Jingle Bells: Solving the Santa Claus Problem in
Polyphonic C*

Nick Benton
Microsoft Research
Cambridge UK
nick@microsoft.com

March 20, 2003

Abstract

The Santa Claus problem is an interesting exercise in concurrent pro-
gramming which has been used in a comparison of the concurrency mech-
anisms of Ada and Java. We present a simple solution to the problem in
Polyphonic C¥, an extension of C* with new concurrency constructs based
on the Join calculus.

1 Introduction

1.1 The Problem

Originally due to Trono [6], the Santa Claus problem is an interesting (and
amusing) exercise in concurrent programming which is a little more challenging
than traditional mutual-exclusion problems, as it involves three sorts of process
and also requires a number of processes to cooperate. The problem may be
stated as follows:

Santa repeatedly sleeps until wakened by either all of his nine rein-
deer, back from their holidays, or by a group of three of his ten elves.
If awakened by the reindeer, he harnesses each of them to his sleigh,
delivers toys with them and finally unharnesses them (allowing them
to go off on holiday). If awakened by a group of elves, he shows each
of the group into his study, consults with them on toy R&D and
finally shows them each out (allowing them to go back to work).

Santa should give priority to the reindeer in the case that there is
both a group of elves and a group of reindeer waiting.

The errors which are easy to make in an attempt to solve this problem include
extra elves being able to sneak into a group once Santa has started showing elves
into his office, or Santa being able to go off delivering toys whilst the reindeer
are still waiting in the stable. Ben-Ari [1] points out a bug (of the second kind)
in Trono’s initial semaphore-based solution, shows how the problem may be
solved fairly neatly using Ada’s concurrency primitives and compares this with
a much less elegant and less efficient solution in Java.



1.2 The Language

C* [3] is a modern, type-safe, object-oriented programming language which runs
on Microsoft’s .NET platform. Its concurrency model is similar to that of Java,
with a re-entrant lock associated with each heap allocated object. A thread
executing a lock statement aquires the lock on a specified object during the
execution of a block of code. The library calls Wait, Pulse and PulseAll behave
like wait, notify and notifyAll in Java. A variety of other traditional shared-
memory concurrency primitives, inherited from the Win32 API, are available in
the .NET class libraries.

Polyphonic C! [2] is an extension of C* with new concurrency constructs,
based on the Join calculus [5, 4]. Methods in Polyphonic C* may be defined as
either synchronous, in which case the caller blocks until the method completes
(as is usually the case for method calls), or asynchronous, in which case the
caller never blocks and there is no return value. The more novel feature of the
language is chords, which associate a code body with a set of method headers.
The body of a chord can run only once all the methods in the set have been
called. Calls to synchronous methods block until/unless there is a matching
chord, whilst the arguments of calls to asynchronous methods are internally
queued until/unless they can be consumed by a matching chord. A particular
method may appear in more than one chord and in the case that multiple
chords match it is unspecified which will execute. If a chord involving only
asynchronous methods matches, then its body runs in a new thread. The body
of a chord containing a synchronous method will run in (and return a value to)
the thread which called that method — there can be at most one synchronous
method in a chord.

Polyphonic C? is intended as a language for orchestrating distributed applica-
tions built on asynchronous messaging. However, its model of concurrency and
synchronization is equally applicable to programming with multiple threads in
a shared-memory environment. Concurrency abstractions such as semaphores,
reader-writer locks, barriers and active objects, as well as more application-
specific mechanisms such as custom thread pools, can easily be implemented in
Polyphonic C*.

2 The Solution

2.1 An auxiliary class

We begin by defining a class nway for allowing one thread to synchronize with
a number of others. One thread can call acceptn(m) on an nway and will
then block until m other threads have each called entry (). Conversely, calls to
entry() will block until there has been a matching call to acceptn(m).!

public class nway {
public void entry() & private async tokens(int n) {
if (n==1) allgone(Q);
else tokens(n-1);

IEach call to entry() unblocks immediately, rather than waiting for m — 1 other calls to
have been made, which corresponds to the way in which rendezvous are used in Ben-Ari’s
solution.



}

public void acceptn(int n) {
tokens(n) ;
wait();

}

private void wait() & private async allgone() {
}
}

The definition of nway illustrates a common pattern in Polyphonic C* — the use
of private messages to carry state. A call to acceptn(m) generates a private
message tokens(m). Each call to entry() waits for and then consumes a
tokens (k) message and generates a new message of the form tokens(k —1) or
allgone(). The allgone() message is then consumed by, and unblocks, the
call to wait ().

The definition of nway is equivalent to one built on a binary rendezvous,
which is closer to the pattern used in Ada. The code for the alternative version
is shown in Appendix A.

2.2 Basic solution

We will use instances of nway to synchronize Santa with all the reindeer during
harnessing and unharnessing, and with all the elves in a group whilst he is
showing them in and showing them out of his office:

static nway harness = new nway();
static nway unharness = new nway();
static nway roomin = new nway();
static nway roomout = new nway();

Now each elf thread runs the following code:

while (true) {

Work () ; // until finding a problem
elfqueue(); // try to join group of 3
roomin.entry() ; // wait for Santa to show me in
ConsultWithSanta(); // until problem solved
roomout.entry() ; // wait for Santa to show me out

}

The call to elfqueue() is used to control the marshalling of elves into groups
of three and to wake Santa up. It synchronizes with another private message
counting the number of elves waiting:

static void elfqueue() & static async elveswaiting(int e) {
if (e==2) elvesready(); // last elf in a group
else elveswaiting(e+1);

}

Initially, there is a message elveswaiting(0). Each elf calling elfqueue () will
wait to consume an elveswaiting (k) message and then either send elveswaiting(k+



1) or elvesready(), which will signal Santa to wake up. Observe that in the
latter case, an elveswaiting() message is not sent — any further elves calling
elfqueue () will be blocked until this group have been shown in.

The code for the reindeer is essentially the same as that for the elves. One
message reinwaiting (k) counts how many reindeer have returned from holiday,
whilst reindeerready () is used to signal Santa that they are all back:

// each reindeer thread runs this
while (true) {

Holiday Q) ; // until sufficiently refreshed
reindeerback(); // join group waiting in stable
harness.entry(); // wait for Santa to harness me up
DeliverToys(); // until finished

unharness.entry(); // wait for Santa to unharness me

}

static void reindeerback() & static async reinwaiting(int r) {
if (r==8) reindeerready(); // last reindeer
else reinwaiting(r+1);

}

Santa himself simply runs

while (true) {
waittobewoken() ;

3

where the synchronous method waittobewoken() is defined in two chords, one
of which synchronizes with reindeerready() and one with elvesready():

static void waittobewoken() & static async reindeerready() {

harness.acceptn(9); // harness all nine
reinwaiting(0); // reset waiting count
DeliverToys(); // with the reindeer
unharness.acceptn(9); // unharness them all

}

static void waittobewoken() & static async elvesready() {
roomin.acceptn(3); // show three elves into office
elveswaiting(0); // now allow others to join waiting group
ConsultWithElves(); // until finished
roomout.acceptn(3); // show them all out

}

Each of the chord bodies does the appropriate thing, including resetting the
count of waiting elves or reindeer. The placing of reinwaiting(0) is not par-
ticularly critical — it could be placed anywhere within the chord or even along
with reindeerready() in the reindeerback() chord. On the other hand, to
prevent queue-jumping, elveswaiting(0) should not be signalled until all three
elves in the group have been shown into the office. Placing it where it is in the
code above allows a new group of three to assemble whilst Santa is dealing with
an earlier group.



2.3 Priorities

Under our current implementation of Polyphonic C*, the solution in the previous
section does give priority to the reindeer, as required in the original problem
statement. This is because the check for a matching chord follows the textual
ordering of the original source code and the chord matching waitobewoken ()
with reindeerready() precedes that which matches it with elvesready().
Thus even if it was an elvesready () message which was originally responsible
for scheduling the Santa thread for execution, if there is a reindeerready ()
message present when the Santa thread actually starts executing then it will be
the reindeer chord which gets executed. This behaviour is observed in practice,
as is the starvation of the reindeer by the elves in the case that the clauses are
reversed.?

Relying on the matching order is highly unsatisfactory: this is intentionally
not part of the official semantics of Polyphonic C* and a version of the compiler
which attempted to do more optimization would almost certainly not preserve
the original textual order. Moreover, this is a clumsy and error-prone way in
which to control priorities and in more complex cases there might be no textual
ordering which expressed the desired priorities.

Fortunately, programming the priorities explicitly is easy. We introduce
a single new asynchronous message reindeernotready() and add this to the
synchronization between Santa and a ready group of elves:

static void waittobewoken() & static async elvesready()
& static async reindeernotready() { // new line
reindeernotready() ; // new line
// rest of body as before
}

We then consume the reindeernotready() message when the reindeer are
ready:

static void reindeerback() & static async reinwaiting(int r) {
if (r==8) {
clearreindeernotready(); // new line
reindeerready() ;
3
else reinwaiting(r+1);

}

// new chord
static void clearreindeernotready() & static async reindeernotready() {}

and add a send of reindeernotready() to the initialization code and to the
Santa/reindeer chord, which now looks like this:

20n my Windows XP machine with all threads at the same priority and the same uniformly
distributed 0 to 3 second delay for Santa’s consultations and toy deliveries, each elf working
and each reindeer holidaying, Santa serves about 2.3 times as many groups of 3 elves as he
does groups of 9 reindeer. When the order of the two chords is reversed, he serves about
21 times as many elf groups as reindeer groups. (Of course, the reindeer are unlikely to be
literally starving — they are stuck in the stable with some hay instead of flying around in the
Snow. . . )



static void waittobewoken() & static async reindeerready() {
harness.acceptn(9);
reindeernotready(); // new line
reinwaiting(0) ;
DeliverToys();
unharness.acceptn(9);

}

This simple six-line addition is all we need to control the priorities explicitly,
and does indeed show the correct behaviour in practice.?

2.4 Conclusion

This solution to the Santa Claus problem is shorter and, I believe, simpler,
more elegant and easier to reason about than Ben-Ari’s solution using Ada’s
more complex synchronization mechanisms. It also seems likely to be slightly
more efficient, since an nway does fewer context switches than using multiple
binary rendezvous.

Our solution is undeniably an improvement in every way over his attempt
to solve the problem in Java (and the same problems would arise if one were to
attempt a solution in unmodified C*¥).

This provides another small piece of evidence that Join calculus-based con-
currency primitives, as well as being a good basis for distributed computation,
are a very attractive choice for solving traditional concurrency problems.

References

[1] M. Ben-Ari. How to solve the santa claus problem. Concurrency: Practice
& Experience, 10(6):485-496, 1998.

[2] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions
for C*. In Proceedings of ECOOP 2002, volume 2374 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[3] ECMA. Standard ECMA-334: Cf Language Specification, December 2001.

[4] C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Program-
ming. PhD thesis, Ecole Polytechnique, Palaiseau, November 1998. INRIA
TU-0556. Also available from http://research.microsoft.com/ fournet.

[5] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and
the join-calculus. In Proceedings of the 23rd ACM-SIGACT Symposium on
Principles of Programming Languages, pages 372-385. ACM, January 1996.

[6] J. A. Trono. A new exercise in concurrency. SIGCSE Bulletin, 26(3):8-10,
1994. Corrigendum: 26(4):63.

3With everything else as before, this version gives an elf group to reindeer group service
ratio of 2.42 when the reindeer chord is first and 2.45 when the elf chord is first. The difference
is due to a small race between the last elf and the last reindeer to grab the reindeernotready ()
message.



A N-way synchronization using 2-way

Here we give an alternative definition for nway which corresponds more closely
to the pattern used in Ada. We first define a binary rendevous class twoway for
synchronizing two threads. One thread calls entry (), the other calls accept()
and whichever arrives first is blocked until the other has also arrived. An nway
then captures the pattern of one thread calling accept () n times to synchronize
with n other thread, each of which calls entry() once:

public class twoway {
public void entry() {
gotentry();
waitforaccept();

3

public void accept() {
gotaccept () ;
waitforentry();

3

private void waitforentry() & private async gotentry() {

}

private void waitforaccept() & private async gotaccept() {
}
}

public class nway {
private twoway rv = new rv();

public void entry() {
rv.entry();

}

public void acceptn(int n) {
for(int i=0;i<n;i++)
rv.accept();

}

This alternative is less efficient than our original definition, however, since the
accepting process can be repeatedly scheduled and blocked in the loop.



