
Automated Analysis and Debugging of Network
Connectivity Policies

Karthick Jayaraman
Microsoft Azure

karjay@microsoft.com

Nikolaj Bjørner
Microsoft Research

nbjorner@microsoft.com

Geoff Outhred
Microsoft Azure

geoffo@microsoft.com
Charlie Kaufman

charliekaufman@outlook.com

ABSTRACT
Network connectivity policies are crucial for assuring the se-
curity and availability of large-scale datacenter. Managing
these policies is fraught with complexity and operator er-
rors. The difficulties are exacerbated when deploying large
scale offerings of public cloud services where multiple ten-
ants are hosted within customized isolation boundaries. In
these large-scale settings it is impractical to depend on hu-
man effort or trial and error to maintain the correctness and
consistency of policies.

We describe an approach for automatically validating net-
work connectivity policies and its implementation in a tool
called SecGuru. SecGuru can check selected properties
of policies, e.g., is some traffic permitted or denied, and it
can compare two policies yielding a semantic diff to sum-
marize drifts. We use bit-vector logic to encode policies and
semantic diffs; and the theorem prover Z3 as the underlying
solver. A key contribution is a new algorithm for compactly
enumerating symbolic diffs. We finally describe the experi-
ence of using SecGuru in Azure, a public cloud provider.
Azure uses SecGuru for continuously monitoring policy
configurations and alerting on errors, and also as a regres-
sion test suite to check policies before deployment. As a
result of using SecGuru, today Azure proactively detects
and avoids policy misconfigurations that lead to security and
availability issues.

1. INTRODUCTION
Managing network connectivity restrictions in large-scale

datacenters is a challenge that cannot rely on human inspec-
tion or trial and error. The large scale public cloud provider
Azure is a case in point. It provides on-demand computing,
storage, and networking resources to mutually distrusting
customers. The infrastructure services and its customer ser-
vices are hosted in custom isolation boundaries using net-
work connectivity restrictions. For example, Azure man-
agement service interfaces are walled off from the Internet
and arbitrary customer access. In addition, customer ser-
vices are also isolated from one another. These restrictions
are enforced in network devices such as routers and top-of-
rack switches, hypervisor packet filters, and firewalls. Man-
aging these restrictions is fraught with complexity.

An Example
We illustrate the challenges using an example. Datacenters
and enterprises use a set of routers to connect their networks
to the Internet backbone. These routers are called the Edge

routers, and they enforce an access-control list (ACL) to en-
force restrictions on traffic coming from the Internet. We
will refer to it as the Edge ACL in this paper. Figure 1
provides a canonical example of an Edge ACL and typical
maintenance operations done on it. The ACL in this exam-
ple is authored in the Cisco IOS language. It is basically
a set of rules that filter IP packets. They inspect header
information of the packets and the rules determine whether
the packets may pass through the device.

Each rule of a policy contains a packet filter, and typically
comprises two portions, namely a traffic expression and an
action. The traffic expression specifies a range of source
and destination IP addresses, ports, and a protocol specifier.
The expression 10.0.0.0/8 specifies an address range 10.0.0.0
to 10.255.255.255. That is, the first 8 bits are fixed and the
remaining 24 (= 32-8) are varying. A wild card is indicated
by Any. For ports, Any encodes the range from 0 to 216−1.
The action is either Permit or Deny. They indicate whether
packets matching the range should be allowed through the
firewall. We say each rule represents a single cube. This
language has the first-applicable rule semantics, where the
device processes an incoming packet per the first rule that
matches its description. If no rules match, then the incoming
packet is denied by default. Therefore, the order in which
the rules appear is important. In certain policy languages,
rules can be further compressed by using multiple ranges for
the IP addresses and ports. For example, a filter on an IP
address may contain two ranges 10.20.0.0/19; 10.40.0.0/19
where a semi-colon separates the two ranges. We call such
rules as multi-cubes.

The left-hand side of Figure 1 shows an ACL instance
prior to an update, and has four sections. The first section
(lines 2-6) filters Internet traffic that targets private data-
center IP addresses. For example, line 3 in the ACL denies
traffic targeting IP addresses in 10.0.0.0/8, which is a pri-
vate address range per RFC1918 and should not be reach-
able from the Internet. The second section (lines 8-10) is
for the anti spoofing ACL that filters Internet traffic that
claims to come from within the datacenter network. The
third section (lines 13-14) of the ACL permits traffic target-
ing datacenter IP addresses that should not have any port
blocks. The fourth section (lines 17-24) of the ACL blocks
a standard set of ports and protocols on all Internet traf-
fic targeting any destination inside the datacenter network.
Finally, the fifth section (lines 21-26) of the ACL permits
traffic targeting datacenter IP addresses that will be sub-
ject to port and protocol restrictions of section four. Any

1 remark Isolating private addresses
2 deny ip 0.0.0.0/32 any
3 deny ip 10.0.0.0/8 any
4 deny ip 172.16.0.0/12 any
5 deny ip 192.0.2.0/24 any
6 ...
7 remark Anti spoofing ACLs
8 deny ip 128.30.0.0/15 any
9 deny ip 171.64.0.0/15 any

10 ...
11 remark permits for IPs without
12 port and protocol blocks
13 permit ip any 171.64.64.0/20
14
15 remark standard port and protocol
16 blocks
17 deny tcp any any eq 445
18 deny udp any any eq 445
19 deny tcp any any eq 593
20 deny udp any any eq 593
21 ...
22 deny 53 any any
23 deny 55 any any
24 ...
25 remark permits for IPs with
26 port and protocol blocks
27 permit ip any 128.30.0.0/15
28 permit ip any 171.64.0.0/15
29 ...

1 remark Isolating private addresses
2 deny ip 0.0.0.0/32 any
3 deny ip 10.0.0.0/8 any
4 deny ip 172.16.0.0/12 any
5 deny ip 192.0.2.0/24 any
6 ...
7 remark Anti spoofing ACLs
8 deny ip 128.30.0.0/15 any

9 deny ip 171.64.0.0/18 any
10 ...
11 remark permits for IPs without
12 port and protocol blocks

13 permit ip any 171.64.64.0/18
14
15 remark standard port and protocol
16 blocks
17 deny tcp any any eq 445
18 deny udp any any eq 445
19 deny tcp any any eq 593
20 deny udp any any eq 593
21 ...
22 deny 53 any any
23 deny 55 any any
24 ...
25 remark permits for IPs with
26 port and protocol blocks
27 permit ip any 128.30.0.0/15
28 permit ip any 171.64.64.0/15

29 permit ip any 128.230.0.0/16

30 ...

Figure 1: Edge Network ACL : The left-side contains an example instance of the Edge ACL configuration.
The right side contains the same instance with updates that are highlighted.

traffic targeting the IP addresses in section three will not be
subject to port restrictions. However, if Internet traffic tar-
gets blocked ports and protocols on IP addresses in section
five, then those packets will match the description in section
four and will be blocked.

Ensuring the correctness of these policies is critical for
both availability and security. For example, an incorrect
deny rule in the Edge ACL can cause a connectivity outage
to several services. Similarly, an incorrect allow rule may
expose a protected management service to zero-day exploits
or DDoS attacks.

The right-hand side instance highlights examples of typi-
cal maintenance updates done to the Edge ACL. In line 9,
the update changes the address range in the anti-spoofing
ACL from 171.64.0.0/15 to 171.64.0.0/18. This is because
address ranges 171.64.64.0/18 and 171.64.128.0/17 are as-
signed to networks that interconnect with the Edge over
the Internet. Therefore, the anti-spoofing ACL had to be
revised to exclude those addresses. In line 12, the update
changes the IP range without port and protocol blocks from
171.64.64.0/20 to 171.64.64.0/18. Finally, in line 26, the
update adds permits for new block of IP addresses. These
blocks do not have corresponding anti-spoofing ACLs be-
cause they are assigned to networks that connect to the
Edge over the Internet. The rapid growth in both capac-
ity and new services introduces a corresponding churn in IP
addresses and updates to these policies.

Preserving the correctness of policies requires pre-
cisely understanding the impact of changes, and mak-
ing sure we are always preserving the essential proper-
ties. For example, in Figure 1, the difference between
the two policies because of the update in line 9 is that
the revised policy allows the multicube described by <
171.64.64.0/18; 171.64.128.0/17, ∗, ∗, ∗, ip >, but the origi-
nal policy does not. We need to make sure that the change
assures this. Additionally, we need to make sure there is
no regression on other properties such as isolating private
addresses.

Manual reviews is infeasible at scale: Azure has several
thousand network devices, hypervisor packet filters, and fire-
walls, and each of them enforce a policy and are subject to
updates of the nature we described above. Some policies
such as the Edge ACL have a few thousand rules. More-
over, the semantics of the rules vary depending on the type
of the device. For example, the order of rules is relevant
in network devices, but it is not for the hypervisor packet
filter.

Our Approach
Our approach to checking policies is implemented in a tool
called SecGuru. It automatically validates network connec-
tivity policies at scale using a modern Satisfiability Modulo
Theories solver (theorem prover) Z3 [8]. We first show how
network connectivity policies are encoded into bit-vector
logic and then show how to extract descriptive answers from
Z3. In Azure, we deal with several types of network policy
semantics. Bit-vector logic allows encoding in a straight-
forward way first-applicable rule semantics use by network
devices and the default-deny semantics used by firewalls. In
addition, there are stateful ACLs and stateless implementa-
tion of stateful ACLs. For example, network devices may
filter traffic based on TCP SYN flags. The theory of bit-
vectors allows us to model this and other Boolean combina-
tions of flags accurately.

We also report on extensive experience in Azure; and
we develop a set of benchmarks for evaluating our approach
well beyond the current scale. SecGuru can be used to
validate the correctness of a policy with respect to set of
contracts, and also for assessing the impact of changes made
to a firewall. A distinguished feature of SecGuru is the
ability to enumerate symbolic differences between different
versions of firewall configurations compactly. This allows
operators to identify missing or superfluous rules directly by
inspecting the output of SecGuru. In addition, the output
is amenable to automatic rectification of the errors.

SecGuru now runs continuously in Azure, checking the

Policy Questions

Information

about policy

DCL

Z3

Policy1 Policy2

DCL

Z3

Policy1 Policy2

or

Policy1 Policy2

Querying Policies Change-Impact Analysis

Figure 2: SecGuru

integrity of thousands of routers and firewalls servicing mil-
lions of machines. It is also used by operators to check for re-
gressions when policies change as new services are put online
or new requirements are imposed on the network. SecGuru
scales very well and is efficient (spends typically a fraction
of a second) in analyzing our production policies. More-
over, we also performed an evaluation of SecGuru using a
set of synthetic benchmarks created based on characteristics
of real policies. We designed these benchmarks to exercise
SecGuru in worst-case scenarios of much larger-scale com-
pared to our production policies. SecGuru has acceptable
performance in all cases.

A general takeaway is that modern automated theo-
rem proving technologies are suitable for encoding semantic
properties of network policies and they can be used auto-
matically and at scale in production environments.

Configuring network connectivity restrictions in data cen-
ters is well recognized as an important challenge [3, 31].
Section 7 summarizes numerous previous tools offering so-
lutions to different aspects of network configuration. The
related work has proposed a number of approaches for val-
idating connectivity restrictions, using either custom data-
structures and algorithms, and encoding into a specification
language or directly into propositional satisfiability (SAT).
None of the related work address compactly and comprehen-
sively enumerate the differences between two policies. Such
reports are essentially to reduce human effort to diagnose the
problem, and are also amenable to automatic rectification.

Outline
The rest of the paper is organized as follows. Section 2 de-
scribes the architecture of SecGuru. Section 3 describes
how policies are properties are encoded into bit-vector logic
and the symbolic difference solver is given in Section 4.
SecGuru is evaluated in Sections 5 and 6. Related work
is reviewed in Section 7. Section 8 summarizes the results.

2. SECGURU
The core of SecGuru analysis engine is based on Z3, a

Satisfiability Modulo Theories (SMT) solver, and uses the
bit-vector logic support by Z3. The intuition behind this de-
sign is that firewall and router policies are essentially a set
of constraints over IP addresses, ports, and protocol, each
of which are bit-vectors of varying sizes. Therefore, analysis
questions on these policies can be expressed as bit-vector

Status
Source
Address S

rc
P

o
rt

Destination
Address D

st
P

o
rt

P
ro

to
co

l

Permit 10.20.0.0/19 Any 157.55.252.0/30 Any 6
Deny Any Any 65.52.244.0/27 Any 4

Figure 3: Examples of contracts

logic formulas. As a consequence we represent policies and
queries as logical formulas, and use satisfiability checking to
extract answers. SecGuru relies on (compact) enumeration
of satisfying assignments to provide detailed feedback. Mod-
eling policy analysis questions as logical formulas allows the
analysis to be semantic and agnostic of the low-level device
syntax for access control.

SecGuru features two modes: contract validation and
change-impact analysis (Figure 2).

Contract Validation
A contract is a property that should be preserved by a policy.
It basically describes a set of traffic patterns that should be
allowed or denied by the policy. For example, the Figure 3
below describes two contracts. The first contract describes
a traffic pattern that should be accepted by the policy, and
the second contract describes a traffic pattern that should
be denied by the policy. Note that the contracts are agnostic
of the low-level device syntax.

In the contract validation mode, SecGuru accepts a pol-
icy, (P), and a contract, (C), as input and provides one of
the following results as output:

1. C → P : The contract is preserved by the policy, i.e.,
the set of all traffic patterns described by C is a subset
of the set of all traffic patterns accepted by the policy.

2. C → ¬P : The contract is not preserved by the policy,
i.e., traffic patterns accepted by C are denied by P .

3. C ∧P : A proper subset of traffic patterns described in
C is contained in the policy.

The contract validation mode can also be used as a mecha-
nism to query the policy for information. When the response
is (1) or (2), SecGuru may be additionally instructed to
provide a listing of the specific rules that contributed to the
decision. This may be useful for debugging problems with
the policy. When the response is (3), SecGuru provides a
compressed representation of this set.

The contract validation mode is particularly useful for
maintaining complex policies. As each contract defines a
property that should be preserved by the policy and is dis-
connected from the actual implementation, i.e., the low-level
device syntax, it can be used as a regression test suite. New
contracts can be added with the evolution of policies to im-
prove the coverage of the policies. Contract validation can
be performed prior to each update to make sure that updates
preserve the essential properties.

Change-Impact Analysis
A common policy analysis scenario in Azure is ascertaining
the impact of changes to a policy. Given a policy P1 and a
policy P2, what is the impact of changing from policy P1 to

policy P2?. In the change-impact analysis mode, SecGuru
accepts a policy P1 and a policy P2 as input and provides
one of the following results as output:

1. P1 ≡ P2: Both P1 and P2 accept the same set of traffic
patterns and reject the same set of traffic patterns.

2. P1 6≡ P2: P1 and P2 differ in the set of traffic patterns
that they accept and reject. In addition, SecGuru
also provides the following summary:

• P1 ∧ ¬P2: Set of traffic patterns accepted by P1,
but not P2.

• ¬P1 ∧ P2: Set of traffic patterns rejected by P1,
but accepted by P2.

In effect, this mode provides a semantic difference between
the two policies, and can be used for evaluating changes to
the policy and also for ascertaining how a policy has drifted
away from the actual.

SecGuru as a Production Monitoring Service
Given the impact on both security and availability, Azure
requires a pro-active and real-time method for detecting and
fixing errors in the network connectivity policies. Thus,
we have developed a monitoring infrastructure leveraging
SecGuru for continuously validating network policies. The
infrastructure is referred to as Azure network monitor
(WaNetMon). Figure 4 contains a high-level architectural
overview.

WaNetMon is designed as a real-time event-stream pro-
cessing application. for this purpose. The monitoring
servers that are part of WaNetMon poll network devices
at regular intervals, collect configurations, and push them to
an event stream called the configuration stream. Changes
to the configurations create an update event in the stream.
Similarly, policy contracts (device agnostic) for various de-
vices types are stored in a database. The update events from
the configuration stream triggers SecGuru to validate the
updated configurations against their respective contracts,
and pushes the results of validation into the device valida-
tion stream. WaNetMon features both reports and alerts
based on the validation stream. Alerts raised due to vali-
dation failures are queued up for repair. The alert contains
the detailed semantic difference that can be used to auto-
matically deduce the changes needed to correct the policy
configuration.

The next section describes in more detail how policies and
queries are encoded into bit-vector logic and how semantic
differences are enumerated succinctly.

3. FROM POLICIES TO BIT-VECTORS
We show how policies are directly encoded as predicates

expressed in bit-vector logic.

3.1 Policies as Predicates
Bit-vectors are convenient for encoding IP headers. An

IPv4 address is a 32 bit number and ports are 16 bit num-
bers. Protocols are also numerals using 16 bits. We can
therefore write down each filter as a predicate with parame-
ters that range over bit-vectors (32-bit, or 16-bit numerals).

For example, r1 and r5 from Figure 1 have associated pred-
icates:

r1 :
(10.20.0.0 ≤ srcIp ≤ 10.20.31.255) ∧
(157.55.252.0 ≤ dstIp ≤ 157.55.252.255) ∧
protocol = 6

r5 :
(65.52.244.0 ≤ dstIp ≤ 65.52.247.255)∧
protocol = 4

We use ri(~x) to refer to the predicate associated with
the i’th rule in a policy. The tuple ~x abbreviates
〈srcIp, srcPort , dstIp, dstPort , protocol〉. We use r.status to
access the status field of a rule. It is either Allow or Deny.

The meaning of a policy P is defined as a predicate P (~x)
that evaluates to true when a packet with header ~x is al-
lowed to pass through. Policies are given different semantics
depending on where they are used. Hypervisor packet fil-
ters use a Deny Overrides convention. Router firewalls use
a First Applicable convention. We summarize the semantics
of policies according to these two conventions.

Definition 1 (Deny Overrides Policies). Let
Allow = {r ∈ P | r.status = Allow} and likewise
Deny = {r ∈ P | r.status = Deny}. The meaning of P with
the Deny Overrides convention is the formula (linear in the
size of the policy):

P (~x) = (
∨

r∈Allow

r(~x)) ∧ (
∧

r∈Deny

¬r(~x))

Thus, a packet is admitted if some Allow rule applies and
none of the Deny rules apply.

Router firewall policies use the first applicable rule. Sup-
pose a firewall has rules r1, . . . , rn that are either Allow or
Deny rules, then the meaning is defined (linear in the size
of the policy) by induction on n:

Definition 2 (First Applicable Policies). Define
P , Pi (for 0 ≤ i < n) and Pn as:

P (~x) = P1(~x)

Pi(~x) = ri(~x) ∨ Pi+1(~x) if ri.status = Allow

Pi(~x) = ¬ri(~x) ∧ Pi+1(~x) if ri.status = Deny

Pn(~x) = false

3.2 Solving Bit-vector Logic formulas
We showed how policies correspond to predicates over bit-

vectors. Both policies using the Deny Overrides and the
First Applicable semantics correspond to logical formulas.
The predicates treat the parameters as bit-vectors and use
comparison (less than, greater-than, equals) operations on
the bit-vectors as unsigned numbers. Modern SMT solvers
contain efficient decision procedures for bit-vector logic. Bit-
vector logic expressive: it captures the operations that are
common on machine represented fixed-precision integers,
such as modular addition, subtraction, multiplication, bit-
wise logical operations, and comparisons. The solvers lever-
age pre-processing simplifications at the level of bit-vectors
and most solvers reduce formulas to propositional satisfia-
bility where state-of-the-art SAT solving engines are used.
We illustrated a direct encoding into bit-vector logic that is
loss-less. The algorithms for solving bit-vector formulas is
opaque. In the worst case the underlying SMT solver could
use an algorithm that is asymptotically much worse than

Database

Network Devices

Configuration

Stream

Contract

Stream

DCL
ACL

Validation

Z3 Theorem Prover

Device Validation

Stream

Database

Alerts

+

Reporting

Real time event-stream processing application

SkyNet Network Monitoring Infrastructure

Figure 4: Continuous validation of network connectivity policies in production using SecGuru.

algorithms that have been specifically tuned to policy anal-
ysis (as for instance developed in [1, 4]), but as our evalua-
tion shows, our approach easily scales an order of magnitude
beyond what is required for modern data centers.

3.3 Leveraging SMT solver features
Encoding into bit-vector logic is flexible and high-level,

but modern SMT solvers also provide features that are in-
strumental in solving problems efficiently. To give an exam-
ple, one problem addressed in related work is to determine
whether policies contain redundant rules [33]. A direct so-
lution using our approach is to translate the original policy
to a formula P and for each rule translate a policy without
that rule into a formula P ′ and check for equivalence. The
number of independent equivalence checks is linear in the
number of rules. A more refined approach leverages incre-
mentality supported by Z3 works by translating P into a
formula P ′ where each Allow rule ri(~x) formula is replaced
by the strengthened formula pi ∧ ri(~x), and each Deny rule
rj is weakened to pj ∨ rj(~x), where pi, pj are fresh predi-
cates. We then assert the formula P 6≡ P ′. Suppose we
want to check if the rule Allow rule rk is redundant, then
we check if the resulting state is satisfiable under the as-
sumptions ¬pk ∧ (

∧
pi∈Allow\{pk}

pi) ∧ (
∧

pj∈Deny ¬pj). The

formula P 6≡ P ′ is asserted only once; and the underlying
engine ensures that only state that depends on the changed
assumptions has to be updated between rounds. We ob-
served the incremental version to be more than twenty times
faster for policies with a few hundred rules.

3.4 Complexity
We are not aware of a rigorous complexity analysis of fire-

wall queries. Let us here note that checking difference of two
Deny Overrides firewall policies is NP hard if the number of
columns is unbounded: Given a clause Ci : x∨y∨u we can as-
sociate the rule ri : x ∈ [0 : 0]∧y ∈ [1 : 1]∧z ∈ [0 : 1]∧u ∈ [0 :
0], so a set of clauses C1∧ . . .∧Cn is satisfiable iff the follow-
ing policies P1 : x ∈ [0 : 1]∧y ∈ [0 : 1]∧z ∈ [0 : 1]∧u ∈ [0 : 1]
and P2 : r1, . . . , rn (of allow rules) are different. The num-
ber of columns in firewalls is of course fixed, and several
data-structures and related polynomial time algorithms are
reported in the literature. For instance [5] compiles simple
firewall rules into tries. Our approach with encoding into
bit-vector logic side-steps concerns about devising domain
specific efficient algorithms. Compilation into bit-vector for-
mulas is linear and SecGuru admits arbitrary queries that

can be expressed over bit-vector logic.

4. ALL BV-SAT
Given two policies P1(~x) and P2(~x) what is their dif-

ference? We can of course characterize the differences as
P1(~x) ∧ ¬P2(~x) and ¬P1(~x) ∧ P2(~x), but this says little to
a system administrator about which packets are allowed by
one and not the other. We would like a way to enumerate
packets that belong to the differences in a succinct way. For
this purpose we develop three increasingly more sophisti-
cated algorithms for enumerating such packets in progres-
sively more compact form. The algorithms work on arbi-
trary bit-vector formulas. We will use ϕ[~x] for an arbitrary
bit-vector formula with free variables ~x.

The first is Algorithm All-SAT provided in Algorithm 1.
It is based on enumerating all satisfiable values for a formula
ϕ in a straight-forward way. It is the default solution to the
All-SAT [6] problem when used with modern SAT solvers.
The second, Algorithm All-BVSAT in Algorithm 2, enumer-
ates cubes of values that satisfy ϕ. A cube is a cross-product
of intervals. This representation corresponds closely to how
firewall rules are represented in policies. The third, Algo-
rithm All-BVSAT? in Algorithm 4, generalizes enumeration
of cubes to multi-cubes. A multi-cube is a cross-product of
sets of intervals. Both cubes and multi-cubes provide read-
able ways to inspect properties of policies. Multi-cubes, may
however, provide an exponentially more succinct representa-
tion of differences than cubes. It is also easy to read off the
number of values that satisfy a cube and (a multi-cube): it
is the product of values in each interval (set). Besides being
useful for analyzing firewall policies our algorithms can also
be used in general for counting the number of solutions to
a formula. This problem is also known as #SAT [12]. The
use of multi-cubes is a particular good fit for firewall policies
due to the way policies are normally specified over address
ranges.

4.1 All-SAT
Algorithm 1 contains a straight-forward All-SAT algo-

rithm. It queries a given formula B in a loop. It adds a
disjunction of new disequalities to B in every loop iteration
(here represented as a single disequality between a vector of
values and a vector of variables). SAT and SMT solvers sup-
port incrementally adding constraints, so that in each itera-
tion only the new disequality needs to be added to the state
of the solver. Don’t cares in a satisfying assignment also

can be found efficiently and dropped, resulting in stronger
constraints and fewer iterations of the main loop. In spite of
support for adding constraints incrementally, basic All-SAT
enumeration suffers in practice from degraded performance
as the set of disequalities grows. The enumeration obtained
from an All-SAT loop may also be overly verbose. The next
method address this limitation.

Algorithm 1: ALL-SAT

Input: Formula ϕ[~x].
Output: values ~v1, ~v2, . . . , ~vk, s.t.

ϕ ≡ ~x = ~v1 ∨ ~x = ~v2 ∨ . . . ∨ ~x = ~vk
B ← ϕ;
k ← 0;
while B is satisfiable do

k ← k + 1;
~vk ← a satisfying assignment to B;
B ← B ∧ (~x 6= ~vk);

end
return ~v1, ~v2, . . . , ~vk;

Algorithm 2: ALL-BVSAT

Input: Formula ϕ[~x].

Output: Sets ~S1, ~S2, . . . , ~Sk, s.t.

ϕ ≡ ~x ∈ ~S1 ∨ ~x ∈ ~S2 ∨ . . . ∨ ~x ∈ ~Sk

B ← ϕ;
k ← 0;
while B is satisfiable do

k ← k + 1;
~v ← a satisfying assignment to B;
~Sk ← {v1} × . . .× {v|~v|};
foreach index i = 1 . . . |~v| do

~Sk ←Min-BVSAT(ϕ, ~Sk, i);
~Sk ←Max-BVSAT(ϕ, ~Sk, i);

end

B ← B ∧ (~x 6∈ ~Sk);

end

return ~S1, ~S2, . . . , ~Sk;

4.2 All-BVSAT using cubes
Enumerating one solution at a time is unsatisfactory when

many solutions can be represented succinctly using cubes.
Let us illustrate the idea of enumerating solutions as cubes
on an example. We keep the query and values abstract to
retain the generality of the algorithm.

1. Find initial ip0, port0, such that (ip0 = ip) ∧ (port0 =
port)⇒ ϕ.

2. Maximize interval [loip , hiip], such that ip0 ∈
[loip , hiip] and loip ≤ ip ≤ hiip ∧ (port0 = port) ∧ ¬ϕ
is unsatisfiable.

3. Maximize next interval [loport , hiport], such that
port0 ∈ [loport , hiport] and loip ≤ ip ≤ hiip ∧ loport ≤
port ≤ hiport ∧ ¬ϕ is unsatisfiable.

4. Produce the set of intervals [loip , hiip] × [loport , hiport]
All pairs of values in these two intervals satisfy ϕ.

5. Update the query to ϕ := ϕ ∧ ¬(loip ≤ ip ≤ hiip ∧
loport ≤ port ≤ hiport) and repeat the loop.

The walk-through assumed there was some way to maxi-
mize intervals efficiently. We provide an algorithm for max-
imizing intervals in Algorithm 3. We rely on some notation
for describing the algorithms.

We use S to range over sets of bit-vector values of a given
size. The representation that will be convenient for the sets
S is as a union of intervals. So for example S := [0..3]∪ [6..7]
is a set with the values {0, 1, 2, 3, 6, 7}. The predicate x ∈ S
expands to a disjunction lo1 ≤ x ≤ hi1∨ . . .∨ lon ≤ x ≤ hin,
where S = [lo1..hi1]∪. . .∪[lon..hin]. The predicate > is true
on all values (bit-vectors). It also is used to represent the
set that contains all bit-vector values for a given length, so
x ∈ > expands to true. When S is a non-empty set then
minS is the minimal element in S. ~S is a cross-product of
sets S1×· · ·×Sn. ~S[i 7→ S] is the product S1×· · ·×Si−1×
S×Si+1× · · ·×Sn; in other words, it is the product ~S with

the ith set replaced by S. The predicate ~x ∈ ~S is short for∧|~x|
i=1 xi ∈ Si.
Algorithm 2 enumerates all solutions to a formula ϕ as

cubes (products of intervals). In each iteration it selects
some value ~v that is not yet covered by any of the existing
sets. It then widens the value ~v as much as possible to
intervals.

It relies on a procedure Min-BVSAT and a symmetric
variant Max-BVSAT for extending a satisfying interval
maximally down and up. Algorithm 3 provides an imple-
mentation of Min-BVSAT. It first checks if there is an
evaluation to the parameters ~x such that the value of xi is
below minSi and that satisfies ¬ϕ. As long as it is the case,
it checks if there is a value still below minSi, but above the
previous value. This process ensures that the post-condition
is established: that all values in ~S[i 7→ Slo] satisfy ϕ and
that Slo is extended maximally downwards with values that
maintain ϕ. By induction on i, this implies that the result-
ing cube ~Sk is maximum: it is not possible to extend any of
the faces without loosing the property of satisfying ϕ.

The proposed implementation uses linear search, where
the bound on the number of loop iterations is given by the
size of the domain of xi. If xi is a 32-bit bit-vector then
the potential number of iterations is in the order of 232.
Nevertheless, when profiling these algorithms in the con-
text of All-BVSAT for production policies we found they
converged in average within ten steps for each cube. Nev-
ertheless, we had to use a binary search based implementa-
tion of these procedures for All-BVSAT?. Binary search is
asymptotically much more efficient (linear in the number of
bits instead of exponential). We observed that the average
number of steps required was five.

Algorithm 3: Min-BVSAT. Extend Si downwards.

Input: Formula ϕ[~x], sets ~S s.t. for every ~v ∈ ~S, ϕ[~v], and

index i into ~S.
Output: ~S[i 7→ Slo], such that Slo ⊇ Si, and for every

~v ∈ ~S[i 7→ Slo], ϕ[~v]. If minSlo > 0, then there is

some value ~w ∈ ~S[i 7→ {minSlo−1}], such that ϕ[~w] is
false.

~S′ ← ~S[i 7→ >];
l← minSi;

B ← ¬ϕ ∧ ~x ∈ ~S′ ∧ xi < l;
while B is satisfiable do

l← the satisfying assignment to xi;
B ← B ∧ l < xi;

end

return ~S[i 7→ Si ∪ [l + 1..minSi]]

4.3 All-BVSAT using multi-cubes
We can in some cases do exponentially better than enu-

Algorithm 4: ALL-BVSAT?

Input: Formula ϕ[~x].

Output: Sets ~S1, ~S2, . . . , ~Sk, s.t.

ϕ ≡ ~x ∈ ~S1 ∨ ~x ∈ ~S2 ∨ . . . ∨ ~x ∈ ~Sk

B ← ϕ;
k ← 0;
while B is satisfiable do

~v ← a satisfying assignment to B;
foreach index j = 1 . . . k do

~Sj ← Extend(~Sj , ~v);

B ← B ∧ (~x 6∈ ~Sj);

end
if ϕ ∧ B ∧ ~x = ~v is still satisfiable then

k ← k + 1;
~Sk ← {v1} × . . .× {v|~v|};
foreach index i = 1 . . . |~v| do

~Sk ←Min-BVSAT(ϕ, ~Sk, i);
~Sk ←Max-BVSAT(ϕ, ~Sk, i);

end

B ← B ∧ (~x 6∈ ~Sk);

end

end

return ~S1, ~S2, . . . , ~Sk;

merating cubes by using multi-cubes. Instead of enumerating
product of intervals, enumerate products of sets of intervals.
Policy rules may contain multi-cubes with up to four ranges
corresponding to both source and destination addresses and
ports. Multi-cubes can be much more succinct than cubes,
for example the set

([0..3] ∪ [6..7])× · · · × ([0..3] ∪ [6..7])︸ ︷︷ ︸
N times

requires 2N cubes to represent. The algorithm that we will
describe next requires at most N multi-cubes to reconstruct
the above set.

The idea behind the algorithm can be explained as follows.
The algorithm extends All-BVSAT by trying to insert new
values into previous cubes (that then become multi-cubes).
It first relies on finding some value ~w that has not yet been
included in any of the existing multi-cubes. Then, for each
multi-cube Sj and each index i into ~w it determines whether
~Sj can be extended by using wi and the existing sets of

values from ~Sj in positions different from i. So it checks

whether the vector ~S′, where ~S′ is obtained from ~Sj by re-
placing the i’th set by {wi}, implies ϕ (or equivalently, has
an empty intersection with ¬ϕ). If it does, then the algo-

rithms for extending ~S′ at the i’th index can be applied.

Algorithm 5: Extend. Extend set assignment.

Input: Set ~S and formula ϕ such that ϕ[~v] for every ~v ∈ ~S. A

vector ~w, such that ~w 6∈ ~S and ~w satisfies ϕ
foreach index i = 1, . . . , |~w| do

~S′ ← ~S[i 7→ {wi}];
if ¬ϕ ∧ (~x ∈ ~S′) is unsatisfiable, and wi 6∈ Si then

~S′ ←Min-BVSAT(ϕ, ~S′, i);
~S′ ←Max-BVSAT(ϕ, ~S′, i);
~S ← ~S[i 7→ Si ∪ S′

i];

end

end

return ~S;

We should note that our algorithm may not find the small-

Policy
Templates

Datacenter
Environment

Settings

Contract
Generator

Contracts

Network Devices

DCL

Alerts

Figure 5: Workflow for creating contracts and vali-
dating policies.

est multi-cube representation of the satisfying assignments
to ϕ, but it finds one within a polynomial overhead. To
see this, let ~S1, . . . , ~Sk be an arbitrary decomposition into
multi-cubes. Without loss of generality consider ~S1 and sup-
pose it has up to n intervals in each dimension. There are
up to n covers of the set of disjoint intervals. For each such
cube it takes at most

∑
i |~S1i| (where ~S1i is the number of

intervals in the ith coordinate of ~S1) iterations to cover all

other cubes in ~S1.

5. EXPERIENCE
We now describe the different experiences and the benefits

from using SecGuru in our environment.

5.1 Continuous Validation and Monitoring
Network policies in Azure are under constant flux. The

high-level policies themselves do not change significantly.
However, the instantiation of these policies using IP ad-
dresses changes frequently and also varies depending on the
environment. For example, all management interfaces have
a common restrictive network policy. However, the IP ad-
dresses of these services vary depending on the environment.
In addition, when capacity is increased, there is a corre-
sponding increase in the IP addresses assigned to the man-
agement services. All these changes result in a constant flux
in the policies deployed in the various devices.

While coping with these changes, we also need to assure
both the availability and security of services. The number of
places where the policies are enforced dramatically increases
the scale and extent of the problem. An important security
policy is to make sure that private management interfaces
are not exposed beyond necessary. For example, connectiv-
ity to management interfaces of network devices is tightly
controlled to trusted services. If such interfaces are acciden-
tally exposed to potentially malicious users, then they will
become a target for exploitation.

Thus, Azure continuously validates network policies from
the time they are initially provisioned in WaNetMon (Re-
call Figure 4). In our settings, policies vary depending on
the type of devices. For example, routers enforce a type
of policy, while a hypervisor packet filter enforces a differ-
ent type of policy. The concrete policy varies depending on
the environment in which the devices are deployed. There-
fore, WaNetMon uses a workflow described in Figure 5 for
validating the policies. WaNetMon has an inventory of
contract templates that capture the security and availabil-
ity properties of the policy, and creates custom contracts

based on the environment settings. WaNetMon uses these
custom contracts to continually validate policies.

We also leverage the same contracts as a regression test
suite to ensure the sanity of routine maintenance operations
for network policies.

SecGuru has had a measurable positive impact in pro-
hibiting policy misconfigurations. There were several in-
stances where an incorrect change was avoided from using
SecGuru as a regression test suite. In addition, alerts from
continuous validation of policies using SecGuru in WaNet-
Mon help us proactively repair policy deviations from the
normal. Such deviations are commonly the result of admin-
istrative operations performed for debugging live-site issues.

5.2 Maintaining Complex Legacy Policies
The previous section described using SecGuru to validate

policies that are well understood. However, there are situa-
tions in which complex policies that use rules covering many
different objectives have to be maintained. For example,
we had a legacy Edge ACL that comprised more than three
thousand rules. It was an onerous challenge maintaining this
ACL manually. The ACL evolved over several years through
an ad hoc manual process. In addition, growth and churn
in IP address allocations resulted in continuous updates to
this ACL introducing further complexity. The ACL was not
amenable to simple human inspection, and often updates led
to misconfigurations and connectivity outages.

Because of the huge business impact of the misconfigura-
tions, we needed an incremental method for making required
updates and simplifications to the ACL. More concretely, we
needed a method to ensure that changes to the policy do not
violate essential security or availability properties, and that
the impact of the ACL change is along the intent. For ex-
ample, we may identify several redundant rules in the ACL
and remove them. Alternatively, we may add rules to allow
new IP address ranges. For each of these updates, we need
the confidence in the newly deployed ACLs.

We leveraged SecGuru as a means of running a regres-
sion test suite for the edge ACL. In SecGuru’s contract
validation mode, the contracts essentially act as regression
test cases for the ACL. We divided the connectivity that the
Edge enables into two buckets, namely connectivity that is
well understood and don’t cares. For the cases, that are
well understood, we created contracts. This is essentially an
under-specification of the policy. ACL changes were done
to enable new connectivity, or cleanup existing don’t cares.
Prior to making these changes, we run the regression test
suite. This test gave us the confidence that we are not break-
ing the connectivity that is known and well understood. Af-
ter making the change, we add additional contracts to the
regression test cases to cover the most recent updates.

Extraction of contracts helped documenting and under-
standing the existing ACL, and an iterative process around
this model led to massive simplifications. We were able to
reduce the ACL to less than 1000 lines without any major
connectivity outages or business impact.

5.3 Coping with Diverse Semantics
SecGuru’s semantic and symbolic analysis have proved

to be useful for coping with diverse semantics in a number
of cases, and we highlight this utility using an additional ex-
ample. Most network devices allow a stateless implementa-
tion of stateful ACLs. In Figure 6, Policy1 allows all traffic

S
r
c

A
d
d
r

S
r
c

P
o
r
t

D
s
t
A
d
d
r

D
s
t
P
o
r
t

P
r
o
t
o
c
o
l

T
C
P

F
la
g
s

Any Any Any Any TCP RST
Any Any Any Any TCP ACK
Any Any Any Any TCP FIN-ACK
Any Any Any Any TCP PSH-ACK
Any Any Any Any TCP RST-ACK
Any Any Any Any TCP URG-ACK

Table 1: What is additionally allowed by Policy2 in
Figure 6?

from source address range 172.64.0.0/15. Note the addi-
tional highlighted rule in Policy2. This rule additionally
allows any TCP packet that is part of an ongoing commu-
nication. In the TCP protocol, all packets that are part of
an ongoing communication have either the “ACK” or “RST”
packet set in the TCPFlags field. The highlighted rule in-
structs the router to allow any packet that has either the
“ACK” or “RST” flag set. Thus, Policy2 allows the target
to communicate with anybody, and the return traffic will
be permitted per the highlighted. However, inbound con-
nections are permitted only from 172.64.0.0/15. SecGuru
models the precise semantics using bit-vector logic. Table
1 shows the drift report that lists all the additional traffic
pattern that Policy2 allows, and it shows that the policy ad-
ditionally allows all valid TCP packets except SYN packets.

6. BENCHMARKS
We evaluate SecGuru using production policies. In ad-

dition, we also created additional benchmarks to exercise
SecGuru in worst-case scenarios and beyond the scale of
policies we have seen in production. In the following we de-
scribe the characteristics of firewall and router policies in
our benchmark. By design, our benchmarks do not add re-
dundant rules that may be subject to trivial simplifications.
We will make our benchmarks available publicly when the
paper is published.

6.1 Firewall Policies
A prevalent security practice in configuring firewall poli-

cies is to follow the “default deny” [11] strategy. Default-
deny policies deny everything by default and allow only traf-
fic patterns that are explicitly allowed, and this is in line
with the principle of fail-safe defaults [27]. Our benchmarks
focus only on such policies.

In default-deny policies, we observe that it is common
to have a combination of allow and deny rules such that
an allow rule permits connectivity to a wide-range of IP
addresses, and deny rules block connectivity to a smaller
subset of this range for specific protocols or ports. Table
2 describes such a sequence. The first rule in the table al-
lows unrestricted connectivity for entire range of addresses
described by 128.230.0.0/16. The second rule denies TCP
protocol for 4 IP addresses described by 128.230.33.42/30,
and the third rule denies any connectivity on ports 100−200
for IP addresses described in 128.230.33.64/30.

We synthetically generate these patterns as follows. The
address ranges to be used for the source and destination
IP addresses, the port ranges to be used for the source and
destination ports, and the protocol ranges are all provided as

1 permit tcp 172.64.0.0/15 any 1 permit tcp any any established

2 permit tcp 172.64.0.0/15 any

Figure 6: Stateless implementation of a stateful ACL. Policy1 (left-handside example) uses a stateless ACL,
but Policy2 right-handside example additionally used the highlighted rule to mimic statefulness.

Action S
r
c

A
d
d
r

S
r
c

P
o
r
t

Dst Addr D
s
t
P
o
r
t

P
r
o
t
o
c
o
l

ALLOW ? ? 128.230.0.0/16 ? ?
DENY ? ? 128.230.33.42/30 ? TCP
DENY ? ? 128.230.33.64/30 100-200 ?

Table 2: An example pattern of allow and deny rules

input. Then, an allow rule is created by picking a random
traffic pattern from the allowed range. From this traffic
pattern, a set of traffic patterns are picked at random to
create block rules. We continue to generate such patterns
until we have the desired number of rules.

We also point out that block rules whose address range
does not overlap with an existing allow rule are redundant
in a default-deny policy. We do not create such rules for our
benchmark policies.

6.2 Router Policies
We did not come across a representative pattern of rules

in router policies that could be of relevance to a benchmark.
Router policies are first applicable policies, i.e., the first ap-
plicable rule in the policy overrides all other rules. First
applicable policies allow an administrator to make incre-
mental changes to the policy without having to redesign the
complete policy. For example, let us consider that an ad-
ministrator encounters a new traffic pattern that should be
allowed (or denied) and it is currently denied (or allowed)
by the policy. Then, he may append a new rule to the begin-
ning of the policy to enable this scenario without redesigning
the policy. In our production environments, we make only
systematic changes to router policies and avoid such ad hoc
practices.

We believe first applicable policies comprising a random
sequence of allow and deny rules would be an appropriate
benchmark for evaluation. Therefore, we designed such poli-
cies. Similar to our generation method for firewall policies,
the address ranges to be used for the source and destination
IP addresses, the port ranges to be used for the source and
destination ports, and the protocol ranges are all provided
as input. Then, we randomly pick traffic patterns from the
allowed ranges to create allow or block rules until we have
created the desired number of rules.

In first-applicable policies, rules whose address range is a
subset of preceding rule are redundant. We avoid adding
such redundant rules to the benchmarks.

6.3 Experimental Methodology
We performed two experiments. The first experiment

evaluated the scalability of contract validation, and the sec-
ond experiment evaluated the scalability of change-impact
analysis. We used a computer with an Intel dual-core pro-
cessor with a clock rate of 2.8GHz and 4GB RAM. For both
experiments, we used both real production policies and a set

of realistic synthetic policies.
We created synthetic policies with the number of rules

ranging between 100 and 15000. For each policy, we created
five contracts, wherein each contracts checks for connectivity
to a random choice of IP address ranges. We report the
average time for evaluating a contract on each policy. In the
second experiment, we evaluated the scalability of change-
impact analysis in SecGuru. We created pairs of synthetic
policies of sizes ranging between 100 and 15000 rules. Each
pair comprises two unrelated policies that do not have any
intersecting traffic patterns, and represents the worst-case
scenario for change-impact analysis. We report the time
taken to analyze the difference between such policy pairs.
Our results show that SecGuru has acceptable performance
in all cases.

6.4 Results
Table 3 contains the result of our experimental evaluation.

The firewall and router policies that we observed in Azure
contained between a few hundred to a few thousand rules.
SecGuru was efficient in analyzing these policies. For these
policies, SecGuru took an average time of 0.3 seconds for
contract validation, an average time of 1.5s for enumerating
cubes, and an average time of 3s for enumerating multi-
cubes.

The time taken by SecGuru to analyze the synthetic
benchmarks quickly increases with the number of rules. This
is expected because the synthetic policies are worst-case sce-
narios for SecGuru. However, these worst-case scenarios
are less likely to occur in practice.

For contract validation, SecGuru’s performance is still
acceptable. For synthetic policies whose sizes are similar to
our production policies, the time taken for validation is still
a fraction of a second. For larger policies, the time taken is
still under a minute.

For change-impact analysis on synthetic policies,
SecGuru is slower when compared to production policies.
This is also expected because the pair of policies in the
synthetic benchmarks are totally unrelated and this sce-
nario is the worst-case for both the cube and multi-cube
enumeration. These scenarios are highly unlikely because
we always compare policies that are related to one another.
In addition, a number of packet filtering devices have a
static limit on the number of rules that can be added.
Therefore, it is very unlikely that we need scalability beyond
1000 rules.

A key strength of this approach is that we have a gen-
eral purpose analysis engine that can be used to analyze
all types of network connectivity restrictions irrespective of
their semantics. This is particularly suited for a complex
environment like Azure where we have to deal with a num-
ber of different policies with varying semantics. Once the
policies are faithfully encoded as bit-vector logic formulas,
we can apply the normal policy operators without having to
worry about their semantics.

Contract Validation Change-Impact Analysis
Cubes Multicubes

#Rules Firewall
Policies

Router
Policies

Firewall
Policies

Router
Policies

Firewall
Policies

Router
Policies

Real 200-
1000

0.3s 0.3s 1.5s 1.5s 3s 3s

Policies
100 0.39s 0.305s 6s 7s 6s 8s

Synthetic 500 0.483s 0.270s 36s 34s 40s 48s
policies 1000 0.811s 0.315s 1m 20s 1m 18s 1m 18s 1m 40s

5000 5.272s 0.7s 7m 8s 7m 33s 7m 14s 11m 16s
10000 15.74s 1.25s 20m 25s 21m 12s 16m 40s 37m 23s
15000 38.48s 1.8s 32m 52s 33m 20s 28m 5s 59m 7s

Table 3: Evaluation of SecGuru symbolic analysis engine.

7. RELATED WORK
The Margrave firewall analysis engine [26] encodes firewall

rules and queries into first-order logic. It uses KodKod [29]
to search for finite models. We found that Margrave does
not work on our scenarios: first, Margrave does not produce
the complete differences between policies in a compact way
like SecGuru does. Second, Margrave only supports router
policies, and not the firewall policies in our benchmarks. We
also observed that the current implementation of Margrave
does not adequately scale for some of our large router poli-
cies. However, we hypothesize that our algorithms for enu-
merating solutions compactly may be valuable in the context
of Margrave and related scenarios.

Conformance of firewall configurations with respect to se-
curity policies is checked in [32] using an SMT solver for
the theory of integer linear arithmetic. This is similar to
SecGuru’s contract validation mode. SAT and QBF solvers
are explored more recently [35] for checking firewall proper-
ties and optimizing firewall rules. These approaches also do
not address compact enumeration of solutions.

Formal firewall conformance testing is addressed in [7].
The tool uses the high-level and powerful environment of
Isabelle/HOL to synthesize test-cases from constraint satis-
faction problems that are solved using Z3.

The Vantage tool [4] uses algorithms for enumerating dif-
ferences between policies. Similar to SecGuru it aims at
enumerating traffic patterns compactly that are blocked by
one policy and not the other. Vantage enumerates what
corresponds to cubes, while we introduce the more succinct
representation of multi-cubes and the corresponding enu-
meration algorithms. Vantage [5] uses a trie-based data-
structure to store sets of intervals, taking advantage of how
IP address ranges are represented using a k-bit prefix fol-
lowed by wild card bits. It implements specialized algo-
rithms for computing intersection of rectangles based on the
trie data-structure. These data-structures are essentially
BDDs. BDDs were previously used in [14, 23, 33] for rep-
resenting policies and evaluating queries. Firewall Decision
Diagrams, described in [13], is a variant of BDDs that is
tuned to firewalls. They support compact enumeration of
cubes but not multi-cubes.

Other tools adopt simulation, such as the commercial fire-
wall analyzer AlgoSec [2] based on Fang [25] and its sequel
Lumeta [30]. The tool lets administrators answer queries in-
volving router and firewall configurations. A query may be
of the form whether a machine is accessible. Given a query,
it simulates the traversal of the corresponding packets in the
network, and reports the set of packets that arrived in the
destination. Similarly, a structured firewall query language
is proposed in [21], and custom trie-based data-structures

are developed to index firewall rules and answer queries over
the rules.

Verification tools for access-control policies is an ac-
tive research area. One way of classifying the work is
whether it deals with single or multiple states. For poli-
cies with a single fixed state, related work verifies prop-
erties of the fixed state. This category includes verifica-
tion for access-control policies such as SPKI/SDSI [18] and
XACML [10, 15, 16, 24]. Others consider policies that addi-
tionally have state changes [9, 17, 28]. This work considers
the ARBAC model that admits state changes correspond-
ing to administrative actions granting and/or revoking roles,
and verifies the safety of policies under all sequences of al-
lowed state changes using temportal safety properties (noth-
ing bad happens). Our work belongs in the first fixed-state
category, and is focused on network connectivity restriction
policies.

There is large and growing body of work on modeling the
forwarding state of network, and validating it for correct-
ness of end-end reachability properties [19,20,22,34]. These
tools are focussed on detecting problems such as forwarding
loops and black-holes, and not on semantically validating
the correctness of network connectivity policies. The com-
pact enumeration of drifts proposed in this paper could be
useful for verifying the forwarding state as well.

Google Capirca is a system that facilitates automatic gen-
eration of network ACLs for various platforms such as Cisco
and Juniper. It has an ACL checker module that facilitates
syntactic analysis of the ACL payload. The module is based
on basic string comparisons. It does not offer the types of
semantic analysis that SecGuru provides.

8. SUMMARY
This paper described a declarative static-analysis ap-

proach for analyzing the correctness and consistency of net-
work connectivity policies. Our approach is based on pre-
cisely encoding policies and their analysis questions as bit-
vector logic formulas and solving them using the Z3 con-
straint solver. We implemented our approach in a tool called
SecGuru. The key strength of SecGuru lies in the fact
that it is a general purpose engine that can be used to ana-
lyze several types of network connectivity policies based on
their precise semantics. SecGuru is deployed in Azure,
where it is checking the integrity of hundreds of routers and
firewalls servicing millions of machines. It has had measur-
able positive impact in managing network policies at scale.

9. REFERENCES
[1] Acharya, H. B., and Gouda, M. G. Linear-Time

Verification of Firewalls. In ICNP (2009), pp. 133–140.

[2] Algorithmic Security Inc. Firewall Analyzer:
Make your firewall really safe, 2006. (Whitepaper).

[3] Bellovin, S. M., and Bush, R. Configuration
management and security. IEEE Journal on Selected
Areas in Communications 27 (2009), 268–274.

[4] Bhatt, S., Okita, C., and Rao, P. Fast, Cheap, and
in Control: Towards Pain-Free Security. In USENIX
Systems Administration Conference (2008), pp. 75–90.

[5] Bhatt, S., and Rao, P. Enhancements to the
Vantage Firewall Analyzer. Tech. Rep.
HPL-2007-154R1, HP Laboratories, 2007.

[6] Biere, A., Heule, M., van Maaren, H., and
Walsh, T., Eds. Handbook of Satisfiability, vol. 185 of
Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[7] Brucker, A. D., Brügger, L., and Wolff, B.
hol-TestGen/fw - An Environment for
Specification-Based Firewall Conformance Testing. In
ICTAC (2013), Z. Liu, J. Woodcock, and H. Zhu,
Eds., vol. 8049 of Lecture Notes in Computer Science,
Springer, pp. 112–121.

[8] de Moura, L., and Bjørner, N. Z3: An Efficient
SMT Solver. In TACAS 08 (2008).

[9] Ferrara, A. L., Madhusudan, P., and Parlato,
G. Security Analysis of Access Control through
Program Verification. In CSF (2012), IEEE Computer
Society.

[10] Fisler, K., Krishnamurthi, S., Meyerovich,
L. A., and Tschantz, M. C. Verification and
change-impact analysis of access-control policies. In
ICSE (2005), ACM, pp. 196–205.

[11] Garfinkel, S., and Spafford, G. Practical UNIX
and Internet security. O’Reilly, 1996.

[12] Gomes, C. P., Sabharwal, A., and Selman, B.
Model counting. In Biere et al. [6], pp. 633–654.

[13] Gouda, M. G., and Liu, A. X. Structured firewall
design. Computer Networks 51, 4 (2007), 1106–1120.

[14] Gupta, S., LeFevre, K., and Prakash, A. SPAN:
a unified framework and toolkit for querying
heterogeneous access policies. In HotSec (2009),
USENIX, pp. 5–5.

[15] Hu, H., and Ahn, G. Enabling verification and
conformance testing for access control model. In
SACMAT (2008), ACM, pp. 195–204.

[16] Hughes, G., and Bultan, T. Automated verification
of access control policies using a sat solver. Int. J.
Softw. Tools Technol. Transf. 10, 6 (2008), 503–520.

[17] Jayaraman, K., Ganesh, V., Tripunitara, M.,
Rinard, M., and Chapin, S. Automatic error finding
in access-control policies. In CCS (2011), ACM,
pp. 163–174.

[18] Jha, S., and Reps, T. W. Model Checking
SPKI/SDSI. J. of Computer Security 12, 3–4 (2004),
317–353.

[19] Kazemian, P., Varghese, G., and McKeown, N.
Header space analysis: Static checking for networks.
In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation

(Berkeley, CA, USA, 2012), NSDI’12, USENIX
Association, pp. 9–9.

[20] Khurshid, A., Zhou, W., Caesar, M., and
Godfrey, P. B. Veriflow: Verifying network-wide
invariants in real time. SIGCOMM Comput. Commun.
Rev. (Sept. 2012), 467–472.

[21] Liu, A. X., Gouda, M. G., Ma, H. H., and Ngu,
A. H. H. Firewall Queries. In International
Conference On Principles Of DIstributed Systems
(2004), pp. 197–212.

[22] Mai, H., Khurshid, A., Agarwal, R., Caesar, M.,
Godfrey, P. B., and King, S. T. Debugging the
data plane with anteater. In Proceedings of the ACM
SIGCOMM 2011 Conference (New York, NY, USA,
2011), SIGCOMM ’11, ACM.

[23] Marmorstein, R. M., and Kearns, P. An Open
Source Solution for Testing NAT’d and Nested
iptables Firewalls. In LISA (2005), pp. 103–112.

[24] Martin, E., and Xie, T. A fault model and
mutation testing of access control policies. In WWW
(2007), ACM, pp. 667–676.

[25] Mayer, A. J., Wool, A., and Ziskind, E. Fang: A
Firewall Analysis Engine. In IEEE Symposium on
Security and Privacy (2000), pp. 177–187.

[26] Nelson, T., Barratt, C., Dougherty, D. J.,
Fisler, K., and Krishnamurthi, S. The margrave
tool for firewall analysis. In LISA (Berkeley, CA, USA,
2010), USENIX Association, pp. 1–8.

[27] Saltzer, J. H., and Schroeder, M. D. The
Protection of Information in Computer Systems. Proc.
of the IEEE (1975).

[28] Stoller, S. D., Yang, P., Ramakrishnan, C. R.,
and Gofman, M. I. Efficient policy analysis for
administrative role based access control. In CCS
(2007), ACM, pp. 445–455.

[29] Torlak, E., and Jackson, D. Kodkod: A Relational
Model Finder. In TACAS (2007), pp. 632–647.

[30] Wool, A. Architecting the lumeta firewall analyzer.
In USENIX Security Symposium (2001).

[31] Wool, A. A Quantitative Study of Firewall
Configuration Errors. IEEE Computer 37 (2004),
62–67.

[32] Youssef, N. B. S. B., and Bouhoula, A.
Automatic Conformance Verification of Distributed
Firewalls to Security Requirements. In IEEE ICSC
(2010), pp. 834–841.

[33] Yuan, L., Mai, J., Su, Z., Chen, H., Chuah,
C.-N., and Mohapatra, P. FIREMAN: A Toolkit
for FIREwall Modeling and ANalysis. In SP (2006),
IEEE, pp. 199–213.

[34] Zeng, H., Zhang, S., Ye, F., Jeyakumar, V., Ju,
M., Liu, J., McKeown, N., and Vahdat, A. Libra:
Divide and conquer to verify forwarding tables in huge
networks. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and
Implementation (Berkeley, CA, USA, 2014), NSDI’14,
USENIX Association, pp. 87–99.

[35] Zhang, S., Mahmoud, A., Malik, S., and Narain,
S. Verification and synthesis of firewalls using sat and
qbf. In ICNP (2012), IEEE, pp. 1–6.

