
On Subsumption Removal and On-the-Fly CNF
Simplification

Lintao Zhang

Microsoft Research Silicon Valley Lab
1065 La Avenida Ave., Sunnyvale, CA 94043

lintaoz@microsoft.com

Abstract. Conjunctive Normal Form (CNF) Boolean formulas generated from
resolution or solution enumeration often have much redundancy. It is desirable
to have an efficient algorithm to simplify and compact such CNF formulas on
the fly. Given a clause in a CNF formula, if a subset of its literals constitutes
another clause in the formula, then the first clause is said to be subsumed by the
second clause. A subsumed clause is redundant and can be removed from the
original formula. In this paper, we present a novel algorithm to maintain a sub-
sumption-free CNF clause database by efficiently detecting and removing sub-
sumption as the clauses are being added. Furthermore, we present an algorithm
that compact the database greedily by recursively applying resolutions that dec-
rement the size of the clause database. Our experimental evaluations show that
these algorithms are efficient and effective in practice.

1 Introduction

A propositional Boolean formula can be represented in Conjunctive Normal Form
(CNF). A CNF formula is a conjunction (logic AND) of one or more clauses, each
clause is a disjunction (logic OR) of one or more literals. A literal is either a positive
or a negative occurrence of a Boolean variable. Almost all Boolean Satisfiability
(SAT) solvers (e.g. [1] [2] [3] [4]) and Quantified Boolean Formula (QBF) solvers
(e.g. [5] [6] [7] [8]) require that the input formula to be in CNF.

Given a clause in a CNF formula, if a subset of its literals constitutes another
clause in the formula, then the first clause is said to be subsumed by the second one.
Formally, we use l(C) to denote the set of literals of clause C. Given clauses C1 and
C2, if l(C1) ∈ l(C2), then C1 subsumes C2 and C2 is subsumed by C1. A subsumed
clause is redundant and can be removed from the original formula without changing
the Boolean function it represents. Since redundant clauses consume memory and
slow down the reasoning process of SAT or QBF solvers, it is desirable to make a
CNF formula subsumption free by detecting and removing subsumed clauses. Mod-
ern SAT solvers and QBF solvers usually maintains a CNF database internally, and
the database is modified constantly during the solving process due to mechanisms
such as learning (e.g. [3] [7]) and resolution and expansion [9]. Therefore, it is desir-
able that subsumption removal can be performed on the fly.

Subsumption has been studied in the theorem proving community [10][11]. In par-
ticular, when a new clause is derived, all existing clauses in the database are checked
against it to see whether they are subsumed. This check is called backward subsump-
tion. The newly derived clause is also checked against all the existing clauses to see if
it is subsumed by any existing clauses. This check is called forward subsumption. To
maintain the subsumption-freeness of the clause database, both checks need to be
performed.

SAT solving has been an intensively investigated research field for many years.
Therefore, it is surprising that there is little work in the SAT literature that specifi-
cally addresses the problem of efficient implementation of subsumption detection and
removal, or in a broader sense, on-the-fly CNF compaction. The common perception
in the SAT community seems to be that subsumption detection and removal are ex-
pensive. Therefore, they are either ignored or only carried out periodically using
naive algorithms during the SAT solving process.

For search based algorithms (e.g. [2] [5]), this approach is acceptable. First, search
based solvers do not generate as many new clauses compared with resolution based
solvers. Second, in modern search based SAT solvers all of the new clauses come
from conflict driven learning [3]. Clauses generated from conflict driven learning
cannot be subsumed by existing clauses (forward subsumed). This fact can be easily
observed as follows. In modern SAT solvers, each learned clause is always an assert-
ing clause [3], which is conflicting at current decision level and will become unit
after backtracking to an earlier decision level. None of the existing clauses can sub-
sume this clause because otherwise the clause that subsumes it would have been a
conflicting clause at an earlier decision level, which is impossible. The third and most
important reason that subsumption is usually ignored is because in a search based
SAT solvers learned clauses can always be deleted if necessary. Many intelligent
clause deletion heuristics take the usefulness of the clauses into account. Since sub-
sumed clauses are not useful in the reasoning process, they have high probability of
being garbage collected. Therefore, memory and run time overhead for the subsumed
clauses can be kept under control.

Recently some new SAT and QBF algorithms and applications began to appear in
the literature that render subsumption detection and removal relevant. Subsumption
removal is important for solvers or preprocessors based on resolution (recent exam-
ples include QBF solver Quantor [9] and SAT preprocessor NiVer [12]). Resolution
based solvers are usually memory limited, and the resolution operation often generate
large number of clauses that are subsumed by existing clauses. Another application
where subsumption needs to be considered is SAT based solution enumeration (e.g.
[13] [14] [15]), which tries to enumerate all solutions of a SAT instance (not simply
counting). In both of these cases, newly added clauses cannot be removed if they are
not redundant. Therefore, subsumed clauses must be detected and removed in order to
free the occupied memory space and increase the capacity of the solver.

In this paper, we propose an efficient algorithm for on-the-fly subsumption detec-
tion and removal for CNF clause database. In [9], the author proposed a signature
based algorithm for backward subsumption detection. We propose an alternative
backward subsumption detection algorithm that does not incur memory overhead as
signature based algorithm does. We also propose an efficient forward subsumption

detection algorithm inspired by the two-literal-watching algorithm proposed in SAT
solver Chaff [4]. Unlike some of the existing works such as [16] and [17], our algo-
rithms operate on a flat CNF clause database, sometimes called sparse-matrix repre-
sentation [18]. Since most of the SAT and QBF solvers and preprocessors operates on
a flat clause database, our algorithm can be directly applied without changing their
native data structures.

To compact the CNF database even more. We propose an algorithm that recur-
sively applies the combination of a slightly modified version of afore mentioned algo-
rithms and resolution. Our proposed algorithm not only makes the clause database
subsumption free, but also decremental resolution free. We define a clause database
to be decremental resolution free (DRF) if no two clauses in the database can be
resolved such that the resolvant subsumes either of these two clauses. Experimental
results show that this algorithm often produces a more compact CNF database than
subsumption removal alone.

This paper is organized as follows. Section 2 describes previous works on CNF da-
tabase simplification. Section 3 describes our subsumption detection and removal
algorithm in detail. Section 4 introduces the algorithm for making a CNF formula
decremental resolution free. Section 5 experimentally evaluates the algorithms. Sec-
tion 6 draws the conclusion and discusses some future works.

2 Previous Work

In this work what we really want to achieve is to efficiently remove redundancy in
a CNF database, which is just a special case of Boolean formula simplification.
Therefore, in addition to describe some previous works in subsumption detection in
2.1 and 2.2, we also briefly discuss related works in Boolean formula simplification
in 2.3 and 2.4.

2.1 Using Trie and ZBDD to Represent CNF

Trie and ZBDD are both proposed as compact representations of CNF clause data-
bases. Zhang proposed to use trie to store clauses in the SAT solver SATO [16]. A
trie is a tree structure to represent a set in which each path from the root to a leaf
corresponds to one key in the represented set. In [16], the trie used for representing
the clause database is a ternary tree. Each internal node in the trie structure corre-
sponds to a variable, and its three children edges are labeled Positive, Negative, and
Don’t Care. A leaf node is either true or false. Each path from root of the trie to a true
leaf represents a clause. A trie is ordered if for every internal node V, Parent(V) has a
smaller variable index than that of V. The ordered trie structure can detect duplicated
and tail subsumed clauses in CNF database cheaply. A clause is said to be tail sub-
sumed by another clause if its first portion of the literals (a prefix) is also a clause in
the clause database.

An ordered trie has obvious similarities with Binary Decision Diagrams [19].
Chatalic and Simon proposed to use Zero-suppressed Binary Decision Diagrams

(ZBDDs [20]) to represent clauses [17]. A ZBDD representation of the clause data-
base can detect not only tail subsumption but also head subsumption. Moreover, the
authors proposed a subsumption elimination operator to make a CNF subsumption
free and a subsumption-free union operator to combine two sets of subsumption-free
clauses into a subsumption-free CNF. The operators work on a symbolically com-
pressed dataset, therefore, they are supposed to be efficient.

Both trie and ZBDD representations incur significant overhead for maintaining the
clause database. They are not widely used in modern solvers. Most modern SAT
solvers use a simple flat clause database and the subsumption elimination operators
proposed in [17] are not applicable.

2.2. Signature Based Backward Subsumption Detection

Biere described a signature based backward subsumption detection algorithm for
Quantor [9], a QBF solver is based on resolution and expand. A signature is a subset
of a finite signature domain D. Each literal l is hashed to a value h(l) ∈ D. The signa-
ture Sig(C) of a clause C is the union of the hash values of its literals. The signature
of a literal Sig(l) is the union of the signatures of the clauses in which it occurs, and
is updated whenever a clause is added to the CNF. When a new clause C is added, its
signature is calculated. If there exists a clause D which is subsumed by C, then the
signature of C must be a subset of the signature of D, which is a subset of the signa-
tures of all the literals in D. Therefore, a necessary condition for C to subsume any
existing clause is that for all literals l ∈ C, Sig(C) ∈ Sig (l). Sig(l) is the current signa-
ture of l, before C is added to the current database.

If the necessary condition fails, no clause in the current CNF can be backward sub-
sumed by the new clause and C can be added. This is called a cache hit [9]. Other-
wise, in the cache miss case, we need to traverse all clauses of an arbitrary literal in C
and explicitly check if C subsumes any of them. If any of the clauses are subsumed,
they are removed from the CNF database. During the traversal, inclusion of signa-
tures is a necessary condition and can be easily checked, because the hash value of a
clause can be pre-calculated and stored.

After a clause is added, the signatures of all its literals have to be updated. How-
ever, if a clause is removed, hash collision does not allow subtracting its signature
from all the signatures of its literals. Therefore, the old signature is kept as an over
approximation. After certain number of clause removals, the accurate clause signature
is recalculated.

One problem with the algorithm is that as the total number of literals in the data-
base increases, the signature of a literal quickly fill up and approach the full domain
set D, thus causing many cache misses. To avoid cache misses and increase perform-
ance, it is necessary to increase the domain size, which not only slows down the cal-
culation of signature and matching, but also increase memory overhead which is
undesirable because the applications we are interested in are often memory bound.

In [9] the author did not describe a forward subsumption detection algorithm. In
fact, forward subsumption is invoked periodically by removing all clauses, flushing
signatures and then adding back the clauses in reverse chronological order.

2.3 Prime Implicants and Irredundant Cover

A CNF formula is in fact a Product of Sums (POS) logic expression. The problem of
subsumption detection and removal in CNF can be regarded as a restricted case of
logic simplification. The problem of simplifying 2 level logic circuits has been well
studied. In logic circuit simplification, the dual of POS, i.e. Sum of Products (SOP)
expressions, are often studied instead. There are algorithms that can generate prime
and irredundant covers for a Boolean function using e.g. iterative consensus and min-
cover algorithms [21]. By applying similar algorithms to a CNF formula, we can also
make it prime and irredundant. A clause is prime if deleting any literal from the
clause changes the Boolean function represented by the CNF. The set of clauses in a
CNF is irredundant if removing any of them changes the Boolean function it repre-
sents.

There are some attempts in using existing logic simplification techniques for CNF
simplification (e.g. [15]). Unfortunately, the algorithms used for logic simplification
are usually too expensive for CNF formulas, which often involve thousands of vari-
ables and clauses. Moreover, such techniques usually cannot be applied on the fly,
which is often necessary for the applications we are interested in.

2.4 Simplification Using Trie and Hash

In [13], the authors described a technique to perform on-the-fly clause compaction
and simplification for SAT based solution enumeration and quantification (the algo-
rithm is described in terms of cubes, but the same principle can be applied for
clauses). Whenever a clause is added to the database, it is checked against the data-
base to see if there exists a clause that consists of the same set of variables as itself
and the two clauses can be resolved. If there is such a clause, it is removed from the
database and the resolvant (with one less literal) is added into the database recur-
sively. The check is performed efficiently by utilizing a hash table and a trie data
structure. The worst time complexity of the check is O(n2) where n is the number of
variables.

The algorithm described in [13] can only detect possible simplification between
two clauses that has the same number of literals. In contrast, in section 4 we describe
an algorithm that can detect and simplify two clauses that have unequal number of
literals as long as the resolvant subsumes at least one of the clauses. Moreover, the
algorithm in Section 4 also detects and removes subsumption on the fly.

3 Subsumption Detection and Removal Algorithms

In this section, we describe our proposed subsumption detection and elimination
algorithms. The backward subsumption detection algorithm leveraging efficient set
intersection operations is described in section 3.1. The forward subsumption detection
algorithm using one literal watching is described in section 3.2. In section 3.3 we
describe strengthened versions of the forward subsumption algorithm. The forward

and backward subsumption algorithms are combined for subsumption elimination in
Section 3.4 to achieve the goal of maintaining a subsumption free CNF database on
the fly.

3.1 Backward Subsumption Detection

Given a clause C, the backward subsumption detection algorithm finds all clauses
whose literals are supersets of the literals in C. For each literal l, we keep a list of
clauses in which this literal occurs, we denote this set ClauseSet(l). The pseudo code
for backward subsumption detection is shown in the Algorithm 1.

This algorithm can be implemented efficiently. Set intersection has a linear run

time complexity to the total number of elements in the sets. Therefore, the worst case
complexity for finding clauses backward subsumed by clause C is linear to the total
number of clauses in which the literals in C occur. In practice, the literals in a clause
are sorted in ascending sequence with regard to the number of clauses they appear in.
The iteration often ends with just a couple of iterations when S becomes empty.

The advantage of this algorithm compared with the signature base algorithm is that
it does not incur any overhead for storing signatures. This is attractive because the
applications that we are targeting are usually memory bound. Note that the set of
clauses a literal occurs has to be kept by both methods. In fact, it is often maintained
by the existing SAT solvers or preprocessors for various other reasons. Therefore,
this data structure can be regarded as free.

3.2 Forward Subsumption Detection

Given a clause C, forward subsumption detection algorithm finds out if there exists a
clause in the current database that is consisted of a subset of the literals in C. If such a
clause exists, then clause C is subsumed by it and should not be added into the CNF.

The algorithm for forward subsumption detection is based on the observation that
if a clause C is a conflicting clause, then all the clauses that subsume it must also be
conflicting clauses. Assume we set all literals in C to be false. If clause C1 subsumes
C, then all literals in C1 must also be false.

BackwardSubsumedBy (C)
{
 S = Set of All the Clauses;
 For each literal l in C {
 S = S ∩ ClauseSet (l);
 If S is empty then break;
 }
 return S;
}

Algorithm 1. Backward Subsumption Detection

Our algorithm to detect whether such C1 exists is inspired by the 2-literal watching
algorithm described in [4]. To detect if a clause is conflicting under a set of variable
assignment, we only need to detect whether it contains at least one literal that is not
false. We call this algorithm one-literal watching algorithm. Each clause has one
literal marked as being watched. Each literal l has a list containing the set of clauses
with watched literals corresponding to it. We denote the list as WatchClauses(l).

Given a clause C, the algorithm IsForwardSubsumed(C) returns true or false de-

pending on whether the clause C is forward subsumed. The complexity of forward
subsumption detection for a clause C is about the same as applying n variable as-
signments (i.e. implications) on the CNF database for a SAT solver, where n is the
number of literals in clause C.

3.3 Strengthening Forward Subsumption Detection

A clause C is forward subsumed if an existing clause in the CNF subsumes C. If C is
forward subsumed, then it is redundant and should not be added to the database.
However, even if C is not subsumed, it may still be redundant. A clause is redundant
if current CNF implies it. It is easy to prove that given Boolean formulas f1 and f2, if
¬f1 ∧ f2 is false, then f2 implies f1. Subsumption is a specific case of redundancy. We
can easily devise other methods to detect redundancy.

A simple way to strengthen the forward subsumption detection algorithm is to ap-
ply full Boolean Constraint Propagation (BCP) when setting literals in C to be false.
If it leads to a conflict, then C is redundant and should not be added to the CNF. The
complexity of this strengthened forward subsumption detection algorithm is about the
same as applying n variable branches (i.e. decisions) on the CNF database, where n is
the number of literals in C. It is obviously more costly than simple forward subsump-
tion detection, but potentially more effective.

IsForwardSubsumed (C)
{
 for each literal l in C {
 mark l;
 for each clause C1 in WatchClause(l) {
 l1 = a literal in C1 that is not marked;
 if (no such l1) {
 unmark all literals in C;
 return true;
 }
 else {
 remove C1 from WatchClause(l);
 put C1 in WatchClause(l1);
 }
 }
 }
 unmark all literals in C;
 return false;
}

Algorithm 2. Forward Subsumption Detection

We can strengthen the algorithm even more. If after setting all literals in C to false
and applying BCP do not produce a conflicting clause, we can apply a SAT solver on
the resulting CNF to see if it is satisfiable. If it is unsatisfiable, then C is redundant
and should not be added to the CNF. Obviously, the complexity of this strengthened
version of redundancy removal is in the same order of a SAT solving, which can be
very expensive. Alternatively, we can set a time limit on the SAT solver, abort the
solving when time out, and conservatively assume the clause to be irredundant.

There is a nice trade off between run time and quality of result for different
strengthened versions of redundancy removal algorithms. It is up to the users to de-
termine which version is the best fit for their particular applications.

3.4 Maintaining a Subsumption Free CNF Database

By combining the forward and backward subsumption detection algorithms, we ob-
tain the algorithm for maintaining a subsumption free CNF database. Clauses are
added one by one into the database. As clause enters the database, subsumed clauses
are being detected and removed. Our experiments show that forward subsumption
detection is much cheaper than backward subsumption detection. Therefore, when a
clause enters the database, we first call procedure IsForwardSubsumed. If the clause
is subsumed by existing clauses in the database, the clause is discarded and no further
check is necessary. Otherwise, if it is not subsumed, BackwardSubsumption is called
to check whether it subsumes any existing clauses. If so, the subsumed clauses are
deleted and the new clause is added to the CNF database. The pseudo codes are
shown in Algorithm 3.

4 Maintaining a Decremental Resolution Free CNF Database

A subsumption free CNF can often be simplified further by a resolution followed by
subsumption. For example, consider a CNF containing clauses (a ∨ b) and (a ∨ ¬b ∨
c). It is easy to observe that by resolving these two clauses, the resolvant (a ∨ c) sub-
sumes the second clause, therefore, the formula can be simplified as (a ∨ b) ∧ (a ∨ c).
We will call a resolution that generates a clause that subsumes at least one of its par-
ent clauses a decremental resolution.

AddClauseRemoveSubsumption (C)
{
 if (IsForwardSubsumed (C))
 return;
 S = BackwardSubsumedBy (C);
 for each clause C1 in S
 remove C1 from database;
 add clause C into the CNF database
}

Algorithm 3. Maintaining a Subsumption-Free Clause Database

Formally, we define the distance between two clauses C1 and C2 as the number of

variables that occur in both C1 and C2 but are in different polarities. Given two clauses
C1 and C2 with distance 1, the resolvant is the clause that contains all literals in C1 and
C2 except the distance 1 literals. Furthermore, if the set of variables in C1 is a subset
of the variables in C2, then such a resolution is a decremental resolution because the
resolvant subsumes C2. Given a CNF database, if no decremental resolution is possi-
ble between any pair of clauses in the database, then the CNF is decremental resolu-
tion free (DRF).

Notice that an algorithm that maintains a decremental resolution free database may
not necessarily generate a more compact representation than the algorithm that main-
tains a subsumption free database. Suppose we add three clauses (a ∨ ¬d), (a ∨ b ∨ c
∨ d), and (c ∨ d) into the database, in that order. If we maintain a subsumption free
database, since the second clause is subsumed by the third one, we will remove it and
obtain a CNF with 2 clauses and 4 literals. On the other hand, if we maintain a DRF
database, the second clause resolves with the first clause resulting in a new clause (a
∨ b ∨ c), which is not subsumed by the third clause. Therefore, the end result is a
CNF formula with 3 clauses and 7 literals.

AddClauseAndMaintainDRF (C)
{
 sub_cls = clauses that contain subsets
 of variables in C;
 d0_sub = clauses in sub_cls that are
 distance 0 from C;
 if (d0_sub is not empty) // clause C is subsumed
 return;
 d1_sub = clauses in sub_cls that are
 distance 1 from C;
 if (d1_sub is not empty) {
 C

1
 = arbitrarily choose one clause in d1_sub;

 C
0
 = resolvant of C and C

1
;

 AddClauseAndMaintainDRF (C
0
);

 return;
 }
 sup_cls = clauses that contain supersets
 of variables in C;
 d0_sup = clauses in sup_cls that are
 distance 0 from C;
 d1_sup = clauses in sup_cls that are
 distance 1 to C;
 remove all clauses in d0_sup from CNF;
 if (d1_sup is not empty) {
 for each C

1
 in d1_sup {

 remove C
1
from CNF;

 C
0
 = resolvant of C and C

1
;

 AddClauseAndMaintainDRF (C
0
);

 }
 AddClauseAndMaintainDRF (C);
 return;
 }
 add clause C to CNF;
}

Algorithm 4. Maintaining a DRF Clause Database

The algorithm to maintain a DRF CNF is built upon algorithms similar to the algo-
rithms used for subsumption detection. In subsumption detection, we need to find
clauses that contain subsets (as in forward subsumption) or supersets (as in backward
subsumption) of the literals in a clause C. We can modify both of the algorithms
slightly to find clauses that contain subsets or supersets of the variables in a clause C.
This can be achieved easily. E.g. in the backward subsumption algorithm, we keep a
list of clauses for each variable instead of each literals as ClauseSet(v). In forward
subsumption algorithm, we set marks on variables instead of literals. The pseudo
code for adding a clause into a DRF clause database is shown in Algoirthm 4.

Algorithm AddClauseAndMaintainDRF adds a clause into a CNF formula if and
only if it can make sure that there is no possible subsumption or decremental resolu-
tion between the clause to be added and the clauses in current CNF. If subsumption or
decremental resolution is possible, it eliminates them and then makes a recursive call
to itself to perform the check against the new CNF. One interesting implementation
detail that needs to be pointed out is that after d1_sup is calculated, some of the
clauses in it may be deleted by subsequent recursive calls. Therefore, whenever a
clause from d1_sup is accessed in the foreach loop, it must be checked to make
sure that the clause is still valid in current CNF.

5 Experimental Results

In this section, we report some preliminary experimental results to show the feasibil-
ity and effectiveness of our CNF simplification algorithms. The algorithms are im-
plemented in C++. The program is compiled with Microsoft Visual Studio .Net 2003
and run on a dual 2.8G Intel Xeon processors machine with 2 Gig main memory
running Windows XP. Only a single processor is used since the program is not multi-
threaded. The CNF formulas we use for this experiment include SAT benchmarks
generated from formal verification (1dlx_c_mc_ex_bp_f, c7552, longmult15), logic
planning (bw_large.d) and a random generated 3-SAT instance (3SAT_100_400).

The simple application we choose to test the CNF simplification techniques is as
follows. We randomly choose a subset of the variables in a CNF formula and elimi-
nate them one by one using resolution. The algorithm we use for variable elimination
is the same as the well known algorithm used by Davis and Putnam [1] for SAT solv-
ing. Table 1 shows the statistics of the original CNF formulas and the number of
variables eliminated for each of the formulas. In Table 1 we also show the statistics of
the final CNF formulas generated if we do not apply any CNF simplification tech-
niques during the variable elimination process. This means that all of the clauses
generated from resolution are added into the clause database.

Table 2 shows the statistics for the variable elimination when we apply subsump-
tion detection and removal technique described in section 3. Whenever a clause is
added to the clause database, we check for subsumption and remove the subsumed
clauses so that the CNF is subsumption free using Algorithm 3. The columns under

OrigOrigOrigOriginal Formulainal Formulainal Formulainal Formula After After After After ResolResolResolResolutionutionutionution

FormulaFormulaFormulaFormula
Num. VarsNum. VarsNum. VarsNum. Vars

ElimElimElimElimiiiinatednatednatednated
NumNumNumNum

VarsVarsVarsVars

NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

TimeTimeTimeTime

(s)(s)(s)(s)

3SAT_100_4003SAT_100_4003SAT_100_4003SAT_100_400 10 100 400 583 19333 180120 0.453

1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f 40 776 3725 10045 154180 2854150 4.641

c7552c7552c7552c7552 700 7652 20423 46377 247714 3702725 10.172

bbbbw_large.dw_large.dw_large.dw_large.d 100 6325 131973 294118 212530 1102847 3.641

longmult15longmult15longmult15longmult15 250 7807 24351 58557 692817 4728551 12.656

Table 1. Variable Elimination by Resolution: No CNF Simplification

“Total Added” are the number of clause and literals added to the clause database (i.e.
number of clauses and literals passed to the routine AddClauseRemoveSubsumption).
Columns under “Forward” and “Backward” show the number of clauses and literals
removed due to forward and backward subsumption, respectively. “Final Result”
shows the statistics of the final formula obtained. The differences between the sums
of “Forward”, “Backward” and “Final Result”, and “Total Added” are the clauses
removed during the resolution process. From the result we find that for our applica-
tion, usually many more clauses are forward subsumed than backward subsumed.
Therefore, for this application, applying forward subsumption detection and removal
is very important and should not be foregone. However, there are certain applications
where forward subsumption is not interesting, as discussed in the introduction section
of this paper. For those applications, we can apply backward subsumption removal
directly without invoking the forward subsumption detection algorithm.

Table 3 shows the statistics for applying the DRF algorithm described in Section 4

during the variable elimination process. Again, under “Total Added” are the clauses
and literals added to the CNF database, and the “Final Result” columns show the final
CNF obtained. Compare Table 3 with table 2, we find that by maintaining the CNF to
be DRF, we usually obtain smaller CNF formulas. Maintaining a CNF to be DRF is
more expensive than subsumption removal. However, compare the run time under
“Time” column for all three tables, we find that the performances are acceptable for
this application because the great reduction in number of clauses added offsets the
costs for simplification.

Total Total Total Total AddAddAddAddedededed ForwardForwardForwardForward BackwardBackwardBackwardBackward Final ResultFinal ResultFinal ResultFinal Result

FormulaFormulaFormulaFormula NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

TimeTimeTimeTime

(s)(s)(s)(s)

3SAT_100_4003SAT_100_4003SAT_100_4003SAT_100_400 3782 25919 2028 16489 141 915 1430 7810 0.203

1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f 69686 1073171 39240 706487 5406 83234 22836 260403 9.719

c7552c7552c7552c7552 49259 2352969 3157 144807 869 4238 35316 1368639 18.406

bbbbw_large.dw_large.dw_large.dw_large.d 201832 919829 28673 436138 1462 5792 168678 469222 7.703

longmult15longmult15longmult15longmult15 121059 500805 60649 304472 1061 3425 57353 186920 5.047

Table 2. Variable Elimination: Applying Subsumption Removal

Total Total Total Total AddAddAddAddedededed Final Final Final Final ResultResultResultResult

FormulaFormulaFormulaFormula NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

NumNumNumNum

ClsClsClsCls

NumNumNumNum

LitsLitsLitsLits

TimeTimeTimeTime

(s)(s)(s)(s)

3SAT_100_4003SAT_100_4003SAT_100_4003SAT_100_400 3007 17578 1235 5933 0.165

1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f1dlx_c_mc_ex_bp_f 60665 817435 20967 211399 10.438

c7552c7552c7552c7552 48708 2328013 35276 1355117 28.547

bbbbw_large.dw_large.dw_large.dw_large.d 189187 715388 166021 441140 12.422

longmult15longmult15longmult15longmult15 119450 445434 54761 160775 6.875

Table 3. Variable Elimination: Maintaining DRF

6 Conclusions and Future Work

In this paper we discuss methods to eliminate redundancy in a CNF clause database
on-the-fly. We describe an algorithm for subsumption detection and elimination. We
then describe an algorithm that uses the subsumption detection and elimination algo-
rithm to make a CNF database decremental resolution free. The purpose of this work
is to automatically compact and simplify CNF formulas derived from operations such
as resolution and solution enumeration. Such work is important because many new
applications of SAT solvers such as quantification elimination and abstraction re-
finement are performed by either resolution or solution enumeration.

Many things are unexplored in this paper. Our algorithm is still not powerful
enough to produce prime and irredundant CNF database. Traditional methods to gen-
erate prime and irredundant implicants are too expensive to be practical in this set-
ting. How to balance the runtime cost and the quality of the result for on-the-fly CNF
simplification is a very interesting problem worth much further investigation.

Moving further along this line, it is interesting to see if it is possible to efficiently
generate formulas that have fewer restrictions than CNF. CNF is essentially a two
level circuit, which is known to blow up in size for certain Boolean functions. It
would be interesting to see if multilevel representations for a Boolean function can be
efficiently derived during the solution enumeration or resolution process.

References

[1] M. Davis and H. Putnam, A computing procedure for quantification theory, Jour-
nal of the ACM, vol. 7, pp. 201-215, 1960.

[2] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem prov-
ing. In Communications of the ACM, 5:394-397, 1962

[3] João P. Marques-Silva and Karem A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability, In IEEE Tran. on Computers, vol. 48, 506-521, 1999

[4] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Engineering an
efficient SAT Solver, In Proceedings of the Design Automation Conference, 2001

[5] M. Cadoli, M. Schaerf, A. Giovanardi and M. Giovanardi. An algorithm to evalu-
ate quantified Boolean formulae and its experimental evaluation, in Highlights of
Satisfiability Research in the Year 2000, IOS Press, 2000

[6] H. Kleine-Büning, M. Karpinski and A. Flögel. Resolution for quantified Boolean
formulas. In Information and Computation, 117(1):12-18, 1995

[7] L. Zhang and S. Malik, Towards Symmetric Treatment of Conflicts And Satisfac-
tion in Quantified Boolean Satisfiability Solver, In Proc. of 8th International Con-
ference on Principles and Practice of Constraint Programming (CP2002). Ithaca,
NY, Sept. 2002.

[8] E. Giunchiglia, M. Narizzano and A. Tacchella,. Qube: a system for Deciding
Quantified Boolean Formulas Satisfiability,. In Proceedings of International Joint
Conference on Automated Reasoning (IJCAR), 2001

[9] A. Biere. Resolve and Expand. In Proc. 7th Intl. Conf. on Theory and Applica-
tions of Satisfiability Testing (SAT'04), Vancouver, BC, Canada, 2004.

[10] G. Gottlob, A. Leitsch, On the efficiency of subsumption algorithms, Journal of
the ACM (JACM), Volume 32, Issue 2, pg. 280-295, April 1985

[11] A. Voronkov, “Implementing Bottom-up Procedures with Code Trees: a Case
Study of Forward Subsumption”, Uppsala University, Computing Science De-
partment, UPMAIL Technical Report 88, 1994

[12] Sathiamoorthy Subbarayan and Dhiraj K Pradhan, NiVER: Non Increasing Vari-
able Elimination Resolution for Preprocessing SAT instances, In Proc. 7th
Intl. Conf. on Theory and Applications of Satisfiability Testing (SAT'04), Vancou-
ver, BC, Canada, 2004.

[13] P. Chauhan, E. M. Clarke, D. Kroening, Using SAT Based Image Computation
for Reachability Analysis, Technical Report CMU-CS-03-151, Carnegie Mellon
University, School of Computer Science, July, 2003

[14] Ken L. McMillan, Applying SAT Methods in Unbounded Symbolic Model
Checking, in Proc. 14th International Conference on Computer Aided Verification
(CAV02), Copenhagen, Denmark, July 2002

[15] Hyeong Ju Kang, In-Cheol Park, SAT-Based Unbounded Symbolic Model
Checking, in Proc. 40th Design Automation Conference (DAC03), 2003

[16] H. Zhang, "SATO: An efficient propositional prover," presented at International
Conference on Automated Deduction (CADE), 1997.

[17] Philippe Chatalic, Laurent Simon, Multi-Resolution on Compressed Sets of
Clauses, in Twelfth International Conference on Tools with Artificial Intelligence
(ICTAI'00), 2000

[18] L. Zhang and S. Malik, “The Quest for Efficient Boolean Satisfiability Solvers”,
In Proc. of 8th International Conference on Computer Aided Deduction(CADE
2002, Copenhagen, Denmark, July 2002

[19] Randy Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Transactions on Computers, Vol. C - 35, No. 8, pp. 677 - 691. August, 1986,

[20] S. Minato, “Zero-Suppressed BDDs for Set Manipula-tion in Combinatorial
Problems,” in Proc. of the Design Automation Conference (DAC93), pp. 272-277,
1993

[21] G. Hachtel and F. Somenzi, “Logic Sysntheiss and Verification Algorithms,”
Kluwer Academic Publishers, 1996

