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Abstract— Strong consistency is an important correctness
property for replicated databases. It ensures that each transaction
accesses the latest committed database state as provided in
centralized databases. Achieving strong consistency in replicated
databases is a major performance challenge and is typically not
provided, exposing inconsistent data to client applications. We
propose two scalable techniques that exploit lazy update propaga-
tion and workload information to guarantee strong consistency by
delaying transaction start. We implement a prototype replicated
database system and incorporate the proposed techniques for
providing strong consistency. Extensive experiments using both
a micro-benchmark and the TPC-W benchmark demonstrate
that our proposals are viable and achieve considerable scalability
while maintaining strong consistency.

I. INTRODUCTION

Database systems are an integral part of enterprise IT
infrastructures. In these environments, replication is a com-
monly used technique in databases to increase availability and
performance. In many cases, the database clients are other
computer systems. This creates a large and complex distributed
system with intricate dependencies and hidden communication
channels.

Traditionally, when a database system is replicated to scale
its performance, i.e., all replicas execute client transactions,
there is an explicit trade-off between performance and con-
sistency. A replicated database may be configured to expose
inconsistent data to clients by providing weaker consistency
guarantees. Some inconsistencies stem from the fact that there
is a (usually considerable) delay between when an update
transaction is executed at a replica and when its effects
have been propagated to all the other replicas. Weakening
consistency allows the replicated database system to achieve
higher performance; providing strong consistency penalizes
the scalability of the replicated system.

Many real–world applications would benefit from replicated
databases being transparent, providing the same semantics as
a centralized database. In particular, centralized databases pro-
vide strong consistency, which guarantees that each transaction
sees the latest committed state of the database. Therefore,
replicated database systems should ideally provide the same
strong consistency guarantees [7].

We highlight the importance of strong consistency using the
following example. Consider two automated clients, AgentA
and AgentB , running under separate administrative domains
which implement a simple hidden communication channel.
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AgentA executes a transaction T1 to update a particular
database, based on a request received from AgentB , e.g.,
to trade shares for AgentB . When the transaction commits,
AgentA notifies AgentB that the operation has completed.
Both agents presume that the updates of T1 are reflected in
any direct interaction – or indirect interaction via a third
party – with that database. Here communication between
AgentA and AgentB occurs via a hidden channel, which
is increasingly common in applications that span multiple
administrative domains. In a centralized database the latest
committed database state is immediately available, making
strong consistency natively guaranteed. However, replacing a
centralized database with a replicated database system exposes
these subtle inconsistencies (e.g., AgentB may not observe
the effects of T1 for a considerable interval), unless strong
consistency is provided.

This challenge has been recognized by the database commu-
nity for years, with early replicated databases using techniques
such as eager update propagation to provide strong consistency
[20]. According to this eager approach, the commit of an
update transaction is executed on all replicas synchronously
before responding to the client. In this case, any new trans-
action from any client observes the committed changes. How-
ever, committing transactions on all replicas synchronously
is expensive, requiring tight replica synchronization. Many
replicated systems use weaker consistency guarantees, such
as session consistency [12] or relaxed currency [6], [21], to
improve performance. Still, correct programs using replicated
databases without strong consistency are explicitly written
to handle the increased complexity of data inconsistency;
handling consistency at the application level is tricky and error
prone.

Replicated database systems should ideally provide strong
consistency to clients while preserving their scalability poten-
tial. To that end, we propose two approaches that guarantee
strong consistency in replicated databases while lazily prop-
agating the effects of update transactions. The first approach
monitors the progress of propagated updates at each replica
and ensures that replicas are updated before starting a new
transaction. The second approach extends the first approach
and exploits workload specific information, which is easily
available in automated environments, to execute transactions as
soon as the needed subset of data is current. Both approaches
mask the latency required to reflect the effects of an update
transaction on all replicas, but might introduce a delay at the
start of a transaction to apply the needed updates. This delay



allows new transactions to receive the latest committed state
of the data they are going to access.

We build a prototype replicated database system and im-
plement our proposals to experimentally evaluate them. The
results show that the proposed techniques guarantee strong
consistency with scalable performance, outperforming the ea-
ger approach for providing strong consistency and matching
the performance of session consistency. The latter is a weaker
form of consistency guaranteeing that a single client sees its
own committed updates.

Strong consistency is concerned with the effects of com-
mitted transactions and not with overlapping transactions. It
is different from transaction isolation levels [5], [18], such
as serializability and snapshot isolation. This work focuses
on providing strong consistency: this issue has received much
less attention than serializability from the replicated database
research community. We delineate the differences between
strong consistency and serializability and give examples in the
next section.

The main contributions of this paper are the following:
• we propose two scalable techniques that exploit lazy

update propagation and workload characteristics to guar-
antee strong consistency,

• we present a prototype replicated database system and
show how to implement the two proposed techniques,
and

• we experimentally evaluate the proposed techniques and
compare them with eager strong consistency and session
consistency, proving the viability and the efficiency of
our proposals.

The paper proceeds as follows: in Section II we provide the
database model and define strong consistency. We describe
the proposed lazy approaches to provide strong consistency in
Section III. In Section IV we present the architecture and de-
sign of our replicated database prototype and explain how the
proposed techniques for strong consistency are implemented.
The experimental evaluation of our techniques is presented in
Section V. Finally, we discuss related work in Section VI and
draw our conclusions in Section VII.

II. DEFINITIONS AND ASSUMPTIONS

We present a database and transaction model to formally
define strong consistency. We also define session consistency
because we later compare the performance of strong consis-
tency to session consistency. We show the difference between
strong consistency and serializability, and provide example
histories.

A database D is a collection of uniquely identified data
items. A transaction Ti starts with the BEGIN statement fol-
lowed by a sequence of read and write operations on data
items, and terminates with either the COMMIT or ABORT

statement. We denote Ti’s read operation on data item X
by Ri(X) and write operation by Wi(X), while begin and
commit are denoted as Bi and Ci. The sequence of operations
from all committed transactions constitutes a history H .

We adopt the definition of strong consistency in replicated
systems from prior work [7], [12], [16], [17]:

Definition 1: Strong consistency: For every committed
transaction Ti, there is a single-copy history H ′ such that
(a) H ′ is view equivalent to a history H over a single copy
of the database, and (b) for any transaction Tj : if (Ti commits
before Tj starts in H) then Ti precedes Tj in H ′.

Strong consistency guarantees that after a transaction Ti

commits, any new transaction Tj following Ti observes the
updates of Ti. This property is immediately provided in a
standalone database system.

Next, we describe session consistency. Each client submits
a sequence of transactions to the database that defines the
client’s session (S). H is an interleaved sequence of the trans-
action operations contained in all sessions. Session consistency
is then defined as follows:

Definition 2: Session consistency: For every committed
transaction Ti, there is a single-copy history H ′ such that
(a) H ′ is view equivalent to a history H over a single copy
of the database, and (b) for any transaction Tj : if (Ti commits
before Tj starts in H , and session(Ti) = session(Tj)) then
Ti precedes Tj in H ′.

The definition above shows that session consistency is a re-
laxed version of strong consistency: it ensures that transactions
access a consistent state of the database within the bounds of
the session they belong to. Here, a client is guaranteed that
the updates of its last transaction are visible to its new one.
Session consistency is weaker than strong consistency, in the
sense that there is no guarantee for a client’s transaction to
access the updates of committed transactions originating from
other clients.

Although the definitions of strong and session consistency
are associated with serializability in prior work [7], [12], it
is important to distinguish between strong consistency and
the isolation level. Both are correctness properties and they
are different: both, one, or none can be provided. Strong
consistency captures the externally visible order of transaction
commits that clients observe. In contrast, serializability and
other transaction isolation levels are concerned with how the
database interleaves the operations of concurrent transactions
[8], [9], [30], [38].

To further clarify the differences between strong consistency
and the isolation levels, we use the following histories involv-
ing two transactions, T1 and T2, executing on two distinct
replicas, Rep1 and Rep2, respectively.
• H1 = {B1,W1(X =1), C1, B2, R2(X =0), C2}
• H2 = {B1,W1(X =1), C1, B2, R2(X =1), C2}
• H3 = {B1, R1(X = 0), R1(Y = 0), B2, R2(X = 0),

R2(Y =0), W1(X =1), W2(Y =1), C1, C2}.
In history H1, T2 starts before the update of T1 on X is
propagated to replica Rep2. T2 accesses the old value of X .
This history is not strongly consistent but it is serializable
and the equivalent serial history is {T2, T1}, though clients
submit T1 first and then T2 to the replicated system. If strong
consistency is enforced, execution follows history H2, which
corresponds to the serial history {T1, T2}. In this case, Rep2



must be updated with the effects of T1 before T2 starts,
allowing T2 to read the latest value of X .

Finally, history H3 is strongly consistent and snapshot
isolated, but is not serializable [5]. Both T1 and T2 read the
latest values of X and Y , but there is no equivalent serial
history.

III. PROVIDING STRONG CONSISTENCY

This section describes three approaches for providing strong
consistency. We start with the traditional eager approach and
then propose two novel approaches employing lazy update
propagation. We abstract the details of the replicated database
system to show the generality of our proposals, and provide
concrete implementations in Section IV.

A. Eager approach

Traditionally, strong consistency is provided by committing
each update transaction at all replicas before notifying the
originating client. Strong consistency is guaranteed here be-
cause once a client learns that its transaction has committed,
each new transaction observes the client’s committed changes.
According to this approach, the execution time for an update
transaction includes a delay, termed global commit delay,
representing the latency to commit the transaction at the
additional replicas (i.e. all replicas except for the originating
replica) and to collect the corresponding acknowledgments.
This delay is dictated by the slowest replica to apply and
commit the transaction during each commit round. This ap-
proach has therefore poor scalability, unless the workload is
dominated by read-only transactions.

B. Lazy coarse-grained approach

The previous discussion suggests that waiting for all replicas
to commit is not efficient. An alternative is to return as soon
as the update transaction has committed at the hosting replica,
while its effects are lazily propagated to the other replicas. In
this case, when a new transaction is dispatched to a replica,
there may be pending updates that have not been locally
applied yet. To enforce strong consistency, we propose that the
replica delays starting the transaction until it updates its state.
We term this delay synchronization start delay. Effectively, we
shift the waiting from the global commit delay to waiting for
the single receiving replica to apply the needed updates. This
approach is termed coarse-grained because the transaction
start is delayed until all previous updates are applied.

We explain how this approach works assuming that the
replicated system has a mechanism to monitor the progress
of update transactions and to tag each new transaction with
the required database state that should be accessed. When an
update transaction commits at its host replica, the state of the
local database is updated. The replicated system keeps track
of the updates that the transaction performs and propagates
them to other replicas in the background. The replica hosting
the transaction sends the commit success acknowledgment
to the client with no delay, avoiding the wait encountered
in the eager approach. Afterwards, when a replica receives
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Fig. 1. Comparison of approaches providing strong consistency

a new transaction request, it first applies the updates from
transactions that have committed (if any) and then executes
the new transaction. Here, the system ensures that the new
transaction receives the latest committed state of the database,
so any update committed by any client on any replica will be
“visible” to the new transaction.

Theorem 1: The lazy coarse-grained approach guarantees
strong consistency.

To contrast the differences between the eager and the lazy
approaches, we use the example in Figure 1. The system has
three replicas, Rep1, Rep2, and Rep3. Transaction T1 commits
on Rep2 and then transaction T2 starts on Rep3. The eager
approach (Figure 1(a)) requires transaction T1 to commit at
all replicas before responding to the client; transaction delay
is dictated by the slowest replica (Rep1). Then T2 starts
immediately, as Rep3 already contains the updates of T1.
Conversely, the lazy approach allows Rep2 to notify the client
as soon as transaction T1 is locally committed, though the
other replicas have not been updated yet. When Rep3 receives
the request for a new transaction, it may need to delay the
transaction until the updates of T1 have been applied. Note
that Rep1 has not been updated when T2 is started. The lazy
approach shrinks synchronization delays.

Compared to the eager approach, the lazy coarse-grained ap-
proach reduces the degree of replica synchronization, leading
to a more efficient system. Under this approach, transaction
execution includes a synchronization start delay at the receiv-
ing replica, rather than a global commit delay that is set by
the slowest replica. We show that this is a favourable trade-off
in Section V.

Compared to session consistency, the coarse-grained ap-
proach provides a stronger consistency guarantee at the cost
of higher transaction delays. Session consistency delays trans-
action start until the previous updates of the same client have
been applied to the replica, while the coarse-grained approach
delays transaction start until updates from all clients have been



applied.

C. Lazy fine-grained approach

The lazy coarse-grained approach for strong consistency
requires the replicas to apply all committed updates before
starting a new transaction. We shall now examine how this
restriction can be relaxed, i.e., whether we can apply only
a subset of the committed updates to synchronize a replica
at transaction start while maintaining strong consistency. A
transaction typically accesses a small portion of the total
data-set managed in the database; so the system can achieve
the same result by updating only the needed data-set before
the transaction starts. This approach reduces the number of
updates required at transaction start and allows the transaction
to start early.

An issue that needs to be addressed, however, is how the
system determines the exact transaction data-set a priori.
In practice, this only holds in the trivial case where each
transaction accesses exactly the same records in each table
on every execution. But in automated environments, such as
in e-commerce applications, a predefined set of transactions
is used. Each transaction consists of a sequence of prepared
statements, i.e., SQL statements that access a specific set
of tables but different records depending on the statement
parameters. In such an environment, we take advantage of
the fact that a database is logically partitioned to tables: we
statically extract the table-set that the transaction accesses.
Since the table-set is a superset of the transaction’s data-set,
strong consistency is preserved when a replica installs the
pending updates for the tables included in each transaction’s
table-set before executing the transaction.

Enforcing consistency on the transaction’s table-set suggests
an acceptable trade-off: most likely the table-set is a small
subset of the database but it likely contains more records than
the ones that will be accessed.

Theorem 2: The lazy fine-grained approach guarantees
strong consistency.

In terms of performance, the fine-grained approach can
outperform or match the coarse-grained approach, depending
on the number of tables accessed and the frequency of update
transactions. For instance, if a set of tables is updated by
consecutive transactions, the differences between the two lazy
approaches will be negligible. Conversely, if a transaction
accesses read-only tables, the fine-grained approach allows
earlier start, without waiting for any pending updates. In
contrast, the coarse-grained approach requires installing all
committed updates, even though their absence does not violate
strong consistency for the specific transaction.

Even though session consistency provides a weaker consis-
tency guarantee than the lazy fine-grained approach, the latter
may yield better performance. In most cases the updates made
by the client’s last transaction will be applied faster than the
updates for the new transaction’s table-set, as client interaction
includes delays due to application processing, network data
transfer and client-side processing time. Still, if we return to
the example of the transaction that accesses read-only tables,
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the fine-grained approach allows replicas to start this trans-
action immediately. In contrast, session consistency requires
the replica to first apply the updates of the client’s previous
transaction(s), though these are not to be accessed by the new
transaction.

IV. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

To evaluate the viability and the efficiency of the proposed
approaches for strong consistency against session and eager
strong consistency, we implement a replicated database proto-
type and use it as a test platform. Our system is aligned with
the state-of-the-art in modern middleware-based replication
[13], [14], [27], [31], [35] and follows the multi-master archi-
tecture. The main challenge of a replicated database system
is to efficiently keep the different copies consistent in the
presence of update transactions, so this configuration allows
every replica to independently process client read-only and
update transactions. The replication middleware is responsible
for replica control to resolve system-wide conflicts and for
propagating the effects of update transactions.

Our prototype provides transaction isolation by adopting
generalized snapshot isolation (GSI) [16]. This concurrency
control algorithm extends snapshot isolation (SI) [10], [18] in a
manner suitable for replicated databases. It allows transactions
to use local snapshots of the database available on the replica,
while still providing the main correctness and performance
properties of snapshot isolation. Both GSI and SI are multi-
version concurrency control algorithms, imposing a total order
on the commits of update transactions. Note that GSI is weaker
than serializability but conditions exist to check if a workload
runs serializably – and to make it serializable if needed –
under GSI. As an example, the workloads of the TPC-C and
TPC-W transaction benchmarks run serializably under SI and
GSI [16], [19].

Since we need to keep track of the transaction updates
for consistency purposes, we count database versions: the
database starts at version 0, and the version is incremented
when an update transaction successfully commits. Each replica
in the system proceeds through this version sequence though
possibly at different speed.



The architecture of our prototype is depicted in Figure 2.
The system consists of the certifier, the load balancer and a
number of database replicas, each hosting a standalone DBMS
and a proxy. We describe each module next.
Load balancer. The load balancer is the intermediary between
clients and replicas; it hides the distributed nature of the
cluster. The load balancer receives transactions from client
applications, dispatches them to replicas and relays replica
responses back to clients. It routes transactions to replicas
according to its load balancing policy, which is selecting the
replica with the least number of active transactions. The load
balancer does not use workload information for routing, e.g.,
to maximize transaction conflict independence. Its design is
minimalistic for scalability.
Certifier. The certifier [14] performs the following tasks: (a) it
decides whether an update transaction commits, (b) it main-
tains the total order of committed update transactions, (c) it
ensures the durability of its decisions, and (d) it forwards the
updates of every committed transaction to the other replicas,
in the form of a refresh transaction containing the transaction
writeset (i.e., the set of records the transaction has inserted,
updated, or deleted). A transaction T can commit if its writeset
does not write-conflict with the writesets of transactions that
committed since T started (see also [14], [27]).

The certifier handles the database version counter Vcommit.
Each time it certifies a transaction to commit, it increases
this counter and tags the transaction writeset with the current
database version. Then, it notifies the originating replica of the
version at which the transaction should commit and forwards
the refresh writeset to the other replicas. That way, all replicas
commit transactions according to the global order determined
by the certifier.
Replicas. Each replica consists of a proxy and a standalone
DBMS configured to provide snapshot isolation. The proxy
intercepts all requests to the DBMS, including both client
transactions and refresh transactions. It maintains a version
number Vlocal reflecting the version of its local database. Vlocal

is incremented whenever the proxy updates the state of the
database by committing a client update transaction or a refresh
transaction.

For client transactions the proxy forwards the SQL state-
ments to the database and relays responses to clients via the
load balancer. Upon the reception of a transaction commit
request from a client, the proxy first examines the transaction
writeset. If the writeset is empty, the transaction is read-only,
so the proxy commits it locally and immediately notifies the
client. If it is an update transaction, (a) it needs to be checked
whether it conflicts with any transaction (possibly originating
from another replica) that has committed after the start of the
transaction and (b) its writeset needs to be forwarded to the
other replicas, if it is certified to commit. These two tasks
are handled by the certifier: the proxy forwards the writeset
to the certifier and awaits the latter’s decision on committing
or aborting the transaction. Upon receiving the decision from
the certifier, the proxy commits or aborts the transaction to
the local database instance and sends the outcome to the

client. The proxy also has a refresh transaction handler that
receives refresh writesets from the certifier. Refresh writesets
are queued and sequentially applied to the local DBMS.
Their commits are interleaved with committing local update
transactions, so as to maintain the global transaction order as
determined by the certifier.

Replicated databases employing transaction certification
need to address the hidden deadlock problem [27]. The certifier
imposes a global ordering to transaction commits; however,
transactions acquire locks in a different order inside each
replica. This may lead to a deadlock involving remote and
local transactions (i.e., spanning the proxy and the standalone
DBMS) inside replicas that cannot be handled by the transac-
tion controller of the standalone DBMS. To prevent the hidden
deadlock problem, the proxy performs early certification [14].
If a client statement updates the database content, the proxy
extracts the partial writeset of the update statement and checks
whether it conflicts with the pending (i.e., received but not
applied yet) refresh writesets. In the case of a conflict, the
client’s update transaction is aborted. In addition, when the
proxy receives a new writeset, it checks it against the partial
writesets of the currently active local client transactions and
immediately aborts any conflicting transaction(s).
Fault-tolerance. We briefly outline the fault-tolerance aspects
of this design. We assume the crash-recovery failure model [2],
[29] in which a host may fail independently by crashing, and
subsequently recover. The certifier is lightweight and deter-
ministic, and therefore can be easily replicated for availability
(rather than for performance) [14] using the state machine
approach [39]. The load balancer is lightweight because it
maintains only a small amount of soft state, including the num-
ber of connections currently opened per replica and session
and version accounting (as we shall shortly introduce). The
database replicas, in contrast, maintain hard (i.e. persistent)
state that is orders of magnitude larger than the load balancer’s
state. Therefore, a standby load balancer can be used for
availability.

We next present how strong consistency is implemented
in our prototype using the lazy coarse- and fine-grained ap-
proaches. For reference, we also describe the implementations
for the eager approach for strong consistency and for session
consistency.

A. Lazy coarse-grained strong consistency (CoarseSC)

CoarseSC implements the lazy coarse-grained approach of
Section III-B for strong consistency. The load balancer is the
intermediary between replicas and clients, so it is extended to
enforce strong consistency. It maintains the database version
Vsystem reflecting updates of the database state that clients
may observe. Each time a replica commits a transaction, the
proxy tags its response to the load balancer with the current
value of Vlocal. The load balancer maintains the database
version of the latest transaction committed and acknowledged
to the clients. When a client sends a request for a new
transaction, the load balancer tags it with the the current value
of Vsystem. In turn, when the replica receives the request for a



TABLE I
DATABASE AND TABLE VERSIONS

Transaction Updated tables Database version Table A version Table B version Table C version
Vsystem VA VB VC

0 0 0 0
T1 A 1 1 0 0
T2 B,C 2 1 2 2
T3 B 3 1 3 2
T4 C 4 1 3 4
T5 B,C 5 1 5 5
T6 A 6 6 5 5

new transaction, it checks the version tag and compares it with
its current version Vlocal. If Vlocal < Vsystem there are pending
writesets so the transaction start is delayed until applying
them. This technique ensures that, when the transaction begins,
the writesets of all transactions committed so far have already
been applied to the local database, so strong consistency is
preserved.

B. Lazy fine-grained strong consistency (FineSC)

FineSC implements the lazy fine-grained approach of Sec-
tion III-C for strong consistency. This approach reduces the
synchronization start delay by requiring only the updates
affecting the transaction’s table-set to be applied before trans-
action start. For this purpose, the load balancer and the proxy
maintain, for each table t in the database, a version number
Vt that reflects the latest version of table t. The proxy updates
Vt when locally committing a transaction (local or refresh): it
sets Vt to Vcommit for all tables contained in the transaction’s
writeset. After committing a client transaction the proxy tags
its response to the load balancer with the updated table
versions. Note that the transaction table-set contains the tables
that the transaction accesses, but access to them may be read-
only, so not all versions Vt for the transaction table-set need
to be updated.

The load balancer needs the transaction table-set at transac-
tion start. We implement this by storing the transaction table-
set information in the database; the load balancer queries the
database once to retrieve this information and stores it in
a dictionary mapping transaction identifiers to corresponding
table-sets1. Clients tag their requests for a new transaction
with the transaction identifier. The load balancer uses it to
retrieve the transaction table-set and then, for each table t
accessed in the transaction, checks the corresponding version
Vt. The highest such Vt defines the minimum version Vstart

that contains the latest updates for all the tables accessed by
the transaction, as required by the lazy fine-grained approach.
This version is passed to the replica and used by its proxy
to delay transaction start, if necessary, so as to ensure strong
consistency.

To illustrate how versions are maintained, consider a
database with three tables, (A, B, C), over which transactions

1Another alternative is to tag requests for new transactions with the table-set
to be accessed [3], [28]

are executed. Table I shows how versions Vsystem and Vtable

are managed after a number of update transactions, T1, T2,
T3, T4, T5 and T6, are certified to commit in the system with
the given order. This order is conveyed to the load balancer
through replica responses. The database and table versions
start from 0. When the first update transaction T1 commits,
Vsystem is incremented to 1, and VA is then updated to VA =
Vsystem = 1, while the versions of VB and VC remain 0 since
B and C are not updated by T1. The second update transaction
T2 updates tables B and C and then commits at Vsystem = 2.
Consequently, VB and VC are updated to VB = VC = 2.
Similarly, T3 commits at Vsystem = 3 and changes VB = 3,
T4 commits at Vsystem = 4 and changes VC = 4 and T5

commits at Vsystem = 5 and changes VB = VC = 5.
Next consider a new transaction T6, which reads from and

writes to table A only. T6 starts after T5 commits and is
dispatched to replica i. CoarseSC requires replica i to reach
Vlocal = 5, the version of the latest committed transaction.
However, it is sufficient to have Vlocal = 1 to execute T6

under strong consistency because T6 does not access other
tables. In effect, any version Vlocal ≥ 1 is current enough
for T6. This flexibility reduces the synchronization start delay
since the delay is until Vlocal = 1 rather than Vlocal = 5.

C. Session consistency (SessionC)

SessionC provides session consistency to clients. Our sys-
tem exploits database version to provide session consistency,
as proposed in prior work [12]. We assume that each request
for a new transaction is tagged with the client’s session
identifier (SID). The load balancer keeps account of sessions
by maintaining a dictionary that maps SIDs to database
versions. The proxy tags transaction commit confirmations
with the current value of Vlocal. The load balancer uses
this version to update the corresponding entry in the session
dictionary: map(SID)= Vlocal. Next time the same client
sends a request for a new transaction, the load balancer inter-
cepts the request and tags it with the latest database version
Vsession =map(SID) for this session. This version is forwarded
to the replica and used for synchronization at transaction
start. This technique ensures that, when a transaction begins,
the updates of the client’s last transaction have already been
applied to the local database, so the client sees monotonically
increasing versions of the database.



D. Eager strong consistency (EagerSC)

EagerSC implements the eager approach of Section III-A
for strong consistency. We exploit the certifier to monitor
transaction commits, instead of passing control to replicas,
because it is less loaded than the replicas. As described before,
the certifier decides which transactions commit and forwards
the refresh writesets to all replicas. In this configuration, it
also maintains a counter per committed transaction, denoting
the number of replicas that have committed the transaction.
Each time a transaction is certified to commit, the certifier
creates a counter for the transaction and sets it to 0. After
the replica commits a transaction (local or refresh), the proxy
notifies the certifier and the counter for this transaction is
incremented. When the counter matches the number of replicas
in the system, the certifier notifies the originating replica that
the transaction is globally committed. Then the originating
replica notifies the client about the outcome of the transaction.

V. EXPERIMENTAL RESULTS

Our main objective is to show that the proposed Coars-
eSC and FineSC approaches provide strong consistency effi-
ciently, i.e. they have better performance than the EagerSC ap-
proach. The performance of the SessionC approach represents
an upper bound since it provides weaker consistency.

A. Experimental Setup

Testbed. We use a cluster of machines to deploy the replicated
database system. Each machine runs Windows Server 2008
and has one Intel Core 2 Duo 2.2 GHz CPU, 4 GB DDR2
SDRAM of main memory and a Seagate Barracuda 250 GB
7200rpm disk drive. All machines are interconnected using a
Gigabit Ethernet switch. We monitor the system load using
the Windows Sysinternals utilities. We implement the proxy,
certifier, and load balancer as multi-threaded C# programs. We
use a separate machine to host the certifier and vary the num-
ber of database replicas between one and eight replicas. Each
replica runs an instance of the Microsoft SQL Server 2008
Enterprise database server configured to execute transactions
at snapshot isolation level. Transaction durability is enforced
by the certifier; we turn off log-forcing in replicas, in line with
the proposals of [14].
Workload. We experiment with two workloads: (a) a cus-
tomized micro-benchmark and (b) the TPC-W benchmark
[41]. The micro-benchmark allows us to explore the behavior
of various system configurations using simplified and control-
lable schemata and transactions. We quantify the performance
of the replicated system and assess the cost of providing
session or strong consistency on various transaction mixes.
The TPC-W benchmark is a more realistic workload simu-
lating an online book store. It therefore provides evidence of
the performance advantages of our proposed techniques for
strong consistency against the eager approach in demanding
e-commerce environments. Both workloads run serializably
under generalized snapshot isolation which is provided by the
replicated system [16].
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Fig. 3. Throughput results for the micro-benchmark (8 replicas)

Metrics. We adopt the following metrics: system throughput,
which is the number of completed transactions per second
(TPS), and response time, denoting the elapsed time between
starting a transaction and receiving the acknowledgement
of successful transaction commit (in ms). We also break
transaction delay down into stages (in ms). Read-only trans-
actions have three stages: (a) a synchronization start delay
until the latest version is reached (denoted as “version”, not
present in EagerSC), (b) a stage for executing the transaction
SQL statements (denoted as “queries”) and (c) a stage for
committing the transaction to the local DBMS (denoted as
“commit”). Update transactions have six stages: (a) “version”,
(b) “queries”, (c) a stage for querying the certifier (denoted as
“certify”), (d) a stage for committing previous local or refresh
transactions according to the global commit order (denoted as
“sync”), (e) “commit”, and (f ) a final global commit delay for
update transactions that is only present in EagerSC (denoted
as “global”). The “queries” and “sync” stages indicate the
performance of the local DBMS; the “certify” delay shows the
certification cost; the “versions” and “global” delays indicate
the synchronization cost for each configuration.

Each experiment consists of 10 separate runs. Each run
included a warm-up interval of 10 minutes followed by a mea-
surement interval of 10 minutes. We report average measured
values, with the deviating being less than 5% in all cases.

B. Micro-benchmark

The mix of read-only and update transactions is a crucial
factor for the performance of the replicated system. Read-only
transactions run in one replica locally while update transac-
tions need to be certified and propagated to all replicas. Update
transactions stress the consistency maintenance subsystem,
highlighting the synchronization delays. In order to examine
these effects, we use a database consisting of 40 tables with
10, 000 records each. The common table schema comprises
the primary key (integer), an integer field and a text field of
100 characters. The workload consists of 40 transactions. Each
transaction either retrieves or updates a random record from
one table. The ratio of read-only/update transactions varies
between 0/40 and 40/0. We use 8 replicas and 80 clients and
each client issues randomly selected transactions. Transactions
are sent back-to-back in a closed loop.
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Fig. 4. Latency breakdown for the micro-benchmark

We present the throughput results for the micro-benchmark
in Figure 3. The X-axis shows the ratio of read-only to
update transaction from 0/40 till 40/0. The Y-axis shows the
throughput in TPS. The figure has four curves, one per each
consistency configuration. At the 0/40 point, the workload is
read-only and all approaches have the same performance. As
the ratio of update transactions increases along the X-axis,
throughput decreases because processing update transactions
is more expensive than processing read-only transactions. Both
proposed configurations for strong consistency, CoarseSC and
FineSC, achieve comparable performance with SessionC and
substantially outperform EagerSC, the difference being 40%
when the ratio of updates is higher than 25%. FineSC’s
throughput is higher than CoarseSC’s, the difference being
close to 5%, and it matches the throughput of the SessionC in
all cases. The results above show that our proposed techniques
combine strong consistency with the performance of session
consistency.

To evaluate the cost of each transaction stage and, hence,
understand the underlying performance of different aspects
of the replicated DBMS, we look at the transaction latency
breakdown for the 25% and 100% update mixes in Figures 4(a)
and 4(b) respectively. The X-axis shows the configuration
measured and the Y-axis shows the delay for each transaction
stage in ms. For read-intensive mixes, as shown in Figure 4(a),
the average query execution time excluding synchronization
delays is similar for all configurations; the differences lie in the
synchronization start and global commit delays. SessionC and
CoarseSC have a common start-up delay for both read-only
and update transactions, with 1 ms delay for SessionC and
3 ms for CoarseSC. FineSC has zero delay for transactions
accessing read-only tables, but its start-up delay is 4 ms for
transactions on updated tables, as the replica needs to wait for
refresh transactions to complete before reaching the consistent
version. The total delay is slightly shorter than CoarseSC’s and
the same as SessionC’s. In EagerSC all transactions start im-
mediately, but the global commit delay for update transactions
is long (32 ms), since it is determined by the slowest replica
on each transaction. The latency for EagerSC is therefore 36%
more than the latency for the other configurations, increasing

the total transaction delay and thus justifying the difference in
throughput.

Moving to the update only mix (Figure 4(b)), all transactions
are propagated to all replicas, so the cost for certifying update
transactions and applying refresh writesets is substantially
increased for all configurations when compared to the 25%
update mix; the sum of the “Certify”, “Sync” and “Commit”
stages increases from 12 ms to 51 ms. Notice that Figure 4(b)
has a different scale for the Y-axis than Figure 4(a). The
start-up delay for FineSC is 2 ms on average, while for
CoarseSC it is 5 ms. This is expected as each transaction
in this benchmark accesses one table, so FineSC requires
only the updates of the specific table to be applied before
the transaction starts. On the other hand, CoarseSC requires
all tables to be updated before starting the new transaction
and therefore requires a higher delay. EagerSC is the slowest
configuration; the global commit delay reaches 35 ms, an
order of magnitude higher than the synchronization latency of
the other configurations. It is obvious that the eager approach
penalizes performance; the techniques we propose match the
performance of SessionC while providing strong consistency.

C. TPC-W Benchmark

We now switch to the TPC-W benchmark from the Transac-
tion Processing Council [41]. TPC-W is designed to evaluate
e-commerce systems and it implements an on-line bookstore.
It consists of three workload mixes that differ in the relative
frequency of the transaction types. The browsing mix has
5% update transactions, the shopping mix has 20% update
transactions, and the ordering mix has 50% update transac-
tions. We present results from all mixes. The shopping mix
is the most representative mix, while the ordering mix is
update-intensive and therefore is the most challenging mix
for replicated databases. TPC-W is widely used to evaluate
replicated database systems [3], [14], [15], [27], [35]. To drive
the replicated database system, we use one machine running
the application server and another hosting a remote terminal
emulator (RTE). The application server (IIS 7.0) executes the
requested ASP.NET pages which access the database. The RTE
is a multi-threaded C# program in which each thread represents
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(b) Response time for the browsing mix
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(c) Throughput for the shopping mix
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(d) Response time for the shopping mix
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(e) Throughput for the ordering mix
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(f) Response time for the ordering mix

Fig. 5. TPC-W throughput and response time results (scaled load)

one client issuing requests in a closed loop. The client machine
is lightly loaded with CPU utilization below 40%.

The TPC-W database standard scaling parameters are 200
EBS (emulated browsers) and 10, 000 items and the database
size is 850 MB. Client think time between consecutive requests
follows a negative exponential distribution with an average of
200 ms. We conduct two sets of experiments. In the first set we
replicate the database to get higher throughput by scaling the
load (represented by the number of clients) with the number
of replicas as follows: (a) 100 clients/replica for the browsing
mix, (b) 80 clients/replica for the shopping mix and (c) 50
clients/replica for the ordering mix. In the second set we
use replication to reduce response time by employing a fixed

load, therefore the number of clients in the system is constant
(i.e., 100, 80 and 50 for the three transaction mixes) regardless
of the number of replicas.

1) Replication for higher throughput: We first examine
performance when the load scales with the number of replicas.
We report separately throughput and response time results for
the browsing, shopping and ordering mix in Figure 5. We also
report the average synchronization delay for the shopping and
ordering mix in Figure 6. Synchronization delay is defined as
the synchronization start delay for SessionC, CoarseSC and
FineSC and the global commit delay for EagerSC. In all
figures, the X-axis gives the number of replicas that varies
between one and eight, while the curves represent the perfor-
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Fig. 6. TPC-W synchronization latency results (scaled load)
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Fig. 7. TPC-W response time results (fixed load)

mance of each configuration. The Y-axis shows throughput in
TPS or response time in ms or synchronization delay in ms.

The TPC-W browsing mix (5% update transactions) is dom-
inated by read-only transactions. The results of Figures 5(a)
and 5(b) show that the differences between the various con-
figurations are negligible, with EagerSC achieving marginally
lower throughput for 7 and 8 replicas. The low frequency of
update transactions allows the replicas to synchronize quickly
in all configurations, so performance increases almost linearly
and reaches a 7x increase in throughput for eight replicas.

Next we turn to the TPC-W shopping mix (20% update
transactions), as depicted in Figures 5(c) and 5(d). All config-
urations display considerable scalability, the lazy ones increas-
ing throughput at eight replicas by five times, compared to
the throughput of one replica. However, EagerSC’s throughput
is lower than the throughput of the other configurations,
as the global commit delay (143 − 330 ms as shown in
Figure 6(a)) restricts the system’s performance. At the same
time, CoarseSC and FineSC are close to SessionC, as the
delay for the latest version ranges between 18 and 30 ms
for CoarseSC and between 15 and 25 ms for FineSC. When
eight replicas are used, CoarseSC and FineSC nearly match the
throughput of SessionC, while EagerSC is almost 30% slower,
so our techniques prove their efficiency against EagerSC on a
workload with a 20% update transaction mix. Response time
increases linearly for all configurations, but in EagerSC it

deteriorates faster, being 50% higher than the latency for the
other configurations.

As the transaction mix becomes more update-dominated,
EagerSC’s performance is penalized by the delay for applying
the refresh writesets to all replicas before completing each
update transaction. This is verified by the results of the
TPC-W ordering mix (50% update transactions), as shown in
Figures 5(e) and 5(f). SessionC, CoarseSC and FineSC dis-
play similar throughput and achieve almost linear scalabil-
ity as updates are lazily propagated. Using eight replicas
increases throughput by three times when compared to a
single replica because it is an update-intensive workload.
The difference between SessionC and our proposed tech-
niques CoarseSC and FineSC is marginal, while CoarseSC and
FineSC provide strong consistency. The synchronization delay
for SessionC (10 ms, see also Figure 6(b)) is smaller than for
CoarseSC and FineSC (50 ms), but this is a small percentage
of the total response time. In contrast EagerSC can barely
scale its performance, as the global commit delay dominates
execution time and reaches 450 ms for 8 replicas. This shows
that the eager approach for guaranteeing strong consistency
restricts performance when the workload is update-intensive.

2) Replication for lower response time.: We now turn to
the system’s behaviour when the load is fixed, as depicted
in Figure 7. Due to space constraints we show the response
time graphs for the shopping and ordering mixes and skip



the browsing mix. The response time results for the shopping
mix of Figure 7(a) show that, for all configurations, response
time gradually decreases and stabilizes when using five or
more replicas. However, EagerSC requires 35 ms on average
for each transaction while the other configurations respond
in 20 ms. The difference is due to the higher global commit
delay for the eager approach, when compared to the negligible
synchronization start delay of the other configurations. This
effect becomes more apparent in the ordering mix, as shown
in Figure 7(b). In this case, response time for CoarseSC,
FineSC and SessionC gradually decreases and reaches 26 ms.
On the contrary, adding more replicas in EagerSC increases
response time up to 84 ms. Since EagerSC requires all replicas
to commit each transaction before reporting back to the client,
response time for update transactions is determined by the
slowest replica, so more replicas mean higher delays.

D. Discussion

The results presented above for the micro-benchmark and
the TPC-W benchmark verify the efficiency of the proposed
techniques for strong consistency. The eager approach for
strong consistency can practically be used only when the
workload contains almost exclusively read-only transactions.
In contrast, the CoarseSC and FineSC configurations reach the
performance of the SessionC configuration, achieving consid-
erable scalability in a wide range of workloads while providing
strong consistency to clients. In many cases, FineSC matches
the performance of SessionC, so synchronization on the table-
set combines the best performance with strong consistency.
The lazy fine-grained approach is therefore the best system
configuration, provided that the application can provide the
necessary workload information (i.e., transaction table-set) to
the replicated system. Still, even if this condition is not met,
the coarse-grained approach guarantees strong consistency
with a small penalty in performance.

VI. RELATED WORK

In this section we compare our work to related work on
recent middleware-based replicated databases as well as to
consistency criteria within distributed systems.

A recent paper [11] provides an overview of middleware-
based database replication and qualitatively compares the
state-of-the-art in academia and the commercial world. The
paper explains that existing systems either employ eager
approaches (e.g. [24]), or lazy approaches that provide weaker
forms of consistency. Examples of the second category include
the following: Tashkent [14], which provides generalized snap-
shot isolation, replicated database systems that provide 1-copy
SI [27], [42] and systems that provide session consistency
(e.g. [13], [35], [37]). None of these systems provides strong
consistency.

Session consistency in a replicated system [12] guarantees
for each client to receive snapshots with monotonically in-
creasing versions. Every client sees its own updates. Moreover,
from the client’s point of view, its successive transactions
receive snapshots that never go back in time. However, there

is no provision for correctness when clients participate in
a workflow or have dependencies among each other. Strong
consistency addresses these issues. The performance of the
two proposed techniques matches the performance of session
consistency while providing a stronger correctness property.

Postgres-R [24] provides one-copy serializability but with
no guarantees for strong consistency. Several proposals [1],
[23], [25], [32], [33] advocate using group communication
systems, such as Totem or Horus [36], for replicated databases.
Most of this work is simulation based and none provides strong
consistency. In this paper, we build a system and implement
strong consistency using an eager approach. We go further by
proposing two lazy update propagation mechanisms for strong
consistency and evaluate them experimentally.

The relaxed-currency model [21] has been extended to sys-
tems containing replicated databases and middle-tier caching
in the form of relaxed-currency serializability [6]. The trans-
action model is extended so that clients pass a “freshness”
constraint to the replicated system that bounds how up-to-date
a replica must be to provide a consistent database state to
a new transaction. This approach requires the clients to tag
their transaction requests with the appropriate constraints. In
contrast, our proposals allow the replicated system to handle
consistency internally. The coarse-grained approach requires
no extension of the transaction model, while the fine-grained
approach uses (potentially static) workload information and
requires clients to tag their transaction requests with the
transaction identifier.

Commitment ordering [37] is a condition for achieving
global serializability among transactions spanning autonomous
systems that may have different concurrency control models. It
relies on atomic commitment whose implementation is at least
as expensive as the eager approach presented earlier in which
a commit is applied at all replicas. A similar synchronization
overhead applies when read-only and update transactions are
atomically broadcasted to all replicas [43] to enforce strong
consistency.

Immediate operations [26] can be used to enforce synchro-
nization at transaction start. However, this technique incurs
a high communication cost, in order to specify the latest
version of each item to be read across all replicas. Our
proposed techniques examine transaction data-sets on a coarser
(database and table) granularity to reduce synchronization
overhead and enhance scalability.

Several consistency models in distributed systems have
been proposed, for example Linearizability [22] and Sequen-
tial Consistency [4], targeting different environments such
as shared registers, shared distributed memory, and multi-
processors. These models specify properties of individual
operations and their correct scheduling, rather than properties
of transactions, and therefore these models are not directly
applicable to replicated databases.

Bayou [34], [40] is a distributed system that uses causal
ordering constraints on read and write operations to man-
age data freshness to client sessions. It provides eventual
consistency, rather than strong consistency, in the sense that



servers converge to the same state in the absence of updates.
Our proposals provide strong consistency regardless of the
workload characteristics.

VII. CONCLUSIONS

This paper advocates using strong consistency in replicated
database systems as provided in centralized databases. Strong
consistency has been traditionally provided using eager ap-
proaches that do not scale well. We propose two approaches
that employ lazy update propagation while providing strong
consistency. The coarse-grained approach is generally appli-
cable and enforces strong consistency by possibly delaying
transaction start. The fine-grained approach further exploits
workload information to reduce transaction start delay. We
build a replicated database prototype to evaluate the presented
approaches and compare them to the eager approach as well
as to a method that provides weaker consistency, called
session consistency. Experimental results using a customized
micro-benchmark and the TPC-W benchmark show that the
proposed approaches for strong consistency scale better than
the eager approach while matching the performance of session
consistency.

ACKNOWLEDGMENTS

We thank Antony Rowstron (Microsoft Research), Alan
Fekete (University of Sydney), and Fernando Pedone (Univer-
sity of Lugano) for their insightful suggestions and valuable
feedback. We also thank John Douceur, Tim Harris, Alan
Geller, and Sreenivas Addagatla (Microsoft Research) for their
constructive comments.

REFERENCES

[1] D. Agrawal, G. Alonso, A. E. Abbadi, and I. Stanoi. Exploiting atomic
broadcast in replicated databases (extended abstract). In Euro-Par, 1997.

[2] M. K. Aguilera, W. Chen, and S. Toueg. Failure detection and consensus
in the crash-recovery model. Distrib. Comput., 13(2):99–125, 2000.

[3] C. Amza, A. Cox, and W. Zwaenepoel. Distributed Versioning: Consis-
tent Replication for Scaling Back-end Databases of Dynamic Content
Sites. In Middleware, 2003.

[4] H. Attiya and J. L. Welch. Sequential consistency versus linearizability.
ACM Trans. Comput. Syst., 12(2):91–122, 1994.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. In SIGMOD, 1995.

[6] P. A. Bernstein, A. Fekete, H. Guo, R. Ramakrishnan, and P. Tamma.
Relaxed-currency serializability for middle-tier caching and replication.
In SIGMOD, 2006.

[7] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of
multidatabase transaction management. The VLDB Journal, 1(2):181–
240, 1992.

[8] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz.
Update Propagation Protocols For Replicated Databases. In SIGMOD,
1999.

[9] Y. Breitbart and H. F. Korth. Replication and Consistency: Being Lazy
Helps Sometimes. In PODS, 1997.

[10] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable isolation for
snapshot databases. In SIGMOD, 2008.

[11] E. Cecchet, G. Candea, and A. Ailamaki. Middleware-based database
replication: the gaps between theory and practice. In SIGMOD, 2008.

[12] K. Daudjee and K. Salem. Lazy Database Replication with Ordering
Guarantees. In ICDE, 2004.

[13] K. Daudjee and K. Salem. Lazy database replication with snapshot
isolation. In VLDB, 2006.

[14] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: uniting durability with
transaction ordering for high-performance scalable database replication.
In EuroSys, 2006.

[15] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+: memory-aware
load balancing and update filtering in replicated databases. In EuroSys,
2007.

[16] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database Replication Using
Generalized Snapshot Isolation. In SRDS, 2005.

[17] A. Fekete. Formal models of communication services: A case study.
IEEE Computer, 26(8):37–47, 1993.

[18] A. Fekete. Allocating isolation levels to transactions. In PODS, 2005.
[19] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making

snapshot isolation serializable. ACM Trans. Database Syst., 30(2):492–
528, 2005.

[20] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers of replication
and a solution. In SIGMOD, 1996.

[21] H. Guo, P.-A. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed
currency and consistency: how to say “good enough” in SQL. In
SIGMOD, 2004.

[22] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–
492, 1990.

[23] J. Holliday, D. Agrawal, and A. E. Abbadi. The Performance of
Database Replication with Group Multicast. Fault-Tolerant Computing,
International Symposium on, 0:158, 1999.

[24] B. Kemme and G. Alonso. Don’t Be lazy, Be Consistent: Postgres-R,
A New Way to Implement Database Replication. In VLDB, 2000.

[25] B. Kemme and G. Alonso. A new approach to developing and imple-
menting eager database replication protocols. ACM Trans. Database
Syst., 25(3):333–379, 2000.

[26] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high avail-
ability using lazy replication. ACM Trans. Comput. Syst., 10(4):360–391,
1992.

[27] Y. Lin, B. Kemme, M. Pati no-Martı́nez, and R. Jiménez-Peris. Middle-
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