
Web Search Using Small Cores: Quantifying the Price of Efficiency

Vijay Janapa Reddi
Eng. & App. Sciences

Harvard University

vj@eecs.harvard.edu

Benjamin Lee
Computer Architecture

Microsoft Research

blee@microsoft.com

Trishul Chilimbi
Runtime Analysis & Design

Microsoft Research

trishulc@microsoft.com

Kushagra Vaid
Global Foundation Services

Microsoft Corporation

kushagra.vaid@microsoft.com

ABSTRACT
The commoditization of hardware, data center economies of
scale, and Internet-scale workload growth all demand greater
power efficiency to sustain scalability. Traditional enterprise
workloads, which are typically memory and I/O bound, have
been well served by chip multiprocessors comprising of small,
power-efficient cores. While small cores deliver performance-
per-Watt efficiency for such data center workloads, small
cores impact application quality-of-service robustness, flexi-
bility, and reliability for emerging Internet-scale applications,
which increasingly invoke computationally intensive kernels.
These challenges constitute the price of efficiency, which we
quantify for an industry-strength, production-quality, next-
generation online web search engine. Specifically, we evaluate
search on server- and mobile-class architectures using Xeon
and Atom processors, quantifying search efficiency at the
microarchitecture- and system-level. Our findings prompt us
toward re-thinking small core designs for a new breed of data
center workloads in order to continue reaping the benefits of
small-core power efficiency.

1. INTRODUCTION
Computing is experiencing a paradigm shift in which com-

putation and data migrates from clients to geographically
distributed data centers. The resulting commoditization and
scale are fueling the rapid growth of Internet-scale applica-
tions, such as web search, online gaming, and virtual worlds.
Considering scale and growth, greater power efficiency is be-
coming ever more important to sustain data center scalabil-
ity.

Advances in chip multiprocessors comprised of small cores
provide opportunities for power efficiency. Piranha and Ni-
agara propose integrating simple cores to lower design ef-
fort and improve throughput, respectively [1, 7, 9]. These
smaller cores deliver throughput with better power efficiency
when compared to their low-latency, high-performance coun-
terparts. Traditional enterprise and online transaction pro-
cessing (OLTP) applications are amenable to execution on
small cores because they are typically memory or I/O bound.
Consequently, platform and system design, rather than mi-
croarchitectural design, often determine whether application
service requirements are met for these workloads.

However, small cores may weaken service requirements and
guarantees for a new breed of emerging data center appli-
cations. Relative to traditional enterprise workloads, these
emerging workloads are comprised of computationally inten-
sive and performance-critical kernels. Although small cores
are advantageous for power efficiency and throughput com-
puting, they are less capable of handling increases in compu-
tation and can potentially jeopardize application quality-of-
service and latency constraints, especially if task processing
occurs online. Microarchitecture design will increasingly de-

1.0

0.8

0.6

0.4

0.2

0.0

N
o
rm

a
liz

e
d
 I
P
C

Web
(Apache)

Database
(MySQL)

Java
(JRockit)

Mail
(MS Exchange)

File
(DBench)

Search
(Ours)

Figure 1: Computational intensity of search. Compared
to traditional enterprise workloads, our version of search
experiences more instruction level parallelism with an un-
normalized IPC noticeably greater than one, thus making
it conventionally more suitable for high performance pro-
cessors, rather than smaller and simpler cores.

termine whether service requirements are satisfied for these
compute-prone workloads. Small cores impact execution and
microarchitectural activity, thus degrading quality-of-service
robustness and increasing per-task latency variation. These
challenges constitute the price of efficiency from small cores.

We quantify the price of small-core power efficiency for
next-generation, industry-strength web search. Unlike tradi-
tional enterprise workloads, our version of web search relies
on machine learning kernels at its core, which significantly
increases computation at index serving nodes in a way that
contravenes conventional wisdom regarding small cores for
enterprise workloads.We demonstrate the computational in-
tensity of our search engine with respect to other workloads in
Figure 1.1 Our search engine experiences significantly more
instruction level parallelism (ILP) and is the only workload in
Figure 1 exhibiting an un-normalized IPC greater than one,
which surpasses even conventional search engines that experi-
ence an IPC similar to traditional enterprise workloads [2,3].
This demand for ILP indicates a need for more performance
than is typically provided by simple, in-order cores. Con-
sequently, the strategy of small cores for greater power effi-
ciency has deep implications on our Internet-scale workload.
In this paper, we make the following contributions:

• Search: We evaluate small cores for a new breed of
data center workloads—an online web search engine
currently in production in an enterprise environment
that uses machine learning kernels at the index serving
nodes to service queries. (Section 2)

• Efficiency: We compare the power efficiency of the
server-class Xeon and mobile-class Atom microarchitec-
tures for Search, relying on hardware counter data and

1All workloads are configured as per industry-standard set-
tings [24] and are operating under typical load conditions,
running natively on a 4-way superscalar processor (Table 1).

multimeter power measurements. Search is 5× more
efficient on Atom than on Xeon. (Section 3)

• Price of Efficiency: We quantify the price of small
core power efficiency on computationally intensive work-
loads. Running search on Atom comes at the expense
of robustness and flexibility. Quality-of-service guaran-
tees become less robust, per query latency is less deter-
ministic and more variable as computational intensity
increases and microarchitectural bottlenecks impact all
phases of search computation. (Section 4)

• Total Cost of Ownership: The price of efficiency
for small cores may increase the total cost of owner-
ship (TCO) at the data center-level due to inefficiencies
at the platform level, resulting in lower performance
per TCO dollar. However, these effects can be miti-
gated with greater integration and effective system de-
sign strategies. (Section 5)

Collectively, the results of this paper contravene conventional
wisdom with respect to small cores and data centers. The
microprocessor industry faces a choice of two strategies for
general-purpose computing: (1) start with big and high per-
formance cores and improve efficiency or (2) start with small,
low power cores and improve performance. This paper com-
pares these two strategies and, for an emerging breed of data
center applications that exercises data paths more than tradi-
tional enterprise workloads, favors the latter. We identify the
challenges that must be addressed before small-core efficiency
can be exploited for evolving application requirements.

2. SEARCH
Among the diverse applications that drive the transition

to remote computing, data centers, and economies of scale,
search is most conspicuous. Search is representative of a
broad class of data center workloads that perform distributed
and expensive computation. The workload requires thou-
sands of processors to service queries under strict perfor-
mance, flexibility and reliability guarantees. A single query
might require tens of billions of processor cycles and access
hundreds of megabytes of data [3]. Traditionally, parallel in-
dexing aspects of search afforded substantial improvement in
performance. However, as search engines continue to evolve
and machine learning techniques become an integral part of
indexing services, per core performance is regaining critical-
ity.

2.1 Structure
Figure 2 outlines the structure of our industrial-strength

search engine currently in production. Upon arrival, a query
is distributed to many nodes. Examining its subset of the
document index, each node uses neural networks to identify
and to return the top N most relevant pages and their dy-
namic page ranks. The search engine uses sorted indices to
access content served to the user.

Queries enter the system through a top-level Aggregator.
If the aggregator cannot satisfy the query from its set of fre-
quently accessed pages (i.e., the Cache), it distributes the
query to the Index Serving Nodes (ISNs). The ISNs serve
the query in a highly distributed manner. Each ISN is re-
sponsible for ranking pages, as well as generating descriptions
of relevant pages for the user [5].

Upon receiving a query, an ISN’s Manager invokes the
Ranker on the ISN’s local subset of the index. The ranker
parses the query and invokes Streams that use query features

Manager

ManagerManager

Ranker ContextGenerator

Index Index Serving Node

 (ISN)

Content

NeuralNet

Streams

Aggregator

Queries

Cache

Figure 2: Search overview. In this paper, we target the
darkened subset within each index serving node.

to identify a matching list of pages from query features. The
ranker then uses statistical inference engines along with a
neural network to compute a relevance score for each page
in the matching list. Using these scores, the ranker identifies
the top N results and passes these results to the aggrega-
tion layer, which in turn decides upon the set of results to
return. After aggregating and sorting relevance scores, the
aggregator requests captions from the ISN’s. Each caption
is comprised of a title, URL, and context snippets. Captions
are generated by the ContextGenerator based on the content
distributed to each particular ISN. Captions for the top N
results across the ISN’s are returned to the user in response
to the query.

2.2 Requirements
Robustness. Search performance is quantified by a com-

bination of Quality-of-Service (QoS), throughput, and la-
tency. The application defines a QoS metric by the mini-
mum percentage of queries handled successfully. For exam-
ple, a QoS metric of θ percent requires a minimum of θ suc-
cessful queries for every 100. The other 100-θ queries might
time-out due to long latencies for expensive query features
or might be dropped due to fully occupied queues. Given a
QoS target constraint, we might consider a platform’s sus-
tainable throughput, which quantifies the maximum number
of queries per second (QPS) that can arrive at a node with-
out causing the node to violate the QoS constraint. If the
QPS exceeds the sustainable throughput, QoS degrades.

Query processing must also observe latency constraints.
The average response time of queries must fall within a cer-
tain number of milliseconds, with additional constraints for
the 90 percentile of queries. Latency directly impacts rel-
evance (i.e., documents corresponding to a specific query)
by affecting the number of iterative refinements made to a
search result. Given a latency constraint, the ranker checks
for remaining time before, for example, checking the next tier
in a tiered index. Lower query processing latencies allow for
additional refinements to improve relevance.

Flexibility. The search engine operates in a highly dis-
tributed system under a variety of loads and activity pat-
terns. Not only must such a system be scalable, but it must
be also be flexible to changes in activity. For example, ac-
tivity patterns are often periodic and correlated with time of
day. Moreover, complex queries are often broken into mul-
tiple simple queries; a modest spike in complex queries may
generate sudden activity spikes measured in absolute terms.
The underlying architecture must be robust enough to toler-

ate these absolute spikes and, ideally, would exhibit gradual
rather than sharp QoS degradations as load increases. Archi-
tectures that exhibit gradual rather than sharp QoS degra-
dations as load increases in absolute terms would provide
greater flexibility with less disruption.

Reliability. Hardware failures are to be expected within
large-scale clusters and data centers. To ensure reliability
and robustness in the presence of failures, ISN’s must operate
with spare capacity to bear additional load when a fraction
of index serving nodes fail, since work is then dynamically re-
balanced across the remaining nodes. Each node experiences
a fractional increase of a failed node’s sustainable through-
put, an activity spike measured in relative terms. Architec-
tures that exhibit gradual and minimal QoS degradations as
load increases in relative terms would provide greater relia-
bility with less disruption.

Preserving robust performance under strict flexibility and
reliability requirements is imperative for successful operation
of search. But in order to cope with its economies of scale,
greater power efficiency is required at the data center-level.
Therefore, in this paper we evaluate the fundamental trade-
offs between hardware power efficiency and search application
requirements, while keeping in mind that end-user experience
can determine a lifetime brand of search engine.

3. EFFICIENCY
Search exercises the data path as it uses inference engines

(e.g., Neural Nets) to service queries. Therefore, the work-
load is traditionally run using high-end server processors.
But in this section, we seek to understand the trade-offs
between using high-end processors and small-core designs.
After explaining our experimental infrastructure, we com-
pare search running on Xeon versus Atom, quantifying the
microarchitectural, power and cost efficiency across both de-
signs in terms of delivered search application performance.

3.1 Experimental Methodology
Workload Setup. While search is itself a distributed ac-

tivity across several nodes, in this paper we specifically target
its activity within an ISN. We use the actual application cur-
rently in production. Of the search components illustrated
in Figure 2, we specifically examine the darkened subset that
computes dynamic page ranks online and returns the sorted
results to the aggregator.

The quality of search or the relevance of pages depends
upon the performance of every ISN. CPU activity at an ISN
ranges between 60 to 70 percent, indicating ISNs are usu-
ally under heavy load. Consequently, an ISN’s performance
is susceptible to the capabilities of the underlying microar-
chitecture, which motivates our evaluation of the leaf-nodes
within search. We neglect the aggregator, as well as the cap-
tion generators. From hereon, we loosely refer to the term
search engine as the parts we are investigating.

The ISN computes page ranks for forty thousand queries
with varying complexity after an initial warmup phase that
brings the ISN to a steady state. Input queries are obtained
from production runs. The query arrival rate is a parameter
within our experiments. We sweep this rate to identify the
maximum QPS an architecture can sustain without violating
the QoS target. For each query, the ISN computes overall
ranks for pages that match the query for a 1 GB index, a
subset of the global index that is distributed across several
nodes.

The index fits in memory to eliminate page faults and min-
imize disk activity. In effect, we consider the first tier of a

Xeon Atom
Harpertown Diamondville

Processors 1 1
Cores 4 2
Process 45nm 45nm
Frequency 2.5GHz 1.6 GHz
Pipeline Depth 14 stages 16 stages
Superscalar Width 4 inst issue 2 inst issue
Execution out-of-order in-order

Reorder Buffer 96 entries n/a
Load/Store Buffer 32/20 entries n/a

Inst TLB 128-entry, 4-way Unavailable
Data TLB 256-entry, 4-way Unavailable
L1 Inst/Data Cache 32/32KB 32/24KB
L2 Cache (per die) 12MB, 24-way 1MB, 8-way
FSB 1066MHz 533 MHz

Table 1: Microarchitectural extrema. We evaluate search
on Xeon-Harpertown [8, 14, 22] and Atom-Diamondville
[10, 14] processors that represent endpoints in the spec-
trum of x86 commodity processors.

tiered index, which resides in memory. Subsequent tiers re-
quire accessing disk, but the tiers are organized such that
this is extremely rare in practice. Therefore, it is the mi-
croarchitecture that determines application performance and
not system-level configuration.

Microarchitectural Extrema. Considering the spec-
trum of commodity x86 microprocessors, we observe high-
performance, server-class microprocessors at one end and
low-power, mobile-class processors at the other end. Table 1
summarizes the microarchitectures we consider.

The Xeon is representative of modern, high-performance
microarchitectures. We consider the Harpertown, a dual-
die, quad-core processor comprised of Penryn cores [8, 14].
We report all measurements for a single-socket Harpertown.
This processor implements several power optimizations. Im-
plemented at 45nm using high-K dielectric and metal gate
transistors, the process technology reduces leakage power by
5-10× and switching power by 30 percent. Moreover, the L2
cache is organized into 1MB slices, allowing cache resizing
in 1MB increments for power reduction. Dynamic voltage
and frequency scaling supports system-driven power mitiga-
tion. Finally, we consider a particularly low-power Harper-
town part, the L5420, which operates at 2.5 GHz. Thus, the
choice of a power-optimized Harpertown provides an opti-
mistic baseline, which favors server-class architectures.

The Atom is representative of modern, low-power microar-
chitectures. We consider a dual-core Diamondville [10, 14].
Each core is designed to operate in the sub-1W to 2W range.
Diamondville cores implement an in-order pipeline with power
efficient instruction decode and scheduling algorithms. The
Diamondville datapath is also narrower than that of a Harper-
town, issuing only two instructions per cycle. Furthermore,
the Atom design avoids specialized execution units and favors
general-purpose logic that can provide multiple functionality.
For example, the SIMD integer multiplier and floating point
divider are used to execute instructions that would normally
execute on separate, dedicated scalar equivalents [10]. Such
strategies are intended to reduce power, but also may have
significant implications for performance as will be described
in Section 4.

Microarchitectural and Power Measurements. We
analyze the performance of the microarchitecture using de-
tails collected via VTune [13], a toolbox that provides us an
interface to hardware counters on the Xeon and Atom. These
counters provide detailed insight into microarchitectural ac-
tivity as various parts of the search engine execute.

RAT Stalls

 8.5%

Resource Stalls

 36.5%

IFU Stalls

 10.6%

Instruction Retirement

 44.4%

(a)

L1 DCache
 7.4%

Front-end/Others
 51.9%

DTLB Misses
 5.6%

L2 DCache
 27.8%

Branch Misprediction
 7.4%

(b)

Loads
20.9%

Floating Point
 1.4%

Others
 52.5%

Branch
 15.6%

Stores
 9.5%

(c)

IFetch

18.9%

 Loads

 71.1%

Stores

 10.1%

(d)

Figure 3: Microarchitectural synopsis of search on Xeon. (a) Execution versus stall time. (b) Breakdown of stall activity.
(c) Instruction mix of search. (d) Sources of L2 cache accesses.

In order to relate this microarchitectural activity to energy
consumption, we quantify power dissipated by the processor
at the voltage regulator module. We identify the 12V lines
entering the regulator, apply a Hall-effect clamp ammeter
(Agilent 34134A), and collect power measurements at 1KHz
using a digital multimeter (Agilent 34411A).

3.2 Microarchitecture
A microarchitectural-level perspective of search enables us

to characterize an Internet-scale workload at the level of a
single processor/core. Moreover, understanding the impact
of microarchitectural differences such as in-order versus out-
of-order scheduling, larger versus smaller cache hierarchies
etc. enable insight when considering small cores as an alter-
native for Internet-scale workloads, as such workloads may
be more computationally intensive than traditional enterprise
workloads that are memory- or I/O-bound.

Big Core versus Small Core. Considering Xeon first,
let Xθ be Xeon’s sustainable throughput given the search
application’s quality of service target θ. Figure 3 illustrates
microarchitectural events as search executes at Xθ queries
per second on the Xeon. As per the data in Figure 3(a), 55.6
percent of execution time is spent stalled for either the regis-
ter alias table (RAT), the front end (IFU), or other resources
(e.g., cache and memory). These stalls suggest the datapath
is not fully utilized with only 44.4 percent of execution time
spent retiring instructions due to structural conflicts in the
front end (fetch or decode) or long latency memory instruc-
tions blocking instruction retirement. Figure 3(b) breaks-
down stall activity further.

Stalls during instruction fetch arise from branches and
instruction cache effects. Substantial branch activity illus-
trated in Figure 3(c), 15.6 branches per 100 instructions,
makes the branch predictor a bottleneck. The datapath sees
a seven cycle penalty when the number of in-flight specula-
tive branches exceeds the capacity of the branch predictor
(e.g., branch history table) [13]. Furthermore, the instruc-
tion fetch often stalls for L2 cache activity with 18.9 percent
of L2 caches accesses attributed to instruction cache misses
(Figure 3(d)).

Other resource stalls may be attributed to memory ac-
tivity. According to Figure 3(c), a total of 30.4 percent of
instructions either load or store data, which leads to pressure
on the cache hierarchy. Consequently, Figure 3(d) shows that
loads and stores account for 81.2 percent of all cache accesses.
L2 cache activity often translates into memory requests with
67.0 percent of bus activity attributed to memory transac-
tions (not shown).

Based on the data presented in Figure 3, search is a mem-
ory, as well as control intensive, application. But despite the

12

8

4

0

R
e

la
ti
v
e

 t
o

 X
e

o
n

 a
t

X
θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 I
m

p
a
c
t

 B
ra

n
c
h

 M
is

p
re

d
ic

ti
o

n
 R

a
te

 B
u

s
 U

ti
liz

a
ti
o

n

 B
u
s
 B

u
rs

t
R

e
a
d
s

 D
a
ta

 B
u
s
 U

ti
liz

a
ti
o
n

 W
ri
te

b
a
c
k
 B

u
s
 U

ti
liz

a
ti
o
n

 T
L

B
 M

is
s
 I

m
p

a
c
t

 I
T

L
B

 M
is

s
 R

a
te

 D
T

L
B

 M
is

s
 R

a
te

 D
iv

id
e

r

 L
1

 D
C

a
c
h

e
 M

is
s
 I

m
p

a
c
t

 L
1
 D

C
a
c
h
e
 M

is
s
 R

a
te

 L
1
 I
C

a
c
h
e
 M

is
s
 R

a
te

 L
2

 C
a

c
h

e
 M

is
s
 R

a
te

 L
2

 E
v
ic

ti
o

n
 R

a
te

 C
P

I

48.2x

Figure 4: Microarchitectural synopsis of search on Atom
with respect to Xeon.

large resources available on the high-end Xeon processor, the
application is unable to thoroughly exploit the efficiency of
the microarchitecture due to the nature of its execution.

Relative to Xeon, the Atom implements a simpler and
deeper pipeline. As Figure 4 demonstrates, microarchitec-
tural effects are aggravated in the low-power Atom. The high
frequency of branches and Atom’s deeper pipeline depth leads
to a 10× increase in performance penalties from mispredicted
branches. Atom divide time, in particular, is 48.2× greater
than that of the Xeon. These performance effects may arise
from the decision to favor generality over specialization for
execution units. Specifically, “the use of specialized execution
units is minimized. For example, the SIMD integer multiplier
and Floating Point divider are used to execute instructions
that would normally require a dedicated scalar integer mul-
tiplier and integer divider respectively.” [10]

Moreover, on a per core basis, the Atom implements a
much smaller cache hierarchy. According to Table 1, the
Atom data and L2 caches are 25 and 66 percent smaller per
core than their Xeon counterparts. This smaller cache hi-
erarchy translates into 1.5× and 8.0× the number of data
and L2 cache misses. Collectively, these microarchitectural
effects lead to a 3× increase in cycles per instruction, which
translates into a system-level degradation in throughput.

Table 2 compares throughput for the search application at
its quality-of-service target θ. Let Xθ and Aθ be the sustain-
able throughput of the Xeon and Atom in queries per second
(QPS). At the same θ, Xeon sustains 3.9× the throughput
sustained by an Atom (Xθ = 3.9×Aθ). On a per core ba-
sis, each of the four Xeon cores sustain 2.0× the throughput
sustained by each of the two Atom cores.

Small Core Bottlenecks. To understand Atom bottle-

 Manager
 42.4%

Ranker
 33.3%

NeuralNet
 6.1%

 Streams
 18.2%

(a)

3.0

2.0

1.0

0.0

C
P

I
(N

o
rm

a
lie

d
 t
o
 X

e
o
n
)

Manager

NeuralNet

Ranker

Streams

(b)

100

80

60

40

20

0%
 o

f
E

x
e
c
u
ti
o
n
 T

im
e

100500

Number of Functions

 Xeon
 Atom

 50% Coverage
with 20 functions

(c)

Figure 5: Search execution activity. (a) Execution time distribution across phases of search. (b) Cycles-per-instruction
(CPI) normalized to Xeon across the different phases of search computation on Atom. (c) Cumulative execution time
distribution across functions on Xeon versus Atom.

necks and their root causes in the design, we must breakdown
and analyze the different parts of search in isolation. Fig-
ure 5(a) illustrates that execution time is fairly distributed
across all phases of search computation. This distribution
gathered on a Xeon is identical to search on Atom. Addi-
tionally, Figure 5(b) suggests the most important functions
exist throughout the phases of computation; all four major
components of the search engine experience significant mi-
croarchitectural latency increases between 1.5× and 2.8× rel-
ative to Xeon performance. Atom performance degradation
is broadly distributed and cannot be attributed to any one
function or phase of computation.

Bottlenecks are limited to a few functions within each phase
of search computation. Figure 5(c) illustrates the cumulative
distribution of execution time over functions in the search
engine. The distribution of execution times has a long tail;
120 functions account for 85-90 percent of the execution time
and another 1200 functions account for the remaining 10-15
percent. Comparing Xeon and Atom, the distribution of ex-
ecution time is similar across both systems, especially in the
region accounting for 50 percent or less of the execution time:
49.5 and 53.8 percent of execution time can be attributed to
20 functions in Xeon and Atom, respectively.

We observe a significant overlap of 70 percent within the
top 20 functions of search across both Xeon and Atom, indi-
cating that function importance depends more on the appli-
cation and less on the architecture. Given the 20 most impor-
tant functions and our knowledge of computation phases, we
identify a representative function from each phase. Figure 6
illustrates the microarchitectural events that affect the per-
formance of four representative functions from the different
phases of computation: Manager, NeuralNet, Ranker, and
Streams. The microarchitectural events illustrate a broad
range of performance limitations when adopting the small
Atom cores. Just as no single function or single phase of
computation accounts for Atom’s performance limitations,
no single microarchitectural event can be identified as the
performance constraint.

Each function representing a different phase of search ex-
ercises different parts of Atom. The neural network stresses
the divider and L2 cache. This function exhibits a 64× in-
crease in division time, which seems to arise from a design
decision regarding SIMD versus scalar dividers; scalar divi-
sion is performed in a SIMD execution unit [10]. Atom’s
small 1MB, 8-way L2 cache leads to a 14× increase in L2
cache misses. The net effect is a 4.8× increase in CPI. In
contrast, other parts of the ranker stress the branch predic-
tor and L1 data cache. The performance impact of branch
misprediction increases by 142× from a very low Xeon base-

0.01

0.1

1

10

100

R
e
la

ti
v
e
 t
o
 X

e
o
n
 a

t
X

θ

 I
F

e
tc

h
 S

ta
ll

Im
p
a
c
t

 B
ra

n
c
h

 M
is

p
re

d
ic

ti
o

n
 I

m
p

a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 R

a
te

 B
u
s
 U

ti
liz

a
ti
o
n

 B
u

s
 B

u
rs

t
R

e
a

d
s

 D
a

ta
 B

u
s
 U

ti
liz

a
ti
o

n

 W
ri
te

b
a

c
k
 B

u
s
 U

ti
liz

a
ti
o

n

 T
L
B

 M
is

s
 I
m

p
a
c
t

 I
T

L
B

 M
is

s
 R

a
te

 D
T

L
B

 M
is

s
 R

a
te

 D
iv

id
e

r

 L
1
 D

C
a
c
h
e
 M

is
s
 I
m

p
a
c
t

 L
1

 D
C

a
c
h

e
 M

is
s
 R

a
te

 L
1

 I
C

a
c
h

e
 M

is
s
 R

a
te

 L
2
 C

a
c
h
e
 M

is
s
 R

a
te

 L
2
 E

v
ic

ti
o
n
 R

a
te

 C
P

I

 Manager NeuralNet Ranker Streams141.7x

Figure 6: Microarchitectural activity corresponding to
representative functions from each phase of search to il-
lustrate critical microarchitectural bottlenecks.

line. Such penalties may arise from the ranker’s algorithmic
components, which apply different strategies depending on
the query and cutoff latencies. The impact of L1 data cache
misses increases by 79× from a very low Xeon baseline. The
net effect is a 2.9× increase in CPI. Also stressing the branch
predictor, streams manipulate an iterator data structure con-
taining indices that match words within the query. Finding
a particular element within the iterator requires non-trivial
control flow, which exercises the branch predictor with a 49×
penalty relative to Xeon. Therefore, CPI increases by 2.8×.
Lastly, the manager coordinates the movement of index files
to and from memory. The smaller L2 cache limits opportuni-
ties to exploit locality and produces a 14× increase in misses.
The smaller cache also increases memory subsystem activity
by 20 to 22×, thus causing a 4.6× increase in CPI.

Although we observe comparable performance degrada-
tions between 2.8× and 4.8× in representative functions across
four major phases of computation in the search engine, the
microarchitectural bottlenecks differ significantly. Collectively,
Atom resources are constrained and particular stress is ex-
erted on the divider, branch predictor, and cache hierarchy.

3.3 Power
Figure 7(a) illustrates the power time series for both Xeon

and Atom processors as search is running. The Xeon operates
with an idle power component of 38.5W.The substantial idle
power dissipated is particularly problematic given that the
processor is stalled for 56.6 percent of its cycles. The Xeon
exhibits a dynamic power range of 38.5 to 75W with a 95 per-
cent difference between the idle and peak power. In contrast,

80

60

40

20

0

P
o

w
e

r
(W

)

70x10
3

6866646260

Time (ms)

5
4
3
2
1A

to
m

 P
o
w

e
r

 Xeon
 Atom

(a)

80

60

40

20

0

P
o
w

e
r

(W
)

43210

Number of CPU Burns

 Peak Freq. (1.15V)

 Min. Freq. (1.13V)

(b)

Figure 7: (a) Xeon consumes ∼62.5W, where as the
low-power Atom consumes ∼3.2W on average. (b) Peak
power consumption with and without DVFS on Xeon.

Atom has a low idle power component of 1.4W with a 168
percent difference between idle and peak power. Atom’s low
idle power and large dynamic range is particularly attractive
in the pursuit of energy proportional computing [4]. On av-
erage, each Xeon core dissipates 9.8× the power dissipated
by each Atom core.

Figure 7(b) demonstrates minimal energy savings from volt-
age and frequency scaling on Xeon. This experiment incre-
mentally drives the Xeon to peak capacity, and thus power
consumption, by progressively loading each of its cores to
capacity and running CPUBurn [17] on the core. Only two
pstates are available because the processor is already operat-
ing using low voltage; designers have already optimized the
processor for energy-efficiency. The majority of the power
savings (between 8W to 9W) at peak load (4 CPUBurns) is
coming from frequency scaling; scaling the voltage by only
0.02 volts offers negligible power savings. By comparison,
going to a smaller core like the Atom gets a drastic power
reduction of 9.8× despite the modest 1.9× performance ad-
vantage of the Xeon core (as indicated by Table 2).

Traditionally, high-performance cores reduce power dissi-
pation through process technology scaling, which lowers op-
erating voltages. Frequency and voltage scaling becomes less
effective as low-power processors already operate at near-
minimum supply voltages and voltage scaling becomes in-
creasingly difficult under Moore’s Law.

Thus, within the general-purpose microprocessor industry,
we observe two broad and different strategies for defining
the next generation of power-efficient architectures. The first
strategy starts with high-performance, out-of-order architec-
tures that seeks to improve power efficiency while preserving
performance. A second strategy starts with low-power, in-
order architectures and seeks to improve their performance
while preserving power, as is the case with the Atom proces-
sor. The large difference in power consumption suggest the
latter is a more promising approach to power-efficient com-
puting in the coming era of data center-based computing.

3.4 Performance
On a per core basis, the Atom is 5× more efficient than

the Xeon. We compute performance and power efficiency

100

80

60

40

20

0

%
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

2.01.51.00.5
QPS (Normalized to Xθ)

 Xθ

2Xθ

 Aθ

Figure 8: Quality-of-service
on Xeon and Atom normal-
ized to Xθ.

0.01

0.1

1

10

100

L
a

te
n

c
y
 (

 N
o

rm
a

liz
e

d
 t

o
 L

c
)

2.01.51.00.5
QPS (Normalized to Xθ)

 Xθ

 Aθ

2Xθ

Figure 9: Latency on Xeon
and Atom normalized to Xθ.

as sustainable QPS per watt. Table 2 compares the Xeon
and Atom over a variety of metrics. The power differentials
(19.5× per processor, 9.8× per core) dominate the perfor-
mance differentials (3.9× per processor, 1.9× per core). The
large power cost of the Xeon is not justified by relatively
modest increases in sustainable throughput.

Although this paper focuses primarily on power efficiency,
we also mention area and price efficiency for comparison.
Area efficiency is comparable between the two architectures,
indicating the Xeon area overheads of dynamic instruction
scheduling and out-of-order execution produce a linear im-
provement in throughput for search. However, Xeon price
efficiency is 0.45× Atom price efficiency. Xeon prices are 8.4×
Atom prices, but each Xeon sustains only 3.8× the number
of queries per second. Note we consider price seen by the
data center, not cost seen by processor manufacturers; man-
ufacturers may target higher profit margins on server-class
processors. Moreover, this analysis considers only equipment
prices, not total cost of ownership. Peripheral components
(e.g., motherboard, network interface card) will also impact
the analysis. Section 5 will further assess the sensitivity of
these effects.

The ideal efficient microprocessor is closer to the mobile-
class end of the microarchitectural spectrum, even despite the
computational bottlenecks we discuss in Section 3.2. How-
ever, a transition to small cores requires us to be wary of
their price of efficiency.

4. PRICE OF EFFICIENCY
To understand the role of mobile-class architectures in data

centers as workloads continue to emerge and evolve, we must
identify and understand the price of exploiting the efficiency
of small cores. For our search, we find quality-of-service be-
come less robust as small cores are less capable of absorbing
even modest increases in query load. Greater variance in
the per query latency distribution indicates more queries ex-
perience higher latencies, which limit the time available to
perform additional computation and improve search result
relevance and ranking. Both quality-of-service and latency
effects depend, in part, on the shifts in computational inten-
sity and resource bottlenecks when using small cores. Thus,
while power efficient, a transition to Atoms has its price.

4.1 Robustness
Quality-of-Service(QoS). Given a quality of service tar-

get θ, Xeon and Atom sustain a throughput Xθ and Aθ, re-
spectively. We consider QoS guarantees robust if target θ
is met despite fluctuations or temporary increases in query
load. Robust QoS guarantees are a critical application re-
quirement for search and data center applications. Robust-
ness also determines the extent to which any one node can
be utilized. If index server nodes can absorb activity spikes
with little QoS degradation, they can operate closer to peak

Per Processor Per Core
Xeon Atom ∆X/A Xeon Atom ∆X/A

Performance (QPS) 3.86Aθ Aθ 3.86× 0.96Aθ 0.5Aθ 1.93×
Power (W) 62.50 3.2 19.53× 15.63 1.60 9.77×
Power Efficiency (QPS/W, ×10−2) 6.17Aθ 31.25Aθ 0.20× 6.17Aθ 31.25Aθ 0.20×
Area (T, ×106) 820 94 8.72× n/a n/a n/a
Area (mm2) 214 50 4.28× n/a n/a n/a
Area Efficiency (QPS/mm2, ×10−2) 1.80Aθ 2.00Aθ 0.90× n/a n/a n/a

Price ($) 380 45 8.44× 95 22.50 4.22×
Price Efficiency (QPS/$, ×10−2) 1.02Aθ 2.22Aθ 0.45× 1.02Aθ 2.22Aθ 0.45×

Table 2: Search on Xeon versus Atom. Performance is quantified by sustainable throughput, which is the maximum
number of queries arriving per second (QPS) that can be serviced successfully at the target quality-of-service θ. QPS is
reported relative to Atom performance Aθ. Average power is used to compute efficiency. Area is reported per processor.
Price is reported per unit purchased in orders of one thousand units.

sustainable throughput.
For a given increase in query load, Figure 8 indicates ro-

bustness trends. The horizontal axis quantifies QPS normal-
ized to Xeon’s sustainable throughput Xθ. The vertical axis
quantifies QoS in terms of the number of successfully pro-
cessed queries. Xeon more robustly processes the additional
queries. Degradations in quality-of-service are modest and
gradual. In contrast, Atom is unable to absorb a large num-
ber of additional queries and quickly violates its QoS target
significantly.2

To improve QoS against activity spikes, we might overpro-
vision and underutilize Atom’s. If we find an Atom node can-
not tolerate a λ increase in QPS in a robust manner, we sim-
ply utilize the node at (1−λ/Aθ) percent. While this reduces
throughput, the power difference between Atom and Xeon
processors causes us to still favor mobile processors. Overpro-
visioning, however, incurs significant power overheads from
an overall system perspective, which we discuss in Section 5.

Latency. While throughput is the often cited performance
metric in task-parallel, search latency is also a critical met-
ric of success. Increasing query load not only degrades the
success rate in a quality-of-service metric, it also increases
the latency at which that service is delivered. The search
algorithm often uses multiple strategies to refine search re-
sults if the query latency has not yet exceeded a cutoff la-
tency LC . Figure 9 illustrates latency trends with latencies
normalized to the cutoff latency LC . Using a logarithmic
vertical axis, the figure indicates super-exponential increases
in mean latency as query load increases on both Xeon and
Atom. However, the two architectures differ largely in their
average latency at sustainable throughput. Atom’s latency
at Aθ is nearly three times higher at .33LC versus .12LC on
Xeon at Xθ.

To effectively achieve lower latency, we require microarchi-
tectural enhancements to the Atom core. Overprovisioning,
as suggested for robustness of quality-of-service, cannot ad-
dress latency pitfalls. In Section 3, we find the Atom experi-
ences particular stress on the divider, branch predictor, and
cache hierarchy. Enhancing the Atom core based on those
findings implies designing small cores using unconventional
strategies, in which, for example, a light-weight design datap-
ath is paired with a disproportionately large cache hierarchy,
at least for applications like search. However, these subtle
modifications are likely to be more power efficient, as com-
pared to transitioning to an out-of-order datapath.

Relevance. QoS and latency shortcomings have a direct
impact on search query relevance, which refers to a user’s

2We study Xeon and Atom beyond sustainable throughput
to characterize robustness. We do not assume sustainable
operation under such loads.

100

99

98

97

96

95

%
 o

f
P

a
g
e
s
 M

a
tc

h
in

g
 X

θ

2.01.51.00.5
QPS (Normalized to Aθ)

 0
 δ

1

 δ
2

 δ
3

 δ
4

 N

Figure 10: Bottlenecks on the Atom impact the quality
of search results, which is quantified by the relevance of
pages generated in response to query requests.

utility from a set of search results. Search algorithms often
have multiple strategies for refining their results. However,
load and cutoff latency LC determine room for refinement.
In a tiered index, pages indexed in the first tier are always
ranked but indices in subsequent tiers may only be ranked if
LC has not been exceeded. In such scenarios, lower per query
latencies allow for multiple iterative refinements of search re-
sults to improve page relevance. Moreover, lower latencies
provide opportunities to search algorithm designers for ex-
ploring latency-relevance trade-offs.

Since the average latency on Atom at Aθ is higher than
on the Xeon at Xθ (see Figure 9), search on the Atom is
unable to refine pages in a manner equivalent to the Xeon.
Figure 4.1 shows how page relevance on the Atom compares
to the Xeon at Xθ as load increases. The vertical axis com-
pares matching pages returned by search on Xeon and Atom,
defining baseline relevance with Xeon search results. For ex-
ample, 100 percent means 100 percent of Atom queries return
search results that perfectly match those from Xeon search.
At 98 percent, the vertical axis indicates 2 percent of Atom
queries produce different results relative to Xeon.

A query’s results match perfectly across architectures if
the top N results match. The magnitude of the difference
is quantified by δ1 < δ2 < δ3 < δ4 < N where a subset
of δi results match. In the worst case, none of the results
match. This measure of relevance is highly conservative since
it assumes Xeon defines the best relevance and any result
mismatch degrades user perceived relevance. However, this
metric facilitates the relevance analysis by quantifying search
result differences.

Even considering the case when the load is at an absolute
minimum on the Atom, approximately 1 percent of queries
produce different results on Atom. Query latency on Atom at
minimum load (e.g., 10 queries per second) is still higher than
the latency on Xeon at Xθ (see Figure 9). Consequently, page
refining algorithms have a third of the time to complete their
work, leading to different search results from those on the
Xeon. At Aθ about 1.5 percent of queries produce different

100

80

60

40

20

0

%
 C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

2.01.51.00.5
Latency (Normalized to L

c
)

 Xθ

 X
θ
 + λ

 X
θ
 + 2λ

 X
θ
 + 3λ

(a) Xeon

100

80

60

40

20

0

%
 C

u
m

u
la

ti
v
e

 D
is

tr
ib

u
ti
o

n

2.01.51.00.5
Latency (Normalized to L

c
)

 Aθ

 A
θ
 + λ

 A
θ
 + 2λ

 A
θ
 + 3λ

(b) Atom

Figure 11: Query latency distribution. The experiment
allows queries to exceed LC and tracks the frequency in
order to understand how the two processors handle sud-
den bursts in activity spikes.

results and the number of differing queries increases to 3
percent as load approaches 2Aθ.

Atom’s inability to match Xeon even at minimum load in-
dicates that the computational bottlenecks we identified in
Section 3.2 limit search quality. Search algorithm design be-
comes more challenging. Consequently, enterprise workload
architects must take into account the inherent latency bar-
rier in order to make a smooth transition to smaller cores.
Distributed and hierarchal algorithmic improvement might
be necessary at the aggregator-level (see Figure 2) to com-
pensate for this loss in quality at the leaf nodes.

4.2 Flexibility
A search engine frequently experiences user-generated ac-

tivity spikes measured in absolute terms. Therefore, the un-
derlying microarchitecture must be capable of adapting to
rapid and significant shifts in search activity. Nodes sensitive
to activity spikes must be overprovisioned by operating below
sustainable throughput, thereby providing a safety margin.
To understand this sensitivity, we evaluate how query latency
distribution changes as load increases. We explain the behav-
ior through microarchitectural effects that we observe within
the processor.

Figure 11 illustrates the latency distribution with latencies
normalized to the cutoff latency LC . Processing queries at
Xθ, 89.4 percent of queries are satisfied in less than 0.2LC
on the Xeon. 98.2 percent of queries are satisfied before the
cutoff latency LC . Less than 1.0 percent of queries require
more than 2LC . Moreover, on the Xeon, these trends are
modestly sensitive to activity spikes, which we quantify using
λ. At 3λ QPS beyond Xθ, 82.7 and 96.4 percent of queries
are still satisfied in less than 0.2LC and LC .

In contrast, Atom per query latency exhibits much greater
variation and sensitivity to activity spikes (Figure 11(b)).
Processing queries arriving at Aθ, only 68.2 percent of queries
are satisfied in less than 0.2LC . At 93.4 percent, the number
of queries completing before LC on the Atom is comparable
to that on the Xeon. However, nearly 3.0 percent of queries
require more than 2LC . Thus, compared to Xeon latency
distributions, we observe a much larger spread in Atom’s
minimum and maximum per query latencies. Furthermore,
Atom latency distributions are highly sensitive to activity
spikes. At 3λ QPS beyond Aθ, only 33.0 and 77.6 percent of
queries are satisfied in less than 0.2Lc and LC .

Figure 12 examines microarchitectural activity to provide
deeper insight into the flexibility of the Xeon processor and
the inflexibility of the Atom processor under load. Data is
normalized with respect to activity on each processor at its
sustainable throughput. Increases in query load minimally
impacts the Xeon because next to added bus activity we see
no other noticeable changes in Figure 12(a). However, query

1.6

1.4

1.2

1.0

0.8

0.6

R
e

la
ti
v
e

 t
o

 X
e

o
n

 a
t

X
θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 I
m

p
a
c
t

 B
ra

n
c
h

 M
is

p
re

d
ic

ti
o

n
 R

a
te

 B
u

s
 U

ti
liz

a
ti
o

n

 B
u
s
 B

u
rs

t
R

e
a
d
s

 D
a

ta
 B

u
s
 U

ti
liz

a
ti
o

n

 W
ri
te

b
a
c
k
 B

u
s
 U

ti
liz

a
ti
o
n

 T
L

B
 M

is
s
 I

m
p

a
c
t

 I
T

L
B

 M
is

s
 R

a
te

 D
T

L
B

 M
is

s
 R

a
te

 D
iv

id
e
r

 L
1

 D
C

a
c
h

e
 M

is
s
 I

m
p

a
c
t

 L
1
 D

C
a
c
h
e
 M

is
s
 R

a
te

 L
1
 I
C

a
c
h
e
 M

is
s
 R

a
te

 L
2

 C
a

c
h

e
 M

is
s
 R

a
te

 L
2

 E
v
ic

ti
o

n
 R

a
te

 C
P

I

 X
θ
 + λ X

θ
 + 2λ X

θ
 + 3λ

(a) Xeon

1.6

1.4

1.2

1.0

0.8

0.6

R
e
la

ti
v
e
 t
o
 A

to
m

 a
t
A

θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 I
m

p
a
c
t

 B
ra

n
c
h

 M
is

p
re

d
ic

ti
o

n
 R

a
te

 B
u

s
 U

ti
liz

a
ti
o

n

 B
u
s
 B

u
rs

t
R

e
a
d
s

 D
a

ta
 B

u
s
 U

ti
liz

a
ti
o

n

 W
ri
te

b
a
c
k
 B

u
s
 U

ti
liz

a
ti
o
n

 T
L

B
 M

is
s
 I

m
p

a
c
t

 I
T

L
B

 M
is

s
 R

a
te

 D
T

L
B

 M
is

s
 R

a
te

 D
iv

id
e
r

 L
1

 D
C

a
c
h

e
 M

is
s
 I

m
p

a
c
t

 L
1
 D

C
a
c
h
e
 M

is
s
 R

a
te

 L
1
 I
C

a
c
h
e
 M

is
s
 R

a
te

 L
2

 C
a

c
h

e
 M

is
s
 R

a
te

 L
2

 E
v
ic

ti
o

n
 R

a
te

 C
P

I

 A
θ
 + λ A

θ
 + 2λ A

θ
 + 3λ 2x

(b) Atom

Figure 12: Microarchitectural activity during search
query activity spikes.

load increases by λ, 2λ and 3λ QPS beyond Aθ on the Atom
cause microarchitectural performance (CPI) degradation by
7.5, 13.2, and 16.5 percent, respectively. These performance
degradations arise primarily from increasing contention in
the cache hierarchy. The small 1 MB, 8-way L2 cache be-
comes a constraint with L2 miss rate increasing by up to 22.2
percent and L2 eviction rate increasing by up to 200 percent.
The increased eviction rate results in much higher bus utiliza-
tion; writebacks increase linearly with the additional query
load. As the memory subsystem becomes a bottleneck, the
pipeline is more often stalled waiting for data. The divider
utilization falls by 8 percent with an extra load of 3λQPS.

Atom processor’s susceptibility to absolute load spikes is
a function of query complexity. Query latency on the Atom
takes a significant hit at throughput rates higher than Aθ
because certain types of queries require more computation
than others. Search criteria (e.g., language specification, con-
ditional statements like ANDs, ORs etc.) determine query
complexity, and how long it takes to process a query. Com-
plex queries are broken down into simpler multiple individual
queries, so the “effective” query load increases when complex
queries enter the system.

To demonstrate how query complexity affects processor be-
havior and consequently sustainable throughput, we isolate
queries with different search criteria from the pool of mixed
queries we use for all other evaluation and label them as
query types A, B and C in Figure 13. Query type A has
no complex search criteria, and is therefore fast to process.
Query types B and C impose search criteria. Query type C

100

98

96

94

92

90

%
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

Xθ
 X

θ
 + λ X

θ
 + 2λ X

θ
 + 3λ

QPS

 Query type A
 Query type B
 Query type C

(a) Xeon

100

98

96

94

92

90

%
 o

f
S

u
c
c
e

s
s
fu

l
Q

u
e

ri
e

s

Aθ
 A

θ
 + λ A

θ
 + 2λ A

θ
 + 3λ

QPS

 Query type A
 Query type B
 Query type C

(b) Atom

Figure 13: QoS degradation by query complexity. Query
type A has no search constraints, whereas query types B
and C have increasing amounts of complexity. The latter
require increasingly more efficient processing.

contains many more constraints than B, and thus requires
even more processing than type B.

The Atom is able to sustain QoS equivalent to that of
the Xeon for query type A even under high activity spikes
(Aθ+3λ QPS) because of query simplicity. But the proces-
sor is unable to stay competitive for query types B and C
as QPS increases beyond Aθ. At Aθ+3λ QPS the percent-
age of successful queries is only 90 percent when a stream
of type C queries arrive back to back. These queries take
longer to process, and consequently search queues begin to
fill up and new incoming queries are dropped until the search
engine completes at least some existing queries. In contrast,
Figure 13(a) shows that the Xeon does not suffer from this
problem. Regardless of query complexity, the Xeon is able
to absorb activity spikes smoothly.

4.3 Reliability
Hardware or software-based failures are often threats in a

data center. Therefore, we must understand how a homoge-
neous deployment of servers comprising of only Atom pro-
cessors performs when load is re-balanced to accommodate
failures. Load redistribution due to node failures leads to
fractional or relative increases of sustainable throughput for
a given processor. For instance, a processor will experience
a relative load of 1.2θ when a hypothetical rack consisting of
five systems experiences one system failure. Since the same
absolute load is more evenly distributed across many more
Atom ISNs, as compared to a data center full of Xeons, we
find that on a per-node basis Atom achieves higher sustain-
able fail-over throughput compared to a Xeon.

Atom is more reliable for deploying search. To demon-
strate how QoS degrades due to fractional load increases, we
normalize QoS data presented in Figure 8 for Atom to Aθ
and present this data in Figure 14. At loads beyond θ, the
Xeon trend line in Figure 8 falters more notably than the
Atom trend line in Figure 14. At 2Aθ, QoS degrades to 95
percent on Atom. By comparison, search degrades by 64.5
percent at 2Xθ on Xeon. QoS degrades more gradually be-
cause the same fractional increase in load (e.g., 1.2θ) on Atom
corresponds to a smaller increase in the absolute number of
queries on Xeon. Xθ is a larger multiple of Aθ.

The Xeon is unable to handle load increases robustly be-
cause of latency violations. Compare the latency on the Xeon
at loads beyond Xθ in Figure 8 to the re-normalized Atom
latencies in Figure 15. Latency increases more gradually on
the Atom than on the Xeon. Query latencies exceed LC on
the Xeon beyond 1.5Xθ. This means that even though the
processor eventually locates pages corresponding to a query,
the results are invalid because the aggregator terminates after
LC , assuming the ISN cannot produce the required pages. By
comparison, latency on the Atom is still tolerable at 0.5LC ,

100

80

60

40

20

0

%
 o

f
S

u
c
c
e
s
s
fu

l
Q

u
e
ri
e
s

2.01.51.00.5
QPS (Normalized to Aθ)

 Aθ
 2Aθ

Figure 14: QoS on Atom
normalized to Aθ.

0.01

0.1

1

10

100

L
a

te
n

c
y
 (

 N
o

rm
a

liz
e

d
 t

o
 L

c
)

2.01.51.00.5
QPS (Normalized to Aθ)

 Aθ

 2Aθ

Figure 15: Latency on Atom
normalized to Aθ.

1.6

1.4

1.2

1.0

0.8

0.6

R
e

la
ti
v
e

 t
o

 X
e

o
n

 a
t

X
θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 I
m

p
a
c
t

 B
ra

n
c
h

 M
is

p
re

d
ic

ti
o

n
 R

a
te

 B
u

s
 U

ti
liz

a
ti
o

n

 B
u
s
 B

u
rs

t
R

e
a
d
s

 D
a

ta
 B

u
s
 U

ti
liz

a
ti
o

n

 W
ri
te

b
a
c
k
 B

u
s
 U

ti
liz

a
ti
o
n

 T
L

B
 M

is
s
 I

m
p

a
c
t

 I
T

L
B

 M
is

s
 R

a
te

 D
T

L
B

 M
is

s
 R

a
te

 D
iv

id
e
r

 L
1

 D
C

a
c
h

e
 M

is
s
 I

m
p

a
c
t

 L
1
 D

C
a
c
h
e
 M

is
s
 R

a
te

 L
1
 I
C

a
c
h
e
 M

is
s
 R

a
te

 L
2

 C
a

c
h

e
 M

is
s
 R

a
te

 L
2

 E
v
ic

ti
o

n
 R

a
te

 C
P

I

 1.2X
θ
 1.4X

θ
 1.6X

θ
 1.8X

θ
 2.0X

θ
2x

(a) Xeon

1.6

1.4

1.2

1.0

0.8

0.6

R
e
la

ti
v
e
 t
o
 A

to
m

 a
t
A

θ

 I
F

e
tc

h
 S

ta
ll

Im
p

a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 I
m

p
a
c
t

 B
ra

n
c
h

 M
is

p
re

d
ic

ti
o

n
 R

a
te

 B
u

s
 U

ti
liz

a
ti
o

n

 B
u
s
 B

u
rs

t
R

e
a
d
s

 D
a

ta
 B

u
s
 U

ti
liz

a
ti
o

n

 W
ri
te

b
a
c
k
 B

u
s
 U

ti
liz

a
ti
o
n

 T
L

B
 M

is
s
 I

m
p

a
c
t

 I
T

L
B

 M
is

s
 R

a
te

 D
T

L
B

 M
is

s
 R

a
te

 D
iv

id
e
r

 L
1

 D
C

a
c
h

e
 M

is
s
 I

m
p

a
c
t

 L
1
 D

C
a
c
h
e
 M

is
s
 R

a
te

 L
1
 I
C

a
c
h
e
 M

is
s
 R

a
te

 L
2

 C
a

c
h

e
 M

is
s
 R

a
te

 L
2

 E
v
ic

ti
o

n
 R

a
te

 C
P

I

 1.2A
θ
 1.4A

θ
 1.6A

θ
 1.8A

θ
 2.0A

θ 2x

(b) Atom

Figure 16: Microarchitectural activity during load redis-
tribution because of fail-overs.

and thus its results are still valid.
The Xeon is unable to scale to higher loads because the mi-

croarchitecture is saturated beyond 1.5Xθ. Figure 16 shows
microarchitectural effects across the Xeon and Atom proces-
sors for relative load increases of 1.2×, 1.4×, 1.6×, 1.8×, and
2× beyond sustainable throughput. On Xeon, the proces-
sor’s microarchitectural event activity plateaus from 1.6Xθ
onwards. Branch misprediction rates, bus utilization, TLB
activity, cache activity all reach maximum levels. Therefore,
the CPI increase is stable at ∼1.11x. By comparison, Atom
continues to experience increasing microarchitectural activ-
ity for the same relative increases, which implies that the
processor has more room for additional fail-over load.

Overall, these findings indicate that while Xeon is capa-
ble of sustaining higher throughput, it must be run signifi-
cantly under peak capacity to handle fail-overs, thus lower-

ing throughput-per-watt further on top of already high power
costs. As fail-over load per Atom server is smaller, and as its
load is more distributed than in a data center comprising of
fewer but higher capacity Xeons, Atom-based search is more
reliable and energy-efficient. However, there are additional
platform and system-level effects, in addition to flexibility
sensitivity that impact the transition to Atoms.

5. TOTAL COST OF OWNERSHIP
Over-provisioning the data center and under-utilizing the

cores is one strategy to mitigate the price of efficiency with
respect to robustness, flexibility, and reliability. However,
this strategy has implications for the total cost of ownership
(TCO). We break down the TCO into server costs, their av-
erage power consumption, and the associated infrastructure
for cooling and power distribution to provide insight into
the system-level costs of Xeons and Atoms. We also assess
the sensitivity of Atom’s efficiency advantages to system-level
costs when overprovisioning to address the limitations of Sec-
tion 4.

Platform Overheads. Although the Atom core itself
typically dissipates anywhere between 1.5 to 4.5W when run-
ning search, peripheral components on the motherboard con-
tribute another 20 to 30W to platform power. To be suc-
cessful, multiprocessor integration is necessary to help re-
duce these overheads. Through system engineering, Atom
processors can deliver better platform-level performance-per-
watt, since multiprocessor integration will amortize periph-
eral penalties over a larger number of processors. Based on
our peripheral component analysis in Table 3, at present,
a Xeon platform outperforms current Atom-Diamondvilles
with respect to platform-level cost and power efficiency by
2.4× and 2.4×, respectively. Although the Atom processor
is itself much more power-efficient, system engineering and
optimization is required to reduce the overheads of periph-
eral components, such as the motherboard, network interface
card, memory, and storage.

To reduce platform overheads, an amortization strategy
is needed to integrate more Atom cores into a single pro-
cessor die. We compute the cost of building a two socket
system consisting of Atom-Diamondville processors by eval-
uating the number of Atom cores that fit in the area budget
of a Xeon processor. Four dual-core Atom-Diamondville pro-
cessors fit into the area of a single socket Xeon-Harpertown
processor (50 sq-mm into 214 sq-mm). This hypothetical sce-
nario is based on industry trends towards multiple in-order
x86 CPU cores [21]. We assume processor and motherboard
costs for the multiprocessor-based Atom are equivalent to
the Xeon-Harpertown platform. As manufacturing costs are
driven by die area and not by the number of cores for a given
die size, we assume the same processor cost. Similarly, be-
cause of socket compatibility, we assume motherboard cost
is the same. System memory and storage costs are indepen-
dent of processor specifics, and therefore equivalent across all
three platforms.

To test the benefits of multiprocessor integration, we com-
pare the costs of a two-socket Xeon-Harpertown platform,
a single-socket Atom-Diamondville platform (representative
of current experimental systems), and a dual-socket Atom-
Hypothetical platform (representative of projected integra-
tion). By integrating up to eight Diamondville cores into a
single chip and building a system with two sockets, amor-
tization once again highlights Atom efficiency. As per our
computed cost in Table 3, an integrated low-power multi-
processors would be competitive with a cost and power effi-

8

6

4

2

0E
ff

ic
ie

n
c
y
 (

Q
P
S
/
$
)

100806040200

% of Overprovisioning

 Xeon (Harpertown)
 Atom (Diamondville)
 Atom (Hypothetical)

(a) QPS-per-Dollar

120

80

40

0E
ff

ic
ie

n
c
y
 (

Q
P
S
/
W

)

100806040200

% of Overprovisioning

 Xeon (Harpertown)
 Atom (Diamondville)
 Atom (Hypothetical)

(b) QPS-per-Watt

Figure 17: Sensitivity of efficiency to overprovisioning,
when processors are underutilized for robustness, flexi-
bility and reliability service requirements.

ciency advantage of 1.03× and 2.4× over the Xeon. In sum-
mary, our analysis prompts us towards better system inte-
gration to enable successful overprovisioning, while achiev-
ing much better performance-per-watt for approximately the
same performance-per-dollar.

Efficiency Sensitivity. Depending upon application ro-
bustness, flexibility and reliability characteristics on a plat-
form, a certain degree of overprovisioning is necessary. Over-
provisioning, however, degrades efficiency by reducing the
operational load on the processor. Therefore, while Table 3
reports efficiency differences at maximum sustainable load on
Xeon and Atoms, there are cost and power efficiency trade-
offs that require careful consideration while underutilizing
and overprovisioning processors.

We present overprovisioning analysis of search in Figure 17.
At peak throughput utilization, or 0 percent overprovision-
ing, the Harpertown is nearly 1.0× as cost efficient as the
integrated hypothetical Atom, but is only 0.43× as power
efficient (see Figure 17(a) and Figure 17(b), respectively).
However, when considering flexibility requirements, Harper-
town efficiency improves. For example, if search requires a
tolerance of λ QPS against activity spikes, the Harpertown
requires only 7.4 percent overprovisioning, whereas every core
within the hypothetical Atom requires a 28.6 percent mar-
gin. Consequently, cost and power efficiency of Harpertown
with respect to the hypothetical Atom improves by 25 per-
cent and 12 percent to 1.25× and 0.55×, respectively. Based
on the sensitivity analysis in Figure 17, we invite readers to
identify target utilization levels that best fit production-level
robustness, flexibility and reliability requirements.

Capital and Operational Costs. To study the costs of
managing Xeons versus Atoms at the scale of an entire data
center, we quantify TCO in terms of aggregate sustainable
throughput-per-TCO dollar. We assume search is running on
either the Xeon or Atom processors. We evaluate the Atom-
Diamondville and the multiprocessor-based Atom systems.

We use a publicly available cost model to estimate data
center capital and operational costs [11]. The model assumes
$200M facility costs based on 15MW of critical power with a
data center power usage efficiency (PUE) of 1.7. The model
amortizes power distribution and cooling infrastructure costs
over fifteen years and the purchase cost of servers over three
years. The total cost of operating and managing the data
center is presented on a monthly basis. The model cate-
gorizes the TCO into the following: power (electricity bill
for running all servers), servers (purchase cost), cooling and
power distribution (data center infrastructure power cost)
and others (miscellaneous costs). To maintain our focus on
platform overheads and power efficiency only, we constrain
our TCO analysis by omitting discussion about network, soft-
ware licensing, and personnel costs, assuming they are uni-

Xeon Atom
Harpertown Diamondville Hypothetical

4-core, 2-socket 2-core, 1-socket 8-core, 2-socket
Cost ($) Power (W) Cost ($) Power (W) Cost ($) Power (W)

Processor 760 125 45 3.2 760 25.6
Motherboard 200 30 80 30 200 30
Network Interface 0 5 0 5 0 5
Memory (4GB) 150 8 150 8 150 8
Storage (HDD) 100 10 100 10 100 10

Total Server Cost 1210 178 375 56.2 1210 78.6

Efficiency ×10−3 6.38 43.37 2.67 17.79 6.61 101.78
QPS/$ QPS/W QPS/$ QPS/W QPS/$ QPS/W

Table 3: Cost of peripheral components. Xeon motherboard cost and power is quoted for the Intel S5000PAL [12].
Atom motherboard cost and power is quoted for the Intel D945GCLF2 [6]. Memory data is reported from Micron
power specifications [16]. Storage data is reported from Seagate data sheets [20]. Processor and motherboard cost of
the hypothetical Atom is based on the Xeon-Harpertown, and its power is stated with respect to the Atom-Diamondville.

form across all deployments.
Figure 18 proportionally illustrates TCO costs associated

with using Atom processors instead of Xeon-Harpertowns.
In going from the Xeon-Harpertowns (Figure 18(a)) to the
Atom-Diamondvilles (Figure 18(b)), we suffer a 56 percent
loss in performance-per-dollar spent managing the data cen-
ter. Despite spending the same amount of money purchasing
servers (51.4 percent on the Xeons versus 51.1 percent on
the Atom-Diamondvilles), we get lower aggregate through-
put from the Atom-Diamondvilles.

The loss in efficiency is a predominantly because of power
inefficiencies at the system-level, which limit the number
of Atom systems we can put in the data center. For a
fixed critical power budget of 15MW, the data center houses
84,269 Xeons, which is far fewer than the 267,857 Atom-
Diamondvilles possible within that same power envelope. But
the Xeons generate 59 percent more throughput than the
Atom-Diamondvilles. To match that throughput, the data
center requires 650,000 Atom-Diamondvilles, far exceeding
the data center’s critical power budget by a factor of 3×.

With better system integration, however, an Atom-based
data center can achieve ∼1.5× the throughput-per-TCO dol-
lar of Xeons. Figure 18(c) illustrates better throughput-
per-dollar improvement through sheer increase in pie size
with respect to the Xeons. Notice that this is a signifi-
cant improvement at the data center-level as compared to
the system-level where QPS/$ improves only by 0.03× (see
Table 3). This is because of system-level implications on
data center-level issues like power and cooling distribution.
For instance, a multiprocessor-based Atom consumes ∼3×
less power than Xeons, and therefore its cooling requirements
are lesser. Thus, data center density benefits.

System integration achieves better value per dollar spent
managing the data center. Consider the distribution changes
between the slices corresponding to Figure 18(a) and Fig-
ure 18(c). In the hypothetical or multiprocessor-based Atom,
server purchase cost is a significant portion of the monthly
TCO, increasing from 51.4 percent for Xeons to 70.5 per-
cent for Atoms. Despite this increase, using Atoms is op-
portune for two reasons. First, aggregate throughput using
multiprocessor-based Atoms increases by over 2.4×, which
is equivalent to system-level improvements discussed previ-
ously. Second, considering the same critical power envelope
of the data center, we are able to accommodate many more
servers that are delivering higher aggregate throughput. By
better integration, we void the need to expand or build newer
data centers with higher power budgets, since we are capable
of exploiting existing infrastructure more effectively. More-
over, compared to the purchase cost of additional servers, the

overall operational and management costs of Atoms increase
by only 60 percent relative to the Xeons. These trends, com-
bined with relatively lesser expenditure for power and cool-
ing infrastructure, indicate investment value will improve by
transitioning to small cores.

6. RELATED WORK
The landscape of data center workloads is changing. Ran-

ganathan and Jouppi discuss the changing workload mix and
usage patterns, motivating the need for integrated analysis
of microarchitectural efficiency and application service-level
agreements in their survey of enterprise information tech-
nology trends [18]. We complement their prior work by ex-
amining the role of power efficiency from small cores with
in-depth microarchitectural analysis relating to application
robustness, flexibility, and reliability constraints.

Power efficient data center design is an active area of re-
search. Barroso et al. make the case for energy proportional
computing in which data center components utilize energy
proportional to the amount of computation [3]. Ranganathan
et al. propose power management schemes across an ensem-
ble of systems to mitigate costs associated with power and
heat [19]. Efficient microarchitectures is an integral com-
ponent of such efforts and we further our understanding of
microarchitectural effects in this work.

Piranha and Niagara make the case for small cores to im-
prove design efficiency and throughput for memory and I/O
bound workloads, such as transaction processing [1, 7, 9]. In
contrast, we quantify limitations of small cores for more com-
putationally intensive data center workloads, such as online
web search. Lim et al. take a system view of warehouse-
computing environments and propose unified systems, which
transition from high-end server-class processors to mobile
and embedded processors [15]. Similarly, Vasudevan et al.,
propose using fast arrays of wimpy nodes (FAWN) to achieve
energy efficiencies in data intensive computing [23]. Both
efforts emphasize low-power embedded processor for perfor-
mance (queries per second) and power efficiency, using sys-
tem power measured at the electrical socket. In contrast,
we take a microarchitectural view of the differences between
server- and mobile-class processors and measure, in addition
to system power, core power by tracking current activity at
the voltage regulator.

Making the case for chip multiprocessors, Barroso quan-
tifies the economic price of high-performance, high-power
platforms as compared to smaller cores [2]. While small
cores reduce the economic price, they increase the applica-
tion’s perceived price of efficiency as we quantify in terms of
quality-of-service robustness, flexibility, and reliability. As

 Servers
 51.4%

 Power Distribution &
 Cooling Infrastructure
 21.8%

 Power
 21.9%

 Others
 4.8%

(a) Xeon (Harpertown)

 Servers
 51.1%

 Power Distribution &
Cooling Infrastructure
 22%

 Power
 22.1%

 Others
 4.8%

(b) Atom (Diamondville)

 Servers
 70.5%

 Power Distribution &
Cooling Infrastructure
 13.3%

 Power
13.3%

 Others
 2.9%

(c) Atom (Hypothetical)

Figure 18: Performance per Total Cost of Operation (TCO) dollar. Each chart illustrates the breakdown of capital and
operational expenses associated with sustainable throughput per monthly TCO dollar. With Xeon-based systems as the
baseline (a), pie charts (b) and (c) are proportionally scaled to illustrate the return value per dollar spent managing
the data center using either Atom-Diamondvilles, or our proposed integrated Atoms.

emerging data center workloads exercise the data path more
extensively, the application perceived price of efficiency raises
qualifications and caveats in the case for small cores in data
centers. Once these limitations are understood, microproces-
sor and system architects can navigate the inherent trade-offs
between these price trends.

7. CONCLUSION
Emerging data center applications exercise the processor

more significantly than traditional enterprise and online trans-
action processing (OLTP) applications. Thus, we re-examine
the role of small cores for an Internet-scale workload: web
search. In particular, we study the small core challenges with
respect to robustness and flexibility, quantifying the price of
small core power efficiency. The price of efficiency has impli-
cations for system design strategies. For example, in future,
we must reduce platform power overheads associated with
peripheral components. In the longer term, microarchitec-
tural enhancements, heterogeneous multiprocessors, or ac-
celerators customized to mitigate bottlenecks may be instru-
mental in reducing the price of small core power efficiency.

8. ACKNOWLEDGMENTS
We are extremely grateful to several people for helping us

with this research undertaking. Specifically, we would like to
thank Preet Bawa, William Casperson, Utkarsh Jain, Paul
England, Mark Shaw, CJ Williams, Tanj Bennett, David
Brooks, Dan Connors and Michael D. Smith.

9. REFERENCES
[1] Barroso, L., Gharachorloo, K., McNamara, R.,

Nowatzyk, A., Qadeer, S., Sano, B., Smith, S.,
Stets, R., and Verghese, B. Piranha: A scalable
architecture based on single-chip multiprocessing. In
ISCA’00 (2000).

[2] Barroso, L. A. The price of performance: An
economic case for chip multiprocessing. Queue, ACM
(2005).

[3] Barroso, L. A., Dean, J., and Holzle, U. Web
search for a planet: The Google cluster architecture.
Micro, IEEE (2003).

[4] Barroso, L. A., and Holzle, U. The case for
energy-proportional computing. Computer, IEEE
(2007).

[5] Brin, S., and Page, L. The anatomy of a large-scale
hypertextual web search engine. In WWW7 (1998).

[6] Corporation, I. Technical product specification. Intel
Desktop Board D945GCLF2 (2008).

[7] Davis, J., Laudon, J., and Olukotun, K.
Maximizing CMP throughput with mediocre cores. In
PACT’05 (2005).

[8] George, V., Jahagirdar, S., Tong, C., Smits, K.,
Damaraju, S., Siers, S., Naydenov, V.,
Khondker, T., Sarkar, S., and Singh, P. Penryn:
45-nm next generation intel core 2 processor. In
ASSCC’07 (2007).

[9] Geppert, L. Sun’s big splash: Niagara multiprocessor
chip. IEEE Spectrum (2005).

[10] Gerosa, G., Curtis, S., D’Addeo, M., Jiang, B.,
Kuttanna, B., Merchant, F., Patel, B.,
Taufique, M., and Samarchi, H. A sub-1W to 2W
low-power IA processor for mobile internet devices and
ultra-mobile pcs in 45nm hi-K metal gate CMOS. In
ISSCC’08 (2008).

[11] Hamilton, J. Cost of power in large-scale data
centers. In http://perspectives.mvdirona.com.

[12] Intel Corporation. Thermal/mechanical design
guide. Intel 5000 Series Chipset Memory Controller
Hub (MCH) (2006).

[13] Intel Corporation. 45nm Intel Core 2 Duo
Processor: BAClears. Intel VTune Performance
Analyzer 9.1 Help (2008).

[14] Intel Corporation. Volume 1 basic architecture.
Intel 64 and IA-32 Architectures: Software Developers
Manual (2009).

[15] Lim, K., Ranganathan, P., Chang, J., Patel, C.,
Mudge, T., and Reinhardt, S. Understanding and
designing new server architectures for emerging
warehouse-computing environments. In ISCA-35
(2008).

[16] Micron. Technical note TN-47-04: Calculating
memory system power for DDR2. In www.micron.com
(2006).

[17] Mienik, M. Cpu burn-in homepage. In
http://users.bigpond.net.au/CPUburn.

[18] Ranganathan, P., and Jouppi, N. Enterprise IT
trends and implications for architecture research. In
HPCA-11 (2005).

[19] Ranganathan, P., Leech, P., Irwin, D., and
Chase, J. Ensemble-level power management for dense
blade servers. In ISCA-33 (2006).

[20] Seagate. Barracuda 7200.12 data sheet. In
www.seagate.com (2009).

[21] Seiler, L., Carmean, D., Sprangle, E., Forsyth,
T., Abrash, M., Dubey, P., Junkins, S., Lake, A.,
Sugerman, J., Cavin, R., Espasa, R., Grochowski,
E., Juan, T., and Hanrahan, P. Larrabee: a
many-core x86 architecture for visual computing. ACM
Trans. Graph. (2008).

[22] Swinburne, R. Intel Core i7 - Nehalem architecture
dive. In www.bit-tech.net (2008).

[23] Vasudevan, V., Franklin, J., Anderson, D.,
Phanishayee, A., Tan, L., Kaminsky, M., and
Morau, I. FAWNdamentally power-efficient clusters.
In HotOS-XII (2009).

[24] VMware. Vmmark benchmark. In
www.vmware.com/products/vmmark (2009).

