
Secretary Problems: Weights and Discounts

Moshe Babaioff∗ Michael Dinitz† Anupam Gupta† Nicole Immorlica‡ Kunal Talwar§

Abstract

The classical secretary problem studies the problem of selecting
online an element (a “secretary”) with maximum value in a ran-
domly ordered sequence. The difficulty lies in the fact that an
element must be either selected or discarded upon its arrival, and
this decision is irrevocable. Constant-competitive algorithms are
known for the classical secretary problems (see, e.g., the survey
of Freeman [7]) and several variants. We study the following two
extensions of the secretary problem:

• In the discounted secretary problem, there is a time-dependent
“discount” factor d(t), and the benefit derived from selecting
an element/secretary e at time t is d(t)·v(e). For this problem
with arbitrary (not necessarily decreasing) functions d(t), we
show a constant-competitive algorithm when the expected
optimum is known in advance. With no prior knowledge,
we exhibit a lower bound of Ω(log n

log log n
), and give a nearly-

matching O(log n)-competitive algorithm.

• In the weighted secretary problem, up to K secretaries can
be selected; when a secretary is selected (s)he must be irrevo-
cably assigned to one of K positions, with position k having
weight w(k), and assigning object/secretary e to position k
has benefit w(k) · v(e). The goal is to select secretaries and
assign them to positions to maximize

∑
e,k w(k) · v(e) · xek

where xek is an indicator variable that secretary e is assigned
position k. We give constant-competitive algorithms for this
problem.

Most of these results can also be extended to the matroid secretary
case (Babaioff et al. [2]) for a large family of matroids with a
constant-factor loss, and an O(log rank) loss for general matroids.
These results are based on a reduction from various matroids to
partition matroids which present a unified approach to many of the
upper bounds of Babaioff et al. These problems have connections to
online mechanism design (see, e.g., Hajiaghayi et al. [9]). All our
algorithms are monotone, and hence lead to truthful mechanisms
for the corresponding online auction problems.

1 Introduction

The classical secretary problem [5, 7] captures the question
of finding the element with the maximum value in an online
fashion, when the elements are presented in a random order.

∗moshe@microsoft.com. Microsoft Research, Silicon Valley
†Computer Science Department, Carnegie Mellon University, Pitts-

burgh, PA 15213. Research partly supported by NSF awards CCF-0448095
and CCF-0729022, and an Alfred P. Sloan Fellowship.

‡immorlic@cwi.nl. Centrum voor Wiskunde en Informatica (CWI),
Amsterdam.

§kunal@microsoft.com. Microsoft Research, Silicon Valley

It is well known that waiting until one sees 1/e fraction of
the elements, and picking the first element attaining a value
greater than the maximum value seen in the first 1/e fraction
of the elements gives an e-competitive algorithm, and this
is the best possible. The problem is of interest due to its
connections with online mechanism design: if we have a
single good to sell and agents with varying valuations for
that object arriving online (albeit in a random order1), then
the secretary problem captures the difficulty in picking the
person with the largest valuation for that good [9, 10]. In this
case, the elements of the secretary problem are agents and
the element value is the agent’s value for the good; the goal
of the mechanism designer is to maximize social welfare, or
sell the good to the agent with the highest valuation. Another
application is to modeling the economic decision facing an
agent who wishes to select one of an online sequence of
goods—e.g., an agent buying a house or a company hiring
an employee. In this case, the elements are the goods and
the element value is the value of the agent for the said good.

Given the above interpretations, there are certain natural
cases which the secretary problem does not address: e.g.,
it does not capture the opportunity cost incurred due to
delay in selecting an element. For example, when seeking
to purchase a house, we might think of choosing a slightly
suboptimal house at the beginning of the experiment (and
being able to occupy it for the entire period) as being
more desirable than a long wait to pick the most desirable
house. We model such a problem as the discounted secretary
problem, where we are given “discount” values d(t) for
every time step t: the benefit derived from choosing an
element with value v(e) at time t is the product d(t) · v(e).
In this example, the discount function d(t) is a monotone
decreasing function of t, but in general the discount function
may be more complicated due to other considerations. For
example, our financial situation may improve over time and
waiting longer may get us a better mortgage rate, so our
“discount” function d(t) may increase up to some point in
time, and then decrease.2

An orthogonal extension of the classical secretary prob-
lem is the weighted secretary problem. In this case, there
are K heterogeneous goods {1, 2, . . . , K}, with the kth

good having a publicly known “weight” w(k) (with higher

1The random order assumption allow us to overcome the impossibility
of achieving good competitive ratio in the case of adversarial input without
assuming that values come from some distribution.

2In this paper, we use the term “discount” though the function d(t) is
not necessarily monotone decreasing as a function of t.

1245 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

numbers indicating greater desirability), such that if agent
e has an “intrinsic value” v(e) for good k, then assigning
k to agent e accrues an actual value of v(e) · w(k). Such
“product valuations” are commonly assumed in industries
like online banner advertising, where goods are banner
advertising space, the weight of the good is its visibility or
the number of people that are likely to see it, and the intrinsic
value of the advertising company is the value it derives when
one person sees its ad. Similarly, product valuations might
be observed in hiring scenarios: e.g., a company may wish to
hire sales managers for several regional markets of varying
sizes. The weights of the goods (job positions, in this case)
are the market sizes, and the value of a manager is his or
her inherent ability to convert peoples’ interest into actual
sales. Again, if the elements arrive in a random order, and
assigning good k to agent e accrues a benefit of v(e) · w(k),
how should we choose K agents and assign goods to them
to maximize the total expected benefit?

1.1 Our Results

Surprisingly, the discounted secretary problem is interesting
even if we know the values of all the items in advance: given
discount function d(t), it is not a-priori obvious which item
the online algorithm should choose (we prove a constant
lower bound, see Theorem 4.4). Our first theorem is the
following.

THEOREM 1.1. (DISCOUNTED SEC’Y: KNOWN-OPT)
The discounted secretary problem has an O(1)-competitive
algorithm for the case when the values of all elements are
known in advance. In fact, the algorithm only needs to know
E [OPT].3

The assumption that the values of element are known holds,
say, when the value is a function of the ordinal preference
(e.g., the value of the top candidate among n candidates is
n, the second-best candidate has value of n − 1, and so on),
which has been used in [14]. Alternatively, E [OPT] may be
estimated by market research into prior experiments (which
is a more realistic assumption in the mechanism design
framework). Our next result shows that the knowledge
assumption is essential for constant-competitive algorithms:

THEOREM 1.2. (DISCOUNTED SEC’Y: UNKNOWN-OPT)
Any algorithm for discounted secretary has a (worst-case)
competitive ratio of Ω(log n

log log n). Moreover, there is a nearly
matching O(log n)-competitive algorithm.

For the weighted secretary problem, we show the fol-
lowing.

THEOREM 1.3. (WEIGHTED SEC’Y) There is a 4-
competitive algorithm for the weighted secretary problem.

3E [OPT] is the expected benefit the optimal algorithm gets.

As the classical secretary problem is a special case of the
weighted secretary problem when there is only one non-zero
weight, there is clearly a lower-bound of e for the weighted
secretary problem. In the setting with both discounts and
weights, we show that a combination of the above algorithms
yields a nearly-optimal result (since the Ω(log n

log log n) lower
bound still holds).

THEOREM 1.4. (DISCOUNTED WEIGHTED SEC’Y) There
is an O(log n)-competitive algorithm for the secretary
problem with both weights on goods and discounts on times.

Finally, we consider the discounted and weighted ver-
sions of the matroid secretary problem [2], where the goal
is to choose a set of items in order to maximize the total
expected value, subject to the constraint that the chosen set
is independent in a given matroid (see Section 5 for defini-
tions). We show that the algorithms of Theorems 1.1, 1.2
and 1.3 can be extended to a large family of matroids
(including uniform matroids, partition matroids, graphical
matroids) with only a constant loss in the competitive ratio,
and to all matroids with an O(log rank) loss in the competi-
tive ratio. These results are based on reductions from various
classes of matroids to partition matroids, which also give a
unified approach to many of the upper bounds of [2], whilst
improving some of them. For example, our techniques imply
the following:

THEOREM 1.5. There is a 3e ≈ 8.15-competitive algo-
rithm for the matroid secretary problem for graphical ma-
troids. (The previous best known was a 16-competitive algo-
rithm [2], and recently a 2e ≈ 5.44-competitive algorithm
has been developed [11])

While we state our results as algorithms, the setting
which motivates us is actually an economic one in which
the elements are strategic agents and their values are private
information. In this case, it is important to consider the in-
centives facing agents in our proposed algorithms. Assuming
single parameter agents (i.e., agent e has value v(e) if he is
picked by the algorithm, and 0 otherwise), it is well known
that a mechanism is truthful (in dominant strategies) if it is
bid monotonic (a winner would keep winning if she increases
her bid). An alternative interpretation is that the mechanism
presents the agent with a price that is independent of the
agent’s bid and the agent decides if she would like to win
given the price. This is indeed the case for all our algorithms,
thus one can interpret our algorithms as truthful mechanisms
in which winners pay the threshold value they needed to bid
in order to win. 4 The competitive ratio that an algorithm
achieves corresponds to the fraction of the social welfare that
the truthful mechanism guarantees.

Related Work. The study of truthful on-line mech-
anism design in the competitive analysis framework was

4Note that we do not allow agents to manipulate their arrival time - their
order is random and cannot be influenced by the agents. Moreover, each
agent is considered only once and cannot return later in time.

1246 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

initiate by Lavi and Nisan [12] and many other papers
followed this line of research, e.g. [13]. The classical
secretary problem was first studied by Lindley [14] and by
Dynkin in 1963 [5]. Since then, many variants have been
studied (see [6, 7] for a survey), including some in the
computer science literature highlighting the connections to
online mechanism design [9, 10] and combinatorial prefer-
ence structures [2, 1]. Recently, Dimitrov and Plaxton [4]
gave a 16-competitive algorithm for the secretary problem on
transversal matroids, improving on a result of [2], and then
Korula and Pál [11] improved the analysis to show that it was
in fact 8-competitive. The discounted problem was studied
previously in multiple contexts for specific “well-behaved”
functions like d(t) = βt [16] or d(t) =

∑n
i=t βt [15] for

some fixed β < 1, whereas here we study it for general
functions d(t). For the weighted case, Derman, Lieberman,
and Ross [3] studied a version where there are the same
number of goods as agents (so K = n) and the values
of the agents are independently and identically distributed,
as opposed to our setting where the values are arbitrary
but arrive in random order. Similarly, a recent paper by
Gershkov and Moldovanu [8] studied the variant where the
values of the elements are independently and identically
distributed and element arrivals are given by some renewal
stochastic process, instead of the classical secretary assump-
tion of discrete time with a uniformly random ordering. They
further incorporated the discounted model into the weighted
model (so the value of agent e for good k at time t is
v(e) · w(k) · d(t), and show how to maximize revenue as
well as welfare in their setting).

2 Model, Preliminaries, and Notation

In the classical secretary problem, there is a universe U of
secretaries/elements with |U | = n. Each secretary/element
e ∈ U has an intrinsic value v(e) ∈ R≥0. An algorithm
A for the secretary problem observes the elements of U in
a random order and chooses one element eA in an online
fashion. In other words, it must decide at the moment an
element arrives whether or not to select it, and all decisions
are irrevocable. The goal is to maximize the expected
value E [v(eA)], the expectation being taken over the random
order, as well as over the randomness in the algorithm, if any.
In this paper, we extend the classical setting as follows:

Weighted Secretary Problems. Here, we want to choose
K secretaries and match them to one of K positions. Each
position k has a non-negative weight w(k) with w(1) ≥
w(2) ≥ · · · ≥ w(K), each secretary e has an intrinsic value
v(e). Our algorithm A must build online the assignment
map sA : [K] → U ∪ {⊥}, where we interpret sA(k) =
e as meaning secretary e is assigned to position k, and
sA(k) =⊥ as meaning that no secretary has been assigned
to the kth position. (Initially s(k) =⊥ for all k ∈ [K].)
For ease of notation we extend the agent valuation function
by letting v(⊥) = 0. When the secretary e arrives the

algorithm finds out v(e); if it decides to choose secretary
e, it must immediately and irrevocably assign e to some
unassigned position k (and hence set sA(k) = e). The goal
of the algorithm is to output a final map sA that maximizes
E [

∑K
k=1 v(sA(k))w(k)], where the expectation is over the

random ordering and the random choices of the algorithm.
Discounted Secretary Problems. Here, the algorithm is
given as input a discount function d : [n] → R≥0 which
maps “time” to “discounts”. Again, the ground set is
presented in random order: we formalize this as picking a
bijective ordering function π : [n] → U uniformly at random
from all bijective functions from time instants [n] to elements
U , implying that element π(t) ∈ U appears at time instant
t. In this problem, we want to choose an element eA in an
online fashion to maximize the expected discounted value
E π[d(π−1(eA)) · v(eA)]. In the known-OPT model, the
algorithm knows the expected value of the optimal offline
solution ahead of time (for example, it is sufficient to assume
the algorithm knows the valuations, see Lemma A.1), it just
does not know the random permutation π—whereas in the
unknown-OPT model, the algorithm does not have any such
prior knowledge about the input. For this problem, since
the optimum offline solution is itself a random variable, a
function of the random order π of arrivals, we consider the
competitive ratio of an algorithm A to be the smallest value
α such that

E π[maxe d(π−1(e)) · v(e)]
E π[d(π−1(eA)) · v(eA)]

≤ α.

It is well-known that the following algorithm is e-
competitive for the classical secretary problem: observe a
(1/e) fraction of the elements without selecting any. In the
remaining (1 − 1/e) fraction of elements, select the first
element whose value is greater than all elements preceding
it. In the remainder of the paper, we will refer to this
algorithm as the classical secretary algorithm, and we will
use it (and the sample-then-select intuition behind it) to
design algorithms for the weighted and discounted cases.

Finally, all the secretary problems mentioned above can
be extended to the matroid secretary case where, instead of
picking a set S of one or K elements, we are given a matroid
M = (U, I) and want to pick a set S ∈ I that maximizes the
objective function. Details of this extension, and background
on matroids, appear in Section 5.

3 The Weighted Secretary Problem

Recall the weighted secretary problem was to choose, in
an online fashion, up to K secretaries and assign each one
irrevocably to one of K positions (with weights w(1) ≥
w(2) ≥ · · · ≥ w(K)) so that no position has more than
one secretary. The goal was to maximize the weighted value∑K

k=1 v(s(k)) · w(k), where s(k) is the secretary that is
assigned to position k and v(s(k)) = 0 if position k is
not filled by any secretary (i.e. s(k) =⊥). In this section,

1247 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

we show a constant-competitive algorithm for this problem.
We assume, without loss of generality, that the values of the
secretaries are all distinct.

We will use the following algorithm, called the interval
reservation algorithm:

a. Observe the first l = 	n
2
 secretaries in the random

sequence without assigning any of them. Call these
secretaries the sample set S.

b. Compute the optimal solution on the sample set, which
will just fill position i with the ith most valuable
secretary in S. For each position k let ak be the value
of the secretary that fills it, and for k > 1 let I(k) be the
interval (ak, ak−1). For position 1, let I(1) = (a1,∞).
Note that all of these intervals are disjoint.

c. Now consider the remaining (n − l) secretaries. When
secretary e arrives, let ke be such that v(e) ∈ I(ke); if
there is at least one free position k ≥ ke, then assign
secretary e to the position k with the lowest such index.
To analyze this algorithm, we consider a slightly dif-

ferent algorithm, where in step c above, when considering
secretary e, we assign it only to position ke if it is free, else
we discard it. (Let us call this Algorithm B. Note that while
the interval reservation algorithm is monotone5, Algorithm
B may not be monotone.)

LEMMA 3.1. The expected weighted value achieved by the
interval reservation algorithm is at least that achieved by
Algorithm B.

Proof. Consider a position k. For any fixed permutation, it is
immediate that position k is filled in the interval reservation
algorithm by an agent with value at least as large as the agent
filling position k in Algorithm B. The claim follows.

LEMMA 3.2. If a secretary e is assigned to some position
by Algorithm B, then the weight of this position is at least
as large as the weight of the position e is assigned to in the
optimal solution (if any).

Proof. Suppose secretary e is assigned to position k by
Algorithm B. Then v(e) was not in I(s) for s < k, so there
were k − 1 secretaries in the sample set with value greater
than v(e). Since the optimal solution fills position i with
the ith most valuable secretary, and there are at least k − 1
secretaries more valuable than e, the optimal solution will
not assign e to a position with weight greater than w(k).

Hence, as long as any secretary chosen in the optimal
solution is also chosen by Algorithm B with reasonable
probability, we are fine. The next lemma shows exactly this:

5We assume that agent i’s value from being assigned position k is
v(i) · w(k), where v(i) is her private valuation. Incentive compatibility
then requires that the algorithm be (weakly) monotone, i.e. if agent i
increases her bid, the expected weight of the position she is assigned does
not decrease.

LEMMA 3.3. If a secretary is assigned to some position by
the optimal solution, then the probability that it is assigned
to some position by Algorithm B is at least 1/4.

Proof. Consider a secretary e that is assigned to some
position by the optimal solution. Given that e appears in
the random order at position j ≥ n/2, then with probability

l
j−1 the next more valuable secretary that appeared before e
actually appears in the sample. Conditioned on this event,
with probability l−1

j−2 the next less valuable secretary that
appeared before e also appeared in the sample. This is a
sufficient condition for e to be assigned a position, since
it implies that there’s some position k whose interval I(k)
contains v(e) and which will not have been filled by the
time that e appears. Thus the probability that secretary e
is assigned to some position is at least

n∑
j=l+1

1
n
× l

j − 1
× l − 1

j − 2
=

l(l − 1)
n

n∑
j=l+1

1
(j − 1)(j − 2)

=

l(l − 1)
n

n∑
j=l+1

(
1

j − 2
− 1

j − 1
) =

l(n − l)
n(n − 1)

.

This expression is at least 1
4 when n ≥ 4. It is easy to see

that the Algorithm B also satisfies this lemma for n < 4, thus
proving the lemma.

Lemmas 3.2 and 3.3, together with linearity of expecta-
tions, imply the following theorem.

THEOREM 3.1. (WTD SECRETARY: UPPER BOUND)
Algorithm B is 4-competitive. Hence, by Lemma 3.1, the
interval reservation algorithm is 4-competitive.

4 Time-dependent Weights, or the Discounted
Secretary Problem

In the discounted secretary problem, we are given a function
d(·) that maps time instants to “discounts”, such that the
actual benefit obtained by picking an element e of intrinsic
value v(e) at time t is actually the product v(e) · d(t). This
is a natural model when picking an item is more valuable at
some times rather than others: while the problem has been
studied in the simple case of d(t) = βt for some β < 1, here
we consider general time-varying functions d(t).

We first show that the problem is fairly hard in general.
We show an Ω(log n/ log log n) lower bound on the com-
petitive ratio of any algorithm, and show a nearly matching
O(log n) upper bound. Surprisingly, the problem becomes
much easier with a small amount of information about the
input. We show that knowing an estimate of E [OPT]
enables one to design a constant competitive algorithm. We
remark that all our algorithms are monotone, and thus can be
converted to truthful mechanisms.

A Warmup Example. Consider the simple case when
d(t) = βt for some constant β bounded away from 1. A

1248 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

simple constant-competitive algorithm is one that always
picks the first element. This algorithm has an expected value
of E[ALG] =

∑n
i=1 v(i) · 1

n · β1. On the other hand, the
expected value that OPT gets from time step j is at most∑n

i=1 v(i) · 1
n · βj , thus the expected value that OPT gets is

at most
∑n

i=1 v(i) · 1
n ·∑j βj ≤ 1

1−β E[ALG]. As β is a fixed
constant this is constant-competitive.

4.1 Discounted Secretary: General Case

It turns out that the discounted secretary problem is signif-
icantly harder in the unknown-OPT model, and we show a
lower bound of Ω(log n

log log n) on the competitive ratio in this
case, even when the discounts are decreasing. However, we
also give an algorithm with an almost-matching competitive
ratio of O(log n), for arbitrary discounts.

4.1.1 A Nearly-Logarithmic Lower Bound We
construct a discount function d and a family of instances
I1, . . . , I2c such that no randomized algorithm can be
Θ(log n

log log n)-competitive on all the It’s. More formally, we
use the following definitions:

• Instance Size: Let L = c be an integer and let n = L4c.
Thus L = c = Θ(log n

log log n).

• Discount Function: For t ≤ 2c, let nt = L2t. For the
discount function, we use a step function d(j) = L−t

for nt−1 ≤ j < nt.

• Instances: Let K be a large enough integer (say n2).
The instance I1 consists of n

n1
K’s and the remaining

zeroes. For t < 2c, It+1 is obtained inductively from
It by changing nt/nt+1 of the Kt’s to Kt+1. Thus It

has n
nt

Kt’s.

LEMMA 4.1. (ESTIMATE ON E[OPT(It)]) For t ≤ 2c,
E[OPT (It)] is at least (1 − 1

e)KtL−t

Proof. With probability at least (1 − 1
e) over the random

permutation, one of the n/nt Kt values falls in the first nt

slots, leading to a value of at least KtL−t.

Let A be a c/10-competitive algorithm. We argue that
A must have a large probability of picking an item in each of
the intervals (nt, nt+1).

LEMMA 4.2. Let A be a c/10-competitive algorithm. Then
on instance It, the probability that A picks one of the first nt

items is at least t/c.

Proof. We prove the claim by induction on t. For the base
case, note that the most A can get from time steps n1 + 1
onwards is K/L2 = 1

c (K
L). Thus to be c

10 competitive, it
must in expectation get value at least 2

c (K
L) from the first n1

time steps. Since A never gets more than K/L on I1, the
base case holds.

Assume that the claim holds for It. Consider a run of
the algorithm on instance It+1. Note that It+1 differs from
It only in n

nt+1
of the items. The probability that any one of

these items occurs in the first nt time steps is at most nt

nt+1
.

Thus except with probability nt

nt+1
= 1

L2 , the behavior of A
on It and It+1 is indistinguishable in the first nt steps. Thus
by the induction hypothesis, the algorithm accepts an item
by time nt with probability at least (1 − 1

L2)(t/c).
The expected revenue of A in the first nt

time steps, on instance It+1 is bounded by
Kt+1(L−t nt

nt+1
+L−(t−1) nt−1

nt+1
+ . . .+L−1 n1

nt+1
)+KtL−1,

where the first term bounds the expected contribution from
the Kt+1’s, and the second term bounds the most one can
get from the smaller items. Since this is at most 4OPT/c, A
must get at least 6OPT/c from time steps nt + 1 onwards.
As in the base case, time steps nt+1 + 1 and higher cannot
contribute more than 2OPT/c, so that the algorithm must
get contribution 4OPT/c from time steps [nt + 1, nt+1].
Thus the probability that the algorithm picks an item in
time steps [nt + 1, nt+1] is at least 2

c . Since A picks
exactly one item, this event is disjoint from A picking an
item in time steps [1, nt]. Thus the probability that A, on
instance It+1 picks an item in times steps [1, nt+1] is at
least (1− 1

L2)(t/c)+ (2/c) ≥ (t +1)/c. The claim follows.

Now we can prove the main lower bound theorem.

THEOREM 4.1. (UNKNOWN-OPT: LOWER BOUND)
Every algorithm A for the discounted secretary problem has
E[OPT]/E[A] ≥ Ω(log n/ log log n) in the worst case.

Proof. If A is c/10-competitive, then Lemma 4.2 implies
that on instance I2c, the probability that A picks an item
in the first n2c time steps is larger than 1, which is a
contradiction. Thus A cannot be c/10-competitive.

4.1.2 A Logarithmic Upper Bound Let dmax be the
maximum discount and let vmax be the maximum value. For
c ≥ 1 let Ic = (2−cdmax, 2−(c−1)dmax] be the interval
defining the c-th discount class, and let Pc = {i ∈ [n] :
d(i) ∈ Ic} be the set of times that have discount value
in class c. Our algorithm A chooses a c ∈ [3 logn + 2]
uniformly at random, and then runs the classical secretary in
the time steps i ∈ Pc. Note that A uses no knowledge of
E [OPT].

THEOREM 4.2. (UNKNOWN-OPT: UPPER BOUND)
Algorithm A is O(log)-competitive, i.e. E[OPT]/E[A] ≤
O(log n).

Proof. We begin by noting that E [OPT] =∑
c

∑
i∈Pc

d(i)
∑

j v(j)Pr[(π(i) = j) ∧ (d(i)v(j) ≥
d(k)v(π(k)) ∀k ∈ [n])]. Let OPTc denote the term
corresponding to Pc so that E [OPT] =

∑
c OPTc.

Clearly OPT1 ≥ vmaxdmax/n, since vmax occurs in the

1249 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

location corresponding to dmax with probability at least 1
n .

Moreover, OPTc equals
∑

i∈Pc
d(i)

∑
j v(j)Pr[(π(i) = j) ∧

(d(i)v(j) ≥ d(k)v(π(k)) ∀k ∈ [n])]
≤ ∑

i∈Pc
2−(c−1)dmax

∑
j v(j)

≤ 2−(c−1)dmax|Pc|nvmax

since each v(j) is bounded by vmax. And since |Pc| is
at most n, we conclude that OPTc ≤ 2−c2n2dmaxvmax.
It follows that

∑
c≥3 log n+2 OPTc ≤ E [OPT]/2, so that∑3 log n+1

c=1 OPTc ≥ E [OPT]/2. Thus OPT gets most of its
value for the top O(log n) discount scales.

Clearly the expected value that the offline optimum gets
from time steps in Pc equals OPTc. Thus the expected
value of the offline optimum for the problem restricted to
times in Pc is at least as large, and the classical secretary
algorithm gets an expected value OPTc/2e (we lose an
additional factor of two since we treat the discount values
in Pc equally). The claim follows.

When there are both weights and discounts, we can
combine Theorem 4.2 with Theorem 3.1 to get the following
result. We defer the proof to the full version.

THEOREM 4.3. There is an algorithm for the weighted
discounted secretary problem (which uses no knowledge of
E [OPT]) that is O(log n)-competitive

Proof Sketch: In the unweighted case the proof of
Theorem 4.2 implies that we can ignore all but the first
Θ(log n) discount classes. Using the same reasoning, in the
weighted case we can ignore all but the first Θ(log(nK))
discount classes, where the extra K is due to the ability
to assign K goods. Now we can just choose a c ∈
[Θ(log(nK))] uniformly at random and run the weighted
secretary algorithm of Theorem 3.1 in the time steps with
discount in class c. Following the analysis of Theorem 4.2,
this is an O(log(nK))-competitive algorithms, and thus is
also O(log n)-competitive (as K ≤ n).

4.2 Discounted Secretary with Known OPT

In this section we consider the case when the algorithm
knows a good estimate for E [OPT] ahead of time. Inter-
estingly, we can show that even if we know all the values
and not just E [OPT] in advance, no online algorithm can be
perfectly competitive. This is in contrast to the case without
discounts (i.e., d(t) = 1∀t), in which the naı̈ve algorithm
that knows all the values can pick an element of maximal
value.

THEOREM 4.4. (KNOWN-OPT: LOWER BOUND) For any
ε > 0, every algorithm A for the discounted secretary
problem has E[OPT]/E[A] ≥ √

2 − ε, even when A knows
the set of values (and hence E[OPT]) in advance.

Proof. Let c =
√

2 − 1. Let t = 	n(1 − c)
, and note that
nc ≤ n− t ≤ nc+1. Assume that v(1) = v(2) = 1 and that
v(i) = 0 for any i ≥ 3. Let d(i) = 1 for i < t, d(t) = c·n+1
and d(i) = 0 for any i > t. The expected value that OPT
gets is E[OPT] = 1∗(1−(n−t

n)2)+c·n· 2
n ≥ 1−(nc+1

n)2+

2c = 1 + 2c − c2 − 2cn+1
n2 = 4(

√
2 − 1) − 2(

√
2−1)n+1

n2 .
We next show that if A observes one of the two valuable

elements (with value 1) before time t it immediately picks
it (this is the optimal online algorithm for this input). This
is true as the expected value from picking the element is
1. On the other hand, if there are still k element to come,
the expected value from skipping the current element and
picking the next valuable element is 1 · k−(n−t)

k + cn · 1
k ≤

k−cn
k + cn · 1

k = 1. Thus the algorithm is always (weakly)
better off picking the first valuable element it sees.

Now, the expected value that A gets is E[A] = 1 ∗ (1 −
(n−t

n)2)+cn·2·n−t
n · 1

n ≤ 1−(cn
n)2+2c cn+1

n = 1+c2+ 2c
n =

4 − 2
√

2 + 2(
√

2−1)
n . We conclude that

E[OPT]/E[A] ≥ 4(
√

2 − 1) − 2(
√

2−1)n+1
n2

4 − 2
√

2 + 2(
√

2−1)
n

As this expression clearly tends to 4(
√

2−1)

4−2
√

2
=

√
2 as n goes

to infinity, the claim follows.

4.2.1 The Upper Bound for Known-OPT The main re-
sult of this section shows that one can get good competitive
algorithms if we have a good estimate Z of E [OPT] =
E π[maxt∈[n] d(t) · v(π(t))].

Algorithm A: Suppose Z ≤ E[OPT]. Pick the
first element e seen (say, at time j) that satisfies
v(i)d(j) ≥ Z/2.

THEOREM 4.5. (KNOWN-OPT: UPPER BOUND) If Z ≤
E [OPT], the algorithm A for the discounted secretary
problem satisfies E[A] ≥ Z/4.

Proof. The proof considers two cases. In the first (easier)
case, suppose the algorithm A picks some element with
probability at least 1/2. Then with probability at least 1/2, it
gets benefit at least Z/2, and hence its expected performance
is at least Z/4.

In the second case, suppose the algorithm A does not
pick an element with probability at least 1/2: i.e., we
are in the case where at least half the permutations cause
all products {v(e) d(π(e))}e∈U to be small (and hence are
“rejecting”). In this case, we can show that OPT gets
most of its benefit from the other, “accepting” permutations.
Moreover, on these accepting permutations, we would pick
an element differently from OPT only when there was
some ‘blocking’ element with v(e) d(π(e)) ≥ Z/2: but for
the same reason that there are few accepting permutations,
there are few accepting permutations with such a blocking

1250 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

element. Hence we pick the same elements OPT picks on
the “accepting” permutations with high probability, and have
a good performance.

Let us now make this general idea for the second case
precise. Let us write

E[OPT] =
∑

π∈Sn

1
n!

n
max
i=1

{d(i)v(π(i))}

Let Sacc = {π ∈ Sn : maxn
i=1{d(i)v(π(i)) ≥ Z/2} be the

“accepting permutations” on which the algorithm picks some
element. The contribution to E [OPT] from these accepting
permutations is

L
def
=

∑
π∈Sacc

1
n! maxn

i=1{d(i)v(π(i))}
= E[OPT] − ∑

π �∈Sacc

1
n! maxn

i=1{d(i)v(π(i))}
≥ E[OPT] − ∑

π �∈Sacc

1
n! (Z/2)

≥ E[OPT] − Z
2 ≥ Z

2 ,(4.1)

where we used the fact that Z ≤ E [OPT]. To complete the
proof, it suffices to show that A has expected value at least
L/2, which is at least Z/4 by (4.1). We begin by rewriting
L as

L =
∑n

i=1

∑
j:d(i)v(j)≥ Z

2

1
n · d(i)v(j)

× Pr[d(i)v(j) highest |π(i) = j](4.2)

(Here we implicitly assume that there is exactly one product
d(i)v(j) which is highest: we break ties in some consistent
fashion.) Combining (4.1) and (4.2) gives us

(4.3)
∑n

i=1

∑
j:d(i)v(j)≥ Z

2

1
n · d(i)v(j) ≥ Z

2

For each such i, j pair where d(i)v(j) ≥ Z/2, let Gij be the
set of permutations on which A chooses element j at time
i, getting benefit d(i)v(j): let us call these “good”. (Note
that, in these permutations, d(i)v(j) must be the first product
which is at least Z/2.) The performance of the algorithm is

(4.4) E[A] =
∑n

i=1

∑
j:d(i)v(j)≥ Z

2
d(i)v(j) · |Gij |

|Sn|

The following claim shows there are many “good” permuta-
tions.

CLAIM 4.1. For each i, j such that d(i)v(j) ≥ Z/2,
|Gij | ≥ |Sn \ Sacc|/n ≥ |Sn|/2n.

Proof. We show the first inequality by giving an n-to-1 map
fij from Sn\Sacc to Gij , the second inequality follows from
the fact that at most half the permutations are in Sacc.

Define fij(π) by changing π and mapping element j to
location i, swapping it with whatever was there originally. In
other words, if i′ = π−1(j), let fij(π)(i) = π(i′) = j, let
fij(π)(i′) = π(i), and for k �= i, i′ let fij(π)(k) = π(k).
Showing fij is a n-to-1 map is straight-forward; to show that
π′ = fij(π) is in Gij , we need to show that d(i)v(π′(i)) =

d(i)v(j) ≥ Z/2 (which follows from our choice of i, j), and
that no other position i′ has d(i′)v(π′(i′)) ≥ Z/2 (which
follows almost as easily from the fact that π �∈ Sacc and
hence did not have any positions i′ such that d(i′)v(π(i′)) ≥
Z/2.

The rest of the proof of Theorem 4.5 is immediate:
by (4.4) and Claim 4.1, it follows that

E [A] ≥ ∑n
i=1

∑
j:d(i)v(j)≥ Z

2
d(i)v(j) · 1

2n ≥ Z/4,

where the last step is by equation (4.3).

To use Theorem 4.5 fruitfully and obtain benefit ≈
E [OPT]/4, the bound Z should be close to E [OPT]: such
an estimate could come from expert knowledge, prior runs
of the problem, or some other source. A special case when
such an estimate of E [OPT] can be obtained is the situation
when we know the values of all the elements. In this case, we
can use a sampling-based estimator for E [OPT] (as shown
in Lemma A.1) to get E [A] ≥ (1−δ)(1−ε)

4 E [OPT], where
ε, δ > 0 are arbitrary constants that only affect the amount
of sampling necessary.

5 Extensions to Matroid Secretary Problems

In this section, we show how the secretary problem on many
classes of matroids can be “reduced” to partition matroids.
Moreover, we extend our results for the discounted and
weighted secretary problems to partition matroids, and hence
to such classes of matroids as well. This reduction to
partition matroids also gives a simple unified view of several
results of Babaioff et al. [2], and also improves some of the
results from their paper.

Recall that a matroid M = (U, I) consists of a ground
set U , and a collection I of subsets of U that is closed
under taking subsets satisfying the well-known exchange
conditions6. A partition matroid (U, I) is one where there
is some partition P of U , and S ∈ I if and only if
I has at most one element from each set in P . The
following definition formalizes the notion of a “reduction”
from arbitrary matroids to partition matroids.

DEFINITION 5.1. (AN α-PARTITION PROPERTY) A
matroid M = (U, I) satisfies an α-partition property if one
can (randomly) define a partition matroid M′ = (U ′, I′) on
some subset U ′ of the universe U such that for any values of
the elements U , we have

• E(value of max-weight base in M′) ≥ 1/α × value
of max-weight base in M.
• Every independent set in M′ is an independent set in
M .

6i.e. for any A, B ∈ I with |A| < |B|, ∃x ∈ B such that A∪{x} ∈ I .

1251 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

In a graphic matroid the ground set is the set of edges of
some graph G = (V, E), and S ⊆ E is independent if and
only if it does not contain a cycle. In a uniform matroid of
rank k the independent sets are all subsets of size at most k.
Finally, in a transversal matroid, the ground set is the set of
left vertices from some bipartite graph G = (L, R, E), and
a set S ⊆ L is independent if and only if there is a perfect
matching of S to nodes in R. All of these matroids satisfy
some α-partition property:

THEOREM 5.1. An α-partition property can be shown for
the following classes of matroids:

• Any graphical matroid satisfies a 3-partition property.
• Any uniform matroid satisfies a e/(e − 1)-partition
property.
• Transversal matroids satisfy a d-partition property,
where d is the maximum degree of vertices on the left, as
well as a 4k/d-partition property, where k is the rank
of the matroid.

The proofs for these reductions appear in Appendix B.
Independent of our work, Korula and Pal recently proved that
any graphical matroid satisfies a 2-partition property [11].

The reductions of Theorem 5.1 motivate the study of
the matroid secretary problem, the weighted version, and the
discounted version on partition matroids.

THEOREM 5.2. On partition matroids, there is an e-
competitive algorithm for the matroid secretary problem, a
(16 + 3e)-competitive algorithm for the weighted matroid
secretary problem, a ((1−δ)(1−ε)

4)-competitive algorithm for
the discounted matroid secretary problem if we know all of
the values, and an O(log n)-competitive algorithm for the
discounted matroid secretary with unknown-OPT.

Proof. The e-competitive algorithm for the matroid sec-
retary problem is trivial: just run the classical secretary
algorithm on each set in the partition. The same argument
combined with Theorem 4.5 and Lemma A.1 gives the theo-
rem for the discounted case with known-OPT, and combined
with Theorem 4.2 gives the theorem for the discounted case
with unknown-OPT. We defer these proofs, as well as the
proof for the weighted problem, to the full version of the
paper.

This theorem, combined with the definition of the
α-partition property, immediately implies that if a matroid
satisfies an α-partition property, then there is an (eα)-
competitive algorithm for the matroid secretary problem,
a ((16 + 3e)α)-competitive algorithm for the weighted
secretary problem, a ((1−δ)(1−ε)

4 α)-competitive algorithm
for the discounted matroid secretary problem if we know all
of the values, and an O(α log n)-competitive algorithm for
the discounted matroids secretary with unknown-OPT. Thus
Theorem 5.1 implies that there are constant-competitive
algorithms for graphic, uniform, and low- and high-degree

transversal matroids in all variants but the discounted
unknown-OPT setting, in which case there are O(log n)-
competitive algorithms.

If we do not know that the matroid we are working with
satisfies an α-partition property, we extend Theorem 4.2 to
give the following bound for the discounted problem in the
unknown-OPT model. (The proof is deferred to the full
version of the paper.)

THEOREM 5.3. There is an algorithm A for the discounted
secretary problem on matroids with unknown-OPT such that
E[OPT]/E[A] ≤ O(log k · log n) where k is the rank of the
matroid M which is the input to the algorithm.

In Section 4.1 we saw that if one knows all the values,
or knows (a good estimate of) the expectation of OPT this
is enough to break the lower bound and achieve a constant
competitive algorithm. For discounted secretary problem on
matroids knowing the maximal value is also very helpful. In
such case we can improve the result of Theorem 5.3.

THEOREM 5.4. There is an algorithm A for the discounted
secretary problem on matroids in case that the maximal
value is known such that E[OPT]/E[A] ≤ O(log n).

Proof. For c ∈ Z , let scale Pc be the set of all pairs
i, j such that d(i)v(j) ∈ (2c−1, 2c]. Thus OPT ≤
2c

∑
(i,j)∈Pc

Pr[π(i) = j ∧ d(i)v(j) ∈ OPT]. Since vmax

falls in the maximum discount location with probability 1
n ,

OPT ≥ vmaxdmax/n. Let cmax = �log vmaxdmax� be
the index of the highest non-empty scale. Since |Pc| <
n2, it follows that that contribution of level c to OPT ,
2c

∑
(i,j)∈Pc

Pr[π(i) = j ∧ d(i)v(j) ∈ OPT] is bounded
above by n22c. Thus for cmin = cmax − �log n3� − 2, the
total contribution to E[OPT] for scales cmin and below is at
most OPT/2.

The algorithm A simply samples a random integer c in
[cmin + 1, cmax] and runs the greedy algorithm (choosing
an element whenever doing so maintains independence),
restricted to (location, element) pairs at scale c or higher.
The expected contribution of this scale to OPT is
Ω(OPT/ log n). It is easy to check that this gives an
O(log n)-competitive ratio.

References

[1] M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg. A
knapsack secretary problem with applications. In APPROX
’07, 2007.

[2] Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg.
Matroids, secretary problems, and online mechanisms. In
SODA ’07, pages 434–443, 2007.

[3] Cyrus Derman, Gerald J. Lieberman, and Sheldon M. Ross. A
sequential stochastic assignment problem. Management Sci.,
18:349–355, 1971.

1252 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[4] N. Dimitrov and C. G. Plaxton. Competitive weighted
matching in transversal matroids. In Proc. 35th Intl. Colloq.
on Automata, Languages and Programming (ICALP 2008),
2008.

[5] E. B. Dynkin. Optimal choice of the stopping moment of a
Markov process. Dokl. Akad. Nauk SSSR, 150:238–240, 1963.

[6] T.S. Ferguson. Who solved the secretary problem? Statistical
Science, 4:282–296, 1989.

[7] P. R. Freeman. The secretary problem and its extensions: a
review. Internat. Statist. Rev., 51(2):189–206, 1983.

[8] A. Gershkov and B. Moldovanu. The dynamic assignment
of heterogenous objects: A mechanism design approach.
Technical report, University of Bonn, 2007.

[9] Mohammad Taghi Hajiaghayi, Robert Kleinberg, and
David C. Parkes. Adaptive limited-supply online auctions.
In EC ’04, pages 71–80, 2004.

[10] Robert Kleinberg. A multiple-choice secretary algorithm with
applications to online auctions. In 16th SODA, pages 630–
631. ACM, 2005.

[11] Nitish Korula and Martin Pal. Algorithms for secretary
problems on graphs and hypergraphs. arXiv:0807.1139v1
[cs.DS], 2008.

[12] Ron Lavi and Noam Nisan. Competitive analysis of incentive
compatible on-line auctions. In EC ’00, pages 233–241, 2000.

[13] Ron Lavi and Noam Nisan. Online ascending auctions
for gradually expiring items. In SODA ’05, pages 1146–
1155, Philadelphia, PA, USA, 2005. Society for Industrial and
Applied Mathematics.

[14] D.V. Lindley. Dynamic programming and decision theory.
Applied Statistics, 10(1):39–51, March 1961.

[15] M. Mahdian, P. McAffee, and D. Pennock. The secretary
problem with durable employment. personal communication,
2008.

[16] Willis T. Rasmussen and Stanley R. Pliska. Choosing the
maximum from a sequence with a discount function. Appl.
Math. Optim., 2(3):279–289, 1975/76.

A Discounted Secretary Problems: Missing
Proofs

A.1 A Sampling Lemma

The following lemma shows that given access to the element
values, one can estimate the expected optimum for the
discounted secretary fairly efficiently.

LEMMA A.1. Given access to the element values
and an ε > 0, one can obtain an estimate
Ẑ ∈ ((1 − ε)E [OPT], (1 + ε)E [OPT]) with probability
1 − δ in time poly(n, ε−1, log δ−1).

Proof. For a parameter M to be specified later, sample m
permutations π1, π2, . . . , πM independently from Sn and
define

Ẑ =
1
M

∑
t

max
i

{d(i)v(πt(i))}.

Clearly, E [Ẑ] = E [OPT], and it just remains to show
that Ẑ is tightly concentrated about its mean. Let vmax

denote the value of the most valuable element, and let
dmax denote the largest discount. For a given trial t, let
Yt = maxi{d(i)v(πt(i))}

vmaxdmax
, and let Y = 1

M

∑M
i=1 Yi. (Hence

Yi ∈ [0, 1], Y = Ẑ/vmaxdmax.)
A quick observation: if we pick the element that appears

in the location with the highest discount, the expected benefit
is dmaxvmax/n, and hence E[OPT] ≥ dmaxvmax/n, which
in turn implies that E [Y] ≥ E [Ẑ]/vmaxdmax ≥ 1/n. By
standard Chernoff bounds, it follows that for ε ≤ 1,

Pr[|Y − E [Y]| ≥ εE [Y]] ≤ 2 exp{− ε2 · ME[Y]
2 + ε

)

≤ 2 exp(−Mε2

3n
),

and thus if we set M ≥ 3
ε2 n ln 2

δ , this probability is at most
δ, which proves the lemma.

Note that Ẑ
1+ε is a lower bound for E [OPT] with prob-

ability 1 − δ, and hence when the values of the elements are
known, we can use Theorem 4.5 to get (1−δ)(1−ε)

4 E [OPT].

B Reductions for Several Matroid Classes

LEMMA B.1. (GRAPHICAL MATROIDS) Any graphical
matroid satisfies a 3-partition property.

Proof. Let G be a graph defining a graphic matroid. Pick an
edge {u, v} from G uniformly at random, with probability
1/2 color u red and v blue, and with probability 1/2 color
u blue and v red. Then independently color every other
node red or blue, each with probability 1

2 . Create a part in
the partition matroid for each red node x, and add to it all
the red-blue edges incident on x. Then run this procedure
recursively on the graph induced by the edges that have both
endpoints colored blue to create more sets in the partition
(red-red edges are discarded).

It is easy to see that picking one bichromatic edge
incident on each red node will result in a forest. It is also
clear that taking the union of such a forest with any set
of blue-blue edges that is itself a forest still gives a forest,
implying that any set which is independent in the partition
matroid we create is independent in the original graphic
matroid.

For a graph G, let OPT(G) be the value of the op-
timal independent set in the graphic matroid defined by
G. Let v(G) be a random variable denoting the value
of the maximum independent set in the partition matroid
constructed by this reduction. We claim that E[v(G)] ≥
1
3OPT(G), and prove it by induction on the number of edges
of G. For the base case, if G only has one edge then we
color it bichromatically with probability 1, so E[v(G)] =
OPT(G) ≥ 1

3OPT(G) as claimed.
For the inductive step, let Xrb be a random variable

denoting the value of the optimal independent set from the

1253 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

partition matroid corresponding just to the sets we created
for the red nodes. Let T be the optimal forest (which without
loss of generality is a tree, since otherwise we just analyze
each component separately). Root T arbitrarily. After the
random coloring, the set of edges that go from a red node to
a blue parent are clearly bichromatic and will get assigned to
different sets in the partition corresponding to red nodes, so
the optimal independent set in the partition matroid is at least
as large as their sum. Every edge in T has probability 1/m
(where m is the number of edges in G) of being the initial
edge chosen to be colored bichromatically, and if it is the one
chosen then with probability 1/2 the parent is blue and the
child is red. If it is not chosen then it still has probability
1/4 of having its parent colored blue and its child red. So
the total probability that it is colored in this way is at least
1

2m + (1 − 1
m)1

4 = 1
4 + 1

4m , so by linearity of expectations
E[Xrb] ≥ (1

4 + 1
4m)OPT(G).

Clearly v(G) = Xrb + v(Gbb), where Gbb is the graph
induced by edges that have both endpoints colored blue. The
probability that an edge in T is colored monochromatically
blue is at least (1 − 1

m)1
4 = 1

4 − 1
4m , since if it is

not picked as the initial bichromatic edge its endpoints
are both colored blue with probability 1/4. By linearity
of expectations this means that E[OPT(Gbb)] ≥ (1

4 −
1

4m)OPT(G). Also, since we colored at least one edge
bichromatically by induction we know that E[v(Gbb)] ≥
1
3OPT(Gbb). So E[v(G)] = E[Xrb + v(Gbb)] = E[Xrb] +
E[v(Gbb)] ≥ (1

4 + 1
4m)OPT(G) + E

[
1
3OPT(Gbb)

] ≥ (1
4 +

1
4m)OPT(G) + 1

3 (1
4 − 1

4m)OPT(G) ≥ 1
3OPT(G)

LEMMA B.2. (UNIFORM MATROIDS) Any uniform
matroid satisfies a e/(e− 1)-partition property.

Proof. Create k bins (where k is the rank of the uniform
matroid), and place each element in U into one of these bins
uniformly at random. The i-th largest value v(i) is not in
the same bin as any larger value with probability at least
(1 − 1/k)i−1. This implies that the expected value of the
maximal weight basis of the partition matroid is at least
∑k

i=1 v(i) · (1 − 1
k)i−1 ≥ ∑k

i=1 v(i) · 1
k

∑k
j=1(1 − 1

k)j−1

= 1
k · 1−(1−1/k)k

1−(1−1/k) · ∑n
1=1 v(i)

= (1 − (1 − 1/k)k) · ∑n
1=1 v(i)

≥ (1 − 1/e) · ∑n
1=1 v(i)

LEMMA B.3. (LOW-DEGREE TRANSVERSAL MATROIDS)
Transversal matroids satisfy a d-partition property, where d
is the maximum degree of vertices on the left.

Proof. Create a partition in the partition matroid for each
vertex on the right, and put a vertex on the left (i.e., an
element of U) in one of the bins corresponding to its
neighbors uniformly at random.

Given a maximum independent set I in the transversal
matroid, there is some matching between I and the ver-
tices on the right. Clearly each node x in I gets put in

the bin corresponding to its neighbor y in this matching
with probability at least 1/d. If this even does happen,
then the maximum independent set in the partition matroid
contains either x or an element of greater value. Thus the
expected value of the maximum independent set is at least∑

x∈I
1
dv(x) = 1

d

∑
x∈I v(x) = 1

dOPT

LEMMA B.4. (HIGH-DEGREE TRANSVERSAL MATROIDS)
Any transversal matroid satisfies a 4k/d-partition property,
where d is the minimum degree of vertices on the left and k
is the rank of the matroid.

Proof. We use the same reduction as for low-degree
transversal matroids. Without loss of generality, let
v(1) ≥ v(2) ≥ · · · ≥ v(n). Then the probability that
element i is the most valuable in the set that it is assigned
to is at least 1 − i−1

d , since at most i − 1 of its neighbors
can contain more valuable elements and it has at least d
neighbors. Considering only the elements {1, 2, . . . , d/2}
and using linearity of expectations, we get that the expected
value of the max base in the partition matroid is at least

∑d/2
i=1

(
1 − i−1

d

)
v(i) ≥ 1

2

d/2∑
i=1

v(i)

≥ d

4k

k∑
i=1

v(i) ≥ d

4k
OPT

1254 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

