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Abstract

As one of the fundamental infrastructures for cloud
computing, data center networks (DCN) have recently
been studied extensively. =~ We currently use pure
software-based systems, FPGA based platforms, e.g.,
NetFPGA, or OpenFlow switches, to implement and
evaluate various DCN designs including topology de-
sign, control plane and routing, and congestion control.
However, software-based approaches suffer from high
CPU overhead and processing latency; FPGA based plat-
forms are difficult to program and incur high cost; and
OpenFlow focuses on control plane functions at present.

In this paper, we design a ServerSwitch to address the
above problems. ServerSwitch is motivated by the ob-
servation that commodity Ethernet switching chips are
becoming programmable and that the PCI-E interface
provides high throughput and low latency between the
server CPU and I/O subsystem. ServerSwitch uses a
commodity switching chip for various customized packet
forwarding, and leverages the server CPU for control and
data plane packet processing, due to the low latency and
high throughput between the switching chip and server
CPU.

We have built our ServerSwitch at low cost. Our ex-
periments demonstrate that ServerSwitch is fully pro-
grammable and achieves high performance. Specifically,
we have implemented various forwarding schemes in-
cluding source routing in hardware. Our in-network
caching experiment showed high throughput and flexi-
ble data processing. Our QCN (Quantized Congestion
Notification) implementation further demonstrated that
ServerSwitch can react to network congestions in 23us.
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TThis work was performed when Zhigiang Zhou was a visiting stu-
dent at Microsoft Research Asia.

1 Introduction

Data centers have been built around the world for var-
ious cloud computing services. Servers in data centers
are interconnected using data center networks. A large
data center network may connect hundreds of thousands
of servers. Due to the rise of cloud computing, data cen-
ter networking (DCN) is becoming an important area of
research. Many aspects of DCN, including topology de-
sign and routing [13, §, 173, [, 22], flow scheduling and
congestion control [, B], virtualization [I4], application
support [26, 8], have been studied.

Since DCN is a relatively new exploration area, many
of the designs (e.g., [I3, §, 3, 22, [Z, T4, 4]) have de-
parted from the traditional Ethernet/IP/TCP based packet
format, Internet-based single path routing (e.g., OSPF),
and TCP style congestion control. For example, Port-
land performs longest prefix matching (LPM) on destina-
tion MAC address, BCube advocates source routing, and
QCN (Quantized Congestion Notification) [[] uses rate-
based congestion control. Current Ethernet switches and
IP routers therefore cannot be used to implement these
designs.

To implement these designs, rich programmability
is required. There are approaches that provide this
programmability: pure software-based [I'Z, 10U, I6] or
FPGA-based systems (e.g., NetFPGA [23]). Software-
based systems can provide full programmability and as
recent progress [10, 6] has shown, may provide a rea-
sonable packet forwarding rate. But their forwarding rate
is still not comparable to commodity switching ASICs
(application specific integrated circuit), and the batch
processing used in their optimizations introduces high
latency which is critical for various control plane func-
tions such as signaling and congestion control [I3, 22, [7].
Furthermore, the packet forwarding logics in DCN (e.g.,
[5, 03, 2, T4]) are generally simple and hence are
better implemented in silicon for cost and power sav-
ings. FPGA-based systems are fully programmable. But



the programmability is provided by hardware description
languages such as Verilog, which are not as easy to learn
and use as higher-level programming languages such as
C/C++. Furthermore, FPGAs are expensive and are diffi-
cult to use in large volumes in data center environments.

In this paper, we design a ServerSwitch platform,
which provides easy-to-use programmability, low la-
tency and high throughput, and low cost. ServerSwitch
is based on two observations as follows. First, we ob-
serve that commodity switching chips are becoming pro-
grammable. Though the programmability is not compa-
rable to general-purpose CPUs, it is powerful enough to
implement various packet forwarding schemes with dif-
ferent packet formats. Second, current standard PCI-E
interface provides microsecond level latency and tens of
Gb/s throughput between the I/O subsystem and server
CPU. ServerSwitch is then a commodity server plus a
commodity, programmable switching chip. These two
components are connected via the PCI-E interface.

We have designed and implemented ServerSwitch. We
have built a ServerSwitch card, which uses a merchan-
dise gigabit Broadcom switching chip. The card con-
nects to a commodity server using a PCI-E X4 interface.
Each ServerSwitch card costs less than 400$ when man-
ufactured in 100 pieces. We also have implemented a
software stack, which manages the card, and provides
support for control and data plane packet processing. We
evaluated ServerSwitch using micro benchmarks and real
DCN designs. We built a ServerSwitch based, 16-server
BCube [I3] testbed. We compared the performance of
software-based packet forwarding and our ServerSwitch
based forwarding. The results showed that ServerSwitch
achieves high performance and zero CPU overhead for
packet forwarding. We also implemented a QCN con-
gestion control [[] using ServerSwitch. The experi-
ments showed stable queue dynamics and that Server-
Switch can react to congestion in 23us.

ServerSwitch explores the design space of combin-
ing a high performance ASIC switching chip with lim-
ited programmability with a fully programmable mul-
ticore commodity server. Our key findings are as fol-
lows: 1) ServerSwitch shows that various packet for-
warding schemes including source routing can be of-
floaded to the ASIC switching chip, hence resulting in
small forwarding latency and zero CPU overhead. 2)
With a low latency PCI-E interface, we can implement
latency sensitive schemes such as QCN congestion con-
trol, using server CPU with a pure software approach.
3) The rich programmability and high performance pro-
vided by ServerSwitch can further enable new DCN ser-
vices that need in-network data processing such as in-
network caching [4].

The rest of the paper is organized as follows. We elab-
orate the design goals in § . We then present the ar-

chitecture of ServerSwitch and our design choices in § B.
We illustrate the software, hardware, and API implemen-
tations in § . § B discusses how we use ServerSwitch to
implement two real DCN designs, § B evaluates the plat-
form with micro benchmarks and real DCN implemen-
tations. We discuss ServerSwitch limitations and 10G
ServerSwitch in § [. Finally, we present related work in
§ B and conclude in § B.

2 Design Goals

As we have discussed in § [, the goal of this paper is
to design and implement a programmable and high per-
formance DCN platform for existing and future DCN
designs. Specifically, we have following design goals.
First, on the data plane, the platform should provide a
packet forwarding engine that is both programmable and
achieves high-performance. Second, the platform needs
to support new routing and signaling, flow/congestion
control designs in the control plane. Third, the platform
enables new DCN services (e.g., in-network caching) by
providing advanced in-network packet processing. To
achieve these design goals, the platform needs to provide
flexible programmability and high performance in both
the data and control planes. It is highly desirable that the
platform be easy to use and implemented in pure com-
modity and low cost silicon, which will ease the adoption
of this platform in a real world product environment. We
elaborate on these goals in detail in what follows.
Programmable packet forwarding engine. Packet
forwarding is the basic service provided by a switch or
router. Forwarding rate (packet per second, or PPS) is
one of the most important metrics for network device
evaluation. Current Ethernet switches and IP routers can
offer line-rate forwarding for various packet sizes. How-
ever, recent DCN designs require a packet forwarding en-
gine that goes beyond traditional destination MAC or IP
address based forwarding. Many new DCN designs em-
bed network topology information into server addresses
and leverage this topology information for packet for-
warding and routing. For example, PortLand [?2] codes
its fat-tree topology information into device MAC ad-
dresses and uses Longest Prefix Matching (LPM) over its
PMAC (physical MAC) for packet forwarding. BCube
uses source routing and introduces an NHI (Next Hop
Index, §7.1 of [I3]) to reduce routing path length by
leveraging BCube structural information. We expect
that more DCN architectures and topologies will appear
in the near future. These new designs call for a pro-
grammable packet forwarding engine which can handle
various packet forwarding schemes and packet formats.
New routing and signaling, flow/congestion control
support. Besides the packet forwarding functions in the
data plane, new DCN designs also introduce new control



and signaling protocols in the control plane. For exam-
ple, to support the new addressing scheme, switches in
PortLand need to intercept the ARP packets, and redi-
rect them to a Fabric Manager, which then replies with
the PMAC of the destination server. BCube uses adap-
tive routing. When a source server needs to communi-
cate with a destination server, the source server sends
probing packets to probe the available bandwidth of mul-
tiple edge-disjoint paths. It then selects the path with
the highest available bandwidth. The recent proposed
QCN switches sample the incoming packets and send
back queue and congestion information to the source
servers. The source servers then react to the conges-
tion information by increasing or decreasing the sending
rate. All these functionalities require the switches to be
able to filter and process these new control plane mes-
sages. Control plane signaling is time critical and sen-
sitive to latency. Hence switches have to process these
control plane messages in real time. Note that current
switches/routers do offer the ability to process the con-
trol plane messages with their embedded CPUs. How-
ever, their CPUs mainly focus on management functions
and are generally lack of the ability to process packets
with high throughput and low latency.

New DCN service support by enabling in-network
packet processing. Unlike the Internet which consists of
many ISPs owned by different organizations, data centers
are owned and administrated by a single operator. Hence
we expect that technology innovations will be adopted
faster in the data center environment. One such inno-
vation is to introduce more intelligence into data cen-
ter networks by enabling in-network traffic processing.
For example, CamCube [4] proposed a cache service by
introducing packet filtering, processing, and caching in
the network. We can also introduce switch-assisted reli-
able multicast [, K] in DCN, as discussed in [26]. For
an in-network packet processing based DCN service, we
need the programmability such as arbitrary packet mod-
ification, processing and caching, which is much more
than the programmability provided by the programmable
packet forwarding engine in our first design goal. More
importantly, we need low overhead, line-rate data pro-
cessing, which may reach several to tens of Gb/s.

The above design goals call for a platform which is
programmable for both data and control planes, and it
needs to achieve high throughput and low processing
latency. Besides the programmability and high perfor-
mance design goals, we have two additional require-
ments (or constraints) from the real world. First, the
programmability we provide should be easy to use. Sec-
ond, it is highly desirable that the platform is built from
(inexpensive) commodity components (e.g., merchan-
dise chips). We believe that a platform based on com-
modity components has a pricing advantage over non-

commodity, expensive ones. The easy-to-program re-
quirement ensures the platform is easy to use, and the
commodity constraint ensures the platform is amenable
to wide adoption.

Our study revealed that none of the existing plat-
forms meet all our design goals and the easy-to-program
and commodity constraints. The pure software based
approaches, e.g., Click, have full and easy-to-use pro-
grammability, but cannot provide low latency packet pro-
cessing and high packet forwarding rate. FPGA-based
systems, e.g., NetFPGA, are not as easy to program as
the commodity servers, and their prices are generally
high. For example, the price of Virtex-II Pro 50 used
in NetFPGA is 1,180% per chip for 100+ chip quantum
listed on the Xilinx website. Openflow switches provide
certain programmability for both forwarding and control
functions. But due to the separation of switches and the
controller, it is unclear how Openflow can be extended to
support congestion control and in-network data process-
ing.

We design ServerSwitch to meet the three design goals
and the two practical constraints. ServerSwitch has a
hardware part and a software part. The hardware part
is a merchandise switching chip based NIC plus a com-
modity server. The ServerSwitch software manages the
hardware and provides APIs for developers to program
and control ServerSwitch. In the next section, we will de-
scribe the architecture of ServerSwitch, and how Server-
Switch meets the design goals and constraints.

3 Design

3.1 ServerSwitch Architecture

Our ServerSwitch architecture is influenced by progress
and trends in ASIC switching chip and server tech-
nologies. First, though commodity switches are black
boxes to their users, the switching chips inside (e.g.,
from Broadcom, Fulcrum, and Marvell) are becoming in-
creasingly programmable. They generally provide exact
matching (EM) based on MAC addresses or MPLS tags,
provide longest prefix matching (LPM) based on IP ad-
dresses, and have a TCAM (ternary content-addressable
memory) table. Using this TCAM table, they can pro-
vide arbitrary field matching. Of course, the width of the
arbitrary field is limited by the hardware, but is gener-
ally large enough for our purpose. For example, Broad-
com Enduro series chips have a maximum width of 32
bytes, and Fulcrum FM3000 can match up to 78 bytes
in the packet header [3]. Based on the matching re-
sult, the matched packets can then be programmed to
be forwarded, discarded, duplicated (e.g., for multicast
purpose), or mirrored. Though the programmability is
limited, we will show later that it is already enough for
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Figure 1: ServerSwitch architecture.

all packet forwarding functions in existing, and arguably,
many future DCN designs.

Second, commodity CPU (e.g., x86 and X64 CPUs)
based servers now have a high-speed, low latency inter-
face, i.e., PCI-E, to connect to I/O subsystems such as
a network interface card (NIC). Even PCI-E 1.0 X4 can
provide 20Gbps bidirectional throughput and microsec-
ond latency between the server CPU and NIC. Moreover,
commodity servers are arguably the best programmable
devices we currently have. It is very easy to write kernel
drivers and user applications for packet processing with
various development tools (e.g., C/C++).

ServerSwitch then takes advantage of both commod-
ity servers and merchandise switching chips to meet our
design goals. Fig. I shows its architecture. The hard-
ware part is an ASIC switching chip based NIC and a
commodity server. The NIC and server are connected by
PCI-E. From the figure, we can see there are two PCI-E
channels. One is for the server to control and program
the switching chip, the other is for data packet exchange
between the server and switching chip.

The software part has a kernel and an application
component, respectively. The kernel component has
a switching chip (SC) driver to manage the commod-
ity switching chip and an NIC driver for the NICs.
The central part of the kernel component is a Server-
Switch driver, which sends and receives control mes-
sages and data packets through the SC and NIC drivers.
The ServerSwitch driver is the place for various control
messages, routing, congestion control, and various in-
network packet processing. The application component
is for developers. Developers use the provided APIs to
interface with the ServerSwitch driver, and to program
and control the switching chip.

Our ServerSwitch nicely fulfills all our design goals
and meets the easy-to-program and commodity con-
straints. The switching chip provides a programmable
packet forwarding engine which can perform packet
matching based on flexible packet fields, and achieve
full line rate forwarding even for small packet sizes.
The ServerSwitch driver together with the PCI-E inter-
face achieves low latency communication between the
switching chip and server CPU. Hence various rout-
ing, signaling and flow/congestion controls can be well
supported. Furthermore, the switch chip can be pro-
grammed to select specific packets into the server CPU
for advanced processing (such as in-network caching)
with high throughput. The commodity constraint is di-
rectly met since we use only commodity, inexpensive
components in ServerSwitch. ServerSwitch is easy to
use since all programming is performed using standard
C/C++. When a developer introduces a new DCN de-
sign, he or she needs only to write an application to pro-
gram the switching chip, and add any needed functions
in the ServerSwitch driver.

The ability of our ServerSwitch is constrained by the
abilities of the switching chip, the PCI-E interface, and
the server system. For example, we may not be able to
handle packet fields which are beyond the TCAM width,
and we cannot further cut the latency between the switch-
ing chip and server CPU. In practice, however, we are
still able to meet our design goals with these constraints.
In the rest of this section, we will introduce the pro-
grammable packet forwarding engine, the software, and
the APIs in detail.

3.2 ASIC-based Programmable Packet

Forwarding Engine

In this section, we discuss how existing Ethernet switch-
ing chips can be programmed to support various packet
forwarding schemes.

There are three commonly used forwarding schemes
in current DCN designs, i.e., Destination Address (DA)
based, tag-based, and Source Routing (SR) based for-
warding. DA-based forwarding is widely adopted by
Ethernet and IP networks. Tag-based forwarding decou-
ples routing from forwarding which makes traffic engi-
neering easier. SR-based forwarding gives the source
server ultimate control of the forwarding path and sim-
plifies the functions in forwarding devices. Table [l sum-
marizes the forwarding primitives and existing DCN de-
signs for these three forwarding schemes. There are
three basic primitives to forward a packet, i.e., lookup
key extraction, key matching, and header modification.
Note that the matching criteria is independent of the for-
warding schemes, i.e., a forwarding scheme can use any
matching criteria. In practice, two commonly used cri-



Primitives DCN

Output

Table 1: Forwarding schemes and primitives.

teria are EM and LPM. Next, we describe the three for-
warding schemes in detail. We start from SR-based for-
warding.

3.2.1 Source Routing based Forwarding using
TCAM

For SR-based forwarding, there are two approaches de-
pending on how the lookup key is extracted: indexed and
non-indexed SR-based forwarding. In both approaches,
the source fills a series of intermediate addresses (IA) in
the packet header to define the packet forwarding path.
For the non-Indexed Source Routing (nISR), the for-
warding engine always uses the first IA for table lookup
and pops it before sending the packet. For Indexed
Source Routing (ISR), there is an index ¢ to denote the
current hop. The engine first reads the index, then ex-
tracts IA; based on the index, and finally updates the in-
dex before sending the packet. We focus on ISR support
in the rest of this subsection. We will discuss nISR sup-
port in the next subsection since it can be implemented
as a form of tag-based forwarding.

ISR-based forwarding uses two steps for lookup key
extraction. It first gets the index from a fixed location,
and then extracts the key pointed by the index. However,
commodity switching chips rarely have the logic to per-
form this two-step indirect lookup key extraction. In this
paper, we design a novel solution by leveraging TCAM
and turning this two-step key extraction into a single step
key extraction. The TCAM table has many entries and
each entry has a value and a mask. The mask is to set the
masking bits (‘care’ and ‘do-not-care’ bits) for the value.

In our design, for each incoming packet, the forward
engine compares its index field and all IA fields against
the TCAM table. The TCAM table is set up as follows.
For each TCAM entry, the index field (¢) and the IA; field
pointed by the index are ‘care’ fields. All other IA fields
are ‘do-not-care’ fields. Thus, a TCAM entry can simul-
taneously match both the index and the corresponding
IA; field. As both index and IA; may vary, we enumerate
all the possible combinations of index and IA values in

Incoming packet TCAM Table
Scheme Extract | Match Modify Design Port
DA.based | Direct Any No Portland Index| I1A; | 1A, | 1A;
DCell 1 1 1
SWAP/ 5 1 1
Tag-based | Direct Any POP/ -
PUSH ‘Index‘ 1A, ‘ 1A, ‘ 1A3 ‘ 3 1 1
.
Direct | Any POP VL2 ‘ 2 ‘ 1 ‘ 2 ‘ 1 \ 112 2
SR-based Indirect | Any Change BCube 2 2 2
Index
3 2 2

Figure 2: Support indexed source routing using TCAM.

the TCAM table. When a packet comes in, it will match
one and only one TCAM entry. The action of that entry
determines the operation on that matched packet.

Fig. O illustrates how the procedure works. The in-
coming packet has one index field and three IA fields.
IAj is the lookup key for this hop. In the TCAM table,
the white fields are the ‘care’ fields and the gray fields
are the ‘do-not-care’ fields. Suppose there are two pos-
sible IA addresses and the maximum value of the index
is three, there are 6 entries in the TCAM table. For this
incoming packet, it matches the 5th entry where Index=2
and IAs = 2. The chip then directs the packet to output
port 2. In § B, we will describe the exact packet format
based on our ServerSwitch.

This design makes a trade-off between the requirement
of extra ASIC logic and the TCAM space. When there
are n different IA values, the two-step indirect match-
ing method uses n lookup entries, while this one-step
method uses n x d entries where d is the maximum value
of the index. d is always less than or equal to the network
diameter. Modern switching chips have at least thou-
sands of TCAM entries, so this one-step method works
well in the DCN environment. For example, consider
a medium sized DCN such as a three-level fat-tree in
Portland. When using 48-port switches, there are 27,648
hosts. We can use 48 IA values to differentiate these 48
next hop ports. Since the diameter of the network is 6,
the number of TCAM entries is 48 x 6 = 288, which is
much smaller than the TCAM table size.

3.2.2 Destination and Tag-based Forwarding

As for the DA-based forwarding, the position of the
lookup key is fixed in the packet header and the forward-
ing engine reads the key directly from the packet header.
No lookup key modification is needed since the destina-
tion address is a globally unique id. However, the des-
tination address can be placed anywhere in the packet
header, so the engine must be able to perform matching
on arbitrary fields. For example, Portland requires the
switch to perform LPM on the destination MAC address,



whereas DCell uses a self-defined header.

Tag-based routing also uses direct key extraction, but
the tag needs to be modified on a per-hop basis since
the tags have only local meaning. To support this
routing scheme, the forwarding engine must support
SWAP/POP/PUSH operations on tags.

Modern merchandise switching chips generally have
a programmable parser, which can be used to extract ar-
bitrary fields. The TCAM matching module is flexible
enough to implement EM, LPM [3], and range match-
ing. Hence, DA-based forwarding can be well supported.

For tag-based forwarding, many commodity switching
chips for Metro Ethernet Network already support MPLS
(multiple protocol label switching), which is the repre-
sentative tag-based forwarding technology. Those chips
support POP/PUSH/SWAP operations on the MPLS la-
bels in the packet header. Hence we can support tag-
based forwarding by selecting a switching chip with
MPLS support. Further, by using tag stacking and POP
operations, we can also support nISR-based forwarding.
In such nISR design, the source fills a stack of tags to de-
note the routing path and the intermediate switches use
the outermost tag for table lookup and then pops the tag
before forwarding the packet.

3.3 Server Software
3.3.1 Kernel Components

The ServerSwitch driver is the central hub that receives
all incoming traffic from the underlying ServerSwitch
card. The driver can process them itself or it can de-
liver them to the user space for further processing. Pro-
cessing them in the driver gives higher performance but
requires more effort to program and debug. Meanwhile,
processing these packets in user space is easy for devel-
opment but scarifies performance. Instead of making a
choice on behalf of users, ServerSwitch allows users to
decide which one to use. For low rate control plane traf-
fic where processing performance is not a major concern,
e.g., ARP packets, ServerSwitch can deliver them to user
space for applications to process them. Since the ap-
plications need to send control plane traffic too, Server-
Switch provides APIs to receive packets from user-space
applications to be sent down to the NIC chips. For those
control plane packets with low latency requirement and
high speed in-network processing traffic whose perfor-
mance is a major concern, e.g., QCN queue queries or
data cache traffic, we can process them in the Server-
Switch driver.

The SC and NIC drivers both act as the data channels
between the switching chip and the ServerSwitch driver.
They receive packets from the device and deliver them to
the ServerSwitch driver, and vice versa. The SC driver
also provides an interface for the user library and the

ServerSwitch to manipulate its registers directly, so both
applications and the ServerSwitch driver can control the
switching chip directly.

3.3.2 APIs

We design a set of APIs to control the switching chip and
send/receive packets. The APIs include five categories as
follows.

1. Set User Defined Lookup Key (UDLK): This API
configures the programmable parser in the switching
chip by setting the i-th UDLK. In this API, the UDLK
can be fields from the packet header as well as meta-
data, e.g., the incoming port of a packet. We use the most
generic form to define packet header fields, i.e., the byte
position of the desired fields. In the following example,
we set the destination MAC address (6 bytes, B0O-5) as
the first UDLK. We can also combine meta-data (e.g.,
incoming port) and non-consecutive byte range to define
a UDLK, as shown in the second statement which is used
for BCube (§ B).

APTI:
SetUDLK (int i, UDLK udlk)
Example:
SetUDLK (1, (BO-5))
SetUDLK (2, (INPORT, B30-33, B42-45))

2. Set Lookup Table: There are several lookup tables
in the switching chip, a general purpose TCAM table,
and protocol specific lookup tables for Ethernet, IP, and
MPLS. This API configures different lookup tables de-
noted by type, and sets the value, mask and action for
the i-th entry. The mask is NULL when the lookup ta-
ble is an EM table. The action is a structure that defines
the actions to be taken for the matched packets, e.g., di-
recting the packets to a specified output port, performing
pre-defined header modifications, etc. For example, for
MPLS the modification actions can be Swap/Pop/Push.
The iudlk is the index of UDLK to be compared. iudik is
ignored for the tables that do not support UDLK.

In the following example, the statement sets the first
TCAM entry and compares the destination MAC address
(the first UDLK) with the value field (000001020001,
i.e., 00:00:01:02:00:01) using mask (FFFFFF000000).
This statement is used to perform LPM on dest MAC for
PortLand. Consequently, all matching packets are for-
warded to the third virtual interface.

API:
SetLookupTable (int type, int i,
int iudlk, char xvalue, charx mask,
ACTION =*action)
Example:
SetLookupTable (TCAM, 1,
1, "000001020001", "FFFFFFOOOOOO",
{act=REDIRECT_VIF, vif=3})



3. Set Virtual Interface Table: This API sets up the i-
th virtual interface entry which contains destination and
source MAC addresses as well as the output port. The
MAC addresses are used to replace the original MACs in
the packet when they are not NULL.

For example, the following command sets up the third
virtual interface to deliver packets to output port 2.
Meanwhile, the destination MAC is changed to the given
value (001F29D417ES) accordingly. The edge switches
in Portland need such functionality to change PMAC
back to the original MAC (§3.2 in [22]).

APTI:
SetVIfTable (int i,
char =smac,
Example:
SetVIfTable (3,

char =xdmac,
int oport)
"001F29D417E8", NULL, 2)

4. Read/Write Registers: There are many statistic reg-

isters in switching chip, e.g., queue length and packet
counters, and registers to configure the behaviors of the
switching chip, e.g., enable/disable L3 processing. This
API is to read and write those registers (specified by reg-
name). As an example, the following command returns
the queue length (in bytes) of output port O.

APT:
int ReadRegister (int regname)
int WriteRegister (int regname,
Example:
ReadRegister (OUTPUT_QUEUE_BYTES_PORTO)

int value)

5. Send/Receive Packet: There are multiple NICs for
sending and receiving packets. We can use the first API
to send packet to a specific NIC port (oport). When we
receive a packet, the second API also provides the input
NIC port (iport) for the packet.

APTI:
int SendPacket (char »*pkt,
int RecvPacket (char =pkt,

int oport)
int xiport)

4 Implementation

4.1 ServerSwitch Card

Fig. B shows the ServerSwitch card we designed. All
chips used on the card are merchandise ASICs. The
Broadcom switching chip BCM56338 has 8 Gigabit Eth-
ernet (GE) ports and two 10GE ports [[]. Four of the
GE ports connect externally and the other four GE ports
connect to two dual GE port Intel 82576EB NIC chips.
The two NIC chips are used to carry a maximum of
4Gb/s traffic between the switching chip and the server
since the bandwidth of the PCI-E interface on 56338 is
only 2Gb/s. The three chips connect to the server via

4x1GE BCM5466 BCM56338 2x10GE

PEX8617 Intel
82576EB

Figure 3: ServerSwitch card.

a PCI-E switch PLX PEX8617. The effective band-
width from the PEX8617 to BCM56338, the two NIC
chips and the server are 2, 8, 8 and 8Gb/s (single direc-
tion). Since the maximum inbound or outbound traffic is
4Gb/s, PCI-E is not the bottleneck. The two 10GE XAUI
ports are designed for interconnecting multiple Server-
Switch cards in one server chassis to create a larger non-
blocking switching fabric with more ports. Each Server-
Switch card costs less than 400$ when manufactured in
100 pieces. We expect the price can be cut to 200$ for
a quantity of 10K. The power consumption of Server-
Switch is 15.4W when all 8 GE ports are idle, and is
15.7W when all of them carry full speed traffic.

Fig. @ shows the packet processing pipeline of the
switching chip, which has three stages. First, when the
packets go into the switching chip, they are directed to
a programmable parser and a classifier. The classifier
then directs the packets to one of the protocol specific
header parsers. The Ethernet parser extracts the desti-
nation MAC address (DMAC), the IP parser extracts the
destination IP address (DIP), the MPLS parser extracts
the MPLS label and the Prog parser can generate two
different UDLKs. Each UDLK can contain any aligned
four 4-byte blocks from the first 128 bytes of the packet,
and some meta-data of the packet.

Next, the DMAC is sent to the EM(MAC) matching
module, the DIP to both the LPM and EM(IP) matching
modules, the MPLS label to the EM(MPLS) module, and
the UDLK to the TCAM. Each TCAM entry can select
one of the two UDLKSs to match. The matchings are per-
formed in parallel. The three matching modules (EM,
LPM, TCAM) result in an index into the interface table,
which contains the output port, destination and source
MAC. When multiple lookup modules match, the prior-
ity of their results follows TCAM > EM > LPM.

Finally, the packet header is modified by the L3 and L2
modifiers accordingly. The L3 modifier changes the L3
header, e.g., IP TTL, IP checksum and MPLS label. The
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L2 modifier can use the MAC addresses in the interface
table to replace the original MAC addresses.

The size of EM tables for MAC, IPv4 and MPLS are
32K, 8K and 4K entries, respectively. The LPM for IPv4
and the TCAM table have 6144 and 2K entries, respec-
tively. The interface table has 4K entries. All these ta-
bles, the Prog Parser and the behaviors of the modifiers
are programmable.

4.2 Kernel Drivers

We have developed ServerSwitch kernel drivers for Win-
dows Server 2008 R2. As shown in Fig. [Il, it has compo-
nents as follows.

Switching Chip Driver. We implemented a PCI-E
driver based on Broadcom’s Dev Kits. The driver has
2670 lines of C code. It allocates a DMA region and
maps the chip’s registers into memory address using
memory-mapped I/O (MMIO). The driver can deliver re-
ceived packets to the ServerSwitch driver, and send pack-
ets to hardware. The ServerSwitch driver and user library
can access the registers and thus control the switching
chip via this SC driver.

NIC Driver. We directly use the most recent Intel NIC
driver binaries.

ServerSwitch Driver. We implemented the Server-
Switch driver as a Windows NDIS MUX driver. It has
20719 lines of C code. The driver exports itself as a vir-
tual NIC. It binds the TCP/IP stack on its top and the In-
tel NIC driver and the SC driver at its bottom. The driver
uses IRP to send and receive packets from the user li-
brary. It can also deliver the packets to the TCP/IP stack.
The ServerSwitch driver provides a kernel framework for
developing various DCN designs.

4.3 User Library

The library is based on the Broadcom SDK. The SDK
has 3000K+ lines of C code and runs only on Linux and
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Figure 5: BCube header on the ServerSwitch platform.

VxWorks. We ported this SDK to Subsystem for UNIX-
based Applications (SUA) on Windows Server 2008 [I].
At the bottom of the SDK, we added a library to interact
with our kernel driver. We then developed ServerSwitch
APIs over the SDK.

5 Building with the ServerSwitch Platform

In this section, we use ServerSwitch to implement sev-
eral representative DCN designs. First, we implement
BCube to illustrate how indexed source routing is sup-
ported in the switching chip of ServerSwitch. In our
BCube implementation, BCube packet forwarding is
purely carried out in hardware. Second, we show our
implementation of QCN congestion control. Our QCN
implementation demonstrates that our ServerSwitch can
generate low latency control messages using the server
CPU. We discuss how ServerSwitch can support other
DCN designs in the Appendix.

5.1 BCube

BCube is a server centric DCN architecture [I3]. BCube
uses adaptive source routing. Source servers probe mul-
tiple paths and select the one with the highest available
bandwidth. BCube defines two types of control mes-
sages, for neighbor discovery (ND) and available band-
width query (ABQ) respectively. The first one is for
servers to maintain the forwarding table. The second one
is used to probe the available bandwidth of the multiple
parallel paths between the source and destination.

Our ServerSwitch is an ideal platform for implement-
ing BCube. For an intermediate server in BCube, our
ServerSwitch card can offload packet forwarding from
the server CPU. For source and destination servers, our
ServerSwitch card can achieve k:1 speedup using k& NICs
connected by BCube topology. This is because in our
design the internal bandwidth between the server and the
NICs is equal to the external bandwidth provided by the
multiple NICs, as we show in Figure [Il.

Fig. B shows the BCube header we use. It consists of
an IP header and a private header (gray fields). We use



this private header to implement the BCube header. We
use an officially unassigned IP protocol number to dif-
ferentiate the packet from normal TCP/UDP packets. In
the private header, the BCube protocol is used to iden-
tify control plane messages. NH is the number of valid
NHA fields. It is used by a receiver to construct a reverse
path to the sender. There are 8 1-byte Next Hop Address
(NHA) fields, defined in BCube for indexed source rout-
ing. Different from NHA in the original BCube header
design, NHAs are filled in reverse order in our private
header. NHA; is now the lookup key for the last hop.
This implementation adaption is to obtain an automatic
index counter by the hardware. We observe that for a
normal IP packet, its TTL is automatically decreased af-
ter one hop. Therefore, we overload the TTL field in the
IP header as the index field for NHAs. This is the reason
why we store NHASs in reverse order.

We implemented a BCube kernel module in the
ServerSwitch driver and a BCube agent at the user-level.
The kernel module implements data plane functionali-
ties. On the receiving direction, it delivers all received
control messages to the user-level agent for processing.
For any received data packets, it removes their BCube
headers and delivers them to the TCP/IP stack. On the
sending direction, it adds the BCube header for the pack-
ets from the TCP/IP stack and sends them to the NICs.

The BCube agent implements all control plane func-
tionalities. It first sets up the ISR-based forwarding rules
and the packet filter rules in the switching chip. Then,
it processes the control messages. When it receives
an ND message, it updates the interface table using
SetVIfTable. It periodically uses ReadRegister
to obtain traffic volume from the switching chip and cal-
culates the available bandwidth for each port. When it
receives an ABQ message, it encodes the available band-
width in the ABQ message, and sends it to the next hop.

Fig. B shows the procedure to initialize the switch-
ing chip for BCube, using the ServerSwitch API. Line
1 sets a 12-byte UDLK; for source routing, including
TTL (B22) and the NHA fields (B34—-41). Line 2 sets
another 9-byte UDLKj> for packet filtering, including in-
coming port number (INPORT), IP destination address
(B30-33) and BCube protocol (B42). The INPORT oc-
cupies 1-byte field. Lines 5-18 set the ISR-based TCAM
table. Since every NHA denotes a neighbor node with a
destination MAC and corresponding output port, line 8
sets up one interface entry for one NHA value. Lines 13-
16 sets up a TCAM entry to match the TTL and its corre-
sponding NHA in UDLK;. Since the switch discards the
IP packets whose TTL < 1, we use TTL = 2 to denote
NHA;. Lines 21-38 filter packets to the server. Since the
switching chip has four external (0-3) and four internal
ports (4-7), we filter the traffic of an external port to a
corresponding internal port, i.e., port 0—4, 1—=5, 2—6

1: SetUDLF (1, (B22-25, B34-41));

2: SetUDLF (2, (INPORT, B30-33, B42-45));

3:

4: // setup ISR-based forwarding table

5: 3 = 0;

6: foreach nha in (all possible NHA values)

7 {

8: SetVifTable (nha, dstmac, srcmac, oport);

9: for (index = 0; index < 8; index++)

10: {

11: // val[0] matches B22 (TTL) in UDLF 1

12: // val[4:11] matches B34-41 (NHAs) in UDLF_1
13: vall[O0] = index+2; mask[0] = Oxff;

14: val[4+index] = nha; mask[4+index] = O0xff;

15: action.act = REDIRECT_VIF; action.vif = nha;
16: SetLookupTable (TCAM, j++,1,val,mask, &action) ;
17: }

18: }

19:

20: // setup filter to server

21: for (i = 0; 1 < 4; 1i++)

22: |

23: action.act = REDIRECT_PORT; action.port = 4 + i
24: // filter packets that are sent to localhost
25: // val[0] matches INPORT in UDLF 2

26: // val[l:4] match B30-33 (IP dst addr) in UDLF 2
27: val[0] = 1i; mask[0] = Oxff

28: val[l:4] = my bcube id; mask[1:4] = Oxffffffff;
29: SetLookupTable (TCAM, j++,2,val,mask, &action) ;
30: // filter control plane packets

31: // val[5] matches B42 (BCube prot) in UDLF_2
32: val[0] = i; mask[0] = Oxff;

33: val[5] = ND; mask[5] = Oxff;

34: SetLookupTable (TCAM, j++,2,val,mask, &action) ;
35: val[0] = 1i; mask[0] = Oxff;

36: val[5] = ABQ; mask[5] = Oxff;

37: SetLookupTable (TCAM, j++,2,val,mask, &action) ;
38: }

Figure 6: Pseudo TCAM setup code for BCube.

and 3—7. Line 23 sets action to direct the packets to
port 4 ~ 7 respectively. Lines 27-29 match those packets
whose destination BCube address equals the local BCube
address in UDLK,. Lines 32-37 match BCube control
plane messages, i.e., ND and ABQ, in UDLK5. In our
switching chip, when a packet matches multiple TCAM
entries, the entry with the highest index will win. There-
fore, in our BCube implementation, entries for control
plane messages have higher priority than the other ones.

5.2 Quantized Congestion Control (QCN)

QCN is a rate-based congestion control algorithm for the
Ethernet environment [[7]. The algorithm has two parts.
The Switch or Congestion Point (CP) adaptively samples
incoming packets and generates feedback messages ad-
dressed to the source of the sampled packets. The feed-
back message contains congestion information at the CP.
The Source or Reaction Point (RP) then reacts based on
the feedback from the CP. See [[Z] for QCN details. The
previous studies of QCN are based on simulation or hard-
ware implementation.

We implemented QCN on the ServerSwitch platform
as shown in Fig. [I. The switching chip we use cannot
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Figure 7: QCN on the ServerSwitch platform.

adaptively sample packets based on the queue length, so
we let the source mark packets adaptively and let the
ServerSwitch switching chip mirror the marked packets
to the ServerSwitch CPU. When the ServerSwitch CPU
receives the marked packets, it immediately reads the
queue length from the switching chip and sends the Con-
gestion Notification (CN) back to the source. When the
source receives the CN message, it adjusts its sending
rate and marking probability.

We implemented the CP and RP algorithms in Server-
Switch and end-host respectively based on the most re-
cent QCN Pseudo code V2.3 [24]. In order to minimize
the response delay, the CP module is implemented in the
ServerSwitch driver. The CP module sets up a TCAM
entry to filter marked packets to the CPU. On the end-
host, we implemented a token bucket rate limiter in the
kernel to control the traffic sending rate at the source.

6 Evaluation

Our evaluation has two parts. In the first part, we show
micro benchmarks for our ServerSwitch. We evaluate its
performance on packet forwarding, register read/write,
and in-network caching. For micro benchmark evalua-
tion, we connect our ServerSwitch to a NetFPGA card
and use NetFPGA to generate traffic. In the second part,
we implement two DCN designs, namely BCube and
QCN, using ServerSwitch. We build a 16-server BCube;
network to run BCube and QCN experiments. We cur-
rently build only two ServerSwitch cards. As shown in
Fig. B, the two gray nodes are equipped with Server-
Switch cards, they use an ASUS motherboard with Intel
Quad Core 17 2.8GHz CPU. The other 14 servers are Dell
Optiplex 755 with 2.4Ghz dual core CPU. The switches
are 8-port DLink DGS-1008D GE switches.

6.1 Micro Benchmarks

We directly connect the four GE ports of one Server-
Switch to the four GE ports of one NetFPGA, and use
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the NetFPGA-based packet generator to generate line-
rate traffic to evaluate the packet forwarding performance
of ServerSwitch. We record the packet send and re-
ceive time using NetFPGA to measure the forwarding
latency of ServerSwitch. The precision of the timestamp
recorded by NetFPGA is 8ns.

Forwarding Performance. Fig. B compares the for-
warding performance of our ServerSwitch card and a
software-based BCube implementation using an ASUS
quad core server. In the evaluation, we use NetFPGA to
generate 4GE traffic. The software implementation of the
BCube packet forwarding is very simple. It uses NHA as
an index to get the output port. (See §7.2 in [I3] for more
details) As we can see, there is a very huge performance
gap between these two approaches. For ServerSwitch,
there is no packet drop for any packet sizes, and the for-
warding delay is small. The delays for 64 bytes and 1514
bytes are 4.3us and 15.6us respectively, and it grows lin-
early with the packet size. The slope is 7.7ns per byte,
which is very close to the transmission delay of one byte
over a GE link. The curve suggests the forwarding de-
lay is a 4.2us fixed processing delay plus the transmis-
sion delay. For software forwarding, the maximum PPS
achieved is 1.73Mpps and packets get dropped when the
packet size is less than or equal to 512 bytes. The CPU
utilization for 1514 byte is already 65.6%. Moreover, the
forwarding delay is also much larger than that of Server-
Switch. This experiment suggests that a switching chip
does a much better job for packet forwarding, and that
using software for ‘simple’ packet forwarding is not effi-
cient.

Register Read/Write Performance. Certain applica-
tions need to read and write registers of the switching
chip frequently. For example, our software-based QCN
needs to frequently read queue length from the switch-
ing chip. In this test, we continuously read/write a 32-
bit register 1,000,000 times, and the average R/W la-
tency of one R/W operation is 6.94/4.61us. We note
that the latency is larger than what has been reported be-
fore (around lus) [2U]. This is because [20] measured
the latency of a single MMIO R/W operation, whereas
our registers are not mapped but are accessed indirectly
via several mapped registers. In our case, a read opera-
tion consists of four MMIO write and three MMIO read
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operations. We note that the transmission delay of one
1514-bytes packet over 1GE link is 12us, so the read op-
eration of our ServerSwitch can be finished within the
transmission time of one packet.

In-network Caching Performance. We show that
ServerSwitch can be used to support in-network caching.
In this experiment, ServerSwitch uses two GbE ports
to connect to NetFPGA A and the other two ports to
NetFPGA B. NetFPGA A sends request packets to B via
ServerSwitch. When B receives one request, it replies
with one data packet. The sizes of request and reply are
128 and 1514 bytes, respectively. Every request or reply
packet carries a unique ID in its packet header. When
ServerSwitch receives a request from A, the switching
chip performs an exact matching on the ID of the request.
A match indicates that the ServerSwitch has already
cached the response packet. The request is then for-
warded to the server CPU which sends back the cached
copy to A. When there is no match, the request is for-
warded to B, and B sends back the response data. Server-
Switch also oversees the response data and tries to cache
a local copy. The request rate per link is 85.8Mb/s, so
the response rate per link between ServerSwitch and A is
966Mb/s. Since one NetFPGA has 4 ports, we use one
NetFPGA to act as both A and B in the experiment.

We vary the cache hit ratio at ServerSwitch and mea-
sure the CPU overhead of the ServerSwitch. In-network
caching increases CPU usage at ServerSwitch, but saves
bandwidth between B and ServerSwitch. In our toy
network setup, a x% cache hit rate directly results in
% bandwidth saving between B and ServerSwitch (as
shown in Fig. ). In a real network environment, we
expect the savings will be more significant since we can
save more bandwidth for multi-hop cases.

Fig. [ also shows the CPU overhead of the Server-
Switch for different cache hit ratios. Of course, the
higher the cache hit ratio, the more bandwidth we can
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save and the more CPU usage we need to pay. Note that
in Fig. [0, even when the cache hit ratio is 0, we still have
a cost of 14% CPU usage. This is because ServerSwitch
needs to do caching for the 1.9Gbps response traffic from
B to ServerSwitch. Fig. [ also includes the CPU over-
head of a pure software-based caching implementation.
Our result clearly shows that our ServerSwitch signifi-
cantly outperforms pure software-based caching.

6.2 ServerSwitch based BCube

In this experiment, we set up two TCP connections C1
and C2 between servers 01 and 10. The two connections
use two parallel paths, P1 {01, 00, 10} for C1 and P2
{01, 11, 10} for C2, respectively. We run this experiment
twice. First, we configure 00 and 11 to use the Server-
Switch cards for packet forwarding. Next, we configure
them to use software forwarding. In both cases, the total
throughput is 1.7Gbps and is split equally into the two
parallel paths. When using ServerSwitch for forward-
ing, both 00 and 11 use zero CPU cycles. When using
software forwarding, both servers use 15% CPU cycles.
Since both servers have a quad core CPU, 15% CPU us-
age equals 60% for one core.

6.3 ServerSwitch based QCN

In this experiment, we configure server 00 to act as a
QCN-enabled node. We use iperf to send UDP traffic
from server 01 to 10 via 00. The sending rate of iperf
is limited by the traffic shaper at 01. When there is con-
gestion on level-1 port of 00, 00 sends CN to 01. We use
the QCN baseline parameters [[7] in this experiment.
Fig. [T shows the throughput of the UDP traffic and
the output queue length at server 00. When we start the
UDP traffic, level 1 port is 1Gb/s. There is no conges-
tion and the output queue length is zero. At time 20s, we



limit level 1 port at 00 to 200Mb/s, the queue immedi-
ately builds up and causes 00 to send CN to the source.
The source starts to use the QCN algorithm to adjust its
traffic rate in order to maintain the queue length around
Q_EQ which is 50KB in this experiment. We can see that
the sending rate decreases to 200Mb/s very fast. And
then we increase the bandwidth by 200Mb/s every 20
seconds. Similarly, the source adapts quickly to the new
bandwidth. As shown in the figure, the queue length fluc-
tuates around Q_EQ. This shows that this software-based
implementation performs good congestion control. The
rate of queue query packets processed by node 00 is very
low during the experiment, with maximum and mean val-
ues of 801 and 173 pps. Hence QCN message processing
introduces very little additional CPU overhead. The to-
tal CPU utilization is smaller than 5%. Besides, there is
no packet drop in the experiment, even at the point when
we decrease the bandwidth to 200Mb/s. QCN therefore
achieves lossless packet delivery. We have varied the
Q_EQ from 25KB to 200KB and the results are similar.
The extra delay introduced by our software approach
to generate a QCN queue reply message consists of three
parts: directing the QCN queue query to the CPU, read-
ing the queue register, and sending back the QCN queue
reply. To measure this delay, we first measure time
RTT, between the QCN query and reply at O1. Then
we configure the switching chip to simply bounce the
QCN query back to the source assuming zero delay re-
sponse for hardware implementation. We measure the
time RT'T» between sending and receiving a QCN query
at 01. RTTy - RT'T> reflects the extra delay introduced
by software. The packet sizes of the queue query and
reply are both 64 bytes in this measurement. The aver-
age values of RT'T) and RT'T; are 41us and 18us based
on 10,000 measurements. Our software introduces only
23us delay. This extra delay is tolerable since it is com-
parable to or smaller than the packet transmission delay
for one single 1500-bytes in a multi-hop environment.

7 Discussion

Limitations of ServerSwitch. The current version of
ServerSwitch has the following limitations: 1) Limited
hardware forwarding programmability. The switching
chip we use has limited programmability on header field
modification. It supports only standard header modifi-
cations of supported protocols (e.g., changing Ethernet
MAC addresses, decreasing IP TTL, changing IP DSCP,
adding/removing IP tunnel header, modifying MPLS
header). Due to the hardware limitation, our implemen-
tation of index-based source routing has to re-interpret
the IP TTL field. 2) Relatively high packet processing la-
tency due to switching chip to CPU communication. For
the packets that require ‘real’ per-packet processing such
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as congestion information calculation in XCP protocol,
the switching chip must deliver them to the CPU for pro-
cessing, which leads to higher latency. Hence Server-
Switch is not suitable for protocols that need real time
per-packet processing such as XCP. 3) Restricted form
factor and relatively low speed. At present, a Server-
Switch card provides only 4 GbE ports. Though it can be
directly used for server-centric or hybrid designs, e.g.,
BCube, DCell, and CamCube, we do not expect that
the current ServerSwitch can be directly used for archi-
tectures that need a large number of switch ports (48-
ports or more), e.g., fat-tree and VL2. However, since
4 ServerSwitch cards can be connected together to pro-
vide 16 ports, we believe ServerSwitch is still a viable
platform for system prototyping for such architectures.

10GE ServerSwitch. Using the same hardware archi-
tecture, we can build a 10GE ServerSwitch. We need to
upgrade the Ethernet switching chip, the PCI-E switch-
ing chip and the NIC chips. As for the Ethernet switch-
ing chip, 10GbE switching chips with 24x10GbE ports or
more are already available from Broadcom, Fulcrum or
Marvell. We can use two dual 10GbE Ethernet controller
chips to provide a 40Gb/s data channel between the card
and server CPU. Since we do not expect all traffic to be
delivered to the CPU for processing, the internal band-
width between the card and the server does not need to
match the total external bandwidth. In this case, the num-
ber of external 10GE ports can be larger than four. We
also need to upgrade the PCI-E switching chip to provide
an upstream link with 40Gb/s bandwidth, which requires
PCI-E Gen2 x8. Since the signal rate on the board is 10x
faster than that in the current ServerSwitch, more hard-
ware engineering effort will be needed to guarantee the



Signal Integrity (SI).

All the chips discussed above are readily available in
the market. The major cost of such a 10GbE card comes
from the 10GbE Ethernet switching chip, which has a
much higher price than the 8xGbE switching chip. For
example, a chip with 24 10GbE ports may cost about 10x
that of the current one. The NIC chip and PCI-E switch-
ing chip cost about 2x~3x than current ones. Overall,
we expect the 10GE version card to be about 5x more
expensive than the current 1GE version.

8 Related Work

OpenFlow defines an architecture for a central controller
to manage OpenFlow switches over a secure channel,
usually via TCP/IP. It defines a specification to manage
the flow table inside the switches. Both OpenFlow and
ServerSwitch aim towards a more programmable net-
working platform. Aiming to provide both programma-
bility and high performance, ServerSwitch uses multiple
PCI-E lanes to interconnect the switching chip and the
server. The low latency and high speed of the channel en-
ables us to harness the resources in a commodity server
to provide both programmable control and data planes.
With Openflow, however, it is hard to achieve similar
functionalities due to the higher latency and lower band-
width between switches and the controller.

Orphal provides a common API for proprietary
switching hardware [21], which is similar to our APIs.
Specifically, they also designed a set of APIs to manage
the TCAM table. Our work is more than API design. We
introduce a novel TCAM table based method for index-
based source routing. We also leverage the resources of
a commodity server to provide extra programmability.

Flowstream uses commodity switches to direct traf-
fic to commodity servers for in-network processing [IZ].
The switch and the server are loosely coupled, i.e., the
server cannot directly control the switching chip. In
ServerSwitch, the server and the switching chip are
tightly coupled, which enables ServerSwitch to provide
new functions such as software-defined congestion con-
trol which requires low-latency communication between
the server and the switching chip.

Recently, high performance software routers, e.g.,
RouteBricks [I0J] and PacketShader [L6] have been de-
signed and implemented. By leveraging multi-cores,
they can achieve tens of Gb/s throughput. ServerSwitch
is complementary to these efforts in that ServerSwitch
tries to offload certain packet forwarding tasks from the
CPU to a modern switching chip. ServerSwitch also tries
to optimize its software to process low latency pack-
ets such as congestion control messages. At present,
due to hardware limitations, ServerSwitch only provides
4x1GE ports. RouteBricks or PacketShader can certainly
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leverage a future 10GE ServerSwitch card to provide a
higher throughput system, with a portion of traffic for-
warded by the switching chip.

Commercial switches generally have an embedded
CPU for switch management. More recently, Arista’s
7100 series introduces the use of dual-core x86 CPU
and provides APIs for programmable management plane
processing. ServerSwitch differs from existing com-
modity switches in two ways: (1) The CPUs in com-
modity switches mainly focus on management functions,
whereas ServerSwitch explores a way to combine the
switching chip with the most advanced CPUs and server
architecture. On this platform, the CPUs can process
forwarding/control/management plane packets with high
throughput and low latency. The host interface on the
switching chip usually has limited bandwidth since the
interface is designed for carrying control/management
messages. ServerSwitch overcomes this limitation by in-
troducing additional NIC chips for a high bandwidth, yet
low latency channel between the switching chip and the
server; (2) ServerSwitch tries to provide a common set
of APIs to program the switch chip. The APIs are de-
signed to be as universal as possible. Ideally, the API is
the same no matter what kind of switching chip is used.

Ripcord [9] mainly focuses on the DCN control plane.
It currently uses OpenFlow switches as its data plane.
Our work is orthogonal to their work. We envision that
they can also use ServerSwitch to support new DCN such
as BCube, and to support more routing schemes such as
source routing and tag-based routing.

9 Conclusion

We have presented the design and implementation of
ServerSwitch, a programmable and high performance
platform for data center networks. ServerSwitch ex-
plores the design space of integrating a high perfor-
mance, limited programmable ASIC switching chip with
a powerful, fully programmable multicore commodity
server.

ServerSwitch achieves easy-to-use programmability
by using the server system to program and control the
switching chip. The switching chip can be programmed
to support a flexible packet header format and various
user defined packet forwarding designs with line-rate
without the server CPU intervening. By leveraging the
low latency PCI-E interface and efficient server software
design, we can implement software defined signaling and
congestion control in the server CPU with low CPU over-
head. The rich programmability provided by Server-
Switch can further enable new DCN services that need
in-network data processing such as in-network caching.

We have built a ServerSwitch card and a whole Server-
Switch software stack. Our implementation experiences



demonstrate that ServerSwitch can be fully constructed
from commodity, inexpensive components. Our develop-
ment experiences further show that ServerSwitch is easy
to program, using the standard C/C++ language and de-
velopment tool chains. We have used our ServerSwitch
platform to construct several recently proposed DCN de-
signs, including new DCN architectures BCube and Port-
Land, congestion control algorithm QCN, and DCN in-
network caching service.

Our software API currently focuses on lookup table
programmability and queue information query. Current
switching chips also provide advanced features such as
queue and buffer management, access control, and pri-
ority and fair queueing scheduling. We plan to extend
our API to cover these features in our future work. We
also plan to upgrade the current 1GE hardware to 10G in
the next version. We expect that ServerSwitch may be
used for networking research beyond DCN (e.g., enter-
prise networking). We plan to release both the Server-
Switch card and the software package to the networking
research community in the future.
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A More DCN Designs

In Portland [27], the edge switches intercept the ARP
request and respond with PMAC. The switches use LPM
on PMAC to forward the packet. The last hop switches
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convert the PMAC to AMAC. ServerSwitch can intercept
ARP by matching its Ethernet type field and deliver it
to the CPU for processing. It can also use TCAM to
perform LPM on the destination MAC address.

In fat-tree [5], the switches perform two-level lookup
on IP destination address. The paper describes an imple-
mentation of this lookup algorithm using TCAM. Thus,
using ServerSwitch to implement fat-tree is straightfor-
ward.

DCell [13] uses a self-defined header between the Eth-
ernet and IP header. Servers use a 32-bit destination
DCell address to forward the packet. Similar to BCube,
we can use the IP header on our platform and put the
DCell address into the destination IP address. The DCell
address is hierarchical but its subnet size is not exactly
2% s0 we can join multiple smaller LPM entries to match
a single DCell subnet. The DCell header has a Proxy
Flag bit. When it is set, the server should use the Proxy
DCell address to forward the packet. We can create a
TCAM entry to match both the Proxy Flag and the Proxy
DCell address. When both of them match, the chip over-
rides the decision based on the destination address and
forwards the packet based on this TCAM entry.

These three extra examples show the generality and
flexibility of the ServerSwitch packet forwarding en-
gine.
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