
How to Make a Semantic Network Probabilistic

Zhongyuan Wang †,1 Haixun Wang ‡,2 Yanghua Xiao #,3 Ji­Rong Wen ♮,4

†Microsoft Research,
Beijing, China

‡Google Research,
Mountain View, CA, USA

#Fudan University,
Shanghai, China

♮Renmin University of
China, Beijing, China

1zhy.wang@microsoft.com 2haixun@google.com 3shawyh@fudan.edu.cn 4jirong.wen@gmail.com

ABSTRACT
Words and phrases associate with each other to form a semantic
network. Characterizing such associations is a first step toward
understanding natural languages for machines. Psychologists and
linguists have used concepts such as typicality and basic level con-
ceptualization to characterize such associations. However, how to
quantify such concepts is an open problem. Recently, much work
has focused on constructing semantic networks from web scale text
corpora, which makes it possible for the first time to analyze such
networks using a data driven approach. In this paper, we introduce
measures such as typicality, basic level conceptualization, vague-
ness, ambiguity, and similarity to systematically characterize the
associations in a semantic network. We use such measures as the
basis for probabilistic semantic inferencing, which enables a wide
range of applications such as word sense disambiguation and short
text understanding. We conduct extensive experiments to show the
effectiveness of the models and the measures we introduce for the
semantic network.

1. INTRODUCTION
Natural language understanding is always the eternal quest for

machines. Human beings can easily understand natural language
because they have rich background knowledge in their mind. To
fill this gap, some researchers propose implicit knowledge min-
ing, such as PLSI [23], LDA [10], word embedding for DNN [18,
31], etc. On the other hand, with big data and community ef-
forts, explicit knowledge mining becomes possible and practical
for machines. Recent years, lots of efforts are devoted to con-
structing knowledgebases, such as Freebase [12] and Yago [41].
Most of these knowledgebases contain millions of entities (with
unique ids) and billions of facts among these entities. Facts in these
knowledgebases are usually black or white (E.g. <Barack Obama
[/m/02mjmr]; date of birth; August 4, 1961>). With these knowl-
edge facts, machines can answer “fact lookup questions” in search
engines. However, a key challenge here is that machines should
understand questions first. Currently, to bypass this challenge and
leverage knowledge facts, major search engines prepare a white list

of mapping between questions and knowledge facts by rule-based
or mining-based approaches.

But human beings can understand questions easily. For a 10
years old child, even if he/she doesn’t have billions of facts in mind,
he/she can understand the questions correctly. This is because hu-
man beings have common sense in mind, and can do some reason-
ing when they read the text. Therefore, when users launch queries
such as “band for wedding” (a kind of service), they may laugh
at search engines when they see search results and ads containing
“wedding band” (a kind of ring) on the return page.

Recently, major search engines realized the shortage of keyword-
based search systems and began to integrate semantics to their search
and ads systems. One of the effective practices is text annotation
or conceptualization. That is, given a short text, the goal is to
infer concepts in the text. So that machines can understand that
“apple ipad” is a kind of device, while “apple pie” is a kind of
dessert. They are quite different though they are similar literally.
This conceptualization-based similarity comparison has become an
important signal in search engines (details in subsection 5.4).

However, there are many challenges in short text conceptualiza-
tion. Consider the following concrete search queries:

1. “New York”

2. “china, india, brazil”

3. “weather april in paris”

4. “april in paris lyrics”

Making machines understand these queries requires prior proba-
bility, mutual reasoning, and context leverage:

• Without prior probability, machines map “New York” to state,
city, movie, and song equally. But this is not human thinking.
People consider that “New York” as state or city are much
more typical and representative than it as movie or song.

• Given “china”, it belongs to country and fragile item. With
its context “india”, human beings can infer that they belong
to country. But by adding “brazil”, emerging market or BRICS
is a better concept to model these terms.

• Typically, “april in paris” is a song in human mind when it
appears alone or with context “listen to” or “lyrics.” But
in the example of “weather april in paris”, since song and
weather have not obvious relations, “april in paris” should
be divided into two instances “april” and “paris.”

• Mapping “weather” to its hypernym factor, variable, infor-
mation, topic, condition, environmental factor, and so on.
But some of these concepts are meaningless actually, and
they may introduce noise to results.

Hence one can see that understanding short texts is challenging
for machines. But human beings can understand these texts easily,
though they do not have billions of knowledge facts in mind. This
means: 1) common sense knowledge is more important for text
understanding; 2) knowledge in human mind is probabilistic.

In this paper, we call those systems which focus on extracting
facts among entities as knowledgebases (such as Freebase [12] and
Yago [41]), and those systems which focus on common sense rela-
tions among terms as semantic networks (such as KnowItAll [20]
and Probase [42]).

To overcome above challenging problems in text understanding,
we need a probabilistic semantic network. This probabilistic se-
mantic network should associate different scores with nodes (such
as concepts and instances) and their edges (such as isA relations,
similarity relations). In this paper, we will focus on deriving these
essential scores and probabilities in a semantic network: Typicality,
BLC (Basic level conceptualization), Vagueness, Ambiguity, and
Similarity. We show their definitions and examples in Table 1:

• Typicality is the basic score in any semantic network. It de-
scribes the typical grade of an instance e given a concept c,
or reverse. With this score, we can know “dog” and “cat” are
more typical than “starfish” in the concept animal. Table 1
gives more examples ranked by typicality score for a given
concept animal or an instance penguin. The insight of this
score is discussed in subsection 4.1.

• BLC (Basic level conceptualization) provides the ability of
finding an appropriate level of concepts in a set of hierarchi-
cally organized concepts for a given instance e. Unlike typi-
cality, concepts ranked by BLC score are a trade-off between
general concepts and specific concepts. It can be also treated
as a compromise between the accuracy of classification and
the power of prediction (please refer to subsection 4.2.1).
Besides, we compare BLC with PMI and commute time
theoretically, and show the similarity and difference among
them. We give more details in subsection 4.2.

• We also define Vagueness and Ambiguity for terms in the se-
mantic network. The former corresponds to concepts, and
the latter corresponds to instances. With these two scores,
we can resolve part of issues mentioned in above examples.
For example, we know “item” is a vague concept, and ignore
it in the text understanding. We also recognize the “apple”
is an ambiguous instance, and do sense disambiguation with
its context. These two measures will be described in subsec-
tion 4.3 and 4.4 respectively.

• Measuring semantic Similarity between terms (i.e., words or
multi-word expressions) is another fundamental problem in
the semantic network. With this score, we can know “global
company” and “multinational corporation” are similar, while
“apple ipad” and “apple pie” are not. This is critical to many
text understanding tasks. The detailed technique of similarity
calculation will be discussed in subsection 4.5.

With above scores, machines can be more “smart” in the short
text understanding. Let’s recall above concrete examples. With
typicality scores, machines know that “New York” is not a typi-
cal movie; with BLC scores, machines know that state and city are
more representative than movie and song for the term “New York;”
with vagueness scores, machines can remove factor, variable, in-
formation, and topic from concepts of “weather,” then machines
know that song has not obvious relations with environmental factor,
but city has, so that “april in paris” should be divided into “april”

and “paris;” with ambiguity measures, machines know “apple” is
an ambiguous term; with similarity scores, machine find that “ap-
ple” and “microsoft” are very similar, and “microsoft” can be used
to distinguish the sense of “apple.”

Therefore, all of above scores are essential components in the se-
mantic network. They are the foundation when we try to leverage
the semantic network in real applications. In this paper, we will
show a methodology of deriving these scores and weights in a gen-
eral semantic network, and how they enable semantic inferencing.

The rest of the paper is organized as follows. Section 2 intro-
duces the concept of semantic network. Section 3 shows how we
cluster concepts and mine hierarchies in the semantic network. Sec-
tion 4 presents details of scores we proposed. Section 5 gives ex-
periment results and compares our approaches with other methods.
We discuss related work in Section 6 and conclude in Section 7.

2. SEMANTIC NETWORKS
Lots of knowledgebases put their efforts on acquiring as many

facts as possible. E.g. Freebase claims it has 1.2 billion fact triples
(the version of freebase-rdf-2013-08-26-test.gz), and Yago claims it
has 120 million facts about entities. Both of these knowledgebases
ignore the following key problems:

1. Knowledge in human minds is composed of terms, instead of
entity ids.

2. Knowledge in human minds usually are not black or white.
It associates with probability.

Because of the above problems, this kind of knowledgebases is
limited in lots of applications. As mentioned in the Introduction
section, machines should first build mapping such as entity link-
ing between queries and knowledge facts, then they can use these
knowledgebases to answer a small portion of queries.

On the other hand, term-based semantic networks such as Know-
ItAll, NELL, and Probase try to capture general knowledge in hu-
man minds. They hope to enable machines to better understand hu-
man communication, not just a small portion of short texts. These
semantic networks are natural language oriented, and usually asso-
ciate with some statistical information such as the number of co-
occurrence. In this paper, we will show how to use this statistical
information, to make the semantic network probabilistic, and de-
rive scores we describe in the Introduction section. We will take
Probase1 [42] as a running example in this paper. Definitely, our
techniques can be applied to other semantic networks.

Probase is acquired from 1.68 billion web pages. It consists of
the isa relations extracted from sentences matching the Hearst pat-
terns [22]. For example, from the sentence “... presidents such
as Obama ...”, it extracts a piece of evidence for the claim that
“Obama” is an instance of the concept president. The core version
of Probase contains 3,024,814 unique concepts, 6,768,623 unique
instances, and 29,625,920 edges among them.

This kind of term-based semantic networks is naturally similar
as knowledge in human mind. However, they are also noisy and
ambiguous. In the following sections, we will show how to scor-
ing the terms and relations in the semantic network, to make them
usable for knowledge empowered applications.

3. CONCEPT CLUSTERS AND HIERARCHIES
Some semantic networks such as Probase contain millions of

fine-grained concepts. These are the concepts used by humans, and
1Probase data is publicly available at
http://probase.msra.cn/dataset.aspx

Score Type Definition Examples
Typicality The typical grade of an instance e

given a concept c, or vice versa.
animalc → {dog, cat, horse, bird, rabbit, deer, cow, sheep, goat . . . }
penguine → {animal, bird, species, flightless bird, character, brand . . . }

BLC Given an instance e, an appropriate
level of concepts in a set of hierarchi-
cally organized concepts.

penguine → {flightless bird, cold-dependent animal species, colorful
criminal, deep-diving bird, winter animal, polar animal . . . }

Vagueness Given a concept c, a measure of its un-
certain, indefinite, or unclear charac-
ter or meaning.

Vague concepts: { entity, phrase, type, item, thing, result, keyword, clue,
way, term, . . . }

Ambiguity Given an instance e, its ambiguous
level.

Level 0 (unambiguous): {alcohol, computer, coffee, potato, bean, . . . }
Level 1 (borderline): {nike, google, facebook, twitter, xbox, kindle, . . . }
Level 2 (ambiguous): {jordan, fox, puma, python, apple, jaguar, . . . }

Similarity The similarity between two terms. <tiger, jaguar>: 0.979; <caged animal; game animal>: 0.996; <animal,
poodle>: 0.720; <banana, beef>: 0.007; <apple, ipad>: 0.006; . . .

Table 1: Different Score Types and Examples

it is our hope that they can empower machines to understand texts
in natural language. Indeed, Gregory Murphy [33] claimed “Con-
cepts are the glue that holds our mental world together,” and Nature
magazine book review also says “Without concepts, there would be
no mental world in the first place.” [11]

However, these millions of concepts are usually not independent
of each other. Instead, they interact with each other and form intri-
cate structures.

3.1 Overview
In this paper, we focus on two relationships among concepts:

• Concepts that overlap. Concepts are not orthogonal, e.g.
country and developing country have many overlapping in-
stances. Some concepts, e.g. country and nation, are syn-
onyms, meaning their instances are almost exactly the same.

• Concepts that exhibit isA relationships. For instance, fruit
isA food. The isA relationship is the “backbone” relationship
in the semantic network, and it enables us to generalize or
conceptualize.

Company

Client

Firm

Manufacturer

Corporation

large company

Rival

Giant

big company

local company

large corporation

international company

…

Fruit

Fresh fruit

Juice

Tropical fruit

Berry

Exotic fruit

Seasonal fruit

Fruit juice

Citrus fruit

Soft fruit

Dry fruit

Wild fruit

Local fruit

…

company

Fruit

Clustering

Clustering

Figure 1: Concept Clusters

For the first relationship, we use a clustering algorithm to group
concepts based on their instance distributions. Figure 1 gives two
examples of concept clustering results. As we can see, company,
client, firm, manufacturer, and corporation, these concepts have
similar meanings, and they will be put into the same cluster. Be-
sides, company, large company, and international company are
also put into the same cluster because they have many overlapping
instances. The cluster Fruit shows similar features.

We can benefit a lot from concept clustering: First, we reduce
the concept dimensions from millions to a few thousands, which
improves runtime performance; Second, based on the concept clus-
ters, it is easier to build a concept hierarchy for reasoning and

sense mining; Third, concept clusters are important for sense dis-
ambiguation.

Figure 2: Concept Cluster Hierarchies

For the second relationship (isA relationships), it is twofold.
One is the isA relation between concepts, the other is the isA re-
lation between concept clusters. The former relationship is natural
since the semantic network is constructed from it. It can be directly
used in all kinds of scoring. The latter relationship can be built upon
original isA relations among concepts (details will be discussed in
subsection 3.3). Figure 2 shows several concept cluster hierarchies.
E.g. the cluster predator belongs to animal, and animal is a kind of
creature.

Another option to mine these two relationships is using a hierar-
chical clustering algorithm. The reasons that we adopt this 2-phase
approach instead of hierarchical clustering methods are as follows:
first, the hierarchical clustering method may suffer from its poor
merge or split decisions, which make the results out of control;
second, the hierarchical clustering method is not easy to be applied
for millions of nodes.

3.2 Mining Concept Clusters
In this subsection, we introduce how to cluster millions of con-

cepts. Considering the effectiveness and efficiency of clustering on
millions of nodes, we employ a k-Medoids clustering algorithm [27]
to cluster these concepts.

The basic idea is that if two concepts share many entities, they
are similar to each other. Therefore, we use the instance distribu-
tion to represent each concept and evaluate the semantic distance
between two concepts c1 and c2 by Eq. (1)2.

Dclustering(c1, c2) = 1− cosine(Ic1 , Ic2) (1)

where Ici represents the vector of instance distribution of concept
ci as defined in Eq. (2).

Ic = ⟨(e1, f1), · · · , (e|c|, f|c|)⟩ (2)
2Our experiments reveal that Cosine outperforms other similarity/
distance evaluation functions, such as Jaccard, JaccardExtended,
Jensen-Shannon, and the KL divergence in the semantic network.

In each component (e, f) of Ic, e is the instance, and f is the co-
occurrence of e and c in Hearst patterns’ [22] sentences.

Then we need to choose initial centers and set the number of
clusters k. Good initial centers are essential for the success of k-
Medoids clustering algorithm. Instead of using random initial cen-
ters, we identify good initial centers incrementally [32]. The first
center is randomly selected among all candidate concepts. Then we
want to select a concept farthest from existing centers as the next
initial center. That is, for each remaining concept, we set its min-
imum distance with existing centers as its “weight,” and select the
concept with maximum “weight” as the next center, i.e.,

m = {mi|max
cj

{min
i

{Dclustering(mi, cj)}} > α} (3)

where mi is the existing center, cj is the candidate concept, and α
is a distance threshold that the new center has to meet. Clearly, the
number of clusters k is determined by the threshold α. Based on
our experiment results, we set α = 0.7 as an optimal value.

According to the above processing of k-Medoids, we can get k
clusters for all given concepts.

3.3 Mining Concept Cluster Hierarchies

edible

food

ingredient

natural ingredient

healthy food

juice

fruit

fresh fruit

tropical fruit

seasonal fruit

berry

Cluster “fruit” Cluster “food”

ωc(fruit, food)

ωc(berry, healthy food) ...

...

Figure 3: Concept Clusters Hierarchy

After concept clustering, we reduce millions of concepts to thou-
sands of concept clusters. Then we can mine isA relations among
these clusters according to original isA relations in the semantic
network. As Fig. 3 shows, since fresh fruit and juice belong to
ingredient and healthy food, we add the isA relation between the
cluster “fruit” and cluster “food,” and the weight of this edge is the
sum of original weights in the semantic network as follows:

ωCl(Clα, Clβ) =
∑

cµ∈Clα,cν∈Clβ

ωc(cµ, cν) (4)

where cµ and cν are concepts, Clα and Clβ are concept clus-
ters, ωc is the raw weight between concepts, and ωCl is the derived
weight between concept clusters.

Definitely, original isA relations between clusters may conflict.
In this case, these relations weaken themselves mutually, and cause
ωCl small. We just let it go since this reflect the actual case, and
further scoring can be applied based on these new weights.

With above efforts, we build an abstract semantic network with
thousands of concept clusters, and millions of instances. This ab-
stract semantic network is complementary to original semantic net-
work. All the scores and weights we introduce in the following
section can be applied to this abstract semantic network.

This abstract semantic network can benefit the efficiency of se-
mantic network based applications. It is also useful for ambiguity
and similarity calculation. The details will be discussed in subsec-
tion 4.4 and 4.5 respectively.

4. SCORING THE SEMANTIC NETWORK
In this section, we describe how we derive the five fundamen-

tal scores we introduced in the Introduction section in a large data
driven semantic network.

4.1 Typicality
One of the most basic scores is the typicality score. According

to a study in cognitive science and psychology [33], each category
(concept) might have a most typical item, which is perhaps an aver-
age or ideal example that people extract from seeing real examples.
This widely exists in human minds. E.g. given a concept “bird,”
more people may think of “robin” instead of “penguin.” Similarly,
given a concept “country,” more people may think of “USA” or
“China” instead of “Seychelles.” It looks like human beings assign
a typicality score for each instance in a concept, and ranked them
automatically when they think of the concept.

DEFINITION 4.1 (TYPICALITY). Typicality is a graded phe-
nomenon, in which items can be extremely typical (close to the pro-
totype), moderately typical (fairly close), atypical (not close), and
finally borderline category members (things that are about equally
distant from two different prototypes) [33]. Specifically, given a
concept c in the semantic network, typicality P (e|c) is the typical
grade of an instance e in this concept. Similarly, given an instance
e in the semantic network, typicality P (c|e) is the typical grade of
a concept c for this instance.

Typicality score is very useful for machines. It can make ma-
chines do reasoning like human beings. Without typicality scores,
knowledge facts in the semantic network are not easy to use. E.g.
for the term “apple,” it may belongs to lots of categories, such as
fruit, company, book, movie, and music track. For human beings,
probably they will think of fruit or company when they see “apple.”
For machines, if they do not have typicality scores, they will treat
music track as important as fruit or company. This makes machines
cannot reason over the semantic network as human beings. What is
worse, according to our observations, all kinds of terms or phrases
may be names of book, movie, or music track, etc. Without typical-
ity scores, machines will think all texts are related, because they all
belong to these concepts. This leads to many errors when machines
understand texts.

However, how to compute the typicality is an interesting and
challenging problem. Mervis et al. [30] found that simple fre-
quency of an item’s name did not predict its typicality. For exam-
ple, “chicken” is very frequently talked-about (E.g. its frequency
is 7,084 in the semantic network), and it’s a kind of bird. But it’s
not considered as typical as some less frequently encountered and
discussed birds, such as “robin” (E.g. its frequency is 537). But
how often an item is thought of as being a member of the category
can measure the typicality [9]. For example, by levering Hearst
patterns [22], we find “chicken” is thought of as being a member
of bird with 130 times, while “robin” as a bird with 279 times in a
corpus of web documents. It is consistent with the fact the “robin”
is more typical than “chicken” as a bird.

Intuitively, typicality score can be driven from co-occurrences of
concept and instance pairs as follows:

P (e|c) = n(c, e)∑
ei∈c n(c, ei)

P (c|e) = n(c, e)∑
e∈ci

n(ci, e)

(5)

where n(c, e) is the co-occurrence of concept c and instance e in
Hearst patterns’ sentences from the whole Web documents.

4.2 Basic Level Conceptualization
With the typicality score, machines can do some simple reason-

ing, such as conceptualization [40, 24]. Basically, given an instance
e, conceptualization tries to map it to some concepts. But some-
times, the typical concepts are not the representative concepts of
instances. In this section, we will discuss how to do the basic level
conceptualization for a given instance.

4.2.1 Definition
For any instance, its concepts can be thought of as a set of hier-

archically organized categories, ranging from extremely general to
extremely specific [33]. Consider the term “jewelry.” It can be cat-
egorized into a large number of concepts, including item, valuable,
valuable item, handmade and commercial craft item, etc. Consider
these two concepts:

1. item

2. handmade and commercial craft item

Here, c =item has high typicality p(c|e), that is, given e = jew-
elry, it is highly likely that the concept of item comes into mind. On
the other hand, c =handmade and commercial craft item has high
typicality p(e|c), that is, when people talk about handmade and
commercial craft item, very likely they mean jewelry. Thus, they
represent two extremes: item is a very general concept for jewelry,
while handmade and commercial craft item is a very specific one.
These two extremes have following two characteristics:

• From the perspective of classification, general concepts tend
to maximizes accuracy of classification. E.g. if we classify
instances to item, it may be most likely correct.

• From the perspective of prediction, specific concepts tend to
allow for greater power in prediction. E.g. handmade and
commercial craft item is able to predict more about jewelry
(its properties, its appearance) than item.

In other words, general concepts may be correct answers to a
given instance, but they cannot distinguish different kinds of in-
stances and can also distort the meaning of instance. On the other
hand, specific concepts preserve more useful information about in-
stances, but their coverage is limited. In some scenarios, we want
to find the most appropriate concepts which are not too general nor
too specific. We use BLC (Basic level conceptualization) to cap-
ture this feature.

DEFINITION 4.2 (BASIC LEVEL CONCEPTUALIZATION). Given
an instance e in the semantic network, of all possible concepts in a
hierarchy to which e belongs, the appropriate level of concepts is
the most natural, preferred level at which to conceptually carve up
the world.

In other words, BLC concepts are a trade-off between general
concepts and specific concepts. It can be also treated as a com-
promise between the accuracy of classification and the power of
prediction.

4.2.2 BLC Using Typicality with Smoothing
The typicality score defined in Equation 5 can be directly used in

the basic level conceptualization. Unfortunately, when e is given,
P (c|e) is proportional to the co-occurrence of c and e. So it tends
to map e to some general concepts. From another perspective, if
we want to find in which concepts, e is its most typical instance,
we can also try to ranked these concepts by P (e|c).

However, the above naive formulas may cause some problems.
E.g. there is a small concept called microsoft’s smaller and nim-
ble rival, which only contain one instance “apple” and their co-
occurrence is 1. Then with this naive typicality formula, P (apple
| microsoft’s smaller and nimble rival) is 1. In this case, if we try
to conceptualize “apple” with P (e|c), this kind of small concepts
will always rank highest.

To mitigate this issue, we propose a Smoothed Typicality for
BLC:

P (c|e) = n(c, e) + ε∑
e∈ci

n(ci, e) + εNconcept
(6)

where Nconcept is the total number of concepts, and ε is a small
constant which assumes every (concept, instance) pair has a very
small co-occurrence probability in the real world, no matter whether
we find some evidence from Web documents.

This smoothed typicality can achieve good results with a fine
tuned ε. Details are discussed in the Experiment subsection 5.1.

4.2.3 BLC Using Representativeness Score
From another perspective, if we don’t want to introduce ε into

the basic level conceptualization, we can try to combine P (c|e)
and P (e|c) in some way.

Intuitively, we define the Representativeness score for BLC as
follows:

Rep(e, c) = P (c|e)P (e|c) (7)

Then, given an instance e, we use the above formula to find its
most representative concepts:

Crep(e) = max
c

Rep(e, c) (8)

where c is any concept that have an edge connecting to the given
instance e in the semantic network. Conceptually, this function tries
to boost up this kind of concepts: given the instance, the concept is
its typical concept; while given this concept, the instance is also its
typical instance.

Though Equation 7 is straightforward, we find it is quite useful
for BLC in practice. Therefore, we try to analyze its essence, and
find it is related to PMI and commute time. Their relations and
differences will be discuss in detail in the following subsections.

4.2.4 Comparison with PMI
We observe that, with derivation, Formula 7 can be changed to:

Rep(e, c) =
P (e, c)

P (e)P (c)
∗ P (e, c) (9)

The above fomula is similar with Pointwise mutual information
(PMI) [29]. PMI is a standard measure of association in infor-
mation theory. If we use PMI to calculate the representativeness
between concept c and instance e, then we can get:

PMI(e, c) = log
P (e, c)

P (e)P (c)

= logP (e|c)− logP (e) (10)

However, since e is given, logP (e) is a constant. Then ranking
by PMI is reduced to ranking by typicality P (e|c) in our scenario.
As we mentioned in subsection 4.2.1, this may cause that top con-
cepts are too specific.

Bouma [14] proposes a normalized pointwise mutual informa-
tion (NPMI). If we use NPMI to calculate the representativeness
between concept c and instance e, then we can get:

NPMI(e, c) =
PMI(e, c)

− logP (e, c)

=
logP (e|c)− logP (e)

− logP (e, c)
(11)

Nevertheless, NPMI has the following problems in our scenario:

• When P (e, c) is large (tending to be 1), P (e, c) dominates
NPMI because “−logP (e, c)” tends to be 0. This leads to
top representative concepts too general.

• When P (e, c) is small, 1
− logP (e,c)

does not change much
when P (e, c) changes, thus, PMI dominates NPMI in
this case. As mentioned above, this leads to top represen-
tative concepts too specific.

Though both PMI and NPMI are not suitable for calculating
the representativeness score, if we take the logarithm of Formula 7,
we can deduce that:

logRep(e, c) = log
P (e, c)2

P (e)P (c)

= PMI(e, c) + logP (e, c)

(12)

Actually, the above equation is PMI2, which is a typical case of
PMIk family proposed by Daille [19]. Therefore, the logarithm
of representativeness can be treated as a type of normalized PMI .

4.2.5 Comparison with Commute Time
Alternatively, we can also consider this problem of finding rep-

resentative concepts from the graph perspective.
As we mentioned in subsection 4.2.1, given the instance e, the

representative concept c should be one of e’s typical concepts, in
other words, c should have “shortest distance” with e. Similarly,
given this representative concept c, e should have “shortest dis-
tance” with c. Therefore, we can treat the process of finding rep-
resentative concepts as a process of finding concept nodes have
shortest expected distance with e, we can formalize this process to
a random walk problem of finding top nearest concepts reached by
a given instance e, and leverage the commute time as the distance
measure. Commute time [28] is a common measure of the distance
between two nodes in a graph. It is the expected number of steps
that a random walk starting at node i, go through node j once, and
return to i again.

Then, we define the random walk should alternate between con-
cepts and instance in the network. For a given instance e and a
concept c, their commute time CT is:

CT (e, c) = lim
T→∞

T∑
k=1

(2k) ∗ Pk(e, c)

=

T∑
k=1

(2k) ∗ Pk(e, c) +

∞∑
k=T+1

(2k) ∗ Pk(e, c)

≥
T∑

k=1

(2k) ∗ Pk(e, c) + 2(T + 1) ∗ (1−
T∑

k=1

Pk(e, c))

(13)

where Pk(e, c) is the probability of starting from e through c and
return to e at step 2k.

As we only consider top concepts (e.g. the concept with com-
mute time less than M), we can neglect the concept with commute

time larger than M in only T steps. For instance, we constrain the
random walk within 4 steps (treat #steps>4 as 4 steps), then:

CT ′(e, c) = 2 ∗ P (c|e)P (e|c) + 4 ∗ (1− P (c|e)P (e|c))
= 4− 2 ∗ P (c|e)P (e|c)
= 4− 2 ∗Rep(e, c) (14)

According to the above derivation, our representativeness score
has an inverse relationship with commute time under this random
walk assumption. But for the complete commute time, our experi-
ments show that the representativeness score is better than it.

4.3 Vagueness
For concepts in the semantic network, we observe that some of

them are concrete (such as country, city, and celebrity), but some
of them are vague (such as thing, item, and factor). By looking into
vague concepts, we find they have the following characteristics:

• They contain many instances.

• Their instances are diverse.

Vague concepts are not very meaningful to differentiate the sense
of a term, because almost every term can map to vague concepts.
Therefore, we need to associate a vagueness score for each con-
cept, and then ignore vague concepts in some application scenarios.

According to our observations, we derive the vagueness score of
concept c from its instance diversity:

V ag(c) =

∑
x,y∈c,x ̸=y D(x, y)

|c| ∗ (|c| − 1)
, |c| > 1 (15)

where x and y are instances belong to the concept c, |c| is the
number of instances contained by c, and D(x, y) is the distance
between x and y.

D(x, y) can be obtained by many approaches. Some are based
on a knowledgebase such as WordNet[7, 6], others are based on a
corpus[17, 13]. Considering practicability, in this paper, we lever-
age instances’ concept distributions to calculate their distance:

D(x, y) = 1− cosine(CV (x), CV (y))

= 1−
∑

ci=cj
n(ci, x) ∗ n(cj , y)√∑

x∈ci
n2(ci, x) ∗

√∑
y∈cj

n2(cj , y)

(16)

where CV (x) is the concept vector of the instance x, and n(ci, x)
is the co-occurrence of concept ci and instance x.

With this measure, top vague concepts are {entry, 0.956}, {option,
0.949}, {thing, 0.939}, {item, 0.904}. These concepts contain var-
ious entities. In contrast, concrete concepts have small scores, such
as {country, 0.052}, {city, 0.118}, {celebrity, 0.280}.

4.4 Ambiguity
For instances in the semantic network, we observe that some in-

stances are ambiguous, which means they have multiple senses. For
example, the term “china” has senses country and fragile item; “ap-
ple” has senses fruit and company; “harry potter” has senses such
as book, movie, and character. To identify these terms, we need an
ambiguity level for all instances.

In Section 3, we clustered millions of concepts to thousands of
concept clusters, and built hierarchies among them. These clusters
and hierarchies can be treated as a kind of senses, and benefit the
ambiguity detection. In this paper, we define the sense as a hierar-
chy of concept clusters.

For each instance, we first identify its senses, and then classify it
to the 3 categories. We call them Naive Ambiguity Levels.

DEFINITION 4.3 (NAIVE AMBIGUITY). Given an instance e,
we classify its ambiguity to a following level:

• L0 (unambiguous): e contains only 1 sense. E.g. “apple
juice” only has the sense related to juice.

• L1 (unambiguous and ambiguous both make sense): e con-
tains 2 or more senses, but these senses are related. E.g.
“Google” has senses like company and search engine, but
these two senses are related.

• L2 (ambiguous): e contains 2 or more senses, and these
senses are very different from each other. E.g. “python” has
senses like animal and programming language, and these two
senses are very different.

To detect whether two senses si and sj are related, we can com-
pare every concept cluster pair in these two senses, and then select
the maximum score as the similarity:

SenseSim(si, sj) = max{ClusterSim(Clα, Clβ)

| Clα ∈ si && Clβ ∈ sj}
(17)

where Clα is a concept cluster in the sense si, Clβ is a concept
cluster in sj , and ClusterSim is the similarity function to calcu-
late the similarity between clusters.

The cluster similarity can be obtained by comparing their entity
distributions:

ClusterSim(Clα, Clβ) = cosine(EV (α), EV (β))

=

∑
ei=ej

n(Clα, ei) ∗ n(Clβ , ej)√∑
ei∈Clα

n2(Clα, ei) ∗
√∑

ej∈Clβ
n2(Clβ , ej)

(18)

where EV (α) denotes the entity distribution of concept cluster
Clα, n(Clα, ei) is the total co-occurrence of concept cluster Clα
and instance ei: n(Clα, ei) =

∑
c∈Clα

n(c, ei).
In practice, we find that though some instances contain multi-

ple senses, the weight of their first sense s1 is much larger than
their second sense s2. E.g. the first sense of the instance “Taylor
Swift” is related to celebrity (weight: 0.83), and its second sense
is song (weight: 0.02). This kind of cases are caused by some rare
knowledge facts or extraction errors. But actually, people tend to
consider that “Taylor Swift” is unambiguous in common situation.
Therefore, for the instance in L2, we employ the following indica-
tor to subdivide them:

δe =
ωs1 − ωs2

ωs2

(19)

where e ∈ L2, ωs1 is the weight of its first sense, and ωs2 is the
weight of its second sense. Then we propose Refined Ambiguity
Levels as follows:

Amg(e) =

 0 e ∈ L0

1 e ∈ L1, or (e ∈ L2 && δe > α)
2 e ∈ L2 && 0 < δe < α

(20)

We will discuss the parameter tuning in the subsection 5.2.3.

4.5 Similarity
As we mentioned above, semantic networks are composed of

terms. Measuring semantic similarity between terms (i.e., words
or multi-word expressions) is a fundamental problem. It is critical

to lots of applications. Intuitively, when we say two terms are se-
mantically similar, it means their meanings are close, or they share
many common properties. For example, “global company” and
“multinational corporation” are similar because they have many
similar instances. Another example, “ibm” and “microsoft” are
similar because they share many similar concepts. A more com-
plicated case is “apple” which has multiple senses. However, when
people mention it with “microsoft”, people will do sense disam-
biguation first, then compare them together and think they are very
similar. We need to handle all of these cases while measuring term
similarity.

It is natural that we can leverage the context information of terms
in the semantic networks to measure their semantic similarity. The
straightforward way to define similarity is

Sim(t1, t2) = cosine(R(t1), R(t2)) (21)

where R(t) is the vector representation of t’s context in the seman-
tic network. The context of a term depends on its type. If t is a
concept, i.e., it appears more as a hypernym than a hyponym, then

R(c) = ⟨p(e1|c), . . . , p(ek|c)⟩.

Else if t is an instance, i.e., it appears more as a hyponym, then

R(e) = ⟨p(c1|e), . . . , p(ck|e)⟩.

Here p(e|c) and p(c|e) are typicality scores defined in subsection 4.1.
This basic approach works reasonably well for most occasions,

but for those ambiguous terms (Amg(e)=2), their scores are af-
fected by their multiple senses. We therefore propose the following
refined approach for ambiguous instances comparison:

Sim(t1, t2) = max
x∈Rcl(t1),y∈Rcl(t2)

{ClusterSim(x, y)} (22)

where Rcl(t) is the set of t’s concept clusters (by removing
those clusters with vague concepts measured by Equation 15), and
ClusterSim(x, y) is defined by Equation 18.

5. EXPERIMENTS
To evaluate the effectiveness of scores proposed in this paper, we

conduct our experiments on the Probase3 [42] semantic network.
The dataset we use is called “core” version. It contains 3,024,814
unique concepts, 6,768,623 unique instances, and 29,625,920 edges
among them.

5.1 Evaluation on Typicality and Representa­
tiveness

5.1.1 Experiment Setting
Conceptualization is one of the essential processes for text un-

derstanding. It maps instances in the text to the concept space.
Both “typicality” and “representativeness” scores can be used in the
conceptualization. In this evaluation, we select 26 instances from
top search queries between July 1, 2012 and December 31, 2012,
then we use the typicality P (c|e), P (e|c), and representativeness
Rep(e, c) to rank concepts corresponding to these instances.

We also compare our approaches with several baselines: MI ,
NPMI , PMI3. Since PMI is reduced to typicality P (e|c) in
our scenario, we don’t treat it as another baseline separately. The
formulas of these baselines are as follows:

Mutual Information(MI): MI(e, c) =
∑

P (e, c) log P (e,c)
P (e)P (c)

3Probase data is publicly available at
http://probase.msra.cn/dataset.aspx

Normalized Pointwise Mutual Information(NPMI): please re-
fer to Equation 11.

PMI3 [14]: PMI3(e, c) = log P (e,c)3

P (e)P (c)

For each approach, we try both cases: without smoothing, and
with smoothing (please refer to subsection 4.2.2).

5.1.2 Metrics
We now discuss how we evaluate the results of different ap-

proaches. As there is not ground-truth ranking for conceptual-
ization results. We manually label these (instance, concept) pairs
(there are all 1,683 pairs), and assign a label for each pair. The
labeling guideline is shown in Table 2.

Label Meaning Examples
Excellent Good matched con-

cepts
(bluetooth, wireless com-
munication protocol)

Good A little general or spe-
cific

(bluetooth, accessory)

Fair Too general or specific (bluetooth, feature)
Bad Non-sense concepts (bluetooth, issue)

Table 2: Labeling Guideline for Conceptualization

Then we employ precision@K and nDCG to evaluate the re-
sults of different approaches. The precision@K is used for eval-
uating the correctness of conceptualization results, and nDCG is
used to measure the ranking of concepts.

For precision@K, we treat Good/Excellent as score 1, and Bad/Fair
as 0. We calculate the precision of Top-K concepts as follows:

Precision@K =

∑K
i=1 reli

K
(23)

where reli is the score we define above.
For nDCG, we treat Bad as 0, Fair as 1, Good as 2, and Excel-

lent as 3. Then we calculate nDCG for top-K results as follows:

nDCGK =
rel1 +

∑K
i=2

reli
log i

ideal rel1 +
∑K

i=2
ideal reli

log i

(24)

where reli is the relevance score of the result at rank i, and
ideal reli is the relevance score at rank i of an ideal list, obtained
by sorting all relevant concepts in decreasing order of the relevance
score.

5.1.3 NDCG & Precision
We show the comparison from two aspects: without smoothing,

and with smoothing.
Without smoothing, as Fig. 4 shows, the representativeness score

Rep(e, c) proposed by this paper is much better in precision than
others. Rep(e, c) is the best for top-2, top-5, and top-10. PMI3

is also good for top-1, but it is worse for other cases. So it is not
stable. For the ranking of top concepts, Rep(e, c) outperforms all
other methods in all cases.

With smoothing, we try different values of ε. We observe that
the smoothing technique has a significant effect on the typicality
P (e|c), as shown in Fig. 5. For P (e|c), its optimized ε is 1e-4.
With this smoothing setting, the typicality P (e|c) outperforms all
other methods in both precision and nDCG when K is 2, 3, 5,
10, and 15. However, Rep(e, c) wins the precision@1 when its
smoothing ε=1e-4.

We have the following conclusions:

• The representativeness score Rep(e, c) performs best for con-
ceptualization task overall, and it’s robust.

• The typicality score P (e|c) has a good performance after a
sophisticated tuning on the smoothing value ε.

• The approach selection depends on: (1) the application sce-
nario, e.g. the application focuses on the top-1 concept, or
a list of good concepts; (2) existing resources, e.g. whether
there is a labeled set for the smoothing value ε tuning.

5.1.4 Examples
Some examples are shown in Table 3. We find top concepts

ranked by P (c|e) tend to be general. E.g. the top 1 concepts of
“jewelry,” “car,” and “battery” are all item. Obviously, item is not
a good concept to predict these instances’ features. On the other
hand, concepts ranked by P (e|c) (without smoothing) tends to be
specific. Though these concepts have greater power on prediction,
they have limited coverage. This makes them useless in the com-
putation. E.g. when we compare two related instances with ex-
tremely specific concepts, they may have little overlapping infor-
mation. In Table 3, concepts ranked by Rep(e, c) and P (e|c) with
smoothing(ε = 1e-4) are the best. They are the trade-off between
general concepts and specific concepts.

5.2 Evaluation on Vagueness and Ambiguity

5.2.1 Setting & Metrics
Because there is no standard benchmark for vagueness and ambi-

guity evaluation, we still leverage top search queries between July
1, 2012 and December 31, 2012. We make search queries join con-
cepts and instances in our semantic network:

• For vagueness evaluation, we select top 100 concepts order
by the query frequency as per the test set.

• For ambiguity evaluation, we select the top 100 instances or-
dered by query frequency for each ambiguity level. There-
fore, there are total 300 instances in the test set.

Then we manually label test sets with the same guideline, as
shown in Table 4.

Label Meaning Examples
Yes Vague concept or Concept: entity, item

ambiguous instance Instance: fox, apple
Borderline Classified to both Concept: job, culture

cases are fine Instance: nike, facebook
No Concrete concept or Concept: country, car

unambiguous instance Instance: computer, potato

Table 4: Labeling Guideline for Vagueness and Ambiguity

To evaluate the vagueness score of concepts, and ambiguity level
of instances, we still employ precision as the metrics.

5.2.2 Vagueness
To map our vagueness score to the labels, we do following trans-

formations: (1) set a threshold α, treat the concept with score V ag(c)
>α as a vague concept; (2) treat the concept with human label
“Yes” or “Borderline” as a vague concept. Then we compare the
machine labeled set and human labeled set with different thresh-
old α. The result of precision is shown in Fig. 6(a). As we can
see, with α = 0.7, the precision is the highest: 0.78. Then we
analyze the error cases. We find that most of errors come from con-
cepts containing lots of named entities, such as book, word, hotel,
restaurant. For these concepts, their vagueness score is high, be-
cause their instances are very diverse. From this perspective, our

(a) Precision Without Smoothing

(b) nDCG Without Smoothing

Figure 4: Precision and nDCG Comparison without Smoothing

(a) Precision@1 (b) Precision@5 (c) Precision@10

(d) nDCG@1 (e) nDCG@5 (f) nDCG@10

Figure 5: Precision and nDCG Comparison with Different Smoothing Values

(a) Precision of Vagueness (b) Precision of Ambiguity

Figure 6: Precision of Vagueness and Ambiguity

vagueness score still makes sense for these concepts. By predefin-
ing a concept list for named entities (it is quite simple to discover
this kind of concepts by checking whether there are lots of instances

starting with a capital letter), our precision reaches up to 96%.

5.2.3 Ambiguity
For ambiguity, our scoring function (please refer to Equation 20)

gives 3 scores: 0, 1, and 2, while the human labeled results are
“Yes,” “Borderline,” and “No.” To align them, we obey following
rules: (1) if Amg(e) is 0 or 1, the result is correct when human
label is “No” or “Borderline;” (2) if Amg(e) is 2, the result is
correct when human label is “Yes” or “Borderline.”

Then we get the precision curve of ambiguity with regard to the
threshold α in Equation 20, as shown in Fig. 6(b). X-axis repre-
sents the value of α, and Y-axis represents the precision. From the
results, we find the precision is high when α is between 1 and 6.
The highest precision is 0.883 when α=4. We analyze the errors,

Table 3: Examples of Typicality and Representativeness Scores
Instance Rank by P (c|e) Rank by P (e|c) Rank by Rep(e, c) Rank by P (e|c) with smoothing

(same as PMI in our scenario) (ε = 1e-4)

jewelry
item typically female asset valuable valuable

valuable classic bridesmaid gift valuable item valuable item
accessory small glass piece accessory metal object

Nokia
company leading global MNC handset brand original mobile phone mobile phone manufacturer

brand established technology vendor mobile phone manufacturer handset maker
manufacturer brand-name cell phone product handset maker handset manufacturer

Bluetooth
feature connectivity facility wireless technology wireless technology

technology disable networking capability wireless protocol connectivity option
wireless technology hands-free communication device connectivity option wireless protocol

car
item secured purchase purchase purchase

vehicle big assest vehicle large purchase
asset infrequent purchase noncash payment motor vehicle

battery
item mobile power source power source power source

accessory electrical energy storage system power supply power supply
power source auto supply energy storage device consumable part

and find most of errors are caused by named entities with different
roles. E.g. for the term “Arnold Schwarzenegger,” its top senses
are related to actor, bodybuilder, and politician. Since these senses
have low overlapping of their instances, their pairwise sense simi-
larities are low. Therefore, its Amg(e) is 2 in our function. How-
ever, this kind of problems has been well studies, and known as
named entities resolution or disambiguation [34, 15]. By leverag-
ing their work, the precision of ambiguity can be further improved.

5.3 Evaluation on Term Similarity

5.3.1 Dataset & Metrics
Our evaluation data set consists of three parts: (1) M&C data set

(28 pairs), which is a subset of Rubenstein-Goodenough’s [37]; (2)
WordSim203 (203 pairs), which is a subset from WordSim353 [1];
(3) W&P data set (300 pairs) [2], which is a human labeled set for
semantic similarity between terms.

We compare our approach with other representative approaches.
Hungarian[3] is a string-based approach, Troy [4] is string-based
plus knowledge from WordNet, Sánchez [38] leverages informa-
tion content and WordNet, and Bollegala [13] is based on search
snippets.

To evaluate the effectiveness, we take Pearson Correlation Coef-
ficient (PCC in short) as the metrics. It is a measure of the strength
and direction of the linear relationship between the machine ratings
(as X) and the human ratings (as Y) over our data set:

ρ =

∑n
i=1(Xi − X̄)(Yi − Ȳ)√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ)2

5.3.2 Results
The results are shown in Table 5. Because some approaches

heavily rely on the WordNet, and WordNet doesn’t cover all terms
in our data set. Therefore, in the table, we divide the results into
two parts: terms in WordNet, and terms not in WordNet. For both
cases, our approach outperforms other competing methods. We an-
alyze the results and make following observations: (1) string based
approaches depend on surface forms of terms, and are not very
suitable for semantic similarity; (2) WordNet based approaches are
limited by its coverage; (3) snippet-based approaches tend to pro-
duce relatedness rather than similarity, because they leverage the

co-occurrence of two terms instead of isA relations. Examples with
our semantic similarity scores are shown in Table 6.

Table 5: Pearson Correlation Coefficient on Terms
terms terms not

Method in WordNet in WordNet All terms
Hungarian[3] 0.037 0.429 0.054

Troy[4] 0.531 0.325 0.468
Sánchez[38] 0.585 - -
Bollegala[13] 0.521 0.511 0.505
Our approach 0.761 0.665 0.735

Table 6: Examples of Human Ratings and Similarity Scores
Human Similarity

Pair Rating Score
⟨lunch, dinner⟩ 0.950 0.9987
⟨notebook, laptop computer⟩ 0.950 0.8538
⟨global company,multinational company⟩ 0.950 0.746
⟨technology company,microsoft⟩ 0.85 0.8208
⟨high impact sport, competitive sport⟩ 0.85 0.8155
⟨employer, large corporation⟩ 0.6 0.5353
⟨travel,meal⟩ 0.25 0.0426
⟨music, lunch⟩ 0.1 0.0116
⟨company, table tennis⟩ 0.05 0.0003

5.4 Application
With the scores proposed in this paper, the semantic network

becomes usable for machines. In this subsection, we showcase one
application leveraging these scores. Definitely, more applications
can be easily developed for different scenarios.

Sponsored search is one of the most successful business models
for search engine companies. It matches user queries to relevant
ads. In reality, each ad is associated with a list of keywords. Adver-
tisers bid for keywords, and also specify matching options for these
keywords. One option is exact match where an ad is displayed only
when a user query is identical to one of the bid keywords associ-
ated with the ad. Another option is smart match which is based on
semantic relevance. Exact match targets exact traffic, but it is lim-
ited since queries are various. Currently, smart match is the default
option provided by mainstream search engines.

In smart match, search engines map the query to bid ad key-
words. Since both are short texts, traditional bag-of-words ap-
proaches do not work well in this scenario. Therefore, we can
leverage the semantic network for this task in smart match.

Given a short text, we leverage the scores of semantic network
as follows (we omit the details due to lack of space):

1. Identify instances from the short text (query, or bid keyword),
map it to concept space with the representativeness score
Rep(e, c), and get a concept vector V ;

2. Remove vague concepts whose V ag(c) > 0.7 from V ;

3. For those ambiguous instances whose Amg(e) = 2, lever-
age their context information to do sense disambiguation;

4. For instances with high similarity scores Sim(ei, ej) in the
short text, we use Bayesian inference to boost up their com-
mon concepts.

For each short text, we simply merge the concept vectors of differ-
ent instances in the short text, and get a single concept vector as
the representation of this short text. Then we can calculate the se-
mantic similarity between queries and bid keywords by comparing
their concept vectors (E.g. using cosine similarity function).

We conduct our experiments on real ads click log of Bing (from
November 1, 2011 to November 30, 2011). The experiment pro-
cess is as follows: first, we calculate the semantic similarity score
of (query, bid keyword) pairs for each record in the log; Second,
we divide all scores into 10 buckets; Third, we aggregate the click
number and impression number in the same bucket.

The overall results are illustrated in Fig. 7(a). X-axis represents
the bucket number (E.g. bucket 1 means the similarity score is
between 0 and 0.1, and so on). Y-axis is the general click-through
rate (CTR) of this bucket, where CTR = # of clicks

of impressions
. From

the figure, we observe that: (1) once our semantic similarity score
is low, the CTR is low; (2) once our score is high, the CTR is high;
(3) the highest CTR is about 3 times of the lowest CTR. This means
our semantic similarity score can be a strong feature for the query
and ads matching.

We further analyze our results by query frequencies. We separate
all queries to 10 deciles in the order of frequency, and each decile
has the same total volume of traffic. Generally speaking, decile 1
to 3 are head queries, decile 4 to 6 are torso queries, and decile 7 to
10 are tail queries. Usually, head queries can be covered by exact
match. Therefore we mostly focus on torso queries and tail queries.
Results are shown in Fig. 7(b) and Fig. 7(c). For both torso and tail
queries, the correlation between our semantic similarity score and
CTR is preserved. This is quite good because long queries usually
are lack of click signals, and the semantics can fill this gap.

6. RELATED WORK
There are two major efforts on acquiring knowledge for ma-

chines. One is building fact-oriented knowledgebases, the other
is building term-based semantic networks.

The fact-oriented knowledgebases focus on collecting as more
as possible knowledge facts. For example, the Cyc project [26]
integrates 25 years of efforts by lots of domain knowledge ex-
perts. Their release ResearchCyc 1.1 [5] claims it has 5 million
assertions. To overcome the bottleneck of contributors’ limit, some
knowledgebases such as Freebase [12] leverage community efforts
to increase the scale. One of its release versions (the version of
freebase-rdf-2013-08-26-test.gz) claims it has 1.2 billion fact triples.
On the other hand, automatic knowledgebases construction has also
been extensively studied in the literature. The most notable work
is WikiTaxonomy [36] and YAGO [41]. The release version of
YAGO2s (in August 2013) claims it contains more than 120 mil-
lion facts about entities. However, as we discussed before, knowl-
edge facts without sophisticated probability are limited in lots of
applications, and can answer only a small portion of queries.

The term-based semantic networks focus on extracting concepts,
instances, and their relations from web pages by using natural lan-
guage processing and information extraction techniques. The most
typical work is KnowItAll [20], TextRunner [8], NELL [16], and
Probase [42]. In these projects, KnowItAll [20] and TextRunner [8]
propose confidence scores to serve the purpose of filtering incor-
rect isA pairs. Probase [42] also proposes plausibility and typical-
ity scores for taxonomy inference. However, all of these scores
are specific for some ad-hoc purposes. In this paper, we want to
propose a generic framework for scoring in common semantic net-
works. The scores described in this paper are basics for many kinds
of knowledge empowered applications.

In terms of scores discussed in this paper, some of them are
touched more or less in previous work.

Typicality and representativeness are actively studied in cogni-
tive science and psychology at first. E.g. psychologist Gregory
Murphy’s highly acclaimed book [33] discusses the typicality and
the basic level of concepts from the perspective of psychologists,
which is the basis of these two scores proposed in this paper. Other
work [25, 42] proposes typicality scores for some special scenar-
ios. Their scoring functions cannot be easily extended to semantic
networks. E.g. Lee et al. [25] leverage instances as intermedia for
calculating typicality P (a|c) between an attribute a and a concept
c. Instead, our typicality is more generic and easy to be adopted by
more applications. Besides, we also propose a smoothing approach
and representativeness score, which has been proved that they are
much better than the standard typicality in some scenarios.

Ambiguity for words are widely studies in previous work [35].
It’s also well known as word sense disambiguation(WSD). Word-
Net [21] is usually used in WSD. However, for those multi-word
expressions, previous work cannot resolve them. Song et al. [39]
try to identify ambiguous queries by using a supervised learning
approach based on search results from the web. In this paper, we
define the ambiguity for terms (including words and multi-word
expressions). Then we leverage senses in the semantic network to
measure a term’s ambiguity level.

Existing efforts on similarity between terms mainly follow two
ways: one is based on knowledgebases such as WordNet [4, 38], the
other is based on terms’ context from text corpora such as search
snippets and web documents [13]. Our approach for terms’ similar-
ity belongs to the former way. Compared with existing work, our
similarity measure function is more sophisticated, and leverages
concept clustering and typicality proposed in this paper.

7. CONCLUSION
In this paper, we propose five fundamental scores Typicality,

BLC (Basic level conceptualization), Vagueness, Ambiguity, and
Similarity in semantic networks. We make deep analysis of these
scores, and carefully design their formulas. With these scores, se-
mantic networks become usable for machines in the text under-
standing and other key applications. We conduct extensive exper-
iments and show the effectiveness of these scores. We also use a
real example to demonstrate how these scores help improve current
ads system.

8. REFERENCES
[1] http://www.cs.technion.ac.il/˜gabr/

resources/data/wordsim353/.
[2] http://adapt.seiee.sjtu.edu.cn/

similarity/SimCompleteResults.pdf.
[3] http://www.math.uwo.ca/˜mdawes/courses/

344/kuhn-munkres.html.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 3 4 5 6 7 8 9 10

C
T
R
(%

)

Semantic-Matching Score Range

(a) Different SMS Range

 0

 0.5

 1

 1.5

 2

 2.5

 3

0~
0.1

0.1~
0.2

0.2~
0.3

0.3~
0.4

0.4~
0.5

0.5~
0.6

0.6~
0.7

0.7~
0.8

0.8~
0.9

0.9~
1

C
T
R
(%

)

Semantic-Matching Score

Decile 4

Decile 5

Decile 6

(b) Torso Queries

 0

 0.5

 1

 1.5

 2

 2.5

 3

0~
0.1

0.1~
0.2

0.2~
0.3

0.3~
0.4

0.4~
0.5

0.5~
0.6

0.6~
0.7

0.7~
0.8

0.8~
0.9

0.9~
1

C
T
R
(%

)

Semantic-Matching Score

Decile 7

Decile 8

Decile 9

Decile 10

(c) Tail Queries

Figure 7: Correlation between Semantic Matching Score and CTR

[4] http://www.codeproject.com/KB/string/
semanticsimilaritywordnet.aspx.

[5] Researchcyc.
http://www.cyc.com/platform/researchcyc.

[6] E. Agirre, M. Cuadros, G. Rigau, and A. Soroa. Exploring
knowledge bases for similarity. In Proceedings of LREC’10.

[7] M. Alvarez and S. Lim. A graph modeling of semantic
similarity between words. In ICSC, 2007.

[8] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the web. In
IJCAI, pages 2670–2676, 2007.

[9] L. W. Barsalou. Ideals, central tendency, and frequency of
instantiation as determinants of graded structure in
categories. JEP:LMC, 11(4):629–654, 1985.

[10] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. JMLR, 3:993–1022, 2003.

[11] P. Bloom. Glue for the mental world. Nature, (421):212–213,
Jan 2003.

[12] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph database
for structuring human knowledge. In SIGMOD, 2008.

[13] D. Bollegala, Y. Matsuo, and M. Ishizuka. A web search
engine-based approach to measure semantic similarity
between words. TKDE, 23:977–990, 2011.

[14] G. Bouma. Normalized (pointwise) mutual information in
collocation extraction. In GSCL, 2009.

[15] R. C. Bunescu and M. Pasca. Using encyclopedic knowledge
for named entity disambiguation. In EACL, 2006.

[16] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,
and T. M. Mitchell. Toward an architecture for never-ending
language learning. In AAAI, pages 1306–1313, 2010.

[17] H. Chen, M. Lin, and Y. Wei. Novel association measures
using web search with double checking. In Proceedings of
the COLING/ACL 2006, pages 1009–1016, 2006.

[18] R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. Natural language processing
(almost) from scratch. JMLR, 12:2493–2537, 2011.

[19] B. Daille. Approche mixte pour l’extraction de terminologie:
statistique lexicale et filtres linguistiques. PhD thesis, 1994.

[20] O. Etzioni, M. Cafarella, and D. Downey. Webscale
information extraction in knowitall (preliminary results). In
WWW, 2004.

[21] C. Fellbaum, editor. WordNet: an electronic lexical database.
MIT Press, 1998.

[22] M. A. Hearst. Automatic acquisition of hyponyms from large
text corpora. In COLING, pages 539–545, 1992.

[23] T. Hofmann. Probabilistic latent semantic indexing. In
SIGIR, 1999.

[24] D. Kim, H. Wang, and A. Oh. Context-dependent
conceptualization. In IJCAI, 2013.

[25] T. Lee, Z. Wang, H. Wang, and S.-w. Hwang. Attribute
extraction and scoring: A probabilistic approach. In ICDE,
2013.

[26] D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and Inference in
the Cyc Project. Addison-Wesley, 1989.

[27] P. Li, H. Wang, K. Zhu, Z. Wang, and X. Wu. Computing
term similarity by large probabilistic isa knowledge. In
CIKM, 2013.

[28] L. Lovász. Random walks on graphs: A survey.
Combinatorics, Paul erdos is eighty, 2(1):1–46, 1993.

[29] C. D. Manning and H. Schütze. Foundations of statistical
natural language processing, volume 999. MIT Press, 1999.

[30] C. B. Mervis, J. Catlin, and E. Rosch. Relationships among
goodness-of-example, category norms, and word frequency.
Bulletin of the Psychonomic Society, pages 283–284, 1976.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. In
Proceedings of Workshop at ICLR, 2013.

[32] A. W. Moore. An intoductory tutorial on kd-trees. Technical
report, 1991.

[33] G. L. Murphy. The big book of concepts. MIT Press, 2004.
[34] D. Nadeau and S. Sekine. A survey of named entity

recognition and classification. Lingvisticae Investigationes,
30(1):3–26, 2007.

[35] R. Navigli. Word sense disambiguation: A survey. ACM
Computing Surveys (CSUR), 41(2):10, 2009.

[36] S. P. Ponzetto and M. Strube. Deriving a large-scale
taxonomy from wikipedia. In AAAI, pages 1440–1445, 2007.

[37] H. Rubenstein and J. B. Goodenough. Contextual correlates
of synonymy. CACM, 8(10):627–633, 1965.

[38] D. Sánchez, M. Batet, and D. Isern. Ontology-based
information content computation. Knowledge-Based
Systems, 24:297–303, 2011.

[39] R. Song, Z. Luo, J.-Y. Nie, Y. Yu, and H.-W. Hon.
Identification of ambiguous queries in web search. IPM,
45:216–229, 2009.

[40] Y. Song, H. Wang, Z. Wang, and H. Li. Short text
conceptualization using a probabilistic knowledgebase. In
IJCAI, 2011.

[41] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[42] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD,
pages 481–492. ACM, 2012.

