On Subsumption Removal and On-the-Fly CNF
Simplification

Lintao Zhang

M crosoft Research Silicon Valley Lab
1065 La Aveni da Ave., Sunnyvale, CA 94043
lintaoz@r crosoft.com

Abstract. Conjunctive Normal Form (CNF) Boolean formulas geted from
resolution or solution enumeration often have meggtundancy. It is desirable
to have an efficient algorithm to simplify and caomsp such CNF formulas on
the fly. Given a clause in a CNF formula, if a setbsf its literals constitutes
another clause in the formula, then the first ataisssaid to be subsumed by the
second clause. A subsumed clause is redundantaantiecremoved from the
original formula. In this paper, we present a nalgbrithm to maintain a sub-
sumption-free CNF clause database by efficientipateng and removing sub-
sumption as the clauses are being added. Furtheymverpresent an algorithm
that compact the database greedily by recursiygbyyang resolutions that dec-
rement the size of the clause database. Our expetanevaluations show that
these algorithms are efficient and effective incficee.

1 Introduction

A propositional Boolean formula can be represente@€amjunctive Normal Form
(CNF). A CNF formula is a conjunction (logic ANDY one or moreclauses each
clause is a disjunction (logic OR) of one or mliterals. A literal is either a positive
or a negative occurrence of a Booleariable Almost all Boolean Satisfiability
(SAT) solvers (e.g. [1] [2] [3] [4]) and QuantifiedoBlean Formula (QBF) solvers
(e.g. [5]1[6] [7] [8]) require that the input forrauto be in CNF.

Given a clause in a CNF formula, if a subset of isrdls constitutes another
clause in the formula, then the first clause is saidet@ubsumed by the second one.
Formally, we usé&(C) to denote the set of literals of clauSeGiven clause€,; and
C,, if I(Cy) JI(Cy), thenC; subsume<s, andC, is subsumed by;. A subsumed
clause is redundant and can be removed from thaatifprmula without changing
the Boolean function it represents. Since redundkntses consume memory and
slow down the reasoning process of SAT or QBF solveiis, desirable to make a
CNF formula subsumption free by detecting and rengginbsumed clauses. Mod-
ern SAT solvers and QBF solvers usually maintains a @atBbase internally, and
the database is modified constantly during the solprazess due to mechanisms
such as learning (e.qg. [3] [7]) and resolution angagsion [9]. Therefore, it is desir-
able that subsumption removal can be performed ofiythe

Subsumption has been studied in the theorem prowingrunity [10][11]. In par-
ticular, when a new clause is derived, all existitagises in the database are checked
against it to see whether they are subsumed. This ébealledbackward subsump-
tion. The newly derived clause is also checked againgtakxisting clauses to see if
it is subsumed by any existing clauses. This check isdfaiward subsumptianTo
maintain the subsumption-freeness of the clause databate checks need to be
performed.

SAT solving has been an intensively investigated rekefield for many years.
Therefore, it is surprising that there is little workthe SAT literature that specifi-
cally addresses the problem of efficient implemeotadf subsumption detection and
removal, or in a broader sense, on-the-fly CNF catipa. The common perception
in the SAT community seems to be that subsumption tieteand removal are ex-
pensive. Therefore, they are either ignored or amyried out periodically using
naive algorithms during the SAT solving process.

For search based algorithms (e.g. [2] [5]), this apgras acceptable. First, search
based solvers do not generate as many new clauses ednmgér resolution based
solvers. Second, in modern search based SAT solvedof #le new clauses come
from conflict driven learning [3]. Clauses generafeain conflict driven learning
cannot be subsumed by existing clauses (forward sub3uitgd fact can be easily
observed as follows. In modern SAT solvers, each leaslaede is always aassert-
ing clause[3], which is conflicting at current decision levahd will become unit
after backtracking to an earlier decision level. dlari the existing clauses can sub-
sume this clause because otherwise the clause that sshgunmild have been a
conflicting clause at an earlier decision level, ethis impossible. The third and most
important reason that subsumption is usually ignoreceéalse in a search based
SAT solvers learned clauses can always be deletedcdseary. Many intelligent
clause deletion heuristics take the usefulness of these$ into account. Since sub-
sumed clauses are not useful in the reasoning procegshaive high probability of
being garbage collected. Therefore, memory andinu@ overhead for the subsumed
clauses can be kept under control.

Recently some new SAT and QBF algorithms and appicategan to appear in
the literature that render subsumption detection rentbval relevant. Subsumption
removal is important for solvers or preprocessors basegsmiution (recent exam-
ples include QBF solver Quantor [9] and SAT preprozedsVer [12]). Resolution
based solvers are usually memory limited, and the résolaperation often generate
large number of clauses that are subsumed by exis@ugeasd. Another application
where subsumption needs to be considered is SAT bakdtbs@numeration (e.g.
[13] [14] [15]), which tries to enumerate all solut®of a SAT instance (not simply
counting). In both of these cases, newly added clazsswsot be removed if they are
not redundant. Therefore, subsumed clauses must hetesend removed in order to
free the occupied memory space and increase theigapbthe solver.

In this paper, we propose an efficient algorithmdorthe-fly subsumption detec-
tion and removal for CNF clause database. In [9],atthor proposed a signature
based algorithm for backward subsumption detectioe. fkbpose an alternative
backward subsumption detection algorithm that doesnmoir memory overhead as
signature based algorithm does. We also propose ameaffiforward subsumption

detection algorithm inspired by the two-literal-whiitty algorithm proposed in SAT
solver Chaff [4]. Unlike some of the existing worksswas [16] and [17], our algo-
rithms operate on a flat CNF clause database, sometiatlesl sparse-matrix repre-
sentation [18]. Since most of the SAT and QBF solvedsmeprocessors operates on
a flat clause database, our algorithm can be diregiplied without changing their
native data structures.

To compact the CNF database even more. We proposdgarithm that recur-
sively applies the combination of a slightly modifieetsion of afore mentioned algo-
rithms and resolution. Our proposed algorithm not anbkes the clause database
subsumption free, but also decremental resolution ée define a clause database
to be decremental resolution free (DRK)no two clauses in the database can be
resolved such that the resolvant subsumes either & thwesclauses. Experimental
results show that this algorithm often produces a morepact CNF database than
subsumption removal alone.

This paper is organized as follows. Section 2 descpb®gous works on CNF da-
tabase simplification. Section 3 describes our subsumptétection and removal
algorithm in detail. Section 4 introduces the aipon for making a CNF formula
decremental resolution free. Section 5 experimgnt&albluates the algorithms. Sec-
tion 6 draws the conclusion and discusses some futureswork

2 PreviousWork

In this work what we really want to achieve is téiaéntly remove redundancy in
a CNF database, which is just a special case of Bodlmamula simplification.
Therefore, in addition to describe some previous warksubsumption detection in
2.1 and 2.2, we also briefly discuss related workBanlean formula simplification
in 2.3 and 2.4.

2.1 Using Trieand ZBDD to Represent CNF

Trie and ZBDD are both proposed as compact repregargadf CNF clause data-
bases. Zhang proposed to use to store clauses in the SAT solver SATO [16]. A
trie is a tree structure to represent a set in whaath eath from the root to a leaf
corresponds to one key in the represented set. In fi&]trie used for representing
the clause database is a ternary tree. Each inteoo@ im the trie structure corre-
sponds to a variable, and its three children edgelabeted Positive, Negative, and
Don’t Care. A leaf node is eith&ue orfalse Each path from root of the trie tdrae
leaf represents a clause. A trie is ordered if foryeirgernal node V, Parent(V) has a
smaller variable index than that of V. The ordemgsl structure can detect duplicated
and tail subsumed clauses in CNF database cheaply.u8ecia said to be tail sub-
sumed by another clause if its first portion of theréls (a prefix) is also a clause in
the clause database.

An ordered trie has obvious similarities with Binarycid@n Diagrams [19].
Chatalic and Simon proposed to use Zero-suppressearyBDecision Diagrams

(ZBDDs [20]) to represent clauses [17]. A ZBDD repréaton of the clause data-
base can detect not only tail subsumption but also Belsumption. Moreover, the
authors proposed a subsumption elimination operatonake a CNF subsumption
free and a subsumption-free union operator to comtnesets of subsumption-free
clauses into a subsumption-free CNF. The operator& wora symbolically com-
pressed dataset, therefore, they are supposed téidientf

Both trie and ZBDD representations incur significanériead for maintaining the
clause database. They are not widely used in modewmersolMost modern SAT
solvers use a simple flat clause database and the sulimuralimination operators
proposed in [17] are not applicable.

2.2. Signature Based Backward Subsumption Detection

Biere described a signature based backward subsumgéitection algorithm for
Quantor [9], a QBF solver is based on resolution aqéed. A signature is a subset
of a finite signature domaibD. Each literal is hashed to a valugl) /7D. The signa-
ture Sig(C) of a clauseC is the union of the hash values of its literals. Theatigre
of a literalSig(l) is the union of the signatures of the clauses in lwhioccurs, and
is updated whenever a clause is added to the CNF. Whew claus€ is added, its
signature is calculated. If there exists a clabDsehich is subsumed bg, then the
signature ofC must be a subset of the signaturddofwhich is a subset of the signa-
tures of all the literals ifD. Therefore, a necessary condition @to subsume any
existing clause is that for all literalg7 C, Sig(C) 7 Sig (I) Sig(l) is the current signa-
ture ofl, beforeC is added to the current database.

If the necessary condition fails, no clause in theastr€NF can be backward sub-
sumed by the new clause a@dcan be added. This is calleccache hit[9]. Other-
wise, in the cache miss case, we need to traverskaties of an arbitrary literal @
and explicitly check ifC subsumes any of them. If any of the clauses are subsumed
they are removed from the CNF database. During réaeettsal, inclusion of signa-
tures is a necessary condition and can be easily cheokeduse the hash value of a
clause can be pre-calculated and stored.

After a clause is added, the signatures of all itsalisehave to be updated. How-
ever, if a clause is removed, hash collision doesallowv subtracting its signature
from all the signatures of its literals. Thereforeg thid signature is kept as an over
approximation. After certain number of clause reaisythe accurate clause signature
is recalculated.

One problem with the algorithm is that as the totainber of literals in the data-
base increases, the signature of a literal quicklyfilland approach the full domain
setD, thus causing many cache misses. To avoid cache misd@scacase perform-
ance, it is necessary to increase the domain sizehwtat only slows down the cal-
culation of signature and matching, but also increasenory overhead which is
undesirable because the applications we are interieséed often memory bound.

In [9] the author did not describe a forward subsummptietection algorithm. In
fact, forward subsumption is invoked periodically feynoving all clauses, flushing
signatures and then adding back the clauses in resferseological order.

2.3 Primelmplicantsand Irredundant Cover

A CNF formula is in fact a Product of Sums (POS) dogipression. The problem of
subsumption detection and removal in CNF can be degaas a restricted case of
logic simplification. The problem of simplifying 2vel logic circuits has been well
studied. In logic circuit simplification, the dual BOS, i.e. Sum of Products (SOP)
expressions, are often studied instead. There are thlgsrithat can generate prime
and irredundant covers for a Boolean function using iterative consensus and min-
cover algorithms [21]. By applying similar algorithitsa CNF formula, we can also
make it prime and irredundant. A clausepisme if deleting any literal from the
clause changes the Boolean function represented bgNifte The set of clauses in a
CNF isirredundantif removing any of them changes the Boolean fumctiaepre-
sents.

There are some attempts in using existing logic sinsplifbn techniques for CNF
simplification (e.g. [15]). Unfortunately, the algthms used for logic simplification
are usually too expensive for CNF formulas, whictemfinvolve thousands of vari-
ables and clauses. Moreover, such techniques usuallptcharapplied on the fly,
which is often necessary for the applications weraareésted in.

2.4 Simplification Using Trie and Hash

In [13], the authors described a technique to perfomthe-fly clause compaction
and simplification for SAT based solution enumeration quantification (the algo-
rithm is described in terms afubes but the same principle can be applied for
clauses). Whenever a clause is added to the datab&sehecked against the data-
base to see if there exists a clause that consists ofrtie s&t of variables as itself
and the two clauses can be resolved. If there is swetduae, it is removed from the
database and the resolvant (with one less literal) deddhto the database recur-
sively. The check is performed efficiently by utitigi a hash table and a trie data
structure. The worst time complexity of the checlO{f) wheren is the number of
variables.

The algorithm described in [13] can only detect pdssitimplification between
two clauses that has the same number of literalsoritrast, in section 4 we describe
an algorithm that can detect and simplify two claube$ have unequal number of
literals as long as the resolvant subsumes at least ote afauses. Moreover, the
algorithm in Section 4 also detects and removes sojason on the fly.

3 Subsumption Detection and Removal Algorithms

In this section, we describe our proposed subsumpteiaction and elimination
algorithms. The backward subsumption detection alyorileveraging efficient set
intersection operations is described in section 3.1 fditveard subsumption detection
algorithm using one literal watching is described intisa 3.2. In section 3.3 we
describe strengthened versions of the forward subsumalipmithm. The forward

and backward subsumption algorithms are combinedudbsumption elimination in
Section 3.4 to achieve the goal of maintaining lasemption free CNF database on
the fly.

3.1 Backward Subsumption Detection

Given a clauseC, the backward subsumption detection algorithm findslauses

whose literals are supersets of the literal€irFor each literal, we keep a list of
clauses in which this literal occurs, we denote thiCéauseSet(l)The pseudo code
for backward subsumption detection is shown in the Adgm 1.

Backwar dSubsunmedBy (C)
{

S = Set of Al the d auses;
For each literal | in C{

S=Sn CauseSet (|);
If Sis enmpty then break;

return S;

}
Algorithm 1. Backward Subsumption Detection

This algorithm can be implemented efficiently. Seteisection has a linear run
time complexity to the total number of elementshia sets. Therefore, the worst case
complexity for finding clauses backward subsumed bysdg& is linear to the total
number of clauses in which the literalsGroccur. In practice, the literals in a clause
are sorted in ascending sequence with regard to théeruof clauses they appear in.
The iteration often ends with just a couple of itierss when S becomes empty.

The advantage of this algorithm compared with thaatigre base algorithm is that
it does not incur any overhead for storing signatuféss is attractive because the
applications that we are targeting are usually menfmynd. Note that the set of
clauses a literal occurs has to be kept by both methodact, it is often maintained
by the existing SAT solvers or preprocessors for variher reasons. Therefore,
this data structure can be regarded as free.

3.2 Forward Subsumption Detection

Given a claus€, forward subsumption detection algorithm finds dubhére exists a
clause in the current database that is consisteduabset of the literals i@. If such a
clause exists, then clau€ds subsumed by it and should not be added into the CNF

The algorithm for forward subsumption detection is Hame the observation that
if a clauseC is a conflicting clause, then all the clauses thhssme it must also be
conflicting clauses. Assume we set all literal<Cito befalse If clauseC; subsumes
C, then all literals irC; must also béalse

Our algorithm to detect whether suChexists is inspired by the 2-literal watching
algorithm described in [4]. To detect if a clauseasfticting under a set of variable
assignment, we only need to detect whether it contaieast one literal that is not
false. We call this algorithm one-literal watchingaithm. Each clause has one
literal marked as being watched. Each litéraas a list containing the set of clauses
with watched literals corresponding to it. We dertbielist asVatchClauses(l)

| sForwar dSubsuned (C)

{
for each literal | in C{
mark |;
for each clause C in Watchd ause(l) {
I, =aliteral in C that is not marked,
if (no such |)) {
unmark all literals in C
return true;
el se {
renove C from Wat chd ause(l);
put C in Watchd ause(l));
}
}
unmark all literals in C
return false;
}

Algorithm 2. Forward Subsumption Detection

Given a clause&, the algorithmisForwardSubsumed(Qkturnstrue or false de-
pending on whether the clau€eis forward subsumed. The complexity of forward
subsumption detection for a clau€eis about the same as applyingvariable as-
signments (i.e. implications) on the CNF databaseaf&AT solver, whera is the
number of literals in clause.

3.3 Strengthening Forward Subsumption Detection

A clauseC is forward subsumed if an existing clause in the GNBsume<€. If C is
forward subsumed, then it is redundant and shouldbrofdded to the database.
However, even ifC is not subsumed, it may still be redundant. A clausedandant
if current CNF implies it. It is easy to prove thaten Boolean formula§ andf,, if
-f, Of, is false, ther, impliesf;. Subsumption is a specific case of redundancy. We
can easily devise other methods to detect redundancy.

A simple way to strengthen the forward subsumptioea®n algorithm is to ap-
ply full Boolean Constraint Propagation (BCP) whetiiisg literals inC to be false.
If it leads to a conflict, the is redundant and should not be added to the CNF. The
complexity of this strengthened forward subsumptioea&n algorithm is about the
same as applying variable branches (i.e. decisions) on the CNF datghaheren is
the number of literals €. It is obviously more costly than simple forward subgum
tion detection, but potentially more effective.

We can strengthen the algorithm even more. If sf¢ting all literals irC to false
and applying BCP do not produce a conflicting clawsecan apply a SAT solver on
the resulting CNF to see if it is satisfiable. If it issatisfiable, thel€ is redundant
and should not be added to the CNF. Obviously, tmepéexity of this strengthened
version of redundancy removal is in the same ordexr 8AT solving, which can be
very expensive. Alternatively, we can set a timeitliom the SAT solver, abort the
solving when time out, and conservatively assume theselto be irredundant.

There is a nice trade off between run time and ityualf result for different
strengthened versions of redundancy removal algosithiis up to the users to de-
termine which version is the best fit for their pautar applications.

3.4 Maintaining a Subsumption Free CNF Database

By combining the forward and backward subsumptioreati&n algorithms, we ob-
tain the algorithm for maintaining a subsumptionefl@\NF database. Clauses are
added one by one into the database. As clause enéedatabase, subsumed clauses
are being detected and removed. Our experiments ghawforward subsumption
detection is much cheaper than backward subsumptitctae. Therefore, when a
clause enters the database, we first call procddi@wardSubsumedf the clause

is subsumed by existing clauses in the database, teedgdiscarded and no further
check is necessary. Otherwise, if it is not subsuBadkwardSubsumptiois called

to check whether it subsumes any existing clauses. Itheosubsumed clauses are
deleted and the new clause is added to the CNF datab&e pseudo codes are
shown in Algorithm 3.

AddC auseRenoveSubsunption (C)

{
if (IsForwardSubsumed (C))
return;
S = Backwar dSubsunmedBy (C);
for each clause C in S
renove C, from dat abase,;
add clause Cinto the CNF dat abase
}

Algorithm 3. Maintaining a Subsumption-Free Clause Database

4 Maintaining a Decremental Resolution Free CNF Database

A subsumption free CNF can often be simplified furtbgra resolution followed by
subsumption. For example, consider a CNF containligigses (a1 b) and (aJ-b O

c). It is easy to observe that by resolving these taases, the resolvant [&c) sub-
sumes the second clause, therefore, the formula caimipdified as (2 b) O (al c).
We will call a resolution that generates a clausé shbhsumes at least one of its par-
ent clauses decrementatesolution.

AddCl auseAndMai ntai nDRF (C)
{

sub_cls = clauses that contain subsets
of variables in C
dO_sub = clauses in sub_cls that are
distance 0 from C,
if (dO_sub is not enpty) // clause Cis subsuned
return;
dl_sub = clauses in sub_cls that are
distance 1 from C,
if(dlsubls not enpty {
C, = arbitrarily choose one clause in dl_sub;
C = resolvant of C and C;
AddCl auseAndMai nt ai nDRF (G)
return;

sup_cls = clauses that contain supersets
of variables in C

dO_sup = clauses in sup_cls that are
di stance 0 from C,
dl _sup = clauses in sup_cls that are

distance 1 to C
renove all clauses in dO_sup from CNF;
if (dl_sup is not enpty) {
for each C in dil_sup {
renove C, from CNF,
C = resol vant of C and C;
Addd auseAndMai nt ai nDRF (G);

}
AddCl auseAndMai ntai nDRF (C);
return;

}
add cl ause C to CNF;

Algorithm 4. Maintaining a DRF Clause Database

Formally, we define thdistancebetween two clauses; andC, as the number of
variables that occur in both, andC, but are in different polarities. Given two clauses
C,andC,with distance 1, theesolvantis the clause that contains all literal<Gpand
C, except the distance 1 literals. Furthermore, if theoe@ariables inC, is a subset
of the variables irC,, then such a resolution isdecremental resolutiobecause the
resolvant subsumes,. Given a CNF database, if no decremental resolusiqossi-
ble between any pair of clauses in the database thieeBNF isdecremental resolu-
tion free (DRF).

Notice that an algorithm that maintains a decremeasmlution free database may
not necessarily generate a more compact representhtia the algorithm that main-
tains a subsumption free database. Suppose we addlidwees (a1-d), (albOc
0d), and (c d) into the database, in that order. If we maintasubsumption free
database, since the second clause is subsumed by therthjrde will remove it and
obtain a CNF with 2 clauses and 4 literals. On tiemohand, if we maintain a DRF
database, the second clause resolves with the fitgecl@sulting in a new clause (a
O b O c), which is not subsumed by the third clause. Thesefine end result is a
CNF formula with 3 clauses and 7 literals.

The algorithm to maintain a DRF CNF is built upogalthms similar to the algo-
rithms used for subsumption detection. In subsumptioactieh, we need to find
clauses that contain subsets (as in forward subsumpticupersets (as in backward
subsumption) of thditerals in a clauseC. We can modify both of the algorithms
slightly to find clauses that contain subsets or supefaghevariablesin a clauseC.
This can be achieved easily. E.g. in the backward sopson algorithm, we keep a
list of clauses for each variable instead of eachalgeasClauseSet(v)ln forward
subsumption algorithm, we set marks on variables instédderals. The pseudo
code for adding a clause into a DRF clause databad®ivn in Algoirthm 4.

Algorithm AddClauseAndMaintainDRRdds a clause into a CNF formula if and
only if it can make sure that there is no possible supsamor decremental resolu-
tion between the clause to be added and the clausasrent CNF. If subsumption or
decremental resolution is possible, it eliminates thenhthen makes a recursive call
to itself to perform the check against the new CNRe interesting implementation
detail that needs to be pointed out is that aftersup is calculated, some of the
clauses in it may be deleted by subsequent recurslise Taerefore, whenever a
clause fromd1_sup is accessed in thfeor each loop, it must be checked to make
sure that the clause is still valid in current CNF.

5 Experimental Results

In this section, we report some preliminary experitakeresults to show the feasibil-
ity and effectiveness of our CNF simplification alglomis. The algorithms are im-
plemented in C++. The program is compiled with Mgoft Visual Studio .Net 2003
and run on a dual 2.8G Intel Xeon processors machitie 2 Gig main memory
running Windows XP. Only a single processor is usecedine program is not multi-
threaded. The CNF formulas we use for this experinmeittde SAT benchmarks
generated from formal verification (1dIx_c_mc_ex_Hhpc7552, longmultl5), logic
planning (bw_large.d) and a random generated 3-88fance (3SAT_100_400).

The simple application we choose to test the CNF sfizgtion techniques is as
follows. We randomly choose a subset of the varialnles CNF formula and elimi-
nate them one by one using resolution. The algontlenuse for variable elimination
is the same as the well known algorithm used by DawdsParinam [1] for SAT solv-
ing. Table 1 shows the statistics of the original ClFmiulas and the number of
variables eliminated for each of the formulas. Inl&abwe also show the statistics of
the final CNF formulas generated if we do not apgy CNF simplification tech-
niques during the variable elimination process. Theams that all of the clauses
generated from resolution are added into the claatbdse.

Table 2 shows the statistics for the variable elimimatvhen we apply subsump-
tion detection and removal technique described atige 3. Whenever a clause is
added to the clause database, we check for subsungsttbmemove the subsumed
clauses so that the CNF is subsumption free using Algor@hThe columns under

Original Formula After Resolution "
Formula Num vars Num | Num Num Num Num Time
Eliminated (s)
Vars Cls Lits Cls Lits
3SAT_100_400 10 100 400 583 19333 180120 0.453
1dIx_c_mc_ex_bp_f 40 776 3725 10045 | 154180 | 2854150 4.641
c7552 700 7652 20423 46377 | 247714 | 3702725| 10.172
bw_large.d 100 | 6325 131973 | 294118 | 212530 | 1102847 3.641
longmult15 250 | 7807 | 24351 58557 | 692817 | 4728551 | 12.656

Tablel. Variable Elimination by Resolution: No CNF Simplification

“Total Added” are the number of clause and literaldead to the clause database (i.e.
number of clauses and literals passed to the roAtigClauseRemoveSubsumptjon
Columns under “Forward” and “Backward” show the numieclauses and literals
removed due to forward and backward subsumption, césply. “Final Result”
shows the statistics of the final formula obtained. @liferences between the sums
of “Forward”, “Backward” and “Final Result”, and “Tal Added” are the clauses
removed during the resolution process. From the resalfind that for our applica-
tion, usually many more clauses are forward subsumad tiackward subsumed.
Therefore, for this application, applying forward suimption detection and removal
is very important and should not be foregone. Howethere are certain applications
where forward subsumption is not interesting, as discuissth@ introduction section
of this paper. For those applications, we can appgkward subsumption removal
directly without invoking the forward subsumption eletton algorithm.

Total Added Forward Backward Final Result Time
Formula Num Num Num Num Num | Num Num Num ()
Cls Lits Cls Lits Cls Lits Cls Lits

3SAT_100_400 3782 25919 2028 16489 141 915 1430 7810 0.203
1dix_c_mc_ex_bp_f 69686| 1073171 39240 706487] 5406| 83234 22836| 260403 9.719
c7552 49259| 2352969 3157| 144807 869 4238 35316[1368639]18.406
bw_large.d 201832 919829] 28673| 436138 1462 5792| 168678 469222]| 7.703
longmult15 121059 500805] 60649 304472| 1061 3425 57353] 186920 5.047

Table 2. Variable Elimination: Applying Subsumption Removal

Table 3 shows the statistics for applying the DRF ritlgm described in Section 4
during the variable elimination process. Again, urftiatal Added” are the clauses
and literals added to the CNF database, and thel“Risult” columns show the final
CNF obtained. Compare Table 3 with table 2, we flrat by maintaining the CNF to
be DRF, we usually obtain smaller CNF formulas. Mamihg a CNF to be DRF is
more expensive than subsumption removal. However paoemthe run time under
“Time” column for all three tables, we find that therformances are acceptable for
this application because the great reduction in nurobelauses added offsets the
costs for simplification.

Total Added Final Result Time
Formula Num Num Num Num ©)
Cls Lits Cls Lits
3SAT_100_400 3007 17578 1235 5933 0.165
1dIx_c_mc_ex_bp_f 60665 817435 20967 211399 10.438
c7552 48708 2328013 35276 1355117 | 28.547
bw_large.d 189187 715388 166021 441140 12.422
longmult15 119450 445434 54761 160775 6.875

Table 3. Variable Elimination: Maintaining DRF

6 Conclusionsand Future Work

In this paper we discuss methods to eliminate redundianayCNF clause database
on-the-fly. We describe an algorithm for subsumptietection and elimination. We
then describe an algorithm that uses the subsumptiestaen and elimination algo-
rithm to make a CNF databadecremental resolution fred@he purpose of this work
is to automatically compact and simplify CNF formutksived from operations such
as resolution and solution enumeration. Such woikngortant because many new
applications of SAT solvers such as quantification elation and abstraction re-
finement are performed by either resolution or solugnumeration.

Many things are unexplored in this paper. Our atgoriis still not powerful
enough to produce prime and irredundant CNF datatfaaditional methods to gen-
erate prime and irredundant implicants are too esiperto be practical in this set-
ting. How to balance the runtime cost and the qualitthe result for on-the-fly CNF
simplification is a very interesting problem worth rhifarther investigation.

Moving further along this line, it is interesting teesif it is possible to efficiently
generate formulas that have fewer restrictions thafr.GDNF is essentially a two
level circuit, which is known to blow up in size foertain Boolean functions. It
would be interesting to see if multilevel representstifor a Boolean function can be
efficiently derived during the solution enumeratanresolution process.

References

[1] M. Davis and H. Putnam, A computing proceduredoantification theoryJour-
nal of the ACMvol. 7, pp. 201-215, 1960.

[2] M. Davis, G. Logemann, and D. Loveland. A maehprogram for theorem prov-
ing. InCommunications of the AGNi:394-397, 1962

[3] Jodo P. Marques-Silva and Karem A. Sakallah, ASR: A Search Algorithm for
Propositional Satisfiability, IEEE Tran. on Computersol. 48, 506-521, 1999

[4] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, a8d Malik. Engineering an
efficient SAT Solver, IrProceedings of the Design Automation Confere206,1

[5] M. Cadoli, M. Schaerf, A. Giovanardi and M. @anardi. An algorithm to evalu-
ate quantified Boolean formulae and its experimeetaluation, inHighlights of
Satisfiability Research in the Year 2000, 10S Pres8020

[6] H. Kleine-Buning, M. Karpinski and A. Flogel. Balution for quantified Boolean
formulas. Ininformation and Computation, 117(1):12-18, 1995

[7]1 L. Zhang and S. Malik, Towards Symmetric Treattnef Conflicts And Satisfac-
tion in Quantified Boolean Satisfiability Solver, Broc. of 8th International Con-
ference on Principles and Practice of Constraint Prograngr(iCP2002) Ithaca,
NY, Sept. 2002.

[8] E. Giunchiglia, M. Narizzano and A. TacchellQube: a system for Deciding
Quantified Boolean Formulas Satisfiability,. Pmoceedings of International Joint
Conference on Automated Reasoning (IJCAR), 2001

[9] A. Biere. Resolve and Expand. Rroc. 7th Intl. Conf. on Theory and Applica-
tions of Satisfiability Testing (SAT'Q4Jancouver, BC, Canada, 2004.

[10] G. Gottlob, A. Leitsch, On the efficiency oftmumption algorithms, Journal of
the ACM (JACM), Volume 32, Issue 2, pg. 280-295, Ap8B5

[11] A. Voronkov, “Implementing Bottom-up Procedsraith Code Trees: a Case
Study of Forward SubsumptionYppsala University, Computing Science De-
partment, UPMAIL Technical Report 88994

[12] Sathiamoorthy Subbarayan and Dhiraj K PradbYER: Non Increasing Vari-
able Elimination Resolution for Preprocessing SAT insés, In Proc. 7th
Intl. Conf. on Theory and Applications of Satisfiapillesting (SAT'04Vancou-
ver, BC, Canada, 2004.

[13] P. Chauhan, E. M. Clarke, D. Kroening, UsingTSBased Image Computation
for Reachability AnalysisTechnical Report CMU-CS-03-151, Carnegie Mellon
University, School of Computer Sciendely, 2003

[14] Ken L. McMillan, Applying SAT Methods in Unboded Symbolic Model
Checking, in Proc14™ International Conference on Computer Aided Verificatio
(CAV02) Copenhagen, Denmark, July 2002

[15] Hyeong Ju Kang, In-Cheol Park, SAT-Based Unbedn&ymbolic Model
Checking, inProc. 40" Design Automation Conference (DAC03)03

[16] H. Zhang, "SATO: An efficient propositional prer," presented dhternational
Conference on Automated Deduction (CADE)97.

[17] Philippe Chatalic, Laurent Simon, Multi-Resatut on Compressed Sets of
Clauses, inTwelfth International Conference on Tools with Artdicintelligence
(ICTAI'00), 2000

[18] L. Zhang and S. Malik, “The Quest for EffictetBoolean Satisfiability Solvers”,
In Proc. of & International Conference on Computer Aided Dedu¢G&DE
2002,Copenhagen, Denmark, July 2002

[19] Randy Bryant, “Graph-Based Algorithms for BaamteFunction Manipulation,”
IEEE Transactions on Computers, Vol. C - 35, No. 86f@[3.- 691 August, 1986,

[20] S. Minato, “Zero-Suppressed BDDs for Set Maraptibn in Combinatorial
Problems,” inProc. of the Design Automation Conference (DAC93),23R-277
1993

[21] G. Hachtel and F. Somenzi, “Logic Sysntheiss #edification Algorithms,”
Kluwer Academic Publishers, 1996

