Motivation
- Reduce tail latency (high-percentile latency) of user queries, e.g., 99th percentile
- Reduce extreme tail latency at each index server, e.g., 99.99th percentile

Why Extreme Tail Latency?
- The 99th-percentile response time < 120ms
- The 99.99th-percentile response time < 120ms

Reduction Tail Latency by Parallelization
- **Opportunity**
 - Available idle cores
 - CPU-intensive workloads
- **Challenges**
 - 1. Parallelizing all queries (inefficient)
 - 2. Parallelizing short queries (no speed up)

Parallelize the predicted long queries only

DDS (Delayed-Dynamic-Selective) Prediction
- **Delayed prediction**
 - Complete many short queries sequentially
 - Collect dynamic features
- **Selective prediction**
 - Predictor for confidence level
 - Predictor for execution time

Delayed prediction

Dynamic features
- Collected at query runtime
 1. NumEstMatchDoc := # current matched docs / # processed docs
 2. Statistics of the dynamic score distribution

Selective prediction
- Parallelize the unpredictable queries
- Parallel query if
 - Predicted execution time > α
 - Predicted L₁ error > β

Importance of dynamic features
- Top-5 feature importance by boosted regression tree
- NumEstMatchDoc helps to predict # total matched doc
- MinDynScore helps to predict early termination

Predictor accuracy
- Baseline: PRED
- 957% precision improvement at 98.9% recall over PRED

Simulation results on tail latency reduction
- Baseline S
 - Prediction before running a query
 - Parallelize the long query
- Proposed DDS
 - Run a query for 10ms sequentially
 - Parallelizes the predicted long or unpredictable queries