. Our goal in the development of the solver
was twofold: first, we wanted to provide a first implemen-
tation that could be distributed for comparison with other
approaches to quantified constraints, and that we could use
on the longer term as a platform for the development of new
algorithms. Second, we wanted to start gathering a collec-
tion of instances in a simple format. Both the executable
and the instance set are available at the web-page of the first
author www.research.microsoft.com/~1lucasb.

6. CONCLUSION

Summary of the contributions. We have formalised a
“symmetric” notion of consistency that captures the mean-
ing of a pruning of both existential and universal variables;
we feel that this extension of the formalism of [2] was neces-
sary since the notion of quantified arc-consistency was so far
essentially restricted to existential variables. We have then
proposed an approach to maintain the two symmetric forms
of consistency during the search, using two constraint stores.

This proposal is closely related to recent work on Quanti-
fied Boolean Formulae, and we have discussed the respective
benefits of the two approaches.

Extending the formalism of [2], we have made an effort
to make all definitions as formal as possible, and to prove
the algorithms we proposed. We believe this is important
since the use of quantifiers makes many notions harder to get
right; a number of properties that are taken for granted on
classical constraints are less obvious, or do simply not hold,
when we reason on quantified constraints (see Proposition
2).

We have, lastly, proposed an implementation of the pro-
posed techniques for the language of (bounded) Presburger
Arithmetics. To the best of our knowledge, this is the first
implementation of a solver based on CP techniques for this
important class of problems. Because of the difficulty to
solve quantified constraints, the solver is far from the effi-
ciency which would make it widely usable, but the imple-
mentation of the core of the solver is robust and the solver
should be extensible.

Extensions of the work. Our goal is now to integrate in
the platform more advanced techniques; experiments show
that propagation techniques alone deal poorly with some
instances, and more evolved algorithms inspired from the
QCSP framework [7] or QBF have to be considered.

7. REFERENCES

[1] C. Ansétegui, C. P. Gomes, and B. Selman. The
Achilles’ heel of QBF. In AAAI pages 275-281, 2005.

[2] L. Bordeaux, M. Cadoli, and T. Mancini. CSP
properties for quantified constraints: Definitions and
complexity. In AAAI pages 360-365, 2005.

[3] L. Bordeaux and E. Monfroy. Beyond NP:
arc-consistency for quantified constraints. In CP,
pages 371-386, 2002.

[4] K. N. Brown, J. Little, P. J. Creed, and E. C. Freuder.
Adversarial constraint satisfaction by game-tree
search. In ECAI pages 151-155, 2004.

[5] H. Chen. Quantified constraint satisfaction and
bounded treewidth. In ECAI, pages 161-165, 2004.

[6] H. Chen and M. P&l. Optimization, games, and
quantified constraint satisfaction. In MFCS, pages
239-250, 2004.

[7] I. P. Gent, P. Nightingale, and K. Stergiou.
QCSP-Solve: A solver for quantified constraint
satisfaction problems. In IJCAI pages 138-143, 2005.

[8] S. Manandhar, A. Tarim, and T. Walsh.
Scenario-based stochastic constraint programming. In
IJCAI pages 257-262, 2003.

[9] P. Nightingale. Consistency for quantified constraint
satisfaction problems. In CP Workshop on
Quantification in Constraint Programming, 2005.

[10] C. Otwell, A. Remshagen, and K. Truemper. An
effective QBF solver for planning problems. In AMCS,
pages 311-316, 2004.

[11] K. Stergiou. Repair methods for quantified CSPs. In
CP, pages 652-666, 2005.

[12] N. Yorke-Smith and C. Gervet. Certainty closure: a
framework for reliable constraint reasoning with
uncertainty. In CP, pages 769-783, 2003.

[13] L. Zhang. Solving QBF by combining conjunctive and
disjunctive normal forms. In AAAI 2006. To appear.

