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Abstract. Conjunctive Normal Form (CNF) Boolean formulas generated from 
resolution or solution enumeration often have much redundancy. It is desirable 
to have an efficient algorithm to simplify and compact such CNF formulas on 
the fly. Given a clause in a CNF formula, if a subset of its literals constitutes 
another clause in the formula, then the first clause is said to be subsumed by the 
second clause. A subsumed clause is redundant and can be removed from the 
original formula. In this paper, we present a novel algorithm to maintain a sub-
sumption-free CNF clause database by efficiently detecting and removing sub-
sumption as the clauses are being added. Furthermore, we present an algorithm 
that compact the database greedily by recursively applying resolutions that dec-
rement the size of the clause database. Our experimental evaluations show that 
these algorithms are efficient and effective in practice.  

1   Introduction 

A propositional Boolean formula can be represented in Conjunctive Normal Form 
(CNF). A CNF formula is a conjunction (logic AND) of one or more clauses, each 
clause is a disjunction (logic OR) of one or more literals. A literal is either a positive 
or a negative occurrence of a Boolean variable. Almost all Boolean Satisfiability 
(SAT) solvers (e.g. [1] [2] [3] [4]) and Quantified Boolean Formula (QBF) solvers 
(e.g. [5] [6] [7] [8]) require that the input formula to be in CNF.  

Given a clause in a CNF formula, if a subset of its literals constitutes another 
clause in the formula, then the first clause is said to be subsumed by the second one. 
Formally, we use l(C) to denote the set of literals of clause C. Given clauses C1 and 
C2, if l(C1) ∈ l(C2), then C1 subsumes C2 and C2 is subsumed by C1. A subsumed 
clause is redundant and can be removed from the original formula without changing 
the Boolean function it represents. Since redundant clauses consume memory and 
slow down the reasoning process of SAT or QBF solvers, it is desirable to make a 
CNF formula subsumption free by detecting and removing subsumed clauses. Mod-
ern SAT solvers and QBF solvers usually maintains a CNF database internally, and 
the database is modified constantly during the solving process due to mechanisms 
such as learning (e.g. [3] [7]) and resolution and expansion [9]. Therefore, it is desir-
able that subsumption removal can be performed on the fly. 



Subsumption has been studied in the theorem proving community [10][11]. In par-
ticular, when a new clause is derived, all existing clauses in the database are checked 
against it to see whether they are subsumed. This check is called backward subsump-
tion. The newly derived clause is also checked against all the existing clauses to see if 
it is subsumed by any existing clauses. This check is called forward subsumption. To 
maintain the subsumption-freeness of the clause database, both checks need to be 
performed.  

SAT solving has been an intensively investigated research field for many years. 
Therefore, it is surprising that there is little work in the SAT literature that specifi-
cally addresses the problem of efficient implementation of subsumption detection and 
removal, or in a broader sense, on-the-fly CNF compaction. The common perception 
in the SAT community seems to be that subsumption detection and removal are ex-
pensive. Therefore, they are either ignored or only carried out periodically using 
naive algorithms during the SAT solving process.  

For search based algorithms (e.g. [2] [5]), this approach is acceptable. First, search 
based solvers do not generate as many new clauses compared with resolution based 
solvers. Second, in modern search based SAT solvers all of the new clauses come 
from conflict driven learning [3]. Clauses generated from conflict driven learning 
cannot be subsumed by existing clauses (forward subsumed). This fact can be easily 
observed as follows. In modern SAT solvers, each learned clause is always an assert-
ing clause [3], which is conflicting at current decision level and will become unit 
after backtracking to an earlier decision level. None of the existing clauses can sub-
sume this clause because otherwise the clause that subsumes it would have been a 
conflicting clause at an earlier decision level, which is impossible. The third and most 
important reason that subsumption is usually ignored is because in a search based 
SAT solvers learned clauses can always be deleted if necessary. Many intelligent 
clause deletion heuristics take the usefulness of the clauses into account. Since sub-
sumed clauses are not useful in the reasoning process, they have high probability of 
being garbage collected. Therefore, memory and run time overhead for the subsumed 
clauses can be kept under control.  

Recently some new SAT and QBF algorithms and applications began to appear in 
the literature that render subsumption detection and removal relevant. Subsumption 
removal is important for solvers or preprocessors based on resolution (recent exam-
ples include QBF solver Quantor [9] and SAT preprocessor NiVer [12]). Resolution 
based solvers are usually memory limited, and the resolution operation often generate 
large number of clauses that are subsumed by existing clauses. Another application 
where subsumption needs to be considered is SAT based solution enumeration (e.g. 
[13] [14] [15]), which tries to enumerate all solutions of a SAT instance (not simply 
counting). In both of these cases, newly added clauses cannot be removed if they are 
not redundant. Therefore, subsumed clauses must be detected and removed in order to 
free the occupied memory space and increase the capacity of the solver. 

In this paper, we propose an efficient algorithm for on-the-fly subsumption detec-
tion and removal for CNF clause database. In [9], the author proposed a signature 
based algorithm for backward subsumption detection. We propose an alternative 
backward subsumption detection algorithm that does not incur memory overhead as 
signature based algorithm does. We also propose an efficient forward subsumption 



detection algorithm inspired by the two-literal-watching algorithm proposed in SAT 
solver Chaff [4]. Unlike some of the existing works such as [16] and [17], our algo-
rithms operate on a flat CNF clause database, sometimes called sparse-matrix repre-
sentation [18]. Since most of the SAT and QBF solvers and preprocessors operates on 
a flat clause database, our algorithm can be directly applied without changing their 
native data structures.  

To compact the CNF database even more. We propose an algorithm that recur-
sively applies the combination of a slightly modified version of afore mentioned algo-
rithms and resolution. Our proposed algorithm not only makes the clause database 
subsumption free, but also decremental resolution free. We define a clause database 
to be decremental resolution free (DRF) if no two clauses in the database can be 
resolved such that the resolvant subsumes either of these two clauses. Experimental 
results show that this algorithm often produces a more compact CNF database than 
subsumption removal alone.  

This paper is organized as follows. Section 2 describes previous works on CNF da-
tabase simplification. Section 3 describes our subsumption detection and removal 
algorithm in detail. Section 4 introduces the algorithm for making a CNF formula 
decremental resolution free. Section 5 experimentally evaluates the algorithms. Sec-
tion 6 draws the conclusion and discusses some future works. 

2   Previous Work 

In this work what we really want to achieve is to efficiently remove redundancy in 
a CNF database, which is just a special case of Boolean formula simplification. 
Therefore, in addition to describe some previous works in subsumption detection in 
2.1 and 2.2, we also briefly discuss related works in Boolean formula simplification 
in 2.3 and 2.4.  

2.1   Using Trie and ZBDD to Represent CNF 

Trie and ZBDD are both proposed as compact representations of CNF clause data-
bases. Zhang proposed to use trie to store clauses in the SAT solver SATO [16]. A 
trie is a tree structure to represent a set in which each path from the root to a leaf 
corresponds to one key in the represented set. In [16], the trie used for representing 
the clause database is a ternary tree. Each internal node in the trie structure corre-
sponds to a variable, and its three children edges are labeled Positive, Negative, and 
Don’t Care. A leaf node is either true or false. Each path from root of the trie to a true 
leaf represents a clause. A trie is ordered if for every internal node V, Parent(V) has a 
smaller variable index than that of V. The ordered trie structure can detect duplicated 
and tail subsumed clauses in CNF database cheaply. A clause is said to be tail sub-
sumed by another clause if its first portion of the literals (a prefix) is also a clause in 
the clause database. 

An ordered trie has obvious similarities with Binary Decision Diagrams [19]. 
Chatalic and Simon proposed to use Zero-suppressed Binary Decision Diagrams 



(ZBDDs [20]) to represent clauses [17]. A ZBDD representation of the clause data-
base can detect not only tail subsumption but also head subsumption. Moreover, the 
authors proposed a subsumption elimination operator to make a CNF subsumption 
free and a subsumption-free union operator to combine two sets of subsumption-free 
clauses into a subsumption-free CNF. The operators work on a symbolically com-
pressed dataset, therefore, they are supposed to be efficient.  

Both trie and ZBDD representations incur significant overhead for maintaining the 
clause database. They are not widely used in modern solvers. Most modern SAT 
solvers use a simple flat clause database and the subsumption elimination operators 
proposed in [17] are not applicable.  

2.2. Signature Based Backward Subsumption Detection 

Biere described a signature based backward subsumption detection algorithm for 
Quantor [9], a QBF solver is based on resolution and expand. A signature is a subset 
of a finite signature domain D. Each literal l is hashed to a value h(l) ∈ D. The signa-
ture Sig(C) of a clause C is the union of the hash values of its literals. The signature 
of a literal Sig(l)  is the union of the signatures of the clauses in which it occurs, and 
is updated whenever a clause is added to the CNF. When a new clause C is added, its 
signature is calculated. If there exists a clause D which is subsumed by C, then the 
signature of C must be a subset of the signature of D, which is a subset of the signa-
tures of all the literals in D. Therefore, a necessary condition for C to subsume any 
existing clause is that for all literals l ∈ C, Sig(C) ∈ Sig (l). Sig(l) is the current signa-
ture of l, before C is added to the current database.  

If the necessary condition fails, no clause in the current CNF can be backward sub-
sumed by the new clause and C can be added. This is called a cache hit [9]. Other-
wise, in the cache miss case, we need to traverse all clauses of an arbitrary literal in C 
and explicitly check if C subsumes any of them. If any of the clauses are subsumed, 
they are removed from the CNF database. During the traversal, inclusion of signa-
tures is a necessary condition and can be easily checked, because the hash value of a 
clause can be pre-calculated and stored.  

After a clause is added, the signatures of all its literals have to be updated. How-
ever, if a clause is removed, hash collision does not allow subtracting its signature 
from all the signatures of its literals. Therefore, the old signature is kept as an over 
approximation. After certain number of clause removals, the accurate clause signature 
is recalculated.  

One problem with the algorithm is that as the total number of literals in the data-
base increases, the signature of a literal quickly fill up and approach the full domain 
set D, thus causing many cache misses. To avoid cache misses and increase perform-
ance, it is necessary to increase the domain size, which not only slows down the cal-
culation of signature and matching, but also increase memory overhead which is 
undesirable because the applications we are interested in are often memory bound.  

In [9] the author did not describe a forward subsumption detection algorithm. In 
fact, forward subsumption is invoked periodically by removing all clauses, flushing 
signatures and then adding back the clauses in reverse chronological order.  



2.3   Prime Implicants and Irredundant Cover 

A CNF formula is in fact a Product of Sums (POS) logic expression. The problem of 
subsumption detection and removal in CNF can be regarded as a restricted case of 
logic simplification. The problem of simplifying 2 level logic circuits has been well 
studied. In logic circuit simplification, the dual of POS, i.e. Sum of Products (SOP) 
expressions, are often studied instead. There are algorithms that can generate prime 
and irredundant covers for a Boolean function using e.g. iterative consensus and min-
cover algorithms [21]. By applying similar algorithms to a CNF formula, we can also 
make it prime and irredundant. A clause is prime if deleting any literal from the 
clause changes the Boolean function represented by the CNF. The set of clauses in a 
CNF is irredundant if removing any of them changes the Boolean function it repre-
sents.  

There are some attempts in using existing logic simplification techniques for CNF 
simplification (e.g. [15]). Unfortunately, the algorithms used for logic simplification 
are usually too expensive for CNF formulas, which often involve thousands of vari-
ables and clauses. Moreover, such techniques usually cannot be applied on the fly, 
which is often necessary for the applications we are interested in.  

2.4     Simplification Using Trie and Hash 

In [13], the authors described a technique to perform on-the-fly clause compaction 
and simplification for SAT based solution enumeration and quantification (the algo-
rithm is described in terms of cubes, but the same principle can be applied for 
clauses). Whenever a clause is added to the database, it is checked against the data-
base to see if there exists a clause that consists of the same set of variables as itself 
and the two clauses can be resolved. If there is such a clause, it is removed from the 
database and the resolvant (with one less literal) is added into the database recur-
sively. The check is performed efficiently by utilizing a hash table and a trie data 
structure. The worst time complexity of the check is O(n2) where n is the number of 
variables.  

The algorithm described in [13] can only detect possible simplification between 
two clauses that has the same number of literals. In contrast, in section 4 we describe 
an algorithm that can detect and simplify two clauses that have unequal number of 
literals as long as the resolvant subsumes at least one of the clauses. Moreover, the 
algorithm in Section 4 also detects and removes subsumption on the fly. 

3   Subsumption Detection and Removal Algorithms 

In this section, we describe our proposed subsumption detection and elimination 
algorithms. The backward subsumption detection algorithm leveraging efficient set 
intersection operations is described in section 3.1. The forward subsumption detection 
algorithm using one literal watching is described in section 3.2. In section 3.3 we 
describe strengthened versions of the forward subsumption algorithm. The forward 



and backward subsumption algorithms are combined for subsumption elimination in 
Section 3.4 to achieve the goal of maintaining a subsumption free CNF database on 
the fly.  

3.1   Backward Subsumption Detection 

Given a clause C, the backward subsumption detection algorithm finds all clauses 
whose literals are supersets of the literals in C. For each literal l, we keep a list of 
clauses in which this literal occurs, we denote this set ClauseSet(l). The pseudo code 
for backward subsumption detection is shown in the Algorithm 1. 

 

 
This algorithm can be implemented efficiently. Set intersection has a linear run 

time complexity to the total number of elements in the sets. Therefore, the worst case 
complexity for finding clauses backward subsumed by clause C is linear to the total 
number of clauses in which the literals in C occur. In practice, the literals in a clause 
are sorted in ascending sequence with regard to the number of clauses they appear in. 
The iteration often ends with just a couple of iterations when S becomes empty.  

The advantage of this algorithm compared with the signature base algorithm is that 
it does not incur any overhead for storing signatures. This is attractive because the 
applications that we are targeting are usually memory bound. Note that the set of 
clauses a literal occurs has to be kept by both methods. In fact, it is often maintained 
by the existing SAT solvers or preprocessors for various other reasons. Therefore, 
this data structure can be regarded as free.  

3.2   Forward Subsumption Detection 

Given a clause C, forward subsumption detection algorithm finds out if there exists a 
clause in the current database that is consisted of a subset of the literals in C. If such a 
clause exists, then clause C is subsumed by it and should not be added into the CNF.  

The algorithm for forward subsumption detection is based on the observation that 
if a clause C is a conflicting clause, then all the clauses that subsume it must also be 
conflicting clauses. Assume we set all literals in C to be false. If clause C1 subsumes 
C, then all literals in C1 must also be false.  

BackwardSubsumedBy ( C ) 
{ 
    S = Set of All the Clauses; 
    For each literal l in C { 
        S = S ∩ ClauseSet ( l ); 
        If S is empty then break; 
    } 
    return S; 
} 

Algorithm 1. Backward Subsumption Detection 



Our algorithm to detect whether such C1 exists is inspired by the 2-literal watching 
algorithm described in [4]. To detect if a clause is conflicting under a set of variable 
assignment, we only need to detect whether it contains at least one literal that is not 
false. We call this algorithm one-literal watching algorithm. Each clause has one 
literal marked as being watched. Each literal l has a list containing the set of clauses 
with watched literals corresponding to it. We denote the list as WatchClauses(l).  

 
Given a clause C, the algorithm IsForwardSubsumed(C) returns true or false de-

pending on whether the clause C is forward subsumed. The complexity of forward 
subsumption detection for a clause C is about the same as applying n variable as-
signments (i.e. implications) on the CNF database for a SAT solver, where n is the 
number of literals in clause C.  

3.3    Strengthening Forward Subsumption Detection 

A clause C is forward subsumed if an existing clause in the CNF subsumes C. If C is 
forward subsumed, then it is redundant and should not be added to the database. 
However, even if C is not subsumed, it may still be redundant. A clause is redundant 
if current CNF implies it. It is easy to prove that given Boolean formulas f1 and f2, if  
¬f1 ∧ f2 is false, then f2 implies f1. Subsumption is a specific case of redundancy. We 
can easily devise other methods to detect redundancy.  

A simple way to strengthen the forward subsumption detection algorithm is to ap-
ply full Boolean Constraint Propagation (BCP) when setting literals in C to be false. 
If it leads to a conflict, then C is redundant and should not be added to the CNF. The 
complexity of this strengthened forward subsumption detection algorithm is about the 
same as applying n variable branches (i.e. decisions) on the CNF database, where n is 
the number of literals in C. It is obviously more costly than simple forward subsump-
tion detection, but potentially more effective.  

IsForwardSubsumed ( C ) 
{ 
    for each literal l in C { 
        mark l; 
        for each clause C1 in WatchClause(l) { 
            l1 = a literal in C1 that is not marked; 
            if (no such l1) { 
                unmark all literals in C; 
                return true;    
            } 
            else { 
                remove C1 from WatchClause(l); 
                put C1 in WatchClause(l1); 
            } 
        } 
    } 
    unmark all literals in C; 
    return false; 
} 

Algorithm 2. Forward Subsumption Detection 



We can strengthen the algorithm even more. If after setting all literals in C to false 
and applying BCP do not produce a conflicting clause, we can apply a SAT solver on 
the resulting CNF to see if it is satisfiable. If it is unsatisfiable, then C is redundant 
and should not be added to the CNF. Obviously, the complexity of this strengthened 
version of redundancy removal is in the same order of a SAT solving, which can be 
very expensive. Alternatively, we can set a time limit on the SAT solver, abort the 
solving when time out, and conservatively assume the clause to be irredundant.  

There is a nice trade off between run time and quality of result for different 
strengthened versions of redundancy removal algorithms. It is up to the users to de-
termine which version is the best fit for their particular applications.  

3.4    Maintaining a Subsumption Free CNF Database 

By combining the forward and backward subsumption detection algorithms, we ob-
tain the algorithm for maintaining a subsumption free CNF database. Clauses are 
added one by one into the database. As clause enters the database, subsumed clauses 
are being detected and removed. Our experiments show that forward subsumption 
detection is much cheaper than backward subsumption detection. Therefore, when a 
clause enters the database, we first call procedure IsForwardSubsumed. If the clause 
is subsumed by existing clauses in the database, the clause is discarded and no further 
check is necessary. Otherwise, if it is not subsumed, BackwardSubsumption is called 
to check whether it subsumes any existing clauses. If so, the subsumed clauses are 
deleted and the new clause is added to the CNF database. The pseudo codes are 
shown in Algorithm 3.  

 

4   Maintaining a Decremental Resolution Free CNF Database 

A subsumption free CNF can often be simplified further by a resolution followed by 
subsumption. For example, consider a CNF containing clauses (a ∨ b) and (a ∨ ¬b ∨ 
c). It is easy to observe that by resolving these two clauses, the resolvant (a ∨ c) sub-
sumes the second clause, therefore, the formula can be simplified as (a ∨ b) ∧ (a ∨ c). 
We will call a resolution that generates a clause that subsumes at least one of its par-
ent clauses a decremental resolution.   

AddClauseRemoveSubsumption ( C ) 
{ 
    if ( IsForwardSubsumed ( C ) ) 
        return; 
    S = BackwardSubsumedBy ( C ); 
    for each clause C1 in S 
        remove C1 from database; 
    add clause C into the CNF database 
} 

Algorithm 3. Maintaining a Subsumption-Free Clause Database 



 
Formally, we define the distance between two clauses C1 and C2 as the number of 

variables that occur in both C1 and C2 but are in different polarities. Given two clauses 
C1 and C2 with distance 1, the resolvant is the clause that contains all literals in C1 and 
C2 except the distance 1 literals. Furthermore, if the set of variables in C1 is a subset 
of the variables in C2, then such a resolution is a decremental resolution because the 
resolvant subsumes C2. Given a CNF database, if no decremental resolution is possi-
ble between any pair of clauses in the database, then the CNF is decremental resolu-
tion free (DRF).  

Notice that an algorithm that maintains a decremental resolution free database may 
not necessarily generate a more compact representation than the algorithm that main-
tains a subsumption free database. Suppose we add three clauses (a ∨ ¬d), (a ∨ b ∨ c 
∨ d), and (c ∨ d) into the database, in that order. If we maintain a subsumption free 
database, since the second clause is subsumed by the third one, we will remove it and 
obtain a CNF with 2 clauses and 4 literals. On the other hand, if we maintain a DRF 
database, the second clause resolves with the first clause resulting in a new clause (a 
∨ b ∨ c), which is not subsumed by the third clause. Therefore, the end result is a 
CNF formula with 3 clauses and 7 literals.  

AddClauseAndMaintainDRF ( C ) 
{ 
    sub_cls = clauses that contain subsets  
              of variables in C; 
    d0_sub  = clauses in sub_cls that are  
              distance 0 from C; 
    if (d0_sub is not empty) // clause C is subsumed 
        return;             
    d1_sub  = clauses in sub_cls that are  
              distance 1 from C; 
    if ( d1_sub is not empty ) { 
        C

1
 = arbitrarily choose one clause in d1_sub; 

        C
0
 = resolvant of C and C

1
; 

        AddClauseAndMaintainDRF ( C
0
 ); 

        return; 
    } 
    sup_cls = clauses that contain supersets  
              of variables in C; 
    d0_sup  = clauses in sup_cls that are 
              distance 0 from C; 
    d1_sup  = clauses in sup_cls that are  
              distance 1 to C; 
    remove all clauses in d0_sup from CNF;  
    if ( d1_sup is not empty ) { 
        for each C

1
 in d1_sup { 

            remove C
1 
from CNF; 

            C
0
 = resolvant of C and C

1
; 

            AddClauseAndMaintainDRF ( C
0
 ); 

        } 
        AddClauseAndMaintainDRF ( C ); 
        return; 
    } 
    add clause C to CNF;   
} 

Algorithm 4. Maintaining a DRF Clause Database 



The algorithm to maintain a DRF CNF is built upon algorithms similar to the algo-
rithms used for subsumption detection. In subsumption detection, we need to find 
clauses that contain subsets (as in forward subsumption) or supersets (as in backward 
subsumption) of the literals in a clause C. We can modify both of the algorithms 
slightly to find clauses that contain subsets or supersets of the variables in a clause C. 
This can be achieved easily. E.g. in the backward subsumption algorithm, we keep a 
list of clauses for each variable instead of each literals as ClauseSet(v). In forward 
subsumption algorithm, we set marks on variables instead of literals. The pseudo 
code for adding a clause into a DRF clause database is shown in Algoirthm 4.  

Algorithm AddClauseAndMaintainDRF adds a clause into a CNF formula if and 
only if it can make sure that there is no possible subsumption or decremental resolu-
tion between the clause to be added and the clauses in current CNF. If subsumption or 
decremental resolution is possible, it eliminates them and then makes a recursive call 
to itself to perform the check against the new CNF. One interesting implementation 
detail that needs to be pointed out is that after d1_sup is calculated, some of the 
clauses in it may be deleted by subsequent recursive calls. Therefore, whenever a 
clause from d1_sup is accessed in the foreach loop, it must be checked to make 
sure that the clause is still valid in current CNF.  

5   Experimental Results 

In this section, we report some preliminary experimental results to show the feasibil-
ity and effectiveness of our CNF simplification algorithms. The algorithms are im-
plemented in C++. The program is compiled with Microsoft Visual Studio .Net 2003 
and run on a dual 2.8G Intel Xeon processors machine with 2 Gig main memory 
running Windows XP. Only a single processor is used since the program is not multi-
threaded. The CNF formulas we use for this experiment include SAT benchmarks 
generated from formal verification (1dlx_c_mc_ex_bp_f, c7552, longmult15), logic 
planning (bw_large.d) and a random generated 3-SAT instance (3SAT_100_400).  

The simple application we choose to test the CNF simplification techniques is as 
follows. We randomly choose a subset of the variables in a CNF formula and elimi-
nate them one by one using resolution. The algorithm we use for variable elimination 
is the same as the well known algorithm used by Davis and Putnam [1] for SAT solv-
ing. Table 1 shows the statistics of the original CNF formulas and the number of 
variables eliminated for each of the formulas. In Table 1 we also show the statistics of 
the final CNF formulas generated if we do not apply any CNF simplification tech-
niques during the variable elimination process. This means that all of the clauses 
generated from resolution are added into the clause database.  

Table 2 shows the statistics for the variable elimination when we apply subsump-
tion detection and removal technique described in section 3. Whenever a clause is 
added to the clause database, we check for subsumption and remove the subsumed 
clauses so that the CNF is subsumption free using Algorithm 3. The columns under 



OrigOrigOrigOriginal Formulainal Formulainal Formulainal Formula    After After After After ResolResolResolResolutionutionutionution    

FormulaFormulaFormulaFormula    
Num. VarsNum. VarsNum. VarsNum. Vars    

ElimElimElimElimiiiinatednatednatednated    
NumNumNumNum    

VarsVarsVarsVars    

NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

TimeTimeTimeTime    

(s)(s)(s)(s)    

3SAT_100_4003SAT_100_4003SAT_100_4003SAT_100_400    10 100 400 583 19333 180120 0.453 

1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f    40 776 3725 10045 154180 2854150 4.641 

c7552c7552c7552c7552    700 7652 20423 46377 247714 3702725 10.172 

bbbbw_large.dw_large.dw_large.dw_large.d    100 6325 131973 294118 212530 1102847 3.641 

longmult15longmult15longmult15longmult15    250 7807 24351 58557 692817 4728551 12.656 

Table 1.  Variable Elimination by Resolution: No CNF Simplification 
 

“Total Added” are the number of clause and literals added to the clause database (i.e. 
number of clauses and literals passed to the routine AddClauseRemoveSubsumption ). 
Columns under “Forward” and “Backward” show the number of clauses and literals 
removed due to forward and backward subsumption, respectively. “Final Result” 
shows the statistics of the final formula obtained. The differences between the sums 
of “Forward”, “Backward” and “Final Result”, and “Total Added” are the clauses 
removed during the resolution process. From the result we find that for our applica-
tion, usually many more clauses are forward subsumed than backward subsumed. 
Therefore, for this application, applying forward subsumption detection and removal 
is very important and should not be foregone. However, there are certain applications 
where forward subsumption is not interesting, as discussed in the introduction section 
of this paper. For those applications, we can apply backward subsumption removal 
directly without invoking the forward subsumption detection algorithm. 

 

 
Table 3 shows the statistics for applying the DRF algorithm described in Section 4 

during the variable elimination process. Again, under “Total Added” are the clauses 
and literals added to the CNF database, and the “Final Result” columns show the final 
CNF obtained. Compare Table 3 with table 2, we find that by maintaining the CNF to 
be DRF, we usually obtain smaller CNF formulas. Maintaining a CNF to be DRF is 
more expensive than subsumption removal. However, compare the run time under 
“Time” column for all three tables, we find that the performances are acceptable for 
this application because the great reduction in number of clauses added offsets the 
costs for simplification.  

Total Total Total Total AddAddAddAddedededed    ForwardForwardForwardForward    BackwardBackwardBackwardBackward    Final ResultFinal ResultFinal ResultFinal Result    

FormulaFormulaFormulaFormula    NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

TimeTimeTimeTime    

(s)(s)(s)(s)    

3SAT_100_4003SAT_100_4003SAT_100_4003SAT_100_400    3782 25919 2028 16489 141 915 1430 7810 0.203 

1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f    69686 1073171 39240 706487 5406 83234 22836 260403 9.719 

c7552c7552c7552c7552    49259 2352969 3157 144807 869 4238 35316 1368639 18.406 

bbbbw_large.dw_large.dw_large.dw_large.d    201832 919829 28673 436138 1462 5792 168678 469222 7.703 

longmult15longmult15longmult15longmult15    121059 500805 60649 304472 1061 3425 57353 186920 5.047 

Table 2. Variable Elimination: Applying Subsumption Removal 



Total Total Total Total AddAddAddAddedededed    Final Final Final Final ResultResultResultResult    

FormulaFormulaFormulaFormula    NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

NumNumNumNum    

ClsClsClsCls    

NumNumNumNum    

LitsLitsLitsLits    

TimeTimeTimeTime    

(s)(s)(s)(s)    

3SAT_100_4003SAT_100_4003SAT_100_4003SAT_100_400    3007 17578 1235 5933 0.165 

1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f    60665 817435 20967 211399 10.438 

c7552c7552c7552c7552    48708 2328013 35276 1355117 28.547 

bbbbw_large.dw_large.dw_large.dw_large.d    189187 715388 166021 441140 12.422 

longmult15longmult15longmult15longmult15    119450 445434 54761 160775 6.875 

Table 3. Variable Elimination: Maintaining DRF  

6   Conclusions and Future Work 

In this paper we discuss methods to eliminate redundancy in a CNF clause database 
on-the-fly. We describe an algorithm for subsumption detection and elimination. We 
then describe an algorithm that uses the subsumption detection and elimination algo-
rithm to make a CNF database decremental resolution free. The purpose of this work 
is to automatically compact and simplify CNF formulas derived from operations such 
as resolution and solution enumeration. Such work is important because many new 
applications of SAT solvers such as quantification elimination and abstraction re-
finement are performed by either resolution or solution enumeration.  

Many things are unexplored in this paper. Our algorithm is still not powerful 
enough to produce prime and irredundant CNF database. Traditional methods to gen-
erate prime and irredundant implicants are too expensive to be practical in this set-
ting. How to balance the runtime cost and the quality of the result for on-the-fly CNF 
simplification is a very interesting problem worth much further investigation. 

Moving further along this line, it is interesting to see if it is possible to efficiently 
generate formulas that have fewer restrictions than CNF. CNF is essentially a two 
level circuit, which is known to blow up in size for certain Boolean functions. It 
would be interesting to see if multilevel representations for a Boolean function can be 
efficiently derived during the solution enumeration or resolution process.  
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