
Estimating the Domain of Applicability for Machine
Learning QSAR Models: A Study on Aqueous

Solubility of Drug Discovery Molecules

The original publication is available at www.springerlink.com
http://dx.doi.org/10.1007/s10822-007-9125-z

Timon Schroeter‡†, Anton Schwaighofer†, Sebastian Mika¶,
Antonius Ter Laak‖, Detlev Suelzle‖, Ursula Ganzer‖, Nikolaus Heinrich‖,

Klaus-Robert Müller‡†
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Abstract

We investigate the use of different Machine Learning methods to con-
struct models for aqueous solubility. Models are based on about 4000
compounds, including an in-house set of 632 drug discovery molecules of
Bayer Schering Pharma. For each method, we also consider an appropriate
method to obtain error bars, in order to estimate the domain of applica-
bility for each model. Here, we investigate error bars from a Bayesian
model (Gaussian Process), an ensemble based approach (Random For-
est), and approaches based on the Mahalanobis distance to training data
(for Support Vector Machine and Ridge Regression models). We evaluate
all approaches in terms of their prediction accuracy (in cross-validation,
and on an external validation set of 536 molecules) and in how far the
individual error bars can faithfully represent the actual prediction error.

1 Introduction

Aqueous solubility is of high importance to drug discovery and many other areas
of chemical research. A lot of research has been devoted to developing in-silico
models to predict aqueous solubility directly from a compound’s structure (see
[1, 2, 3, 4, 5] and references therein). As Goldman et al. [6] point out in
their recent review, quite a few Machine Learning methods have matured to the
point where they can be used by non-experts and have found widespread use in
computational chemistry. However, the domain of applicability (DOA) of every
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conceivable QSAR model is limited, leading to unreliable prediction outside the
DOA. When applying any kind of model, it is therefore essential to know the
reliability of each individual prediction [7, 8, 9, 10].

In Schwaighofer et al. [1] we reported about the first model for aqueous
solubility based on the Gaussian Process methodology. The model was based on
solubility measurements for about 4,000 electrolytes and non-electrolytes. Also,
the well known dataset by Huuskonen was used for a performance comparison
with results from literature.

In this paper we present the results of modeling aqueous solubility using four
different machine learning methods. Our primary focus is on the different meth-
ods to estimate the domain of applicability of each model. We consider ensemble
based, distance based and Bayesian approaches to obtaining the confidence es-
timates. The evaluations are carried out on both public data and in-house data
from Bayer Schering Pharma. Models were first evaluated in cross validation,
and subsequently with an external validation set (the data that was used to
conduct the “blind-test” in [1]).

2 Estimating the domain of applicability of mod-

els

For the practical use of all types of machine learning based QSAR models, the
“domain of applicability” is a key question. How can, for example, a model esti-
mate the solubility of a steroid correctly, if it has not been trained on steroids?
Still, this important question has not received much attention for a long time.
The methods proposed so far have have recently been reviewed [7, 8, 9]. In this
section we will briefly discuss the most relevant methods and then focus on the
methods used in this study.

Range based methods check whether descriptors of test set compounds exceed
the range of the respective descriptor covered in training [9, 11]. Rather than
just raising a warning if one or more ranges are exceeded, some authors counted
the number of descriptors that were out of range [10]. By considering each
descriptor individually, range based methods span a hyper-cuboid in the space
of descriptors. Depending on the actual distribution of the training data, this
cuboid may contain a lot of empty space, i.e., it is very unlikely that the actual
data uniformly populates the hyper-cuboid. Therefore, other geometric methods
have been proposed. By considering e.g. the convex hull of the training data in
the space of descriptors, the amount of empty space covered can be significantly
reduced [7]. One should also bear in mind that range based and geometric
methods suffer from a serious drawback: Empty spaces in in the descriptor
space spanned by the training compounds can not be detected, thus predictions
in these regions will not be flagged as unreliable.

Distance based methods (including the so called extrapolation measures) ex-
ist in many variants. [10, 7, 8, 12, 9]. Different distance measures (Euclidean
distance, Mahalanobis distance etc.) can be used to calculate the distance from
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each test set compound to its closest neighbor(s) in the training set. Vice versa,
one can define a threshold for the distance and count the number of training
compounds closer than the threshold. Rather than considering distances to indi-
vidual training data points, Hotellings test or the leverage consider the distance
to the whole training set, by assuming that the data follows a Gaussian dis-
tribution in descriptor space and computing the Mahalanobis distance. Tetko
has argued in [8] that descriptors have different relevance for predicting a spe-
cific property. Instead of general distance measures, property specific distances
(resp. similarities) should be used.

Probability density distribution based methods are another intuitive and ap-
pealing way of estimating the reliability of model predictions[7]. Predictions
made in regions of a high density of training data can be expected to be more
accurate than predictions in regions of low density. Clearly, such a methodology
can identify “holes” in the data distribution. However, density estimation for
high-dimensional data is recognized as an extremely difficult problem[13], and
may thus severely limit the practical applicability of this approach.

Estimating the domain of applicability using ensemble methods is based on
the idea of comparing the predictions of a number of models trained on different
sets of data. If these sets are generated by sampling from a larger set of available
training data, the models will tend to agree in descriptor space regions where a
lot of training compounds are available, but will disagree in sparsely populated
regions. Alternatively, training sets for the individual models may be generated
by adding noise to existing descriptors, such that each model gets a slightly
modified version of the whole set of descriptors. In this case the models will
agree in regions where the predictions are not very sensitive to small changes
in the descriptors and they will disagree in descriptor space regions where the
sensitivity with respect to smal descriptor changes is large. ANNs [8, 12, 4, 14,
10] and decision trees [11, 10] (resp. their ensemble counterpart random forests)
have been most commonly used to estimate the domain of applicability from
ensembles. The methodology can, in principle, be applied to any type of model.

Kühne et al. [15] used a library of new measurements (not used in model
building) in the following way: For each compound to be predicted, they found a
number of nearest neighbours in their library. Out of a number of available mod-
els they then chose the model that gave the best predictions for the neighbours
of the unknown compound. Rather than choosing one out of many methods,
this approach could also be used to estimate the specific model error for the test
set compounds. This will work well, if there is close enough neighbours in the
library. However, if a large library of compounds is available and predictions for
compounds similar to the library are sought, using the new measurements to
train a new model will result in more accurate predictions. This will usually be
more desirable than using the library just for domain of applicability estimation.

The idea behind Bayesian methods is to treat all parameters in the model as
uncertain, and describe them via probability distributions. In such a framework,
the model output is also a probability distribution (rather than a point predic-
tion) which readily includes the required confidence estimates. The most simple
and also most widely used method is the naive Bayes classifier [16, 17]. Gaus-
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sian Process models are an example of a more sophisticated Bayesian method,
that will be discussed in Sec. 3.6.1.

In this study, we employ methods based on distances and ensembles of mod-
els, along with a sophisticated Bayesian learning method. These three groups
of models do not suffer from the “empty space” problem of range based and ge-
ometric methods. Furthermore, they can quantify their confidence (rather than
just raising a warning for possibly unreliable predictions). As we will discuss
later, the confidence estimates can be presented in a format that is intuitively
understandable to chemists and other professionals.

2.1 Illustrative examples

Figure 1 is intended to give an intuition as to how the different methods of error
estimation work. We apply each model used in this study along with its method
of error estimation to the same one dimensional example. The function to be
learned (the cosine function) is shown as a green line in each subplot. Models are
trained using the nine points marked by black crosses. These “measurements”
are generated by randomly choosing x-values and evaluating the cosine function
at these points. As in real life, measurements are noisy: Normally distributed
random numbers in the range between −0.3 and +0.3 are added to the y values.

The linear Ridge Regression model (subplot a) cannot fit the non-linear
relationship in the example. Errors estimated using the distance of test points
to training points are therefore misleading: Close to the training points, low
errors are predicted, but the actual errors are quite large.

The random forest (subplot b) produces a reasonable fit to the training
points, but does not extrapolate well. The same holds for the error predictions:
Considering the noise applied when generating the “measurements”, predicted
errors are acceptable in the range of the training points. They do, however, not
increase when the model is queried far from the training points and therefore
underestimate the actual errors.

The Support Vector Machine (subplot c) captures the non-linearity in the in-
put data and extrapolates reasonably. The distance based error estimation pro-
duces too small error bars in the region close the training points and somewhat
underestimates the errors in the extrapolation region. In this example, an ex-
ponential function would have allowed for a more accurate distance based error
estimation. However, we found that for real life data the linear and exponetial
functions worked equally well and decided for the simple linear function (see
Sec. 4.4). Consequently, we use a linear function in the present example.

The Gaussian Process (subplot d) nicely captures the non-linearity in the
input data and extrapolates reasonably. Predicted errors are adequately small
in the region close to the training points and increase strong enough to avoid
underestimation of errors in the extrapolation region.
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(a) Ridge Regression with distance based er-
ror estimate
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(c) Support Vector Machine with distance
based error estimate
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(d) Gaussian Process (Bayesian method)

Figure 1: Noisy measurements (black crosses) generated from a non-linear func-
tion (green line) are modeled using four different regression methods (subfigures
a-d). Model predictions are drawn as solid red lines. Dashed red lines indicate
errors estimated by the respective model (in case of the Gaussian Process and
random forest) or by a distance based approach (in case of the Support Vector
Machine and Ridge Regression model).
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3 Methods and Data

3.1 Methodology overview

For each molecule, the 3D structure of one conformation in its neutral form
is predicted using the program Corina[18]. From this 3D structure, 1,664
Dragon[19] descriptors are generated. Based on solubility measurements and
molecular descriptors of several thousand compounds, different machine learn-
ing models are used to infer the relationship between the descriptors and the
solubility for the given set of training data. When applying this model to a
previously unseen compound, descriptors are calculated as described above and
passed on to the trained model, which in turn produces an estimate of the
solubility together with a confidence estimate (error bar).

3.2 Different kinds of solubility

Aqueous solubility is defined as the maximum amount of compound dissolved
in water under equilibrium conditions. For electrolytes this property is strongly
pH dependent, so we need more precise definitions: The solubility in a buffer
solution at a specific pH is called buffer solubility or apparent solubility. The
intrinsic solubility is the solubility of a compound in its neutral form. Intrinsic
solubility is only reached at a pH where almost 100 % of the compound is present
in its neutral form. The pure solubility or native solubility can be observed
when adding the compound to pure (unbuffered) water. The pH of the solution
typically changes during this process. The kinetic solubility is the concentration
when an induced precipitate first appears in a solution. In this paper, we focus
only on experimental data of buffer solubility and native solubility.

3.3 Data preparation

Results in this paper are based on the data that has also been used in ref
[1]. Subsequently, we will only briefly describe these data sets, for detailed
descriptions see ref [1].

• Data Set 1: Data from Physprop[20] and Beilstein[21], with 5,652 mea-
surements for 3,307 individual compounds. All of these compounds are
neutral.

• Data Set 2: “Flask”, containing 688 high quality flask measurements of
buffer solubility at pH 7 to 7.4 for 632 drug discovery molecules. 549 of
these compounds are electrolytes.

• Data Set 3: “Flask external”, with 536 measurements, following the same
experimental protocol as the “Flask” set. This set has been recorded after
the “Flask” set, and thus includes compounds from new projects. In our
initial study, it was used to conduct a blind-test of the GPsol model [1].
In the present paper, it serves as an external validation set (i.e., it does
not influence model building in any form).
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Setup Data

Flask Physprop/Beilstein (3307)

Validation

Huuskonen
neutral (704)

Training

Flask (632)

Flask external
validation

Huuskonen
neutral (704)

Training

Physprop/Beilstein (3307)

Validation

Flask (632)
Flask external

(536)

Huuskonen
Training Validation

Huuskonen (1290)

Table 1: Summary of the different setups that are used for performance evalu-
ation. See Sec. 3.4 for a description, and Sec. 3.3 for details on the individual
data sets

• Data Set 4: “Huuskonen”. This is the well known benchmark dataset
originally extracted from the Aquasol[22] and Physprop[20] databases by
Huuskonen.[23], and later revised by several authors[24, 25, 26]. We used
the version at www.vcclab.org (January 2006), but had to restrict to a
subset of 1290 of these compounds for which we could compute Dragon
descriptors. The dataset contains measurements of pure solubility [27].

For all of the data sets listed here, we ensured that they were pairwise dis-
joint. If data sets contained multiple experimental values for compounds, the
measurements were merged after outlier removal[1].

3.4 Training and Validation Setups

The data sets described in Sec. 3.3 were employed in different setups for model
building. The setups are described subsequently, a graphical summary is given
in Table 1. In all cases, it was ensured that no molecules were used both for
model training and evaluation.

Setup “Flask” We evaluate models in leave 50 % out cross-validation on
“Flask” data (buffer solubility at known pH 7.0 . . . 7.4), while always including
data set 1 (neutral compounds from Physprop and Beilstein) and the subset of
704 neutral compounds from data set 4 (Huuskonen) in the training set. This
is repeated 10 times with different random splits of the “Flask” data.

Setup “Flask external validation” Models are trained on all data from
the “Flask” setup and evaluated on the “Flask external” data set. The “Flask
external” data is never used for training in any form.

Setup “Huuskonen” Models are evaluated in leave 33% out cross-validation
on the “Huuskonen” data set. This is repeated 10 times with different random
splits. Leave one third out cross-validation was chosen since it gives training
sets of around 860 compounds. This matches well with most studies conducted
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by other researchers, where models were trained on around 800–880 compounds,
see section 4.4 in [1] and references therein.

3.5 Molecular descriptors

Starting from the full set of 1,664 Dragon descriptors (20 blocks of descriptors
of different nature) [28] we used the weights in the covariance function of Gaus-
sian Process models (automatic relevance determination) to select the 200 most
important descriptors [1]. It turned out that reducing the number of descriptors
to 200 does not significantly impact the models performance, but makes the er-
ror predictions become too optimistic. We thus used those blocks of descriptors
that contained the descriptors that were found to be most relevant (Dragon
blocks 1, 2, 6, 9, 12, 15, 16, 17, 18, and 20). A prediction for log D at pH
7, obtained from a model we previously trained on 20,000 log D measurements
[29, 30], was found to slightly increase the performance of the models and was
therefore included as a descriptor 1.

3.6 Machine Learning Methods

3.6.1 Gaussian Process Models

Gaussian Process (GP) models are a technique from the field of Bayesian statis-
tics. O’Hagan[31] presented one of the seminal work on GPs, a recent book[32]
presents an in-depth introduction.

The idea of GP models can be summarized in three graphs, see Figure 2. We
consider an infinitely large family of functions that could potentially model the
dependence of solubility (function output, denoted by y) from the descriptor
(function input, denoted by x). We describe this space of functions by a Gaus-
sian Process prior, thus each of the functions can be seen as a realization of a
stochastic process. 25 of the infinitely many functions in the prior are shown
in Figure 2(left). In the next step we incorporate the experimental data. In
Figure 2(middle), the available measurements are illustrated by three crosses.
The x-position of the cross identifies the molecule by it descriptor value, the
y-position is the experimental value. After observing the data, we only retain
those functions from the prior that pass through a “tunnel” near the data. The
tunnel accounts for the uncertainty in the measurements. In Figure 2(right),
we summarize the remaining functions by averaging. For each descriptor value
(that is, for each new molecule) we can compute the mean of these functions
(red line) and the standard deviation. The shaded area encompasses ±2 stan-
dard deviations around the mean. Clearly, the size of the shaded area represents
the uncertainty, and gives a good estimate for the domain of applicability of the

1For some compounds, experimental values for both solubility and log D where available.
For these compounds, we used log D predictions generated using a cross-validation procedure.
This means that the predictions were always made using a log D model that has not been
trained using the experimental log D value for the respective compound. This is necessary to
avoid over-optimistic predictions.
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Figure 2: Modelling with Gaussian Process priors. Please refer to Sec. 3.6.1 for
a detailed description of the graphs

model. Note also that the uncertainty increases on points that are far from the
measurements.

All the operations on the infinitely large function space are carried out by
integral operations, leaving only few equations that are easy to implement. Note
that, in Bayesian inference, we do not choose a single “optimal” function from
the prior, but we actually weight them according to how well they match the
experimental data.

The Math We assume that solubility can be described by an (unknown) func-
tion f that takes a vector x of d molecular descriptors as input, and outputs the
solubility, f(x). As our a priori information, we assume that f is a “random
function”, where functional values f(x1), . . . , f(xn) for any finite set of n points
form a Gaussian distribution. This is closely related to the concept of Brow-
nian motion, which also follows a Gaussian process with a specific covariance
function. The stochastic process can be fully described by considering pairs of
compounds x and x′. The covariance for this pair is given by the covariance
function,

cov(f(x), f(x′)) = k(x,x′), (1)

similar to kernel functions in Support Vector Machines.[33, 34] All assumptions
about the family of functions f are encoded in the covariance function k. Each of
the possible functions f can be seen as one realization of the stochastic process.

The actual data for n compounds are n descriptor vectors, x1 . . .xn, (each
of length d), together with solubility measurements, y1, . . . yn. We account for
measurement uncertainty by assuming that the n measured values are related
to actual solubility by

yi = f(xi) + r, (2)

where r is Gaussian measurement noise with mean 0 and standard deviation σ

(see [1] for extensions with data-dependent measurement noise).
After a few steps of statistical inference (see [1, 32]) we obtain that the

predicted solubility for a new compound x∗ follows a Gaussian distribution
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with mean f̄(x∗) and standard deviation std f(x∗), with

f̄(x∗) =

n
∑

i=1

αik(x∗,xi) (3)

std f(x∗) =

√

√

√

√k(x∗,x∗) −

n
∑

i=1

n
∑

j=1

k(x∗,xi)k(x∗,xj)Lij . (4)

Coefficients αi are found by solving a system of linear equations, (K + σ2I)α,
with Kij = k(xi,xj). For the standard deviation, Lij are the elements of the
matrix L = (K + σ2I)−1.

We refer to [1, 32] for details on how the model parameters (the measurement
noise σ) and parameters of the covariance function k can be inferred from the
data.

3.6.2 Support Vector Machine

In this section we will give a short overview of the idea of Support Vector
Regression (SVR) (see [35, 36, 37] for more details). As for Gaussian Process
Models, the goal is to estimate an unknown function f . Given a vector x of
descriptors for a compound, the quantity of interest y (in our case, solubility)
can be predicted as y = f(x).

Contrary to the GP approach, which is based on a probabilistic approach to
quantify the agreement of the model with the data, SVR is based on the notion
of structural risk minimization. The basic idea is as follows: Similar to GP
models, we consider a specific class of functions (representing a type of model).
Within this class of functions, we aim at finding the function (i.e., finding the
model parameters) that minimizes some notion of error. Errors are measured
by the so-called loss function. Obviously, there is a trade-off to be made: Using
a class of functions that represents an overly complex model, one can achieve
an empirical error of zero for any training set and every reasonable loss function
(over-fitting, such a function will produce merely random predictions for new
compounds). On the other hand, choosing a class of function that contains only
very simple models might not account for the complexity of the problem and
will produce prediction that are not accurate either.

Choosing the right function class can be achieved by regularization: Our
objective function is the empirical error on the training data, to which we now
add a penalty term for the complexity of the solution, and then minimize the
sum. For SVR, we use the theory of structural risk minimization as the specific
way of regularizing the learning problem. Under the assumption that test data
follows the same distribution as the training data, one can prove that this way
of choosing the function class will lead to an optimal model. Using the theory
of structural risk minimization for linear models is equivalent to choosing the
weight vector of the linear regression model such that its vector norm is small
whilst minimizing the empirical error.
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The Math The goal of (linear) SVR is to find a predictor f(x) = w⊤x + b,
such that the empirical error as well as the norm of the weight vector w are
small. The loss is measured by the so-called ǫ-insensitive loss function which
only penalizes deviations from the true target that are larger than some small ǫ.
This problem can conveniently be formulated as the following convex quadratic
optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

n
∑

i=1

ξi,

subject to |f(xi) − yi| ≤ ǫ + ξi,

ξi ≥ 0, i = 1, . . . , n.

The constraints state that the difference between the prediction f(xi) and the
target value yi for each training point should be smaller than ǫ. However, to
allow for outliers in the data, the “slack variable” ξ is introduced and penalized
in the objective function such that deviations by more than ǫ linearly increase
the objective function. The constants ǫ and C need to be chosen a priori (in
our implementation, we chose them by cross-validation, but more sophisticated
approaches can be used here as well [38]).

To allow for non-linear models, the so-called kernel trick [34, 37] can be
used. It is possible to generate almost arbitrary nonlinear function f of the
form f(x) =

∑n

i=1
αik(xi,x)+ b, by reformulating the above problem such that

all occurrences of the data x are only in the form of scalar products (x⊤
i xj).

The scalar products can in turn be computed by a kernel function k(xi,xj), that
implicitly maps the descriptors into a hight-dimensional space and computes the
scalar product there. This way, we can turn the linear formulation into non-
linear SVR. Interestingly, the space of valid kernel functions (functions that
map to a high-dimensional space and compute the scalar product) is exactly
the same as the space of valid covariance functions for a GP model (functions
that give a valid covariance matrix for any set of points x1, . . . ,xM ).

3.6.3 Random Forest and Linear Ridge Regression

We chose to briefly discuss Gaussian Process models and Support Vector Ma-
chines b.c. GPs are still relatively new in the context of chemoinformatics and
there’s interesting parallels with Support Vector Machines. For the long estab-
lished methods we note how our implementation differes from the original and
refer the reader to the literature for in depth descriptions.

We use the random forest method developed by Breiman [39], with the
following two modifications: Firstly, no boostrapping or bagging of the sample
is done to construct the trees. Secondly, single trees are pruned using a CART-
style error-size tradeoff. The output variance is estimated by a simple average
between the mean estimated variance from training points found at each tree
leaf reached by the test point, and the variance of these leaves prediction output.

Ridge regression [40] is a technique to regularize a standard linear regression
model, that is particularly important when descriptors are correlated. In a
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(a) Data Set 1: Physprop and Beilstein
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(b) Data Set 2: Flask
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(c) Data Set 3: Flask external validation
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(d) Data Set 4: Huuskonen

Figure 3: Histograms of log SW for all datasets used in this study. See Sec. 3.3
for details. The vertical green lines mark the “fit-for-purpose” range [5, 3] to
assess the performance of models in the log SW range relevant to drug discovery.

typical linear model, a wildly large positive coefficient can be canceled by a
similarly large negative coefficient in its correlated counterpart. Ridge regression
imposes a penalty on the sum of squares of the coefficients. Effectively, the
coefficients are shrunk towards zero and towards each other in the optimization
process. The amount of shrinkage is controlled by the complexity parameter λ:
The greater the λ, the greater the amount of shrinkage. The idea of penalizing
by the sum of squares of the parameters is closely related to regularization in
SVM.

4 Results & discussion

4.1 Fitness for purpose

In drug discovery projects, aqueous solubility is typically between 0.1 µg/L and
250 µg/L. For a compound with a molecular weight of 500 g/mol this corre-
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sponds roughly to the log SW range from −7 to −3.5. Delaney [5] observed that
a lot of models in the literature are trained on public datasets spanning more
than ten orders of magnitude. Compounds with low log SW are usually harder
to predict than soluble ones, nevertheless statistics are typically presented for
the whole range of log SW . Delaney suggests that studies should be assessed
using an element of “fit-for-purpose” (FFP). Johnson et al. [3] picked up the sug-
gestion and evaluated a number of studies, taking into account the performance
of the models in the log SW range from −7 to −3.

Figure 3 contains histograms of log SW for all four datasets used in this
study. Johnson’s FFP range is indicated by vertical green lines. Indeed, less
than 40% of the compounds in the two public sets are in the FFP range (37%
of the “Huuskonen” set and 38% of the “Physprop/Beilstein” set, respectively).
On the other hand more than 90% of the compounds in the two in-house data
sets from Bayer Schering Pharma (compounds from drug discovery projects) are
in the FFP range (94% of the “Flask” dataset and 91% of the “Flask external
validation” dataset, respectively).

We present separate evaluations for the “Huuskonen”, “Flask” and “Flask
external validation” sets of data (see Sec. 4.2). The datasets of Bayer Schering
Pharma are by all means “fit-for-purpose” for drug discovery. Therefore, fur-
ther separation of data with respect to the FFP range mentioned above is not
necessary.

4.2 Overall accuracy

The accuracy achieved using Gaussian Process models, Support Vector Ma-
chines, linear Ridge Regression and Random Forests is listed in Table 2. The
line labeled “mean” lists the performance achieved when constantly predict-
ing the average log SW of the respective dataset. Scatterplots for the two best
performing models on each of the three datasets can be found in Figure 4.
Summarizing these results, we note:

• From Table 2, it is clear that the predictions of all four models are signif-
icantly better than just predicting the average solubility. This effect is of
course most pronounced for the “Huuskonen” dataset, because of its large
spread of experimental data, see also Figure 3.

• Gaussian Process models (GPsol) and Support Vector Machines always
take places one and two. This confirms our assumption that the relation-
ship between descriptors and solubility is indeed non-linear.

• GPsol and SVM predictions appear to be “vertically compressed”.

• Inspecting Figure 4 we find that a lot of points representing predictions
for the “Flask” and “Huuskonen” sets are very close the diagonal (i.e.,
very accurate). The spread is much larger in case of the “Flask external
validation” setup. Also, in Table 2, we can see clearly that the performance
decreases significantly when comparing “Flask external” with the cross-
validation results on “Flask”.

13



Flask cross. MAE RMSE % ± 1
GPsol 0.573 0.747 84.2
RR 0.667 0.862 77.8
SVM 0.617 0.803 81.3
forest 0.650 0.840 78.7
mean 0.908 1.117 60.2

Flask ext. MAE RMSE % ± 1
GPsol 0.656 0.846 78.5
RR 0.657 0.847 78.4
SVM 0.657 0.848 78.5
forest 0.663 0.855 78.0
mean 1.008 1.305 59.0

Huuskonen MAE RMSE % ± 1
GPsol 0.412 0.579 91.2
RR 0.586 0.996 86.1
SVM 0.431 0.600 90.2
forest 0.485 0.660 88.3
mean 1.593 2.04 38.8

Table 2: Accuracy achieved using Gaussian Process models, Support Vector Ma-
chines, linear Ridge Regression and Random Forests for the respective datasets.
“Mean” denotes the results achieved when always predicting the arithmetic
mean log SW of the respective dataset. MAE, RMSE and % ± 1 denote the
mean absolute error, the root mean squared error, and the percentage of com-
pounds predicted correctly within one log unit.
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(a) GPsol on Flask (external validation)
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(b) SVM on Flask (external validation)
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(c) GPsol on Flask
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(d) SVM on Flask
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(e) GPsol on Huuskonen
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(f) SVM on Huuskonen

Figure 4: Scatterplots for the two best performing models on each of the three
datasets. The vertical green lines mark the “fit-for-purpose” range [5, 3] to assess
the performance of models in the log SW range relevant to drug discovery.
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(b) Flask (external validation)

Figure 5: Histograms of Mahalanobis distances from each compound to the
closest compound in the respective training set. Distances for the cross validated
“Flask” setup were calculated for the training/validation-split of one arbitrarily
chosen cross validation run.
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Figure 6: Scatterplot for GPsol on the “Flask external” validation set. Black
points represent confident predictions, grey points represent less confident pre-
dictions with predicted error bars larger than 0.6.
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The decrease in performance observed when looking at external validation data
could be taken as a hint that the more complex models did over-fit their training
data. We did, however, not observe typical symptoms of over-fitting, e.g. a too
large number of support vectors in a support vector regression model. Figure 5
shows histograms of Mahalanobis distances from each compound to the closest
compound in the respective training set. Distances were calculated based on the
same set of descriptors that was used to build the models. In the investigated
training/validation-split of the “Flask” validation setup, 97% of the compounds
have at least one neighbor at a distance smaller than 1500 units. In the “Flask
external validation” setup, only 48% of the compound have neighbors closer than
1500 unites. This clearly confirms that “Flask external” is a set of compounds
that is, to a large extent, structurally dissimilar to the training data in “Flask”.
Thus, we can assume that the decrease in performance is caused by a large
number of compounds being dissimilar to the training set compounds. These
compounds are thus outside of the models’ respective domains of applicability.
If this assumption holds, it should be possible to achieve higher performance by
rejecting compounds that are outside the domain of applicability. We address
this question in Sec. 4.3.

By its construction, predictions from the Gaussian Process model get closer
to the mean log SW when new compounds are more dissimilar to those in the
training set. At the same time, the size of the predicted error bars increases.
In Figure 6 we present a scatterplot for GPsol on the “Flask external” valida-
tion set. Black points represent the confident predictions, whereas grey points
represent the less confident predictions with predicted error bars larger than
0.6 log units. Vertical compression can be observed in the cloud of grey points,
but is not present in the cloud of black points. Thus, we conclude that the
vertical compression observed in Figure 4 is indeed caused by compounds that
are dissimilar to the training set.

4.3 Improving Accuracy by focussing on domain of appli-

cability

In the “Flask” setup, most compounds have close near neighbors in the respec-
tive training set. In contrast, in the “Flask external validation” setup, a lot of
compounds do not have close next neighbors and may be outside of the domain
of applicability of the respective model (see Sec. 4.2 for details). The scatterplot
of high and low confidence predictions in Figure 6 suggests that performance
statistics can be improved by taking the predicted error bars into account. In
the following section, we will investigate whether the prediction accuracy can
be increased by rejecting compounds outside of the domain of applicability and
quantify how much accuracy can be gained.

The different model classes offer different ways of estimating the domain of
applicability:

• Gaussian Process models are inherently probabilistic, and offer a direct
estimate of predictive variance.
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(a) GPsol on Flask (external validation)
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(b) RR on Flask (external validation)
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(c) SVM on Flask (external validation)
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(d) forest on Flask (external validation)

Figure 7: Mean absolute error achieved when binning by the model based error
bar (in he case of GPsol and the random forest) and the Mahalanobis distance to
the closest point in the training set (linear Ridge Regression and Support Vector
Machines do not provide error bars). Each column represents one fourth (133
compounds) of the “Flask external” validation set. Corresponding numbers can
be found in Table 3.
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error bar (average within bin) 0.25 0.54 0.85 1.58
MAE GPsol 0.56 0.75 0.74 0.86

error bar (average within bin) 0.46 0.72 0.90 1.27
MAE (forest) 0.71 0.82 0.65 0.99

distance (average within bin) 365 1149 2039 4003
MAE (RR) 0.59 0.73 0.75 0.90
MAE (SVM) 0.56 0.75 0.71 0.94

Table 3: Mean absolute error achieved when binning by the model based error
bar (in the case of GP and random forest models) resp. the Mahalanobis distance
to the closest point in the training set (for linear Ridge Regression and Support
Vector Machines). Bins were chosen such that each bin contains one fourth (133
compounds) of the “Flask external” validation set. A graphical representation
of this information can be found in Figure 7.

• For random forests, the domain of applicability can be estimated by the
spread of predictions in the committee of decision trees.

• Ridge Regression and Support Vector Machines do not provide error bars
at all. We estimate it by considering the Mahalanobis distance to the
closest point in the training set.

We proceed by assigning bins for the model based error bar (GP and random
forest) respectively distance (for ridge regression and SVM). Within each bin
(representing the predicted error), we compute the mean absolute error of all
predictions that fall into this bin (the actual error made). The resulting plots
are shown in Figure 7. For all four models, there is a clear trend towards small
prediction errors for the bins with small model based error bars (or distances),
and, vice-versa, large errors when the error bars (distances) are large.

Comparing the mean absolute errors from the “Flask external validation”
setup presented in Table 3 and Table 2 we find that the prediction accuracy
indeed increases when focussing on predictions with small model based error
bars (or distances). This effect is most pronounced for the two best performing
models, Gaussian Processes and Support Vector Machines: In both cases, the
mean absolute error decreases from 0.66 to 0.56.

In the “Flask” cross-validation setup, only the best performing model, the
Gaussian Process, had a mean absolute error as low as 0.57, with the Support
Vector Machine being second with a MAE of 0.61. By focussing on the most
reliable predictions, i.e., the leftmost bar / column in Figure 7 and Table 3,
respectively, both models achieve as good results in the “Flask external vali-
dation” setup as was previously estimated using the “Flask” cross validation
setup.

We conclude, that the decrease in performance observed when moving from
the “Flask” cross-validation setup to the “Flask external validation” setup re-
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(a) GPsol on Flask (external validation)
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(b) RR on Flask (external validation)
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(c) SVM on Flask (external validation)
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(d) forest on Flask (external validation)

Figure 8: Predicted error bars can be evaluated by counting how many predic-
tions are actually within a σ, 2σ etc. environment (red line) and comparing with
the optimal percentage (black line). The vertical green lines indicate the σ and
2σ environments, the corresponding numbers can be found in Table 4.

sults from the fact that the “Flask external validation” dataset contains a lot of
compounds that are dissimilar to the compounds in the “Flask” dataset used for
training. Using model based error bars (or distances) to identify the predictions
that are clearly inside the domain of applicability increases the accuracy to the
level previously estimated using cross-validation.

4.4 Individual error estimation for interactive use

To the best of our knowledge, the usefulness of individual confidence estimates
for interactive use in ADME/Tox and physical property prediction has so far not
been discussed or investigated in scientific studies outside of our own group [1,
29, 30]. The typical approach is to present error estimates for predictions binned
by distance, i.e., averaging over a large number of predictions. In practical
applications, the user thus always has to bear in mind the actual relationships
between predicted and expected error, and know that, for example, a distance
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environment pred ± σ pred ± 2σ

optimal % 68.7 95.0
GPsol 65.0 94.0
RR 62.8 91.9
SVM 62.0 91.7
forest 62.2 93.8

Table 4: Predicted error bars can be evaluated by counting how many pre-
dictions are actually within a σ, 2σ etc. environment and comparing with the
optimal percentage. A graphical representation of these results including frac-
tions of σ can be found in Figure 8.

around 1100 represents an average error of 0.7 (see Table 3).
A more intuitive approach is to relate the predicted error to a probability

distribution. The most commonly used definition of uncertainty (for example,
to model measurement errors, prediction errors, etc.) in chemistry, physics and
other fields is based on the assumption that errors follow a Gaussian distribution.
Assuming that the model prediction is a Gaussian (that is, the prediction f̄

describes the mean, and the error bar describes the standard deviation σ), it
follows that the true value is in the interval f̄ ± σ with 68% confidence, and in
the interval f̄ ± 2σ with 95% confidence, etc.

The quality of the predicted error bars can therefore be evaluated by com-
paring with the true experimental values, and simply counting how many of the
experimental values are actually within the σ, 2σ, etc. intervals. 2

Support Vector Machine and linear Ridge Regression do not readily provide
error bars. For these two models, error bars were estimated by fitting both
linear and exponential [8] functions to the distances and prediction errors ob-
served in cross-validation on the training data. Both linear and exponential
functions worked equally well, we thus chose the more simple one and used
linear regression models to convert distances to error bars.

Figure 8 shows that the predicted error bars exhibit reasonable behavior for
all four models investigated, with the GPsol error predictions being closest to the
ideal distribution. The vertical green lines highlight the σ and 2σ environments.
Numerical values for these two points are given in Table 4. The numbers confirm
that all models produce error predictions with the correct statistical properties,
with the GPsol error predictions being closest to the optimal behavior.

Both the log SW predictions and the predicted error bars from the GPsol
model were initially validated in a “blind test” [1], where the modelling team
at Fraunhofer and idalab did not have access to the experimental values for
the “Flask external” validation set. This set contains data from recent drug
discovery projects, which differ significantly from the compounds included in the

2It has been suggested to use numeric criteria, such as log probability of the predictive
distribution, for this purpose. Our experience suggests that these criteria can be misleading,
they thus have not been used. In particular, log probability tends to favor over-optimistic
models.
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training set (see Sec. 4.2). Therefore we conclude that the correct behavior of
the predicted error bars is not limited to the training set used. The approaches
described allow identifying compounds outside of the domain of applicability
and even quantify the reliability of a prediction in a straightforward way. Error
bars are generally known by chemists and other professionals and can therefore
be used directly to give an intuition of the reliability of measurements.

5 Summary

Using four different Machine Learning methods, we constructed models for aque-
ous solubility based on about 4000 compounds, including an in-house set of 632
drug discovery molecules of Bayer Schering Pharma. Error bars were estimated
using a Bayesian modelling approach (Gaussian Process model), an ensemble
based approach (Random forest) and distance based approaches (Mahalanobis
distance to training data for Support Vector Machine and Ridge Regression
models).

We conclude that all four methods investigated predict error bars that can
be used to reject predictions for compounds outside of the domain of appli-
cability of the respective model. In this setting, prediction accuracy on the
external validation set (536 measurements of drug discovery molecules investi-
gated during the last year, including compounds from new projects) is as high
as was estimated from the training data using cross-validation. Furthermore,
we find that individual error bars from all four methods are suitable for inter-
active application of the model. Considering the statistical properties of the
actual errors made on the external validation set, predicted error bars form the
Gaussian Process model are closest to the ideal behavior.

The goal of future research is to continuously improve modeling for compu-
tational chemistry using machine learning methods.
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