
Seaweed: Distributed Scalable Ad Hoc Querying

Richard Mortier, Dushyanth Narayanan, Austin Donnelly and Antony Rowstron
Microsoft Research, Cambridge, UK

{mort,dnarayan,austind,antr}@microsoft.com

Abstract

Many emerging applications such as wide-area network
management need to query large, structured, highly dis-
tributed datasets. Seaweed is a distributed scalable in-
frastructure for querying such datasets. In this paper we
describe its architecture and design features, using the
Anemone network management system as a motivating ex-
ample. The main contribution is a design supporting accu-
rate query planning and efficient execution across a large
number of unreliable endsystems. In contrast to prior work,
Seaweed supports ad hoc querying in addition to continu-
ous querying. The paper describes the solutions adopted by
Seaweed: latency-based cost estimation, availability-based
scheduling, and meta-data aggregation.

1 Introduction

Seaweed aims to give users the abstraction of a single
centralized database across a large, structured, highly dis-
tributed dataset. It provides a generic query infrastructure
that can select between multiple alternate query plans, effi-
ciently distribute the selected query to the endsystems own-
ing relevant subsets of the dataset, and aggregate the results.
Seaweed is intended to support many different applications,
ranging from large data center management, to enterprise-
scale endsystem and network management, up to Internet-
scale distributed diagnostics. Such applications are charac-
terized by:

• Large, highly distributed datasets. Data is spread over
100,000+ geographically distributed endsystems.

• Well-provisioned but non-dedicated endsystems.
Endsystems supporting Seaweed are machines such
as desktop PCs or servers, having plentiful resources
which must however be shared with many foreground
applications.

• Ad hoc queries. In addition to continuous queries on
live streaming data, users often need to perform ad hoc
queries on stored data, e.g. for diagnostic purposes.

• Small query results. Responses to ad hoc queries are
typically small subsets of the data or compact aggre-
gates such as averages.

• Update locality. Endsystems “own” the data they
write, with very little write contention between endsys-
tems. User queries might refer to data distributed over
many endsystems, but these are typically read-only.

• Relaxed consistency requirements. Unlike ACID
transactions, distributed queries can and must tolerate
time skew and endsystem unavailability.

For example, when managing large data centers, oper-
ators may wish to query the load, the set of running ser-
vices, the free disk space and so on across a large number of
machines for diagnostic purposes. Enterprise-scale endsys-
tem management requires the ability to retrieve similar data
from even larger sets of machines [16]. An Internet-scale
diagnostic tool such as Dr. Watson for Windows [10] col-
lects program crash information of which only a small sub-
set is uploaded to a centralized server for statistical anal-
ysis. A distributed endsystem-based querying approach
could support much richer analysis on a wider range of data
while avoiding the server-side bottlenecks involved in up-
loading crash dumps from millions of machines worldwide
to a single server cluster.

Throughout this paper we use Anemone [12], an
enterprise-scale network management system, as the prin-
cipal motivating example. Consider a large enterprise net-
work with 100,000+ endsystems distributed around the
world. Operators would like to issue network-wide queries
for tasks such as load monitoring (“show me the average
number of flows across all Exchange servers”) and fault di-
agnosis (“show me the applications running on all machines
with more than 500 active flows”). Each endsystem can
only record information about its own network usage. A
distributed query infrastructure supporting queries against
all endsystem data would be invaluable.

To provide the abstraction of a single, centralized
database, Seaweed must efficiently distribute user queries to
endsystems with relevant data and aggregate the results. It
must schedule query execution taking into account the fluc-
tuating availability of endsystems. Furthermore, when data



src dst portsrc portdst proto app PID bytes packets timestamp
client 160.128.6.59 160.120.7.201 2323 1005 TCP outlook.exe 1374 1923 603 1132329858

(160.128.6.59) 160.120.7.201 160.128.6.59 1005 2323 TCP outlook.exe 1374 1372294 1000 1132332150

server 160.128.6.59 160.120.7.201 2323 1005 TCP exchange.exe 856 1923 603 1132331010
(160.120.7.201) 160.120.7.201 160.128.6.59 1005 2323 TCP exchange.exe 856 1372294 1000 1132332000

Figure 1. Example flow tables demonstrating replication at both client and server.

is replicated — e.g. Anemone network flow records are kept
at both ends of each flow — there may be multiple ways to
execute the same query with very different costs in terms of
network traffic and endsystem load. Thus, cheap but accu-
rate query cost estimation is key to effective query planning
and optimization.

The main contribution of this paper is a design support-
ing query planning and execution on a large distributed
dataset. We describe in detail a latency-based cost estima-
tion scheme that allows the comparison of alternative dis-
tributed query plans; a space-time scheduling approach that
addresses the issue of endsystem unavailability; and a dis-
tributed index data structure that trades network bandwidth
for latency for by pro-actively aggregating meta-data.

The rest of the paper is organized as follows. Section 2
motivates and describes Anemone. Section 3 describes the
overall architecture and specific design features of Seaweed.
Section 4 describes related work, and Section 5 concludes
with a discussion of open research issues.

2 Anemone

Running a large-scale enterprise network requires exten-
sive real-time monitoring. Modern routers provide features
such as SNMP [2] and NetFlow [3], which enable network
operators to gather simple statistics about interface byte
counts, heavy-hitter flows, dominant protocols, etc. Such
router based monitoring is becoming increasingly less use-
ful. Widespread use of IPSec and of tunneling techniques
such as Virtual Private Networks and protocol stacking (e.g.
e-mail over HTTP) significantly reduces the information
available to in-network monitoring systems. Increasingly,
all a router can observe about the packets it routes is that
they are IP, that they are destined for a particular address,
and that they purport to originate from a particular address.
This information is insufficient to optimally manage a net-
work: to make provisioning decisions, to understand the
performance of the provisioned services, etc.

The Anemone approach is to monitor network traffic at
the endsystems. Each endsystem in an enterprise monitors
and records all inbound and outbound network flows, as
well as other information such as the application generating
the traffic and the current endsystem load. This produces
richer and more detailed flow information than in-network
monitoring. A large enterprise such as Microsoft has ap-

proximately 300,000 endsystems. If each endsystem main-
tains 1 GB of local monitoring information on average,
this creates a 300 TB distributed database covering about
1 month of continuous 24x7 network monitoring. Thus, the
only way to avoid both excessive down-sampling and ex-
cessive network overhead is to avoid centralized collection
and perform query processing at the endsystems.

In Anemone each endsystem maintains a single database
table, flow, containing records representing the activity of
flows on that endsystem. For each measurement interval
(a configuration parameter currently defaulting to 5 min-
utes) one record is appended per active flow in that inter-
val. Each record contains a timestamp, the flow’s IP 5-tuple
(source and destination IP addresses, the IP protocol, and
any UDP/TCP port numbers), the number of packets and
bytes, and the application name and PID of the user-level
process. Figure 1 shows some example records for a flow
between an email client (Outlook) and an email server (Ex-
change). Note that each successfully created flow will be
represented by records at both the source and the destina-
tion. The IP 5-tuple identifying the flow will be the same
on either side; in the absence of packet loss the byte and
packet counts will also be the same.

Some examples of queries on this flow table are:
• SELECT app FROM flow WHERE bytes>20e20 AND

src=LOCAL IP()

Return all applications that have transmitted more
than 20 MB in a single interval on a single endsystem.

• SELECT SUM(bytes) FROM flow WHERE portsrc=80

AND dst=LOCAL IP() AND timestamp>’2005-12-25

00:00:00’ AND timestamp<=’2005-12-25

23:59:59’

Count the total bytes downloaded from web servers on
a particular day in the past.

• SELECT COUNT(*) FROM flow GROUP BY dst HAVING

SUM(bytes)>4e20 WHERE app LIKE "outlook%" AND

src=LOCAL IP()

Count the servers to which Outlook clients sent more
than 4MB.

The second query could be rewritten as
SELECT SUM(bytes) FROM flow WHERE portsrc=80

AND src=LOCAL IP() AND timestamp>’2005-12-25

00:00:00’ AND timestamp<=’2005-12-25 23:59:59’

which queries the web server end of each flow. Since
flow records are replicated at both endpoints, this will give



approximately the same result, with small differences due
to packet loss and clock skew. However the performance
impact could be substantially different: querying a large
number of lightly loaded web clients versus a small number
of busy web servers. Similarly, the third example could
query Exchange servers rather than Outlook clients:
SELECT ... WHERE app LIKE "exchange%" AND

dst=LOCAL IP()

An accurate estimate of the cost of such alternative
“query plans” would allow us to pick the one that minimized
some cost metric such as endsystem load or network band-
width. To this end Seaweed provides a generic mechanism
for plan cost estimation, where plans might be generated by
the system, by the application, or even provided by the user.

3 Seaweed architecture

The Seaweed architecture is based on the following de-
sign principles, which follow from the application proper-
ties mentioned in Section 1.
• Don’t push data. Given large datasets but typically

small query results, aggressively pushing or replicat-
ing data wastes network bandwidth.

• Focus on global optimization. We assume that
well-provisioned endsystems can efficiently optimize
queries on local data, perhaps using a relational
database engine.

• Best-effort consistency. We aim to provide the
“dilated-reachable snapshot” semantics defined by
Huebsch et al. [5].

• Delay-tolerant querying. Seaweed queries might ex-
ecute over minutes or even hours, due to the varying
load and availability patterns of endsystems in a large
network. Thus the system as well as the user must
be prepared to support long-lived, delay-tolerant query
executions, and to supply partial results during query
execution.

• Estimate and expose query costs. Users need to be
warned before executing queries that might impact the
performance of critical services or have unacceptably
high latencies.

Each endsystem runs a lightweight DBMS that man-
ages data in one or more tables stored locally; these ta-
bles are modified only by the endsystem storing them. An
application-level multicast tree [4, 6, 17] is built and main-
tained with the endsystems storing the data as leaves of the
tree. Queries expressed in an SQL-like language are dis-
seminated from the root of the tree to the endsystems, and
results propagated back to the root with interior nodes ag-
gregating partial results where possible. Performing a query
in Seaweed involves three distinct phases: planning, execu-
tion and aggregation.

Planning. There are often many query plans, different
ways to execute the same query, producing the same re-
sult but having different execution costs. A query opti-
mizer [14] is traditionally used to pick the query plan that
minimizes disk accesses. In the distributed case, the choice
of query plan depends on several factors such as network
bandwidth, endsystem resource consumption, and endsys-
tem availability. In a large system the endsystems may be
distributed across multiple time zones, and will have differ-
ent duty cycles and downtimes. Thus query planning must
take into account the availability of the endsystems required
to participate in plan execution. Further, endsystems are not
dedicated to processing queries, and so Seaweed runs as a
low-priority background service. Hence the impact on lo-
cal application performance must be factored into any mea-
sure of query plan cost. Additionally, different endsystems
might have different local criteria for estimating the cost
of the same query execution. For example, a heavily loaded
server might assign a higher cost to executing a query than a
lightly loaded desktop machine. These considerations make
distributed query planning very different from the single-
system case, requiring a new approach.
Execution. Once a plan is selected the query must be exe-
cuted. First, Seaweed must ensure that the query is dissem-
inated to all endsystems required to execute the query lo-
cally. This must take into account the different availability
profiles of endsystems, some of which may be offline when
dissemination begins. Once an endsystem receives a query
it must locally schedule its execution, taking into account
local criteria and the time when the response is expected.
Thus, in general, Seaweed must be able to schedule query
dissemination and execution over time scales of minutes or
even hours.
Aggregation. For queries that request an aggregate mea-
sure such as a sum or an average, partial results are aggre-
gated at interior nodes in the application-level multicast tree
for bandwidth savings. There are a number of established
techniques and proposals for such aggregation [9, 17]. For
long-running queries, partial results are periodically re-
turned to the user, allowing her to stop query execution after
it has covered, for example, 90% of the data.

The remainder of this section describes the key design
components in Seaweed that enable scalable, distributed,
delay-tolerant querying: latency-based cost estimation for
query planning, space-time scheduling based on availabil-
ity, and pro-active meta-data aggregation using a dis-
tributed index.

3.1 Latency-based cost estimation

Query planning requires generation of multiple alterna-
tive plans for the same query followed by cost estimation for
each of these plans. We currently assume plan generation



is performed by the application. For example, Anemone
could generate alternative plans using clients and servers
for a query (Section 2). We focus here on cost estimation:
given a set of plans, how do we assign a cost to each allow-
ing comparison? We assume that queries and query results
are usually small, and hence focus on the cost of query ex-
ecution in terms of the impact on endsystem resources and
local application performance.

A first approach to estimating the plan costs would be to
try to capture the impact of the query on each endsystem re-
source. However, this has two drawbacks. First, endsystems
vary in their hardware resources, and estimates of resource
usage are not directly comparable across endsystems. Sec-
ond, the cost perceived by each endsystem also depends on
the performance requirements of the local applications and
the local resource allocation policies.

In Seaweed, we avoid these difficulties by expressing
endsystem costs in terms of a single metric: latency. Each
endsystem independently estimates the time by which it
would be willing to complete the execution of each plan.
This estimate is based on the expected resource usage of
query execution (computed by the local DBMS’s cost esti-
mator), the observed load on those resources, the local pri-
ority or resource share assigned to Seaweed, and the ex-
pected availability of the endsystem. It thus takes into ac-
count not just the actual time it will take to execute the
query but also the impact of execution on foreground ap-
plication performance, and any delays due to the endsystem
being currently unavailable. In Section 3.2 we explore fur-
ther the issues involved in predicting endsystem availability
over timescales of several hours or more.

During the planning phase the plans are disseminated to
the endsystems, each of which returns a latency estimate
and also a row count estimate: this is the local DBMS’s es-
timate of the number of records in the local tables that will
be matched by the query. The latency and row count esti-
mates from the endsystems are aggregated up the tree as a
rowcount-weighted log-latency histogram. This histogram
captures the expected number of records that will be pro-
cessed after 1 seconds, 2 seconds, 4 seconds, etc. The log
scale allows the histogram to accommodate a wide range of
possible latencies from seconds to hours.

The histogram at the root is exposed to the user, allowing
her to trade latency for data coverage as measured by row
count. For example, a query might have two plans. The his-
togram for the first plan predicts that 90% of the records are
processed after 4 seconds, but the remaining 10% will re-
quire a further 2 hours. The second plan is expected to pro-
cess 90% of the records after 10 minutes and the remaining
10% after 1 hour. Based on this information, the user might
decide to execute the first plan, and then to terminate it with
partial results after 5 seconds (or alternatively after seeing
90% coverage of the data).

3.2 Space-time scheduling

When querying a large number of endsystems that span
several locations, time zones, or even continents, the query
planning and execution must be distributed both in time as
well as in space. For example, it might happen that the
endsystems required by a particular query have different
availability patterns, and that there is no single instant at
which all of them are available.

Thus a major challenge for Seaweed is coping with un-
available endsystems. Our approach is based on the idea of
space-time scheduling, which incorporates:

• Propagating queries, queuing them for execution, and
canceling them when endsystems are unavailable.

• Minimizing the impact of unavailability through judi-
cious replication.

• Tracking and predicting the availability patterns of
endsystems.

During query planning, endsystems locally generate cost
and row count estimates, so unavailable endsystems will
result in incomplete latency histograms. We address this
problem by replicating a small amount of endsystem meta-
data on other endsystems, allowing the generation of row
count and latency estimates even for currently unavailable
systems. In order to do this, the replicated meta-data must
include:

• The data distribution histograms used by the local
DBMS to estimate the row count and resource usage
of query execution.

• The load (duty cycle) profile, which allows estimation
of query execution latency.

• Local scheduling policy, which might delay execution
of the query even after the endsystem becomes avail-
able.

• The availability (downtime) profile, which allows esti-
mation of when the endsystem will next become avail-
able for query execution.

In addition to replicating this meta-data, Seaweed must be
able to accurately predict the time at which a currently un-
available endsystem will next become available. This is re-
quired both for accurate estimation of query latency, as well
as for scheduling the eventual execution of the query.

Previous studies on endsystem availability in large net-
works [1] have shown that endsystems have distinct pat-
terns of up- and down-times: for example, desktop ma-
chines might be turned off on evenings and weekends, while
server machines exhibit short and infrequent outages due to
failures. We are working on building predictive models of
endsystem availability to capture cyclic patterns in up- and
down-times.



3.3 Pro-active meta-data aggregation

Depending on the query workload, there could be situa-
tions where dynamically generating latency and row count
estimates is unacceptable. At high query rates the band-
width consumed by disseminating the plans and aggregat-
ing the cost estimates could be significant. If the majority
of queries require execution on only a small fraction of the
endsystems, then multicasting the query to all endsystems
can be expensive. Finally, multicasting the plans and ag-
gregating the cost estimates increases the latency of query
planning.

Thus under some workloads there is a need to pro-
actively propagate and aggregate information up the tree so
that plan cost estimation can be done locally at the root.
This requires that the replicated meta-data described in Sec-
tion 3.2 — data distribution histograms, load profiles, and
availability profiles — be periodically aggregated up the
tree to the root. There are many challenges in efficiently
propagating and merging these data structures: we present
a distributed index data structure that addresses the propaga-
tion of data distribution histograms, which allows row count
estimation and endsystem selection to be done efficiently.

Traditionally databases maintain an index, which is a hi-
erarchical data structure specifying which disk pages con-
tain records with a particular key value or range of key
values. Indexes are typically associated with histograms,
which describe the overall distribution of key values in
terms of row count. Our distributed index structure per-
forms analogous functions, specifying the endsystems with
records in some range of key values, and also the overall
distribution of values for that key. The first property allows
us to efficiently propagate queries (both for cost estimation
and for execution) by pruning out the portions of the tree
with no data of interest. The second property allows us to
generate the row count estimate for any query locally at the
root of the tree.

The distributed index is built by retrieving the data dis-
tribution histogram for each key of interest from the endsys-
tem DBMS at the leaf level, and propagating it up the tree.
Each interior node merges the index structures from the
child node, to bound the amount of propagated data, and
sends the merged histogram to its parent. The node also re-
members the histograms received from each child, and uses
them to route cost estimation requests as well as query exe-
cution requests. The latter are forwarded only to those chil-
dren that have a non-zero row count matching the WHERE
predicate of the query.

Thus, to ensure that we do not incorrectly prune out
endsystems with relevant data, merging of index informa-
tion at interior nodes must be conservative. At the same
time, merging should be efficient, to bound the index size
as it propagates up the tree. We have identified three types

of conservative yet efficient index data structures, each suit-
able for a particular kind of attribute (key):

1. Counting Bloom filters [11] for point queries on
discrete-valued attributes, such as
SELECT ... WHERE portdst=80 OR portdst=8000

A Bloom filter is a vector of cost values with each en-
try representing some set of key values. Filters are
merged by summing the corresponding vectors. The
vector length is a global tuning parameter.

2. Range-based histograms for range queries on
continuous-valued attributes, such as
SELECT ... WHERE bytes>20e20 AND bytes<40e20

These resemble traditional database histograms, with
slight modifications to allow conservative merging.
We are currently exploring various heuristics for
merging indexes with minimal information loss.

3. Tries (prefix trees) for string attributes and prefix
queries. After merging their children’s prefix trees,
nodes reduce the trie size by pruning at the leaves;
again, a variety of heuristics is available to choose the
leaves for pruning.

4 Related work

There has been much research on index data struc-
tures for distributed databases, such as dPi-trees [8] or dB-
trees [7], which attempt to provide similar transactional
consistency and recoverability to centralized databases. In
contrast Seaweed is explicitly designed to be simple and
scalable while providing weaker consistency and requiring
non-conflicting updates.

PIER [5] is a distributed SQL query engine with dilated-
snapshot consistency, built over a DHT structured overlay.
In PIER the tuples generated by endsystems are stored on
random nodes in the structured overlay. PIER then uses
the structured overlay to lookup the tuples. In Seaweed
the endsystems store the tuples locally, and queries are dis-
tributed to the endsystems. This is a better approach for the
case where query results are small compared to the dataset.

Many other systems designed to support distributed
information management, e.g. Astrolabe [16] and
SDIMS [17], focus on support for continuous queries and
user-defined aggregation functions, injected by users into
these systems and executed on streaming data. Hour-
glass [13, 15] optimizes queries on streaming data by care-
fully selecting the location of aggregation points. There is
also a large body of work in sensor networks which use con-
tinuous queries and aggregation, such as TAG [9]. Seaweed
is targeted at endsystems that store data locally for arbitrar-
ily long periods of time but may be unavailable from time-
to-time, and at providing the ability to run ad hoc queries
against this historical data.



5 Open issues

This paper described our initial approach to supporting
distributed scalable queries in Seaweed. There are several
research challenges yet to be resolved: here we briefly de-
scribe the most important ones.
Data replication and caching. Seaweed currently repli-
cates meta-data, but data can only be accessed on the
endsystems where they are generated. Pro-actively repli-
cating the data across multiple endsystems would increase
the probability of availability, thus improving the tradeoff
between data coverage and latency. This comes at the cost
of additional endsystem and network resources. Similarly,
caching of query results at endsystems and interior tree
nodes could improve performance, if the workload contains
several repeated or similar queries. We plan to investigate
the tradeoffs involved in data replication and caching after
gaining experience with application workloads on the cur-
rent Seaweed design.
Automating plan selection. The best-effort consistency
and availability of Seaweed, as well as the potential to
schedule queries across time and space, results in a multi-
dimensional tradeoff between consistency, availability, re-
source utilization, and response time. We expose these
tradeoffs to the operator so they can decide between, for
example, immediate but incomplete answers and slower but
more complete ones. An open issue is how to automate
these decisions.
Joins. For some applications, it might be valuable to
support a JOIN primitive, in addition to simple SELECT
queries. Distributed joins require more than filtering and
aggregation for efficient execution: the system must choose
good locations for intermediate processing and correctly es-
timate the costs of different join plans, both with respect to
the amount of data returned and the location of the data.
It might even be the case that efficient support for JOINs
requires that the results aggregation tree be constructed dif-
ferently from the query dissemination tree.

Acknowledgements

The authors would like to thank Paul Barham, Miguel
Castro, Evan Cooke and Rebecca Isaacs.

References

[1] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. Fea-
sibility of a serverless distributed file system deployed on an
existing set of desktop PCs. In Proc. ACM SIGMETRICS
International Conference on Measurement and Modeling of
Computer Systems, Santa Clara, CA, June 2000.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin. Simple
Network Management Protocol (SNMP). RFC 1157, IETF,
May 1990.

[3] B. Claise. Cisco Systems NetFlow Services Export Version
9. RFC 3954, IETF, Oct. 2004.

[4] Y. hua Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proc. ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Sys-
tems, Santa Clara, CA, June 2000.

[5] R. Huebsch, J. Hellerstein, N. Lanham, B. T. Loo,
S. Shenker, and I. Stoica. Querying the Internet with PIER.
In Proc. International Conference on Very Large Data Bases
(VLDB), Berlin, Germany, Sept. 2003.

[6] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. W. O’Toole. Overcast: Reliable multicasting with an
overlay network. In Proc. Symposium on Operating Systems
Designa and Implementation (OSDI), San Diego, CA, USA,
Oct. 2000.

[7] T. Johnson and P. Krishna. Lazy updates for distributed
search structure. In Proc. ACM SIGMOD International
Conference on Management of Data, New York, NY, USA,
1993. ACM Press.

[8] D. Lomet. Replicated indexes for distributed data. In Proc.
International Conference on Parallel and Distributed Infor-
mation Systems (PDIS), Miami Beach, FL, USA, 1996.

[9] S. Madden, M. Franklin, and J. Hellerstein. TAG: A Tiny
AGgregation service for ad-hoc sensor networks. In Proc.
Symposium on Operating Systems Design and Implementa-
tion (OSDI), Boston, MA, December 2002.

[10] Microsoft. Dr. Watson for Windows. http:
//www.microsoft.com/resources/
documentation/windows/xp/all/proddocs/
en-us/drwatson overview.mspx, Jan. 2006.

[11] M. Mitzenmacher. Compressed Bloom filters. In Proc.
ACM Symposium on Principles of Distributed Computing
(PODC), Newport, RI, USA, 2001. ACM Press.

[12] R. Mortier, R. Isaacs, and P. Barham. Anemone: using
end-systems as a rich network management platform. In
Proc. ACM SIGCOMM Workshop on Mining Network Data
(MineNet), New York, NY, USA, 2005. ACM Press.

[13] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos,
M. Welsh, and M. Seltzer. Network-aware operator place-
ment for stream-processing systems. In Proc. International
Conference on Data Engineering (ICDE) (to appear), At-
lanta, GA, USA, Apr. 2006.

[14] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In P. A. Bernstein, editor,
Proc. ACM SIGMOD International Conference on Manage-
ment of Data, Boston, MA, USA, May 1979.

[15] J. Shneidman, P. Pietzuch, M. Welsh, M. Seltzer, and
M. Roussopoulos. A cost-space approach to distributed
query optimization in stream based overlays. In Proc. IEEE
International Workshop on Networking Meets Databases
(NetDB ’05), Tokyo, Japan, Apr. 2005.

[16] R. Van Renesse, K. Birman, and W. Vogels. Astrolabe: A
robust and scalable technology for distributed system moni-
toring, management, and data mining. ACM Trans. Comput.
Syst., 21(2):164–206, 2003.

[17] P. Yalagandula and M. Dahlin. A scalable distributed in-
formation management system. In Proc. ACM SIGCOMM
Symposium on Communications Architectures and Proto-
cols, Portland, OR, USA, Sept. 2004.


