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ABSTRACT

A model of providing service in a P2P network is analyzed.
It is shown that by adding a scrip system, a mechanism that
admits a reasonable Nash equilibrium that reduces free rid-
ing can be obtained. The effect of varying the total amount
of money (scrip) in the system on efficiency (i.e., social wel-
fare) is analyzed, and it is shown that by maintaining the
appropriate ratio between the total amount of money and
the number of agents, efficiency is maximized. The work
has implications for many online systems, not only P2P net-
works but also a wide variety of online forums for which scrip
systems are popular, but formal analyses have been lacking.

Categories and Subject Descriptors
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Systems; I.2.11 [Artificial Intelligence]: Distributed Arti-
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Society]: Electronic Commerce
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1. INTRODUCTION
A common feature of many online distributed systems is

that individuals provide services for each other. Peer-to-
peer (P2P) networks (such as Kazaa [25] or BitTorrent [3])
have proved popular as mechanisms for file sharing, and ap-
plications such as distributed computation and file storage
are on the horizon; systems such as Seti@home [24] provide
computational assistance; systems such as Slashdot [21] pro-
vide content, evaluations, and advice forums in which people
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answer each other’s questions. Having individuals provide
each other with service typically increases the social welfare:
the individual utilizing the resources of the system derives a
greater benefit from it than the cost to the individual pro-
viding it. However, the cost of providing service can still be
nontrivial. For example, users of Kazaa and BitTorrent may
be charged for bandwidth usage; in addition, in some file-
sharing systems, there is the possibility of being sued, which
can be viewed as part of the cost. Thus, in many systems
there is a strong incentive to become a free rider and ben-
efit from the system without contributing to it. This is not
merely a theoretical problem; studies of the Gnutella [22]
network have shown that almost 70 percent of users share
no files and nearly 50 percent of responses are from the top
1 percent of sharing hosts [1].

Having relatively few users provide most of the service cre-
ates a point of centralization; the disappearance of a small
percentage of users can greatly impair the functionality of
the system. Moreover, current trends seem to be leading
to the elimination of the “altruistic” users on which these
systems rely. These heavy users are some of the most expen-
sive customers ISPs have. Thus, as the amount of traffic has
grown, ISPs have begun to seek ways to reduce this traffic.
Some universities have started charging students for exces-
sive bandwidth usage; others revoke network access for it
[5]. A number of companies have also formed whose service
is to detect excessive bandwidth usage [19].

These trends make developing a system that encourages
a more equal distribution of the work critical for the contin-
ued viability of P2P networks and other distributed online
systems. A significant amount of research has gone into
designing reputation systems to give preferential treatment
to users who are sharing files. Some of the P2P networks
currently in use have implemented versions of these tech-
niques. However, these approaches tend to fall into one of
two categories: either they are “barter-like” or reputational.
By barter-like, we mean that each agent bases its decisions
only on information it has derived from its own interactions.
Perhaps the best-known example of a barter-like system is
BitTorrent, where clients downloading a file try to find other
clients with parts they are missing so that they can trade,
thus creating a roughly equal amount of work. Since the
barter is restricted to users currently interested in a sin-
gle file, this works well for popular files, but tends to have
problems maintaining availability of less popular ones. An
example of a barter-like system built on top of a more tradi-
tional file-sharing system is the credit system used by eMule



[8]. Each user tracks his history of interactions with other
users and gives priority to those he has downloaded from in
the past. However, in a large system, the probability that
a pair of randomly-chosen users will have interacted before
is quite small, so this interaction history will not be terri-
bly helpful. Anagnostakis and Greenwald [2] present a more
sophisticated version of this approach, but it still seems to
suffer from similar problems.

A number of attempts have been made at providing gen-
eral reputation systems (e.g. [12, 13, 17, 27]). The basic idea
is to aggregate each user’s experience into a global number
for each individual that intuitively represents the system’s
view of that individual’s reputation. However, these at-
tempts tend to suffer from practical problems because they
implicitly view users as either “good” or “bad”, assume that
the “good” users will act according to the specified protocol,
and that there are relatively few “bad” users. Unfortunately,
if there are easy ways to game the system, once this infor-
mation becomes widely available, rational users are likely to
make use of it. We cannot count on only a few users being
“bad” (in the sense of not following the prescribed protocol).
For example, Kazaa uses a measure of the ratio of the num-
ber of uploads to the number of downloads to identify good
and bad users. However, to avoid penalizing new users, they
gave new users an average rating. Users discovered that they
could use this relatively good rating to free ride for a while
and, once it started to get bad, they could delete their stored
information and effectively come back as a “new” user, thus
circumventing the system (see [2] for a discussion and [11]
for a formal analysis of this “whitewashing”). Thus Kazaa’s
reputation system is ineffective.

This is a simple case of a more general vulnerability of
such systems to sybil attacks [6], where a single user main-
tains multiple identities and uses them in a coordinated fash-
ion to get better service than he otherwise would. Recent
work has shown that most common reputation systems are
vulnerable (in the worst case)to such attacks [4]; however,
the degree of this vulnerability is still unclear. The analy-
ses of the practical vulnerabilities and the existence of such
systems that are immune to such attacks remains an area of
active research (e.g., [4, 28, 14]).

Simple economic systems based on a scrip or money seem
to avoid many of these problems, are easy to implement and
are quite popular (see, e.g., [13, 15, 26]). However, they
have a different set of problems. Perhaps the most common
involve determining the amount of money in the system.
Roughly speaking, if there is too little money in the system
relative to the number of agents, then relatively few users
can afford to make request. On the other hand, if there is
too much money, then users will not feel the need to re-
spond to a request; they have enough money already. A
related problem involves handling newcomers. If newcomers
are each given a positive amount of money, then the system
is open to sybil attacks. Perhaps not surprisingly, scrip sys-
tems end up having to deal with standard economic woes
such as inflation, bubbles, and crashes [26].

In this paper, we provide a formal model in which to
analyze scrip systems. We describe a simple scrip system
and show that, under reasonable assumptions, for each fixed
amount of money there is a nontrivial Nash equilibrium in-
volving threshold strategies, where an agent accepts a request

if he has less than $k for some threshold k.1 An interesting
aspect of our analysis is that, in equilibrium, the distribu-
tion of users with each amount of money is the distribution
that maximizes entropy (subject to the money supply con-
straint). This allows us to compute the money supply that
maximizes efficiency (social welfare), given the number of
agents. It also leads to a solution for the problem of deal-
ing with newcomers: we simply assume that new users come
in with no money, and adjust the price of service (which is
equivalent to adjusting the money supply) to maintain the
ratio that maximizes efficiency. While assuming that new
users come in with no money will not work in all settings,
we believe the approach will be widely applicable. In sys-
tems where the goal is to do work, new users can acquire
money by performing work. It should also work in Kazaa-
like system where a user can come in with some resources
(e.g., a private collection of MP3s).

The rest of the paper is organized as follows. In Section 2,
we present our formal model and observe that it can be used
to understand the effect of altruists. In Section 3, we exam-
ine what happens in the game under nonstrategic play, if all
agents use the same threshold strategy. We show that, in
this case, the system quickly converges to a situation where
the distribution of money is characterized by maximum en-
tropy. Using this analysis, we show in Section 4 that, under
minimal assumptions, there is a nontrivial Nash equilibrium
in the game where all agents use some threshold strategy.
Moreover, we show in Section 5 that the analysis leads to
an understanding of how to choose the amount of money
in the system (or, equivalently, the cost to fulfill a request)
so as to maximize efficiency, and also shows how to handle
new users. In Section 6, we discuss the extent to which our
approach can handle sybils and collusion. We conclude in
Section 7.

2. THE MODEL
To begin, we formalize providing service in a P2P network

as a non-cooperative game. Unlike much of the modeling in
this area, our model will model the asymmetric interactions
in a file sharing system in which the matching of players
(those requesting a file with those who have that particular
file) is a key part of the system. This is in contrast with
much previous work which uses random matching in a pris-
oner’s dilemma. Such models were studied in the economics
literature [18, 7] and first applied to online reputations in
[11]; an application to P2P is found in [9].

This random-matching model fails to capture some salient
aspects of a number of important settings. When a request
is made, there are typically many people in the network who
can potentially satisfy it (especially in a large P2P network),
but not all can. For example, some people may not have
the time or resources to satisfy the request. The random-
matching process ignores the fact that some people may not
be able to satisfy the request. Presumably, if the person
matched with the requester could not satisfy the match, he
would have to defect. Moreover, it does not capture the fact
that the decision as to whether to “volunteer” to satisfy
the request should be made before the matching process,
not after. That is, the matching process does not capture

1Although we refer to our unit of scrip as the dollar, these
are not real dollars nor do we view them as convertible to
dollars.



the fact that if someone is unwilling to satisfy the request,
there will doubtless be others who can satisfy it. Finally, the
actions and payoffs in the prisoner’s dilemma game do not
obviously correspond to actual choices that can be made.
For example, it is not clear what defection on the part of
the requester means. In our model we try to deal with all
these issues.

Suppose that there are n agents. At each round, an agent
is picked uniformly at random to make a request. Each other
agent is able to satisfy this request with probability β > 0 at
all times, independent of previous behavior. The term β is
intended to capture the probability that an agent is busy, or
does not have the resources to fulfill the request. Assuming
that β is time-independent does not capture the intution
that being an unable to fulfill a request at time t may well
be correlated with being unable to fulfill it at time t+1. We
believe that, in large systems, we should be able to drop the
independence assumption, but we leave this for future work.
In any case, those agents that are able to satisfy the request
must choose whether or not to volunteer to satisfy it. If
at least one agent volunteers, the requester gets a benefit
of 1 util (the job is done) and one of volunteers is chosen
at random to fulfill the request. The agent that fulfills the
request pays a cost of α < 1. As is standard in the literature,
we assume that agents discount future payoffs by a factor of
δ per time unit. This captures the intuition that a util now is
worth more than a util tomorrow, and allows us to compute
the total utility derived by an agent in an infinite game.
Lastly, we assume that with more players requests come
more often. Thus we assume that the time between rounds
is 1/n. This captures the fact that the systems we want
to model are really processing many requests in parallel, so
we would expect the number of concurrent requests to be
proportional to the number of users.2

Let G(n, δ, α, β) denote this game with n agents, a dis-
count factor of δ, a cost to satisfy requests of α, and a prob-
ability of being able to satisfy requests of β. When the
latter two parameters are not relevant, we sometimes write
G(n, δ).

We use the following notation throughout the paper:

• pt denotes the agent chosen in round t.

• Bt
i ∈ {0, 1} denotes whether agent i can satisfy the

request in round t. Bt
i = 1 with probability β > 0 and

Bt
i is independent of Bt′

i for all t′ 6= t.

• V t
i ∈ {0, 1} denotes agent i’s decision about whether

to volunteer in round t; 1 indicates volunteering. V t
i

is determined by agent i’s strategy.

• vt ∈ {j | V t
j Bt

j = 1} denotes the agent chosen to satisfy
the request. This agent is chosen uniformly at random
from those who are willing (V t

j = 1) and able (Bt
j = 1)

to satisfy the request.

• ut
i denotes agent i’s utility in round t.

A standard agent is one whose utility is determined as
discussed in the introduction; namely, the agent gets

2For large n, our model converges to one in which players
make requests in real time, and the time between a player’s
requests are exponentially distributed with mean 1. In ad-
dition, the time between requests served by a single player
is also exponentially distributed.

a utility of 1 for a fulfilled request and utility −α for
fulfilling a request. Thus, if i is a standard agent, then

ut
i =

8

<

:

1 if i = pt and
P

j 6=i V t
j Bt

j > 0

−α if i = vt

0 otherwise.

• Ui =
P∞

t=0 δt/nut
i denotes the total utility for agent

i. It is the discounted total of agent i’s utility in each
round. Note that the effective discount factor is δ1/n

since an increase in n leads to a shortening of the time
between rounds.

Now that we have a model of making and satisfying re-
quests, we use it to analyze free riding. Take an altruist to
be someone who always fulfills requests. Agent i might ra-
tionally behave altruistically if agent i’s utility function has
the following form, for some α′ > 0:

ut
i =

8

<

:

1 if i = pt and
P

j 6=i V t
j Bt

j > 0

α′ if i = vt

0 otherwise.

Thus, rather than suffering a loss of utility when satisfying
a request, an agent derives positive utility from satisfying
it. Such a utility function is a reasonable representation of
the pleasure that some people get from the sense that they
provide the music that everyone is playing. For such altru-
istic agents, playing the strategy that sets V t

i = 1 for all t
is dominant. While having a nonstandard utility function
might be one reason that a rational agent might use this
strategy, there are certainly others. For example a naive
user of filesharing software with a good connection might
well follow this strategy. All that matters for the follow-
ing discussion is that there are some agents that use this
strategy, for whatever reason.

As we have observed, such users seem to exist in some
large systems. Suppose that our system has a altruists. In-
tuitively, if a is moderately large, they will manage to satisfy
most of the requests in the system even if other agents do
no work. Thus, there is little incentive for any other agent
to volunteer, because he is already getting full advantage of
participating in the system. Based on this intuition, it is a
relatively straightforward calculation to determine a value
of a that depends only on α, β, and δ, but not the number
n of players in the system, such that the dominant strategy
for all standard agents i is to never volunteer to satisfy any
requests (i.e., V t

i = 0 for all t).

Proposition 2.1. There exists an a that depends only on
α, β, and δ such that, in G(n, δ, α, β) with at least a altruists,
not volunteering in every round is a dominant strategy for
all standard agents.

Proof. Consider the strategy for a standard player j in
the presence of a altruists. Even with no money, player
j will get a request satisfied with probability 1 − (1 − β)a

just through the actions of these altruists. Thus, even if j is
chosen to make a request in every round, the most additional
expected utility he can hope to gain by having money is
P∞

k=1(1− β)aδk = (1− β)a/(1− δ). If (1− β)a/(1− δ) > α
or, equivalently, if a > log1−β(α(1 − δ)), never volunteering
is a dominant strategy.

Consider the following reasonable values for our parame-
ters: β = .01 (so that each player can satisfy 1% of the re-
quests), α = .1 (a low but non-negligible cost), δ = .9999/day



(which corresponds to a yearly discount factor of approxi-
mately 0.95), and an average of 1 request per day per player.
Then we only need a > 1145. While this is a large number,
it is small relative to the size of a large P2P network.

Current systems all have a pool of users behaving like our
altruists. This means that attempts to add a reputation
system on top of an existing P2P system to influence users
to cooperate will have no effect on rational users. To have
a fair distribution of work, these systems must be funda-
mentally redesigned to eliminate the pool of altruistic users.
In some sense, this is not a problem at all. In a system
with altruists, the altruists are presumably happy, as are
the standard agents, who get almost all their requests sat-
isfied without having to do any work. Indeed, current P2P
network work quite well in terms of distributing content to
people. However, as we said in the introduction, there is
some reason to believe these altruists may not be around
forever. Thus, it is worth looking at what can be done to
make these systems work in their absence. For the rest of
this paper we assume that all agents are standard, and try
to maximize expected utility.

We are interested in equilibria based on a scrip system.
Each time an agent has a request satisfied he must pay the
person who satisfied it some amount. For now, we assume
that the payment is fixed; for simplicity, we take the amount
to be $1. We denote by M the total amount of money in
the system. We assume that M > 0 (otherwise no one will
ever be able to get paid).

In principle, agents are free to adopt a very wide vari-
ety of strategies. They can make decisions based on the
names of other agents or use a strategy that is heavily his-
tory dependant, and mix these strategies freely. To aid our
analysis, we would like to be able to restrict our attention to
a simpler class of strategies. The class of strategies we are
interested in is easy to motivate. The intuitive reason for
wanting to earn money is to cater for the possibility that an
agent will run out before he has a chance to earn more. On
the other hand, a rational agent with plenty of mone would
not want to work, because by the time he has managed to
spend all his money, the util will have less value than the
present cost of working. The natural balance between these
two is a threshold strategy. Let Sk be the strategy where
an agent volunteers whenever he has less than k dollars and
not otherwise. Note that S0 is the strategy where the agent
never volunteers. While everyone playing S0 is a Nash equi-
librium (nobody can do better by volunteering if no one else
is willing to), it is an uninteresting one. As we will show
in Section 4, it is sufficient to restrict our attention to this
class of strategies.

We use Kt
i to denote the amount of money agent i has

at time t. Clearly Kt+1
i = Kt

i unless agent i has a request
satisfied, in which case Kt+1

i = Kt+1
i − 1 or agent i fulfills a

request, in which case Kt+1
i = Kt+1

i + 1. Formally,

Kt+1
i =

8

<

:

Kt
i − 1 if i = pt,

P

j 6=i V t
j Bt

j > 0, and Kt
i > 0

Kt
i + 1 if i = vt and Kt

pt > 0
Kt

i otherwise.

The threshold strategy Sk is the strategy such that

V t
i =



1 if Kt
pt > 0 and Kt

i < k
0 otherwise.

3. THE GAME UNDER NONSTRATEGIC

PLAY
Before we consider strategic play, we examine what hap-

pens in the system if everyone just plays the same strategy
Sk. Our overall goal is to show that there is some distri-
bution over money (i.e., the fraction of people with each
amount of money) such that the system “converges” to this
distribution in a sense to be made precise shortly.

Suppose that everyone plays Sk. For simplicity, assume
that everyone has at most k dollars. We can make this
assumption with essentially no loss of generality, since if
someone has more than k dollars, he will just spend money
until he has at most k dollars. After this point he will never
acquire more than k. Thus, eventually the system will be
in such a state. If M ≥ kn, no agent will ever be willing to
work. Thus, for the purposes of this section we assume that
M < kn.

From the perspective of a single agent, in (stochastic)
equilibrium, the agent is undergoing a random walk. How-
ever, the parameters of this random walk depend on the ran-
dom walks of the other agents and it is quite complicated
to solve directly. Thus we consider an alternative analysis
based on the evolution of the system as a whole.

If everyone has at most k dollars, then the amount of
money that an agent has is an element of {0, . . . , k}. If there
are n agents, then the state of the game can be described
by identifying how much money each agent has, so we can
represent it by an element of Sk,n = {0, . . . , k}{1,...,n}. Since
the total amount of money is constant, not all of these states
can arise in the game. For example the state where each
player has $0 is impossible to reach in any game with money
in the system. Let mS(s) =

P

i∈{1...n} s(i) denote the total

mount of money in the game at state s, where s(i) is the
number of dollars that agent i has in state s. We want
to consider only those states where the total money in the
system is M , namely

Sk,n,M = {s ∈ Sk,n | mS(s) = M}.

Under the assumption that all agents use strategy Sk, the
evolution of the system can be treated as a Markov chain
Mk,n,M over the state space Sk,n,M . It is possible to move
from one state to another in a single round if by choosing
a particular agent to make a request and a particular agent
to satisfy it, the amounts of money possesed by each agent
become those in the second state. Therefore the probabil-
ity of a transition from a state s to t is 0 unless there exist
two agents i and j such that s(i′) = t(i′) for all i′ /∈ {i, j},
t(i) = s(i) + 1, and t(j) = s(j) − 1. In this case the prob-
ability of transitioning from s to t is the probability of j
being chosen to spend a dollar and has someone willing and

able to satisfy his request ((1/n)(1 − (1− β)|{i′|s(i′) 6=k}|−Ij )
multiplied by the probability of i being chosen to satisfy his
request (1/(|({i′ | s(i′) 6= k}|− Ij)). Ij is 0 if j has k dollars
and 1 otherwise (it is just a correction for the fact that j
cannot satisfy his own request.)

Let ∆k denote the set of probability distributions on {0, . . . , k}.
We can think of an element of ∆k as describing the fraction
of people with each amount of money. This is a useful way
of looking at the system, since we typically don’t care who
has each amount of money, but just the fraction of people
that have each amount. As before, not all elements of ∆k

are possible, given our constraint that the total amount of



money is M . Rather than thinking in terms of the total
amount of money in the system, it will prove more useful to
think in terms of the average amount of money each player
has. Of course, the total amount of money in a system
with n agents is M iff the average amount that each player
has is m = M/n. Let ∆k

m denote all distributions d ∈ ∆k

such that E(d) = m (i.e.,
Pk

j=0 d(j)j = m). Given a state

s ∈ Sk,n,M , let ds ∈ ∆k
m denote the distribution of money

in s. Our goal is to show that, if n is large, then there is
a distribution d∗ ∈ ∆k

m such that, with high probability,
the Markov chain Mk,n,M will almost always be in a state
s such that ds is close to d∗. Thus, agents can base their
decisions about what strategy to use on the assumption that
they will be in such a state.

We can in fact completely characterize the distribution
d∗. Given a distribution d ∈ ∆k, let

H(d) = −
X

{j:d(j) 6=0}

d(j) log(d(j))

denote the entropy of d. If ∆ is a closed convex set of distri-
butions, then it is well known that there is a unique distribu-
tion in ∆ at which the entropy function takes its maximum
value in ∆. Since ∆k

m is easily seen to be a closed convex set
of distributions, it follows that there is a unique distribution
in ∆k

m that we denote d∗
k,m whose entropy is greater than

that of all other distributions in ∆k
m. We now show that,

for n sufficiently large, the Markov chain Mk,n,M is almost
surely in a state s such that ds is close to d∗

k,M/n. The
statement is correct under a number of senses of “close”.
For definiteness, we consider the Euclidean distance. Given
ǫ > 0, let Sk,n,m,ǫ denote the set of states s in Sk,n,mn such

that
Pk

j=0 |d
s(j) − d∗

k,m|2 < ǫ.
Given a Markov chain M over a state space S and S ⊆ S ,

let Xt,s,S be the random variable that denotes that M is in
a state of S at time t, when started in state s.

Theorem 3.1. For all ǫ > 0, all k, and all m, there exists
nǫ such that for all n > nǫ and all states s ∈ Sk,n,mn, there
exists a time t∗ (which may depend on k, n, m, and ǫ) such
that for t > t∗, we have Pr(Xt,s,Sk,n,m,ǫ

) > 1 − ǫ.

Proof. (Sketch) Suppose that at some time t, Pr(Xt,s,s′)
is uniform for all s′. Then the probability of being in a set of
states is just the size of the set divided by the total number of
states. A standard technique from statistical mechanics is to
show that there is a concentration phenomenon around the
maximum entropy distribution [16]. More precisely, using
a straightforward combinatorial argument, it can be shown
that the fraction of states not in Sk,n,m,ǫ is bounded by
p(n)/ecn, where p is a polynomial. This fraction clearly
goes to 0 as n gets large. Thus, for sufficiently large n,
Pr(Xt,s,Sk,n,m,ǫ

) > 1 − ǫ if Pr(Xt,s,s′) is uniform.
It is relatively straightforward to show that our Markov

Chain has a limit distribution π over Sk,n,mn, such that for
all s, s′ ∈ Sk,n,mn, limt→∞ Pr(Xt,s,s′) = πs′ . Let Pij denote
the probability of transitioning from state i to state j. It
is easily verified by an explicit computation of the transi-
tion probabilities that Pij = Pji for all states i and j. It
immediatly follows from this symmetry that πs = πs′ , so
π is uniform. After a sufficient amount of time, the distri-
bution will be close enough to π, that the probabilities are
again bounded by constant, which is sufficient to complete
the theorem.
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We performed a number of experiments that show that
the maximum entropy behavior described in Theorem 3.1
arises quickly for quite practical values of n and t. The
first experiment showed that, even if n = 1000, we reach
the maximum-entropy distribution quickly. We averaged 10
runs of the Markov chain for k = 5 where there is enough
money for each agent to have $2 starting from a very extreme
distribution (every agent has either $0 or $5) and considered
the average time needed to come within various distances
of the maximum entropy distribution. As Figure 1 shows,
after 2,000 steps, on average, the Euclidean distance from
the average distribution of money to the maximum-entropy
distribution is .008; after 3,000 steps, the distance is down
to .001. Note that this is really only 3 real time units since
with 1000 players we have 1000 transactions per time unit.

We then considered how close the distribution stays to
the maximum entropy distribution once it has reached it.
To simplify things, we started the system in a state whose
distribution was very close to the maximum-entropy dis-
tribution and ran it for 106 steps, for various values of n.
As Figure 2 shows, the system does not move far from the
maximum-entropy distribution once it is there. For exam-
ple, if n = 5000, the system is never more than distance .001
from the maximum-entropy distribution; if n = 25, 000, it is
never more than .0002 from the maximum-entropy distribu-
tion.

Finally, we considered how more carefully how quickly
the system converges to the maximum-entropy distribution
for various values of n. There are approximately kn pos-
sible states, so the convergence time could in principle be
quite large. However, we suspect that the Markov chain
that arises here is rapidly mixing, which means that it will
converge significantly faster (see [20] for more details about
rapid mixing). We believe that the actually time needed is
O(n). This behavior is illustrated in Figure 3, which shows
that for our example chain (again averaged over 10 runs), af-
ter 3n steps, the Euclidean distance between the actual dis-
tribution of money in the system and the maximum-entropy
distribution is less than .001.

4. THE GAME UNDER STRATEGIC PLAY
We have seen that the system is well behaved if the agents

all follow a threshold strategy; we now want to show that
there is a nontrivial Nash equilibrium where they do so (that
is, a Nash equilibrium where all the agents use Sk for some
k > 0.) This is not true in general. If δ is small, then agents
have no incentive to work. Intuitively, if future utility is
sufficiently discounted, then all that matters is the present,
and there is no point in volunteering to work. With small
δ, S0 is the only equilibrium. However, we show that for δ
sufficiently large, there is another equilibrium in threshold
strategies. We do this by first showing that, if every other
agent is playing a threshold strategy, then there is a best
response that is also a threshold strategy (although not nec-
essarily the same one). We then show that there must be
some (mixed) threshold strategy for which this best response
is the same strategy. It follows that this tuple of threshold
strategies is a Nash equilibrium.

As a first step, we show that, for all k, if everyone other
than agent i is playing Sk, then there is a threshold strat-
egy Sk′ that is a best response for agent i. To prove this,
we need to assume that the system is close to the steady-
state distribution (i.e., the maximum-entropy distribution).

However, as long as δ is sufficiently close to 1, we can ignore
what happens during the period that the system is not in
steady state.3

We have thus far considered threshold strategies of the
form Sk, where k is a natural number; this is a discrete set
of strategies. For a later proof, it will be helpful to have
a continuous set of strategies. If γ = k + γ′, where k is
a natural number and 0 ≤ γ′ < 1, let Sγ be the strategy
that performs Sk with probability 1 − γ′ and Sk+1 with
probability γ. (Note that we are not considering arbitrary
mixed threshold strategies here, but rather just mixing be-
tween adjacent strategies for the sole purpose of making out
strategies continuous in a natural way.) Theorem 3.1 ap-
plies to strategies Sγ (the same proof goes through without
change), where γ is an arbitrary nonnegative real number.

Theorem 4.1. Fix a strategy Sγ and an agent i. There
exists δ∗ < 1 and n∗ such that if δ > δ∗, n > n∗, and every
agent other than i is playing Sγ in game G(n, δ), then there
is an integer k′ such that the best response for agent i is Sk′ .
Either k′ is unique (that is, there is a unique best response
that is also a threshold strategy), or there exists an integer
k′′ such that Sγ′ is a best response for agent i for all γ′ in
the interval [k′′, k′′+1] (and these are the only best responses
among threshold strategies).

Proof. (Sketch:) If δ is sufficiently large, we can ignore
what happens before the system converges to the maximum-
entropy distribution. If n is sufficiently large, then the strat-
egy played by one agent will not affect the distribution of
money significantly. Thus, the probability of i moving from
one state (dollar amount) to another depends only on i’s
strategy (since we can take the probability that i will be
chosen to make a request and the probability that i will
be chosen to satisfy a request to be constant). Thus, from
i’s point of view, the system is a Markov decision process
(MDP), and i needs to compute the optimal policy (strat-
egy) for this MDP. It follows from standard results [23, The-
orem 6.11.6] that there is an optimal policy that is a thresh-
old policy.

The argument that the best response is either unique or
there is an interval of best responses follows from a more
careful analysis of the value function for the MDP.

We remark that there may be best responses that are not
threshold strategies. All that Theorem 4.1 shows is that,
among best responses, there is at least one that is a threshold
strategy. Since we know that there is a best response that
is a threshold strategy, we can look for a Nash equilibrium
in the space of threshold strategies.

Theorem 4.2. For all M , there exists δ∗ < 1 and n∗ such
that if δ > δ∗ and n > n∗, there exists a Nash equilibrium in
the game G(n, δ) where all agents play Sγ for some integer
γ > 0.

Proof. It follows easily from the proof Theorem 4.1 that
if br(δ, γ) is the minimal best response threshold strategy if
all the other agents are playing Sγ and the discount factor is
δ then, for fixed δ, br(δ, ·) is a step function. It also follows

3Formally, we need to define the strategies when the system
is far from equilibrium. However, these far from (stochastic)
equilibrium strategies will not affect the equilibrium behav-
ior when n is large and deviations from stochastic equilib-
rium are extremely rare.



from the theorem that if there are two best responses, then
a mixture of them is also a best response. Therefore, if we
can join the “steps” by a vertical line, we get a best-response
curve. It is easy to see that everywhere that this best-
response curve crosses the diagonal y = x defines a Nash
equilibrium where all agents are using the same threshold
strategy. As we have already observed, one such equilib-
rium occurs at 0. If there are only $M in the system, we can
restrict to threshold strategies Sk where k ≤ M + 1. Since
no one can have more than $M, all strategies Sk for k > M
are equivalent to SM ; these are just the strategies where
the agent always volunteers in response to request made by
someone who can pay. Clearly br(δ, SM ) ≤ M for all δ, so
the best response function is at or below the equilibrium at
M . If k ≤ M/n, every player will have at least k dollars
and so will be unwilling to work and the best response is
just 0. Consider k∗, the smallest k such that k > M/n. It
is not hard to show that for k∗ there exists a δ∗ such that
for all δ ≥ δ∗, br(δ, k∗) ≥ k∗. It follows by continuity that if
δ ≥ δ∗, there must be some γ such that br(δ, γ) = γ. This
is the desired Nash equilibrium.

This argument also shows us that we cannot in general
expect fixed points to be unique. If br(δ, k∗) = k∗ and
br(δ, k + 1) > k + 1 then our argument shows there must be
a second fixed point. In general there may be multiple fixed
points even when br(δ, k∗) > k∗, as illustrated in the Figure
4 with n = 1000 and M = 3000.
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Figure 4: The best response function for n = 1000
and M = 3000.

Theorem 4.2 allows us to restrict our design to agents
using threshold strategies with the confidence that there will
be a nontrivial equilibrium. However, it does not rule out
the possibility that there may be other equilibria that do
not involve threshold stratgies. It is even possible (although
it seems unlikely) that some of these equilibria might be
better.

5. SOCIAL WELFARE AND SCALABITY
Our theorems show that for each value of M and n, for

sufficiently large δ, there is a nontrivial Nash equilibrium
where all the agents use some threshold strategy Sγ(M,n).
From the point of view of the system designer, not all equi-
libria are equally good; we want an equilibrium where as few
as possible agents have $0 when they get a chance to make a
request (so that they can pay for the request) and relatively

few agents have more than the threshold amount of money
(so that there are always plenty of agents to fulfill the re-
quest). There is a tension between these objectives. It is not
hard to show that as the fraction of agents with $0 increases
in the maximum entropy distribution, the fraction of agents
with the maximum amount of money decreases. Thus, our
goal is to understand what the optimal amount of money
should be in the system, given the number of agents. That
is, we want to know the amount of money M that maximizes
efficiency, i.e., the total expected utility if all the agents use
Sγ(M,n).

4

We first observe that the most efficient equilibrium de-
pends only on the ratio of M to n, not on the actual values
of M and n.

Theorem 5.1. There exists n∗ such that for all games
G(n1, δ) and G(n2, δ) where n1, n2 > n∗, if M1/n1 = M2/n2,
then Sγ(M1,n1) = Sγ(M2,n2).

Proof. Fix M/n = r. Theorem 3.1 shows that the
maximum-entropy distribution depends only on k and the
ratio M/n, not on M and n separately. Thus, given r, for
each choice of k, there is a unique maximum entropy distri-
bution dk,r. The best response br(δ, k) depends only on the
distribution dk,r, not M or n. Thus, the Nash equilibrium
depends only on the ratio r. That is, for all choices of M
and n such that n is sufficiently large (so that Theorem 3.1
applies) and M/n = r, the equilibrium strategies are the
same.

In light of Theorem 5.1, the system designer should ensure
that there is enough money M in the system so that the
ratio between M/n is optimal. We are currently exploring
exactly what the optimal ratio is. As our very preliminary
results for β = 1 show in Figure 5, the ratio appears to be
monotone increasing in δ, which matches the intuition that
we should provide more patient agents with the opportunity
to save more money. Additionally, it appears to be relatively
smooth, which suggests that it may have a nice analytic
solution.
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Figure 5: Optimal average amount of money to the

nearest .25 for β = 1

We remark that, in practice, it may be easier for the de-
signer to vary the price of fulfilling a request rather than

4If there are multiple equilibria, we take Sγ(M,n) to be the
Nash equilibrium that has highest efficiency for fixed M and
n.



injecting money in the system. This produces the same ef-
fect. For example, changing the cost of fulfilling a request
from $1 to $2 is equivalent to halving the amount of money
that each agent has. Similarly, halving the the cost of fulfill-
ing a request is equivalent to doubling the amount of money
that everyone has. With a fixed amount of money M , there
is an optimal product nc of the number of agents and the
cost c of fulfilling a request.

Theorem 5.1 also tells us how to deal with a dynamic pool
of agents. Our system can handle newcomers relatively eas-
ily: simply allow them to join with no money. This gives
existing agents no incentive to leave and rejoin as newcom-
ers. We then change the price of fulfilling a request so that
the optimal ratio is maintained. This method has the nice
feature that it can be implemented in a distributed fashion;
if all nodes in the system have a good estimate of n then
they can all adjust prices automatically. (Alternatively, the
number of agents in the system can be posted in a pub-
lic place.) Approaches that rely on adjusting the amount
of money may require expensive system-wide computations
(see [26] for an example), and must be carefully tuned to
avoid creating incentives for agents to manipulate the sys-
tem by which this is done.

Note that, in principle, the realization that the cost of
fulfilling a request can change can affect an agent’s strat-
egy. For example, if an agent expects the cost to increase,
then he may want to defer volunteering to fulfill a request.
However, if the number of agents in the system is always
increasing, then the cost always decreases, so there is never
any advantage in waiting.

There may be an advantage in delaying a request, but it
is far more costly, in terms of waiting costs than in provid-
ing service, since we assume the need for a service is often
subject to real waiting costs, while the need to supply the
service is merely to augment a money supply. (Related is-
sues are discussed in [10].)

We ultimately hope to modify the mechanism so that the
price of a job can be set endogenously within the system
(as in real-world economies), with agents bidding for jobs
rather than there being a fixed cost set externally. However,
we have not yet explored the changes required to implement
this change. Thus, for now, we assume that the cost is set
as a function of the number of agents in the system (and
that there is no possibility for agents to satisfy a request for
less than the “official” cost or for requesters to offer to pay
more than it).

6. SYBILS AND COLLUSION
In a naive sense, our system is essentially sybil-proof. To

get d dollars, his sybils together still have to perform d units
of work. Moreover, since newcomers enter the system with
$0, there is no benefit to creating new agents simply to take
advantage of an initial endowment. Nevertheless, there are
some less direct ways that an agent could take advantage
of sybils. First, by having more identities he will have a
greater probability of getting chosen to make a request. It
is easy to see that this will lead to the agent having higher
total utility. However, this is just an artifact of our model.
To make our system simple to analyze, we have assumed
that request opportunities came uniformly at random. In
practice, requests are made to satisfy a desire. Our model
implicitly assumed that all agents are equally likely to have
a desire at any particular time. Having sybils should not in-

crease the need to have a request satisfied. Indeed, it would
be reasonable to assume that sybils do not make requests at
all.

Second, having sybils makes it more likely that one of the
sybils will be chosen to fulfill a request. This can allow a
user to increase his utility by setting a lower threshold; that
is, to use a strategy Sk′ where k′ is smaller than the k used
by the Nash equilibrium strategy. Intuitively, the need for
money is not as critical if money is easier to obtain. Un-
like the first concern, this seems like a real issue. It seems
reasonable to believe that when people make a decision be-
tween a number of nodes to satisfy a request they do so
at random, at least to some extent. Even if they look for
advertised node features to help make this decision, sybils
would allow a user to advertise a wide range of features.

Third, an agent can drive down the cost of fulfilling a
request by introducing many sybils. Similarly, he could in-
crease the cost (and thus the value of his money) by making
a number of sybils leave the system. Concievably he could
alternate between these techniques to magnify the effects of
work he does. We have not yet calculated the exact effect of
this change (it interacts with the other two effects of having
sybils that we have already noted). Given the number of
sybils that would be needed to cause a real change in the
perceived size of a large P2P network, the practicality of this
attack depends heavily on how much sybils cost an attacker
and what resources he has available.

The second point raised regarding sybils also applies to
collusion if we allow money to be “loaned”. If k agents col-
lude, they can agree that, if one runs out of money, another
in the group will loan him money. By pooling their money
in this way, the k agents can again do better by setting a
higher threshold. Note that the “loan” mechanism doesn’t
need to be built into the system; the agents can simply use
a “fake” transaction to transfer the money. These appear
to be the main avenues for collusive attacks, but we are still
exploring this issue.

7. CONCLUSION
We have given a formal analysis of a scrip system and

have shown that the existence of a Nash equilibrium where
all agents use a threshold strategy. Moreover, we can com-
pute efficiency of equilibrium strategy and optimize the price
(or money supply) to maximize efficiency. Thus, our analy-
sis provides a formal mechanisms for solving some important
problems in implementing scrip systems. It tells us that with
a fixed population of rational users, such systems are very
unlikely to become unstable. Thus if this stability is com-
mon belief among the agents we would not expect inflation,
bubbles, or crashes because of agent speculation. However,
we cannot rule out the possibility that that agents may have
other beliefs that will cause them to speculate. Our analy-
sis also tells us how to scale the system to handle an influx
of new users without introducing these problems: scale the
money supply to keep the average amount of money constant
(or equivalently adjust prices to achieve the same goal).

There are a number of theoretical issues that are still open,
including a characterization of the multiplicity of equilib-
ria – are there usually 2? In addition, we expect that one
should be able to compute analytic estimates for the best
response function and optimal pricing which would allow us
to understand the relationship between pricing and various
parameters in the model.



It would also be of great interest to extend our analysis
to handle more realistic settings. We mention a few possible
extensions here:

• We have assumed that the world is homogeneous in a
number of ways, including request frequency, utility,
and ability to satisfy requests. It would be interest-
ing to examine how relaxing any of these assumptions
would alter our results.

• We have assumed that there is no cost to an agent
to be a member of the system. Suppose instead that
we imposed a small cost simply for being present in
the system to reflect the costs of routing messages and
overlay maintainance. This modification could have a
significant impact on sybil attacks.

• We have described a scrip system that works when
there are no altruists and have shown that no system
can work once there there are sufficiently many altru-
ists. What happens between these extremes?

• One type of “irrational” behavior encountered with
scrip systems is hoarding. There are some similarities
between hoarding and altruistic behavior. While an
altruist provide service for everyone, a hoarder will
volunteer for all jobs (in order to get more money) and
rarely request service (so as not to spend money). It
would be interesting to investigate the extent to which
our system is robust against hoarders. Clearly with
too many hoarders, there may not be enough money
remaining among the non-hoarders to guarantee that,
typically, a non-hoarder would have enough money to
satisfy a request.

• Finally, in P2P filesharing systems, there are overlap-
ping communities of various sizes that are significantly
more likely to be able to satisfy each other’s requests.
It would be interesting to investigate the effect of such
communities on the equilibrium of our system.

There are also a number of implementation issues that
would have to be resolved in a real system. For example, we
need to worry about the possibility of agents counterfeiting
money or lying about whether service was actually provided.
Karma [26] provdes techniques for dealing with both of these
issues and a number of others, but some of Karma’s imple-
mentation decisions point to problems for our model. For
example, it is prohibitively expensive to ensure that bank ac-
count balances can never go negative, a fact that our model
does not capture. Another example is that Karma has nodes
serve as bookkeepers for other nodes account balances. Like
maintaining a presence in the network, this imposes a cost
on the node, but unlike that, responsibility it can be easily
shirked. Karma suggests several ways to incentivize nodes
to perform these duties. We have not investigated whether
these mechanisms be incorporated without disturbing our
equilibrium.
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