Mihaela Bornea 1, S. Elnikety 2, O. Hodson 2, A Fekete 3

¹IBM Research ²Microsoft Research ³University of Sydney

Concurrency Control

Replication Model

Readset Certification

Evaluation

Conclusions

Database Replication:

- Higher availability & better performance
- Maintaining consistency is challenging

State of the Art:

- GSI Replicated Databases.
- Each replica uses Snapshot Isolation (SI).

Goal:

- Global One Copy Serializability.
- Overall Isolation level stronger than the one of individual components.
- The replicated system keeps its performance.

- Isolation is a correctness criterion.
- Concurency in the system.
- Multiple levels of isolation:
 - Snapshot Isolation.
 - Serializability.

- Multi-version concurrency control technique.
- Important
 - Used by Oracle, SQL Server, Postgres.
 - Sometimes the strongest isolation level available.
- Attractive performance
 - Read-only transactions never block or abort.
 - Read-only transactions do not block update transactions.
 - Updates might abort. Certification needed.
 - checks for ww conflicts.

Anomaly under SI

T1	R(X,Y) X=50 Y=50		W(X) X=-40	С		Time
T2		R(X,Y) X=50 Y=50		W(Y) Y=-40	С	

- X,Y balance of two bank accounts.
- ► T₁ and T₂ withdraw 90E from X and Y
- ▶ Logic: X + Y > 0

- The strongest DB isolation level.
- Illusion that transactions execute serially.
- Programmers want it:
 - As if there is no concurrency.
- Commonly implemented with 2PL.
 - expensive to achieve.

- Centralized Database
 - Modify database engine, SSI.
 - Use Fekete's work [SIGMOD 2008, best paper]
- Replicated Databases
 - Open question.
 - No modification of the database engine.

Motivation

SQL Transaction Model

```
A. SELECT expr list FROM R_i WHERE pred(R_i)
B. INSERT INTO R_i VALUES (values)
C. UPDATE R_i SET attr_values where pred(R_i)
D. DELETE FROM R_i WHERE pred(R_i)
E. SELECT agg(attr) FROM R_i WHERE pred(R_i)
  GROUP BY group_attr
  HAVING pred(agg(attr))
F. SELECT attr list
  FROM R_1...R_i...R_n
  WHERE pred(R_1) LOP ...LOP pred(R_i) LOP ... LOP pred(R_n)
                   LOP pred(attr<sub>i,i</sub>, attr<sub>i,i</sub>)
G. SELECT attr list
   FROM R_1...R_i...R_n, SQ
   WHERE pred(R_1) LOP ...LOP pred(R_i) LOP ... LOP pred(R_n)
                  LOP pred(SQ)
H. SELECT attr list
   FROM R_1...R_i...R_n
   WHERE pred(R_1) LOP ...LOP pred(R_i) LOP ... LOP pred(R_n)
                   LOP pred(attr<sub>i</sub>, SQ)
```


- Snapshot Isolation (SI) → Generalized Snapshot Isolation (GSI)
 - Certify Writeset
- Serializability → One Copy Serializability (1SR)
 - Certify Writeset
 - Certify Readset
- Yes, we have a proof :) !

Writesets

- ► The Writeset contains modified tuples
- Introduced by UPDATE, INSERT and DELETE
- Includes both new and old tuple values
- All Writesets are managed at the Certifier.
- Writeset certification is required by both GSI and 1SR
 - checks if concurrent transactions modify the same item.
- It is well knows how to manage the Writesets

- ► The Readset contains read tuples.
- Introduced by SELECT, UPDATE, INSERT and DELETE.
- Readsets certification is required by 1SR.
 - checks if a transaction reads data modified by concurrent transactions.
- Readset identification is challenging:
 - never done in replicated setting.

- We introduced SI.
- Sometimes SI is not enough!
- Serializability needed:
 - Keep the nice properties of SI.
 - Open Problem for replicated databases:
 - Readset management is difficult!

- Framework to manage the Readsets
- Observation: each SQL statement has a predicate.
 - The Readset is a list of predicates.
 - Readset certification requires predicate evaluation.

- The Certifier manages:
 - persistent log.
 - main memory database, CertDB.
- The log is used for durability.
- CertDB is used to certify update transactions.
- CertDB maintains the Writeset of recently committed transactions.
- CertDB schema:
 - the replicated schema.
 - commit version attribute.

Intuition:

- Ensures that if the transaction executes on the latest version it would read the same values.
- Implementation:
 - Replica identifies the Readset:
 - Extracts the predicate of each SQL statement.
 - Replica expresses the readset as certification queries.
 - The certification queries are evaluated on CertDB
 - Empty conflict set indicates serializable execution

- Snapshot versions at originating replicas.
- Commit version of a transaction.
- CertDB contains the writesets and committed version.
- Consider a transaction T:
 - version > snapshot(T)

Transaction Queries

A. SELECT $expr_list$ FROM R_i WHERE $pred(R_i)$

Certification Queries

```
A. SELECT * FROM R_i WHERE pred(R_i) AND 
version > snapshot(T)
```


Readset for UPDATE Statements

Transaction Queries

```
B. INSERT INTO R_i VALUES (values)
```

C. UPDATE R_i SET $attr_values$ WHERE $pred(R_i)$

D. DELETE FROM R_i WHERE $pred(R_i)$

Certification Queries

```
B. SELECT * FROM R_i WHERE pk = @pk AND 
version > snapshot(T)
C. SELECT * FROM R_i WHERE pred(R_i) AND
```

```
version > snapshot(T)
```

```
D. SELECT * FROM R_i WHERE pred(R_i) AND version > snapshot(T)
```

Certifying the Readset also detects ww conflicts.

- Impact of providing 1SR vs. GSI:
 - Lower throughput and higher response time
 - Higher abort rate
- Replicated system with 8 replicas
- TPC-W

Workload

- TPC-W benchmark:
 - Web application (online book store).
 - Database schema consists of 10 tables.
 - Database size: 800 MB.
 - 13 transaction templates.
 - Ordering Mix(50% updates).
 - Browsing Mix (5% updates).
- Metrics:
 - Transactions per minute (TPM).
 - Response time.
 - Abort rate.

Scaling of SGSI with Replication Degree

Throughput of TPC-W Shopping Mix (20% updates)

Resp. Time of TPC-W Shopping Mix (20% updates)

Scalability of TPC-W Shopping Mix (20% updates)

Certifier CPU Utilization TPC-W Shopping Mix (20% updates)

SGSI Throughput of TPC-W Mixes.

SGSI Response Time of TPC-W Mixes.

Conclusions

- We introduced SGSI:
 - 1SR in replicated databases.
- Built a replicated system prototype.
- Evaluated SGSI performance:
 - SGSI is practical.
 - Moderated cost for small degree of replication.
 - Performance and scaling is comparable with GSI.

Readset for Joins

Transaction Queries

```
F. SELECT attr\_list

FROM R_1...R_i...R_n

WHERE pred(R_1) LOP ...LOP pred(R_i) LOP ... LOP pred(R_n)

LOP pred(attr_{i,j}, attr_{i,j})
```

Replication Model

Certification Queries

```
for each relation R_i
F. SELECT * FROM R_i WHERE version > snapshot(T)
```

- An upper-set of the Readset is certified.
- False aborts.

- Accuracy depends the data maintained at the Certifier.
- False aborts:
 - not enough information to evaluate the Readset
- Solution:
 - manage a copy of relations at the Certifier.
 - physical design tuning problem.

- Each data item has several instances.
- New instace: UPDATE,INSERT.
- Expired: UPDATE, DELETE.
- Each copy relation is augmented with V_{Start} and V_{End}.
- ► *V*_{Start} and *V*_{End} determine:
 - update predicate: $upd(R_i)$.
 - visibility predicate: vis(R_i).

Extended Certification

Transaction Queries

```
F. SELECT attr\_list

FROM R_1...R_i...R_n

WHERE pred(R_1) LOP ...LOP pred(R_i) LOP ... LOP pred(R_n)

LOP pred(attr_{i,j}, attr_{i,j})
```

Replication Model

Certification Queries

```
SELECT * FROM R_{1_C}...R_{i_C}...R_{n_C}
WHERE (query\_pred)
AND (upd(R_{1_C}) ...OR upd(R_{i_C}) ... OR upd(R_{n_C}))
AND (vis(R_{1_C}) ...AND vis(R_{i_C}) ... AND vis(R_{n_C}))
```

