Minimization of Symbolic Automata

Loris D’Antoni
University of Pennsylvania
lorisdan@cis.upenn.edu

Margus Veanes
Microsoft Research
margus@microsoft.com

Abstract

Symbolic Automata extend classical automata by using symbolic alphabets instead of finite ones. Most of the classical automata algorithms rely on the alphabet being finite, and generalizing them to the symbolic setting is not a trivial task. In this paper we study the problem of minimizing symbolic automata. We formally define and prove the basic properties of minimality in the symbolic setting, and lift classical minimization algorithms (Huffman-Moore’s and Hopcroft’s algorithms) to symbolic automata. While Hopcroft’s algorithm is the fastest known algorithm for DFA minimization, we show how, in the presence of symbolic alphabets, it can incur an exponential blowup. To address this issue, we introduce a new algorithm that fully benefits from the symbolic representation of the alphabet and does not suffer from the exponential blowup. We provide comprehensive performance evaluation of all the algorithms over large benchmarks and against existing state-of-the-art implementations. The experiments show how the new symbolic algorithm is faster than previous implementations.

Categories and Subject Descriptors F.2.2 [Theory of Computation]: Automata over infinite objects, Regular languages

Keywords Minimization, Symbolic Automata

1. Introduction

Classical automata theory builds on two basic assumptions: there is a finite state space; and there is a finite alphabet. The topic of this paper is along the line of work challenging the second assumption. Symbolic finite automata (SFAs) are finite state automata in which the alphabet is given by a Boolean algebra that may have an infinite domain, and transitions are labeled with predicates over such algebra. Symbolic automata originated from the intent to support regular expressions in the context of static and dynamic program analysis [43]. Lately, they were also used for supporting regular expressions (modulo label theories) in the context of modern logical inference engines [9, 42].

Most classical automata algorithms view the size k of the alphabet as a constant and use specialized data structures that are optimized for this view [7]. Therefore, it is not clear if or how such algorithms would work when the alphabet is infinite. Understanding how operations over the finite alphabet lift to the symbolic setting is a challenging task. Some classical automata constructions are extended to SFAs in [26]. For example, the product (intersection) \(M_1 \times M_2 \) of two symbolic automata \(M_1 \) and \(M_2 \) is computed by building product transitions of the form \(\langle p_1, p_2 \rangle \xrightarrow{\varphi_1 \wedge \varphi_2} \langle q_1, q_2 \rangle \) from transitions \(p_1 \xrightarrow{\varphi_1} q_1, p_2 \xrightarrow{\varphi_2} q_2 \), in \(M_1, M_2 \), where the guards \(\varphi_1 \) and \(\varphi_2 \) are composed using conjunction and pruned when unsatisfiable. The complexity of such constructions clearly depends on the complexity of checking satisfiability in the label theory. In this particular case, constructing the product has complexity \(\mathcal{O}(f(l)m^n) \), where \(m \) is the number of transitions, \(f(l) \) is the cost of checking satisfiability of predicates of size \(l \) in the label theory, and \(f \) is the size of the biggest predicate in \(M_1 \) and \(M_2 \).

This paper focuses on the problem of minimizing automata over symbolic alphabets and, to the best of our knowledge, it is the first paper that investigates this problem. Minimizing deterministic finite automata (DFAs) is one of the fundamental concepts in automata theory. It occurs in numerous areas, such as programming languages, text processing, computational linguistics, graphics, etc.

Before looking for an algorithm for minimizing SFAs we first need to answer a fundamental question: what does it mean for an SFA to be minimal? Intuitively, any two distinct states \(p \) and \(q \) of a minimal SFA must be distinguishable, where two states \(p \) and \(q \) are distinguishable if there exists an input sequence \(s \) that starting from \(p \) leads to a final (non-final) state and starting from \(q \) leads to a non-final (final) state. This notion is similar to DFA minimality.

The original algorithms for minimizing DFAs were given by Huffman [29], Moore [34], and Hopcroft [27]. Since, all such algorithms use iterations over the finite alphabet, they do not immediately extend to the symbolic setting. In the following paragraphs we briefly describe how we extended the classical algorithms to SFAs, and how we designed a new minimization algorithm that fully takes advantage of the symbolic representation of the alphabet.

Our first algorithm is called \(\text{Min}^\text{SF}_{\text{Moore}} \) and takes inspiration from a reformulation of Moore’s (Huffman’s) algorithm described in [28]. The key idea from the algorithm in [28] is the following:

- if two states \(p \) and \(q \) are distinguishable, and there exists a character \(a \), and transitions \(\delta(a, p') = p \) and \(\delta(a, q') = q \), then \(p' \) and \(q' \) are distinguishable.

This idea nicely translates to the symbolic setting as:

- if two states \(p \) and \(q \) are distinguishable, and there exist transitions \(p' \xrightarrow{\varphi} p \) and \(q' \xrightarrow{\psi} q \) such that \(\varphi \wedge \psi \) is satisfiable, then \(p' \) and \(q' \) are distinguishable.

Starting with the fact that final and non-final states are distinguishable, we can use a fixpoint computation for grouping states into groups of indistinguishable states. This procedure uses a number of iterations that is quadratic in the number of states. Moreover, each iteration is linear in the number of transitions.

Unfortunately, \(\text{Min}^\text{SF}_{\text{Moore}} \) does not scale in the case of a performance critical application described in Section 7.1, where SFAs...
end up having thousands of states, and the complexity of Min_{\text{Min}} was not acceptable. To this end, we studied a generalization of Hopcroft's algorithm, called Min_{\text{Min}}. Hopcroft's algorithm is based on a technique called partition refinement of states, and, with worst case complexity $O(kn \log n)$ (n = number of states, and k = number of alphabet symbols), it is the most efficient algorithm for minimizing DFAs. The main idea behind Min_{\text{Min}} is to subdivide all the labels in the SFA into non-overlapping predicates called minterms. Such minterms can then be seen as atomic characters in the sense of classical DFAs, allowing us to use the classical Hopcroft's algorithm over the finite set of minterms. Even though Min_{\text{Min}} performs well in the aforementioned application, it suffers from another problem: in the worst case, the number of minterms can be exponential in the number of edges of the SFA. Moreover, our experiments showed that this factor can indeed be observed when comparing the performance of our algorithms using a variety of benchmarks. Our experiments and in the fifth experiment we compared our results against Mona [22], a new algorithm for SFA minimization which is similar to Hopcroft's algorithm over the finite set of minterms. Even though such minterms can then be seen as atomic characters in the sense of classical DFAs, allowing us to use the classical Hopcroft's algorithm over the finite set of minterms. However, our experiments showed that this factor can indeed be observed when considering more complex label theories, such as the theory of pairs over $\sigma \times \sigma$ (§6.4).

This leads to our main algorithmic contribution in the paper. We designed Min_{\text{Min}}^{\text{N}}, a new algorithm for SFA minimization which takes full advantage of the symbolic representation of the input alphabet. Min_{\text{Min}}^{\text{N}} is inspired by the idea of refining the partition of the state space used by Hopcroft's algorithm, but does not require the pre-computation of minterms as in Min_{\text{Min}}^{\text{H}}. The key observation is that the set of relevant predicates can be computed locally, rather than using all the transitions of the SFA. While Min_{\text{Min}}^{\text{N}} is similar to Min_{\text{Min}}^{\text{H}}, in terms of state complexity, it does not suffer from the exponential complexity related to the minterm computation. In fact, in all our experiments, both Min_{\text{Min}}^{\text{H}} and Min_{\text{Min}}^{\text{M}} are outperformed by Min_{\text{Min}}^{\text{N}}.

Table 1 presents a summary of the minimization algorithms, illustrating their dependency on operations over the label theory.

Table 1. Summary of operations needed over a given label theory in the respective minimization algorithms.

<table>
<thead>
<tr>
<th>Satisfiability checking, \land, \lor</th>
<th>Predicate negation</th>
<th>Minterm generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min_{\text{Min}}^{\text{M}}</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Min_{\text{Min}}^{\text{H}}</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Min_{\text{Min}}^{\text{N}}</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

2. Effective Boolean algebras and SFAs

We first formally define the notion of effective Boolean algebra and symbolic finite automata. Next, we develop a theory which explains what it means for a symbolic finite automata to be minimal.

An effective Boolean algebra A has components $(\mathcal{D}, \Omega, \Psi, [\cdot], \bot, T, \land, \lor, \neg)$. \mathcal{D} is an r.e. (recursively enumerable) set of domain elements. Ψ is an r.e. set of predicates closed under the Boolean connectives and $\bot, T \in \Psi$. The denotation function $[\cdot] : \Psi \to 2^\mathcal{D}$ is r.e. and is such that, $[\bot] = \emptyset, [T] = \mathcal{D}$, for all $\varphi, \psi \in \Psi, [\varphi \lor \psi] = [\varphi] \cup [\psi], [\varphi \land \psi] = [\varphi] \cap [\psi]$, and $[\neg \varphi] = \mathcal{D} \setminus [\varphi]$. For $\varphi \in \Psi$, we write IsSat(\varphi) when $[\varphi] \neq \emptyset$ and say that φ is satisfiable. A is decidable if IsSat is decidable.

The intuition is that such an algebra is represented programmatically as an API with corresponding methods implementing the Boolean operations and the denotation function. We are primarily going to use the following two effective Boolean algebras in the examples, but the techniques in the paper are fully generic.

$\mathbb{B}^\mathbb{N}$ is the powerset algebra whose domain is the finite set \mathbb{N}, for some $k > 0$, consisting of all nonnegative integers smaller than 2^k, or equivalently, all k-bit bit-vectors. A predicate is represented by a BDD of depth k. The Boolean operations correspond directly to the BDD operations, \bot is the BDD representing the empty set. The denotation $[\beta]$ of a BDD β is the set of all integers n such that a binary representation of n corresponds to a solution of β.

SMT$^\mathbb{N}$ is the decision procedure for a theory over some sort σ, say integers, such as the theory of integer linear arithmetic. This algebra can be implemented through an interface to an SMT solver. Ψ contains in this case the set of all formulas $\varphi(x)$ in that theory with one fixed free integer variable x. For example, a formula $x \bmod k = 0$, say div$_k$, denotes the set of all numbers divisible by k. Then $\text{div}_2 \land \text{div}_3$ denotes the set of numbers divisible by six.

We can now define symbolic finite automata. Intuitively, a symbolic finite automaton is a finite automaton over a symbolic alphabet, where edge labels are replaced by predicates. In order to preserve the classical closure operations (intersection, complement, etc.), the predicates must form an effective Boolean algebra.

Definition 1. A symbolic finite automaton (SFA) M is a tuple (A, Q, q_0, F, Δ) where A is an effective Boolean algebra, called the alphabet, Q is a finite set of states, $q_0 \in Q$ is the initial state, $F \subseteq Q$ is the set of final states, and $\Delta \subseteq Q \times Q \times X$ is a finite set of moves or transitions.

Elements of Q are called characters and finite sequences of characters, elements of Q^*, are called words; ϵ denotes the empty word. A move $p = (p, \varphi, q) \in \Delta$ is also denoted by $p \xrightarrow{\varphi} q$ when M is clear, where p is the source state, denoted Src(p), q is the target state, denoted Tgt(p), and φ is the guard or predicate of the move, denoted Guard(p). A move is feasible if its guard is satisfiable. Given a character $a \in Q$, an a-move of M is a move $p \xrightarrow{\varphi} q$ such that $a \in [\varphi]$, also denoted $p \xrightarrow{\varphi} q$ when M is clear. In the following let $L = (A, Q, q_0, F, \Delta)$ be an SFA.

Definition 2. A word $w = a_1a_2 \cdots a_n \in Q^*$ is accepted at state p of M, denoted $w \in L_p(M)$, if there exist $p_{i-1} \xrightarrow{a_i} p_i$ for $1 \leq i \leq k$, such that $p_0 = p$, and $p_k \in F$. The language accepted by M is $L(M) \equiv \{w \in L_p(M) \mid \exists \varphi \in \Psi, \text{IsSat}(\varphi)\}$.
Given a state \(q \in Q \), we use the following definitions for the set transitions from and to \(q \):
\[
\Delta(q) \overset{\text{def}}{=} \{ p \in \Delta \mid \text{Srn}(p) = q \}, \quad \overline{\Delta(q)} \overset{\text{def}}{=} \{ p \in \Delta \mid \text{Tgt}(p) = q \}.
\]
The definitions are lifted to sets in the usual manner. The following terminology is used to characterize various key properties of \(M \): A state \(p \) of \(M \) is called partial if there exists a character \(a \) for which there exist no \(a \)-move with source state \(p \).

- **M is deterministic:** for all \(p \xrightarrow{a} q, p \xrightarrow{a'} q' \in \Delta \), if \(\text{IsSat}(\varphi \land \varphi') \) then \(q = q' \).
- **M is complete:** there are no partial states.
- **M is clean:** for all \(p \xrightarrow{a} q \in \Delta \), \(p \) is reachable from \(q^0 \) and \(\text{IsSat}(\varphi) \).
- **M is normalized:** for all \(p, q \in Q \), there is at most one move from \(p \) to \(q \).
- **M is minimal:** \(M \) is deterministic, complete, clean, normalized, and for all \(p, q \in Q \), \(p \equiv q \) if and only if \(\overline{L}_p(M) = \overline{L}_q(M) \).

For the special case in which \(M \) is deterministic and complete, we denote the transition function using the function \(\delta_M : \Delta \times Q \rightarrow Q \), such that for all \(a \in \Delta \) and \(q \in Q \), \(\delta_M(a, p) \overset{\text{def}}{=} q \), where \(q \) is the state such that \(p \xrightarrow{a} q \). Observe that, because of determinism, if \(p \xrightarrow{a} q_1, p \xrightarrow{a} q_2 \) and \(a \in \{ \varphi \land \varphi' \} \), then \(q_1 = q_2 \). Moreover, due to completeness, there exists some \(q \) and \(\varphi \) such that \(p \xrightarrow{a \cdot \varphi} q \) and \(a \in \Delta_q \).

Determination of SFAs is always possible and is studied in [42]. Completion is straightforward: if \(M \) is not complete then add a new state \(q_0 \) and the self-loop \(q_0 \xrightarrow{a} q_0 \), and for each partial state \(q \) add the move \((q, \Delta \setminus q_0) \rightarrow \text{Grd}(p, q_0) \). Observe that completion requires negation of predicates.

Normalization is obvious: if there exist states \(p \) and \(q \) and two distinct transitions \(p \xrightarrow{a} q \) and \(p \xrightarrow{\alpha} q \), then replace these transitions with the single transition \(p \xrightarrow{\alpha \land a \land \omega} q \). This does not affect \(\overline{L}_p(M) \) for any \(p \).

We always assume that \(M \) is clean. Cleaning amounts to running a standard forward reachability algorithm that keeps only reachable states, and eliminates infeasible moves. Observe that infeasible moves \(p \xrightarrow{a} q \) do not add expressiveness and might cause unnecessary state space explosion.

It is important to show that minimality of SFAs is in fact well-defined in the sense that minimal SFAs are unique up to renaming of states and equivalence of predicates. To do so we use the following construction.

Assume \(M = (A, Q, q^0, F, \Delta) \) to be deterministic and complete. Let \(\Sigma_A \) denote the first-order language that contains the unary relation symbol \(F \) and the unary function symbol \(\overline{a} \) for each \(a \in \Delta_A \). We define the \(\Sigma_A \)-structure of \(M \), denoted by \(\Sigma \), to have the universe \(Q \), and the interpretation function:
\[
\overline{F}(\overline{a}) \overset{\text{def}}{=} F, \quad \forall \overline{a} \in \Sigma_A, p \in Q (\overline{a}(p) \overset{\text{def}}{=} \delta_M(a, p)).
\]

Also, let
\[
M(a) \overset{\text{def}}{=} q^0, \quad M(w \cdot a) \overset{\text{def}}{=} \delta_M(a, M(w)) \quad \text{for } a \in \Delta_A \text{ and } w \in \Delta_A.
\]

In other words, \(M(w) \) is the state reached in \(M \) for the word \(w \in \Delta_A \). Recall that two \(\Sigma \)-structures are isomorphic if there exists a bijective mapping between their universes that preserves the meaning of all symbols in \(\Sigma \).

Theorem 1. If \(M \) and \(N \) are minimal SFAs over the same alphabet \(A \) such that \(\overline{L}(M) = \overline{L}(N) \), then \(\mathfrak{M} \) and \(\mathfrak{N} \) are isomorphic \(\Sigma_A \)-structures.

Proof: Assume \(M \) and \(N \) to be minimal SFAs over \(A \) such that \(\overline{L}(M) = \overline{L}(N) \). We define \(\iota : \mathfrak{M} \cong \mathfrak{N} \) as follows:
\[
\forall w \in \Delta_A (\iota(M(w)) \overset{\text{def}}{=} N(w)).
\]

To show that \(\iota \) is well-defined as a function, observe first that all states of \(M \) correspond to some \(w \) because \(M \) is clean. Second, we prove that for all words \(v \) and \(w \), if \(M(v) = M(w) \) then \(N(v) = N(w) \). Fix \(v, w \in \Delta_A \) such that \(M(v) = M(w) \). Then, for all \(u \in \Delta_A \),
\[
u \in \mathcal{L}(N)(u) \quad \iff \quad u \cdot v \in \mathcal{L}(N)
\]
(by \(\mathcal{L}(M) \equiv \mathcal{L}(N) \))
\[
u \in \mathcal{L}(M)(u) \quad \iff \quad u \in \mathcal{L}(M)
\]
(by \(M(w) = M(v) \))
\[
\forall u \in \mathcal{L}(M)(u) \quad \iff \quad u \in \mathcal{L}(M)
\]
(by \(M(w) = M(v) \))
\[
u \in \mathcal{L}(N)(u) \quad \iff \quad w \cdot u \in \mathcal{L}(N)
\]
(by \(\mathcal{L}(M) \equiv \mathcal{L}(N) \))
\[
u \in \mathcal{L}(M)(u) \quad \iff \quad w \cdot u \in \mathcal{L}(M)
\]
(by \(M(w) = M(v) \))
\[
u \in \mathcal{L}(N)(u) \quad \iff \quad u \in \mathcal{L}(N)(u)
\]
(by \(\mathcal{L}(M) \equiv \mathcal{L}(N) \))

So, \(\mathcal{L}(N)(u) = \mathcal{L}(N)(v) \), and thus \(N(v) = N(w) \) by minimality of \(N \). So, \(\iota \) is well-defined as a function. By switching the roles of \(M \) and \(N \) we also get the opposite direction. Thus, the theorem implies that minimal SFAs are unique up to renamings of states and up to equivalence of predicates due to normalization.

Definition 3. Two states \(p, q \in Q \) are \(M \)-equivalent, \(p \equiv_M q \), when \(L_p(M) = L_q(M) \).

We have that \(\equiv_M \) is an equivalence relation. If \(\equiv \) is an equivalence relation over \(Q \), then for \(q \in Q, q/\equiv \) denotes the equivalence class containing \(q \), for \(X \subseteq Q \), \(N_X \equiv \{ q/\equiv \mid q \in X \} \), and \(M/\equiv \) denotes the SFA \(M/\equiv \overset{\text{def}}{=} (A, Q/\equiv, q^0/\equiv, F/\equiv, \Delta/\equiv) \) where:
\[
\Delta/\equiv \overset{\text{def}}{=} \{(p/\equiv, \varphi) \in \Delta \mid p, q \in Q, \exists \varphi((p, \varphi, q) \in \Delta)\}
\]
Observe that $M_{/w}$ is normalized by construction. We need the following theorem that shows that minimization of SFAs preserves their intended semantics.

Theorem 2. Let M be a clean, complete and deterministic SFA. Then $M_{/w} = M$ is minimal and $\mathcal{L}(M) = \mathcal{L}(M_{/w})$.

Proof: Let $\equiv \equiv_M$. Clearly, $M_{/w}$ is clean and complete because M is clean and complete. To show determinism, let $p \xrightarrow{a} M \equiv q_1$, and $p \xrightarrow{a} M \equiv q_2$. Take $p_1, p_2 \in p$, $q_1 \in q_1$ and $q_2 \in q_2$ such that $p_1 \xrightarrow{a} M q_1$ and $p_2 \xrightarrow{a} M q_2$. Since $\mathcal{L}_p(M) = \mathcal{L}_{q_2}(M)$, and M is deterministic, it follows that $\mathcal{L}_{q_1}(M) = \mathcal{L}_{q_2}(M)$ i.e., $q_1 = q_2$.

Thus,

\[
\forall a \in \mathcal{D}_A, p \in Q_M (\delta_{M_{/w}}(a, p_{/w}) = \delta_{M}(a, p)_{/w}).
\]

Minimality of $M_{/w}$ follows from the definition. Next, we show by induction over the length of w that

\[
(*) \quad \forall w \in \mathcal{D}_A, p \in Q_M (\delta_{M_{/w}}(a, p_{/w}) = \delta_{M_{/w}}(w)).
\]

For $w = \epsilon$ we have that $M(\epsilon) = q_{0_M}, M_{/w}(\epsilon) = q_{0_{M_{/w}}}$, and $q_{0_{M_{/w}}} = (q_{0_M})_{/w}$.

For $w = v \cdot a$, where $a \in \mathcal{D}_A$ and $v \in \mathcal{D}_A$, we have that

\[
M(v \cdot a)_{/w} = \delta_{M}(a, M(v)) = \delta_{M_{/w}}(a, M(v)_{/w})
\]

(by IH)

$= \delta_{M_{/w}}(a, M(v)_{/w}) = M_{/w}(w \cdot a)_{/w}.$

It follows that, for all words $w \in \mathcal{D}_A$, $w \in \mathcal{L}(M)$ iff $M(w) \in F_M$ iff $M_{/w}(w) \in F_{M_{/w}}$ iff (by $(*)$) $M_{/w}(w) \in F_{M_{/w}}$ iff $w \in \mathcal{L}(M_{/w})$. Thus $\mathcal{L}(M) = \mathcal{L}(M_{/w})$. \[\Box\]

Theorems 1 and 2 are classical theorems lifted to arbitrary (possibly infinite) alphabets. Theorem 2 implies that SFAs have equivalent minimal forms that, by Theorem 1, are unique up to relabeling of states, and modulo equivalence of predicates. In particular, since for all Q and all equivalence relations E over Q, $|Q/E| \leq |Q|$, each equivalent form has minimal number of states.

3. **Moore’s algorithm over symbolic alphabets**

Moore’s minimization algorithm [34] of DFAs (also due to Huffman [29]) is commonly known as the standard algorithm. Even though the classical version of Moore’s algorithm depends on the alphabet being finite, the general idea can be lifted to SFAs as follows. Given an SFA M, initially, let D be the binary relation $(F \times F) \cup (F^c \times F)$, where $F^c = F \setminus \mathcal{L}(M)$. Compute the fixpoint of D as follows: if $(p, q) \in D$ and there exist moves (p', φ, p) and (q', ψ, q) where $\varphi \land \psi$ is satisfiable

3 In a concrete implementation a dictionary can be used to maintain D similar to the case of DFAs [28, Section 3.4].

then add (p', q') to D. This process clearly terminates. Upon termination, $D = [(Q \times Q) \setminus D]$ is the equivalence relation \equiv_M, and the SFA M_E is therefore minimal. We refer to this algorithm as Min_{\equiv_M}. Observe that Min_{\equiv_M} checks only satisfiability of conjunctions of conditions and does not depend on the full power of the alphabet algebra, in particular it does not require the ability to complement predicates (assuming the initial completion of M is viewed as a separate preprocessing step). This is in contrast with the generalization of Hopcroft’s algorithm discussed in the next section.

Complexity. In the finite alphabet case Moore’s algorithm can be implemented in $O(k \log n)$ (using the approach described in [10]), where n is the number of states of the DFA, and k the number of characters in the input alphabet. However, such implementation relies on the alphabet being finite.
We now have the following contradiction. There are two cases: 1) if \(q_1 \neq q_2 \), say \(q_1 \in R \) and \(q_2 \in R^c \) for some part \(R \), then \(\mathcal{P} \) is not finest because we can split the part \(P \in \mathcal{P} \) such that \(p_1, p_2 \in P \) using the \((a, R)\)-split of \(P \); 2) if \(q_1 \equiv q_2 \) then, because \(|v| < |w| \) and \((*) \) holds for \(x = v \) and \(q_1, q_2 \) in place of \(p_1, p_2 \), it follows that \(w \) is not the shortest such that \((*) \) holds for \(w \).

In addition to the state partition refinement, in the symbolic case, we also use predicate refinement. Predicate refinement builds a set of minterms. A minterm is a minimal satisfiable Boolean combination of all guards that occur in the SFA. The algorithm is shown in Figure 2. It uses a binary tree whose leaves define the partition. Initially the tree is the tree \(T \). Each time a predicate \(\psi \) is used to refine the tree it may cause splitting of its leaves into finer predicates. The following example illustrates such minterm generation.

Example 1. Consider the alphabet algebra \(2^{\{\text{a}, \text{b}, \text{c}\}} \) (ASCII characters). We use standard regex notation for character classes. Suppose that the following two guards occur in the given SFA: \(\forall w \left([\text{a-zA-Z-0-9}] \right) \), and \(\forall d \left([\text{0-9}] \right) \). Then, the value of \(Minterms_{2^{\{\text{a}, \text{b}, \text{c}\}}} \) in line 4 in Figure 2 is either the first of the two trees below if \(w \) is selected first in the loop of line 3, or else the second tree (note that \([\text{d}] \subseteq [\text{w}] \)) so \([\text{d} \land [\text{w}] = [\text{d}]\]):

The minterms are the leaves \([\text{d}], [\text{w}] \land \neg [\text{d}] \) and \(\neg [\text{w}] \).

Next, we analyze a property of the set of minterms. Given a predicate \(\psi \in \Psi_A \) and a state \(p \in \mathcal{Q} \), define:

\[
\delta(\psi, p) \stackrel{def}{=} \{ \operatorname{Tg}(p) \mid p \in \Delta(p), \operatorname{IsSat}(\operatorname{Grd}(p) \land \psi) \}
\]

\[
\delta^{-1}(\psi, p) \stackrel{def}{=} \{ \operatorname{Src}(p) \mid p \in \Delta(p), \operatorname{IsSat}(\operatorname{Grd}(p) \land \psi) \}
\]

\[
\delta^{-1}(\psi, P) \stackrel{def}{=} \bigcup_{p \in P} \delta^{-1}(\psi, p) \quad \text{(for } P \subseteq \mathcal{Q})
\]

Let \(Minterms(M) \subseteq Minterms_{\Delta}(\bigcup_{\psi \in \Delta} \operatorname{Grd}(\psi)) \). The following proposition implies that all characters that occur in one minterm are indistinguishable.

Proposition 1. Let \(M \) be deterministic and complete. For all \(\psi \in Minterms(M) \) and \(p \in \mathcal{Q} \), \(\delta(\psi, p) = 1 \).

We can therefore treat \(\delta \) as a function from \(Minterms \times \mathcal{Q} \) to \(\mathcal{Q} \) and reduce minimization of the SFA to minimization of the DFA with alphabet \(Minterms \) and transition function \(\delta \). In particular, we can use Hopcroft's algorithm. We refer to the resulting algorithm by \(\operatorname{Min}_{\Delta} \). Such an algorithm is shown in Figure 3. Lifting the transition relation to be over minterms is a powerful hammer that can be used to adapt most classical automata algorithms to the symbolic setting. However, one drawback of minterm generation is that, in the worst case, the number of minterms of an SFA is exponential in the number of guards occurring in the SFA. The following example illustrates a worst case scenario in which, due to such a problem, \(\operatorname{Min}_{\Delta} \) runs in exponential time.

Example 2. Let the character domain be nonnegative integers \(< 2^k \). Suppose \(\beta_1(x) \) is a predicate that is true for \(x \) iff the \(i \)th bit of the binary representation of \(x \) is 1, e.g. \(\beta_1(8) \) is true and \(\beta_1(7) \) is false. Predicate \(\beta_3 \) can be defined as \(\neg((x \land \neg 8) = 0) \), provided that, besides equality, the bitwise-and operator & is a built-in function symbol of \(\Psi_{\mathcal{A}} \) (e.g., consider the bit-vector theory of an SMT solver). Similarly, we may also use the algebra \(2^{\{\text{a}, \text{b}, \text{c}\}} \), where the size of the concrete BDD representation for \(\beta_3 \) is linear in \(k \), it has one node that is labeled by \(y \) and whose left child (case bit is 0) is false and whose right child (case bit is 1) is true. The point is that predicates are small (essentially constant) in size. Consider the following SFA \(M_k \) with such an alphabet \(\mathcal{A} \).

\[
\begin{array}{cccccccccc}
\begin{array}{cc}
\text{B0} & \text{B1} & \text{B2} & \cdots & \text{Bk-1} & \text{Bk} & | & \text{W} & \\hline
\end{array}
\end{array}
\]

Then \(Minterms(M_k) = Minterms_{\Delta}(\{\neg \beta_1, \beta_3\}) = \{\tilde{n}\}_{n < 2^k} \) has 2\(^k\) elements, where \([\tilde{n}] = \{n\} \). For example, suppose \(k = 3 \), then \([\beta_2 \land
\neg \beta_1 \land \beta_0] = \{5\} \). The minimal automaton is

The dead-end state \(q_0 \) necessary for completion is implicit.

Complexity. In the finite alphabet case, Hopcroft’s algorithm has complexity \(\mathcal{O}(kn \log n) \), where \(n \) is the number of states of the DFA and \(k \) is the number of characters in the input alphabet [27], assuming \(k \) is treated as a constant. It is shown in [31] that if \(k \) is \(\mathcal{O}(n) \) then the complexity of the algorithm presented in [27] is
must somehow distinguish at least two states \(p_1 \) and \(p_2 \) of \(P \), (see Figure 5(b)), so that the split is indeed proper and guarantees progress. The first loop (lines 8–9) is an optimization that can be omitted without sacrificing correctness, provided that for \(p \not\in S \) we let
\[\Gamma(p) := \bot. \]
The conditions \(P \cap S \not\equiv \emptyset \) and \(P \cap S \not\equiv \emptyset \) together imply that there exist \(p_1 \in P \cap S \) and \(p_2 \in P \setminus S \) such that \(\Gamma(p_1) \not\equiv \emptyset \) but \(\Gamma(p_2) = \emptyset \), so \(\neg(\Gamma(p_1) \equiv \Gamma(p_2)) \) is satisfiable.

The concrete implementation is shown in Figure 6. It differs from the abstract algorithm in that it computes local minterms, and does not compute any concrete witnesses (the element \(a \) is not computed) in the second loop. In the concrete implementation it is important to keep the first loop for the following reasons. One is efficiency, the first loop is cheaper. Second is simplicity, it is useful to work with \(\Gamma \) as a dictionary or array whose index set is \(S \), and it is practical to assume that the invariant \(P \subseteq S \) holds during the second loop.

Next, we formally prove the correctness of \(\text{Min}_{\text{sym}}^N(M) \). The proof provides more intuition on how the algorithm works. We then provide more details on how the concrete implementation works.

Theorem 3. \(\text{Min}_{\text{sym}}^N(M) \) is minimal, and \(\mathcal{L}(\text{Min}_{\text{sym}}^N(M)) = \mathcal{L}(M) \).

Proof: We show first that the invariant of Lemma 1 holds. The invariant clearly holds initially. We show that it is preserved by each split (lines 8–9, and lines 10–14).

First, consider the first splitting loop in Figure 4. Fix \(R \in \mathcal{P} \) and let \(S = \{ \text{Src}(\tau) \mid \tau \in \Delta(R) \} \), and choose \(P \in \mathcal{P} \) such that \(P_1 = P \cap S \not\equiv \emptyset \) and \(P_2 = P \setminus S \not\equiv \emptyset \). Fix \(p_1 \in P_1 \) and \(p_2 \in P_2 \). Then, there is a move \(p_1 \xrightarrow{a} q_1 \) for some \(q_1 \in R \). Let \(a \in \{ q_1 \} \). Since \(p_2 \not\in S \) and \(M \) is complete, for some \(q_2 \in R \) there exist a move \(p_2 \xrightarrow{a} q_2 \) such that \(a \in \{ q_2 \} \). The situation is illustrated in Figure 5(a). By using the invariant, \(\mathcal{L}(\Gamma(q_1)) \not\equiv \emptyset \), there is a word \(w \) such that \(w \in \mathcal{L}(q_1) \) \(\Rightarrow w \not\in \mathcal{L}(q_2) \). Thus, by using the fact that \(M \) is deterministic, \(a \cdot w \in \mathcal{L}(p_1) \) \(\Rightarrow a \cdot w \not\in \mathcal{L}(p_2) \). Therefore, \(\mathcal{L}(p_1) \not\equiv \mathcal{L}(p_2) \).

Second, consider the second splitting loop. Fix \(P \) and \(p_1, p_2 \in P \) that satisfy the loop condition. All parts in \(\mathcal{P} \) that intersect with \(S \) must be subsets of \(S \) due to the first splitting loop, so, since \(M \) is clean, \(P \subseteq S \), \(\text{IsSat}(\Gamma(p_1)) \) and \(\text{IsSat}(\Gamma(p_2)) \). The condi-
Let w be shortest such x. Since w cannot be ϵ, there exist a and v such that $w = a^*v$. So, there are, by determinism and completeness of M, unique q_1 and q_2 such that $p_1 \xrightarrow{a} q_1$ and $p_2 \xrightarrow{a} q_2$. It follows that $v \in \mathcal{L}_{q_1}(M) \Leftrightarrow v \notin \mathcal{L}_{q_2}(M)$. So $q_1 \neq q_2$ or else v satisfies (*) and v is shorter than w.

Consider any fixed computation of Min_{NA}. It follows from the definition of $\text{Split}_{p_1} M$, that M is always a subset of P (and due to the first condition of the update to W), if W ever contains a part containing a state q, then W will keep containing a part that contains q until such a part is removed from W in line 5.

Next, we show that the following W-invariant must hold at all times: for all $R \in W$, $q_1 \in R \Leftrightarrow q_2 \in R$. Let $\{i, j\} = \{1, 2\}$. Suppose, by way of contradiction, that at some point in line 5 a part R is chosen from W such that $q_i \in R$, and $q_j \notin R$. So, $p_i \in S$, with S as in line 6. We then have two following cases.

1. If $p_i \notin S$, then p_i and p_i are split apart in the first splitting loop. This contradicts the fact that $p_i = p_2$.

2. Assume $p_i \in S$ and consider the second splitting loop. By choice of the character a above, we know that there exist moves $p_i \xrightarrow{a} q_1$ and $p_i \xrightarrow{a} q_2$ where $a \in [\varphi_1]$ and $a \in [\varphi_2]$. If follows that $a \notin \Gamma(p_i)$ (because M is deterministic and $q_i \notin R$) while $a \in \Gamma(p_j)$. So, $a \notin \Gamma(p_i) \land \Gamma(p_j)$ and, in other words, $a \notin \Gamma(p_j)$ and the desired contradiction, because the W-invariant is violated at that point.

We have shown that, upon termination of $\text{Min}_{\text{NA}}(M) \equiv P\equiv$ co-incides with $\equiv M$. It follows from Theorem 2 that $M_{\equiv p}$ is minimal and accepts $\mathcal{L}(M)$.

Implementation. A simplified version of our concrete C# implementation of Min_{NA} is shown in Figure 6. Parts of a state partition are represented by mutable sets called blocks, i.e., objects of type Block, and states are represented by integers. Each block contains a HashSet of states. The search frontier W is maintained as a stack of blocks and the partition P is an array of blocks, called block, that is indexed by states.

The first inner while loop (lines 8–9 in Figure 4) is implemented by iterating over all blocks P that intersect with S. The content of block P becomes $P \cap S$ while the content of block P is updated to $P \setminus S$. Observe that blocks are objects (pointers), thus if W contains P, after the $(\land R)$-split it will still contain P as well as the new block P_1.

The second inner while loop (lines 10–14 in Figure 4) is implemented by an efficient encoding of the search for p_1 and p_2 in line 11 of Figure 4. Moreover, no concrete witness a is computed. Instead, a “local minterm” (called φ_1 or ψ in Figure 6), is computed using Γ. This avoids the use of model generation that is more expensive than satisfiability checking (i.e., checking if there exists a model). Thus, the implementation does not rely on model generation. Observe also that the second inner while loop relies on the fact that all remaining (relevant) blocks that intersect with S must be contained in S due to the first inner loop. The split of P
then happens with respect to \(\psi \), which, by construction, is a member of \(\text{Minterms}\{\Gamma(p) \mid p \in P\} \), so some member \(a \) of \(\{\psi\} \) would have produced the same split.

Relation to classical techniques. Implementation of Hopcroft’s algorithm is discussed in detail in [7]. In the classical setting, the notions of blocks and \((a, R)\)-splits are standard, the pair \((R, a)\) is called a **splitter** in classical algorithms, where it plays a key role. The idea of splitting a block into two and keeping only the smaller block in the waiting set \(W \) is a core classical feature. In the case of **partial** DFAs, the algorithms are similar except that \(W \) must be initialized with both \(F \) and \(F^c \) [40].

In classical implementations the waiting set \(W \) consists of **splitters** rather than blocks, where characters have been **preselected**. The same is true for partial DFAs except that only those characters that are relevant for a given block are being used, which is beneficial for DFAs with sparse transition graphs. In the symbolic setting the character selection is indirect and achieved only through the satisfiability checks using local minterms during the second loop. The alphabet algebra may be infinite in the case of SFAs, this is not possible in the classical setting. As far as we know, the idea behind the first inner loop of \(\text{Min}^N_{\text{SFA}} \) and the notion of \((_ , R)\)-splits (recall Figure 5), say **free splitters** \((R, _)\), have not been studied in the classical setting.

Complexity. The complexity of \(\text{Min}^N_{\text{SFA}} \) depends on several factors, most importantly on the representation of precedences and the concrete representation of the partition refinement data structure, that is explained above.

First of all, observe that each \(\Gamma(p) \) has size at most \(\mathcal{O}(nl) \), and the total size of \(\Gamma \) is \(\mathcal{O}(n^2l) \). Since the split operator always adds to \(W \) only the smallest partition, the outer loop is run at most \(\log n \) times. The two internal loops have different running times:

- the first loop is run at most \(n \) times, with an internal complexity of \(\mathcal{O}(n) \), due to the split operation, and
- the second loop is run at most \(n \) times, and if the complexity of the label theory for instances of size \(l \) is \(f(l) \), the complexity of each iteration is at most \(\mathcal{O}(nf(nl)) \). This is due to the \(n \) internal iterations over the current part \(P \). We also notice that each iteration calls the solver on a predicate of size at most \(\mathcal{O}(nl) \).

We can conclude that \(\text{Min}^N_{\text{SFA}} \) has complexity \(\mathcal{O}(n^3 \log n \cdot f(nl)) \). As we will observe in the next section, the quadratic behavior is not observed in practice.

6. Evaluation

We evaluate the performance of \(\text{Min}^N_{\text{SFA}}, \text{Min}^H_{\text{SFA}} \), and \(\text{Min}^M_{\text{SFA}} \) with the following experiments:

1. We minimize the randomly generated DFAs from the benchmark presented in [3]. This experiment analyzes the performance in the presence of small finite alphabets and allows us to validate our implementation of \(\text{Min}^H_{\text{SFA}} \) against the results shown in [3];
2. We minimize the SFAs generated by common regular expressions taken from the web. This experiment measures performance in the case of typical character alphabets (Unicode);
3. We minimize the SFAs \(M_k \) from Example 2 to show the worst case exponential behavior of \(\text{Min}^H_{\text{SFA}} \). In this experiment we also compare against the bricula library, a state-of-the-art automata library that uses character ranges as a symbolic representations of finite alphabets;

4. We minimize randomly generated SFAs over the theory of pairs of integers and strings. Here, we analyze the performance in the case in which the alphabet is infinite; and
5. We implemented the classical procedure for transforming Monadic Second Order (MSO) logic formulae into DFAs [38] and measure how the running time of such transformation is affected by different minimization algorithms. This last test aims at understanding the performance in the case of very large alphabets. We also compare our implementation against the tool Mona [22], the state of the art library for deciding MSO formulae.

All the experiments are run on a 64 bits Intel(R) Xeon(R) 3.60GHz processor with 8 GB of RAM memory.

6.1 Small randomly generated DFAs

In [3] the performance of several minimization algorithms are compared against a set of randomly generated DFAs. Such benchmark contains 5 million DFAs with number of states ranging between 5 and 1000, and alphabet sizes ranging between 2 and 50. The set of DFAs in [3] is uniformly generated at random, and therefore it offers good statistical coverage of the set of all possible DFAs with such number of states and alphabet sizes.

We run \(\text{Min}^N_{\text{SFA}}, \text{Min}^M_{\text{SFA}} \) and \(\text{Min}^H_{\text{SFA}} \) on such set of DFAs. Figure 7 shows the results. For simplicity we only plot the results for DFAs with 10, 20, 50, and 100 states. Each plot contains the running time for each algorithm, where the \(x \) axis represents the number of symbols in the alphabet. In [3], Moore’s algorithm is not considered and we weren’t therefore able to validate the accuracy of our implementation of \(\text{Min}^M_{\text{SFA}} \). However, we were able to replicate the behavior of Hopcroft’s algorithm shown [3] using \(\text{Min}^H_{\text{SFA}} \).

Figure 7 shows how the complexity of \(\text{Min}^N_{\text{SFA}} \) highly depends on the number of states, while the complexity of \(\text{Min}^M_{\text{SFA}} \) is mainly affected by the number of input alphabets. We can indeed see that, already for 100 states, \(\text{Min}^M_{\text{SFA}} \) performs worse than \(\text{Min}^H_{\text{SFA}} \). In this experiment, for most of the input DFAs the number of minterms was the same as the number of input symbols.

It is not a surprise that \(\text{Min}^M_{\text{SFA}} \) is much faster than both \(\text{Min}^N_{\text{SFA}} \) and \(\text{Min}^H_{\text{SFA}} \). Indeed, \(\text{Min}^N_{\text{SFA}} \)’s performance seems to be resistant to both bigger state space and bigger alphabets. Moreover, for no single input \(\text{Min}^N_{\text{SFA}} \) is slower than \(\text{Min}^M_{\text{SFA}} \) or \(\text{Min}^H_{\text{SFA}} \).
6.2 Unicode regular expressions

Next, we compared the performance of different minimization algorithms over a sample set of 1850 SFAs over the alphabet Σ^{16} (of Unicode characters) constructed from typical regexes (taken from a public web-site\(^7\) of popular regexes). Figure 8 shows the running times. The figure clearly shows how Min^N_{H} is faster than both Min^M_{H} and Min^N_{M} for every input instance. Moreover, it can be appreciated how for bigger state sizes (70-80 states) Min^N_{H} starts outperforming Min^N_{M}.

In all cases, the number of minterms turned out to be smaller (by a factor between 2 and 3) than the total number of predicates, and the exponential blowup of minterms never occurred. The size of the generated SFAs ranged from 2 states to 15800 states with an average of 100 states. After the minimization each SFA was 32\% smaller (number of states) than the original SFA.

The following is a typical regex from the sample set:

\[
(\{1,1\}(?:(\[0-5]\d) (2, (0,1)\d(0,1),(0,1)\d(1,1)\{0-5\}\d) (2)
\]

The generated SFA uses 16 predicates (such as \d\(^6\) while there are only 7 minterms (such as \.\). For this regex, the determinized SFA has 47 states and the minimized SFA has 23 states.

Since the number of minterms does not blowup, is there a performance incentive in using Min^N_{H} in this context? The answer is yes since the total time used to minimize all 1700 SFAs was 20 seconds when using Min^N_{H}, and only 0.8 seconds when using Min^N_{M}, thus showing a 24x speedup.

We also measured the performance of the minimization algorithm implemented in the brica library (version 1.11-8) that uses symbolic integer ranges to represent Unicode characters, but does not implement them as a Boolean algebra (since ranges are not closed under complement and union). We observed that the brica implementation of Hopcroft’s algorithms is comparable to our implementation of Min^N_{H}, and for 95\% of the regexes the running times of brica Hopcroft’s algorithm and Min^N_{M} were at most 5\% apart. The trend of Min^N_{M} in Figure 8 is very similar to that of the Hopcroft’s implementation in the brica library.

We decided not to include the latter in the plot for the following reasons: 1) brica is implemented in Java, while our implementations are all in C\#, and 2) in brica, the code corresponding to the minterm computation is not part of the minimization algorithm, therefore the comparison would not be completely fair (especially for big instances).

\(^7\)http://regexlib.com/

\(^6\) We use standard regex character class notation for character predicates.

6.3 Alphabet corner cases

The next experiment shows the importance of avoiding the minterm generation used by Min^N_{M}. We consider the SFAs M_k from Example 2, for values of k ranging between 1 and 31, over the alphabet Σ^{1024} of 32-bit bit-vectors. Figure 9 shows the running times for $\text{Min}^N_{\text{H}}, \text{Min}^N_{\text{M}}$, and Min^N_{M}.

As expected, the performance of Min^N_{H} degrades exponentially. Already for $k = 11$, minimizing the SFA using Min^N_{M} took 1 second due to minterm generation, while both Min^N_{H} and Min^N_{M} took less than 1ms. For Min^N_{M} the time increased from 1ms to .1sec with $k = 31$, while for Min^N_{H} the time remained below 1ms for all the values of k.

Similarly to the previous experiment, we also compared the running time of the sample set against Hopcroft’s and Moore’s minimization algorithm in the brica.automaton library (version 1.11-8). For this experiment, we decided to show the brica performance in order to appreciate how this particular example causes the number of ranges to grow exponentially, causing Hopcroft’s algorithm to be very slow. It is interesting to notice that the brica implementation of Moore’s algorithm is also slow. This is again due to the alphabet’s blowup caused by the ranges algebra.

6.4 Complex theories

We compare the performance of $\text{Min}^N_{\text{H}}, \text{Min}^N_{\text{M}}$, and Min^M_{M} over a sample set of 220 randomly generated SFAs over the theory of pairs over $\text{string} \times \text{int}$. The guards of each SFA are conjunctions of simple predicates over strings and integers. In the theory of strings we only allow comparison against a constant string, while for integers we generate unary predicates containing $+, -, \leq$, and integer constants. The set of generated SFAs is created as follows. We first generated a set S of 10 SFAs with at most 10 states. For each SFA $\alpha \in S$ we also compute the complement, and for every pair $a, b \in S$ we compute the union, intersection, and difference of a and b.

Figure 10 shows the running time of each algorithm for different numbers of states. We first observe how the performance of Min^N_{H} quickly degrades when increasing the number of states. This is mainly due to the large number of minterms. Since the predicates are randomly generated, many overlaps are possible and the number of minterms grows quickly. Next, we can see how the performance of Min^N_{M} is affected by the increasing number of states. Finally, Min^N_{H} can quickly minimize SFAs with up to 96 states in less than 1.5 seconds. This experiment shows how Min^N_{M} is not affected by complex theories, while Min^N_{H} and Min^N_{M} are both impractical in this setting.
The relation between regular languages and logics has been extensively investigated in the past [38]. Particularly, every regular language can be expressed as a formula in the Monadic Second-Order logic (MSO) over strings, and vice versa. In the rest of the section we assume the alphabet to be a finite set Σ, say $\{a, b\}$. The following is an example of an MSO formula: $\phi = \exists x. a(x)$ where a is a unary relation symbol. A string $s \in \Sigma^*$ is a model of ϕ, if there exists a position x in the string with label a. Transforming MSO formulas to automata gives us an algorithm for deciding satisfiability of MSO formulas.

The procedure for converting an MSO formula into a DFA inductively transforms each sub-formula into the corresponding DFA and then combines such DFAs using classical regular language operations. The complexity arises from the presence of free variables, that range over positions. For example, in the formula $a(x)$, x occurs free. In order to represent such a language, the alphabet Σ is extended with one extra bit to $\Sigma \times \{0, 1\}$. The string $\langle a, 0 \rangle \langle b, 0 \rangle \langle a, 1 \rangle$ over the extended alphabet will then represent that the third position of the string aba is assigned to variable x. Following this intuition, every sub-formula ψ is compiled into a DFA over the alphabet $\Sigma \times \{0, 1\}^n$ where n is the number of quantified variables around ψ. For each existential quantification a projection is performed which leads to a non-deterministic automaton that must be determined when a negation on it is performed. This means that each quantifier alternation might therefore lead to an exponential blowup, and in general the procedure has non-elementary complexity.

Despite the non-elementary complexity, practical algorithms that can translate non-trivial MSO formulas are presented in [22]. The tool implementing such algorithms is called Mona. The two key-features of such algorithms are:

1. determinizing and minimizing the intermediate DFA at every step in the transformation, and
2. using BDDs for representing the lifted bit-vector alphabets.

We implemented the same transformation using the BDD solver in our library, and compared the performance using different minimization algorithms.

Figure 11 shows the performance of the transformation for different MSO formulas. The running time for Mona are also shown. The four sub-figures depict the running time for the MSO to DFA transformation for the following formulas:

a) $\exists x_1, \ldots, x_k. x_1 < \ldots < x_k$, for k between 2 and 40,
b) $\exists x_1, \ldots, x_k. x_1 < \ldots < x_k \land a(x_1) \land \ldots \land a(x_k)$, for k between 2 and 40,
c) $(\exists x_1, \ldots, x_k. x_1 < \ldots < x_k \land a(x_1) \land \ldots \land a(x_k)) \lor \exists y. c(y)$, for k between 2 and 40,
d) $\exists x_1, \ldots, x_k. f_k$ where $f_2 = (x_1 < x_2 \land a(x_1)) \lor c(x_1)$, and for $n > 2, f_n = f_{n-1} \lor ((x_{n-1} < x_n \land a(x_{n-1})) \lor c(x_{n-1}))$, for k between 2 and 17.

All the values missing from the graphs are due to the algorithms running out of memory. The figure shows the following behaviors:

- for all of the four classes of formulas, the transformation based on Min_{new}^N is able to create the DFAs for higher values of k (number of nested variables) than those supported by Mona;
- for small instances Mona is faster than our implementation. However for higher values of k our implementation is faster, even when using Min_{new}^H or Min_{new}^M;
- while Mona immediately shows an exponential behavior (very steep slope), we couldn’t observe such trend in our implementation; and
- Min_{new}^N is faster than Min_{new}^H and Min_{new}^M, and it is also less memory intensive (it runs out of memory for higher k).

Even though such formulas are only a small benchmark, they are quite representative of the kind of inputs that cause Mona’s transformation to be impractical. We believe that the performance improvement of our implementation with respect to Mona is primarily due to a better use of the BDD solver, rather than due to the minimization algorithm.

7. Applications

The development of the theory of symbolic automata, including use of minimization, is motivated by several concrete practical problems. Here we discuss three such applications. In each case we illustrate what kind of character theory we are working with, the role of minimization, and focus on the benefits of the symbolic representation.

7.1 Regex processing

Practical applications of regular expressions or *regexes* is ubiquitous. Practical regexes differ from schoolbook regular expressions in the following aspects:

- they support, besides non-regular features that go beyond capabilities of finite state automata representations, constructs such
as bounded quantifiers and character classes, that make them more appealing (more succinct) than their classical counterparts, and

• the size of the alphabet is 2^{16} due to the widely adopted UTF-16 standard of Unicode characters.

As a somewhat unusual example, the regex $\text{\textasciitilde}\backslash[\text{uFF10}-\text{uFF1F}]\$ matches the set of digits in the so-called Wide Latin range of Unicode. We let the alphabet algebra be $2^{2^{16}}$. Let the BDD β_w represent all ASCII word characters as the set of character codes $\{0', \ldots, 9', A', \ldots, Z', a', \ldots, z'\}$. We write $0'$ for the code 48, a' for the code 97, etc. Let also β_d represent the set of all decimal digits $\{0', \ldots, 9'\}$ and let β_γ represent underscore $\{_\}$.

- Recall the standard convention: a regex without the start-anchor * matches any prefix and a regex without the end-anchor $\$ matches any suffix.
- Relevant values of k in the above scenario depend on the concrete context, but range between 4 and 128.
8. Related work

DFA Minimization: The classical algorithms for DFA minimization have been studied and analyzed extensively in several different aspects. In particular, Moore’s algorithm is studied in [10] where it is shown that, by a clever change of data structures, its complexity can be reduced from $O(kn^2)$ to $O(kn \log n)$. The bound $O(kn \log n)$ has been shown to be tight for Hopcroft’s algorithm [6, 8]. Brzozowski [13] observed that a DFA can be minimized by reversing its transitions, then determining, then reversing its transitions again, and finally determining again. However, due to the determinization steps, this procedure is exponential and we decided not to consider it in this paper. Linear time algorithms have been studied for minimizing acyclic automata [32, 36] and automata containing only simple cycles [2]. The book chapter [7] provides an in-depth study of the state-of-the-art techniques for automata minimization, including the approaches mentioned above and several other ones. Watson [45] also provides an elegant classification of the classical minimization algorithms based on their structural properties.

In the case of DFAs, it matters whether the DFA to be minimized is partial (incomplete), because it may be useful to avoid completion of DFAs with sparse transition graphs. Minimization of partial DFAs is studied in [5, 39, 40]. The book chapter [7] provides an in-depth study of the state-of-the-art techniques for automata minimization, including the approaches mentioned above and several other ones. Watson [45] also provides an elegant classification of the classical minimization algorithms based on their structural properties.

Different Notions of Minimization: A notion of incremental minimization is investigated in [47]. An incremental minimization algorithm can be halted at any point and produce a partially minimal DFA which is equivalent to the starting DFA, and has less or equal number of states. If the algorithm runs till completion, a minimal DFA is computed. In this paper we did not address incremental computation, however it would be interesting to identify variants of the presented algorithms with such a property. A similar idea, based on intermediate computation results, is used for a modular minimization algorithm in [14]. An algorithm for building a minimal DFA accepting a given finite set of strings is presented in [15]. The same paper investigates the problem of “maintaining” a minimal DFA when applying modification such as node, edge, or string deletion and insertion to an already minimal DFA. This class of problems is called dynamic minimization.

A parallel version of Moore’s algorithm is presented in [37]. We are not aware of a parallel version of Hopcroft’s algorithm. We leave as an open problem identifying parallel algorithms corresponding to Min^H and Min^N.

A variant of minimization called hyper-minimization is investigated in [24]. Given an input DFA A, a DFA $A’$ is hyper minimal with respect to A if it is the smallest DFA that differs from A only on a finite number of strings. In the case of symbolic automata, this definition doesn’t extend naturally due to potentially infinite alphabet. A less restrictive notion called k-minimization is studied in [21]. Given an input DFA A, a DFA $A’$ is k-minimal with respect to A if it is the smallest DFA that differs from A only on strings of length smaller or equal than k. This second restriction naturally extends to symbolic automata. A more general notion is that of minimization up to E-equivalence, where given a regular language E, the DFA $A’$ is allowed to differ from A on a set of strings $L \subseteq E$ [23]. Extending the results of [21, 23] to symbolic automata is an interesting open research direction. Relationships between minimality and selection of final states are studied in [35] where uniform minimality is defined as minimality for any choice of final states.

Automata with Predicates: The concept of automata with predicates instead of concrete symbols was first mentioned in [46] and was first discussed in [41] in the context of natural language processing. A symbolic generalization of Moore’s algorithm was first discussed in [43]. To the best of our knowledge, no other minimization algorithms have been studied for SFAs. The MONA implementation [22] provides decision procedures for monadic second-order logic, and it relies on a highly-optimized BDD-based representation for automata which has seen extensive engineering effort [30]. Therefore, the use of BDDs in the context of automata is not new, but is used here as an example of a Boolean algebra that seems particularly well suited for working with Unicode alphabets.

Minimization of Other Automata: The problem of automata minimization has been investigated in several other settings. A new approach for minimizing nondeterministic automata and nondeterministic Büchi automata has been studied in [33]. The problem of minimizing weighted automata (automata computing functions from strings to a semi-ring) is studied in [20]. Classical minimization algorithms are used in this setting, and we hope that the results shown in this paper can extend to such domain. The minimization problem has also been studied for timed automata [11] and register automata [16]. These models are able to represent infinite domains, but not arbitrary theories. An orthogonal direction is to extend the techniques presented in this paper to minimization of symbolic tree automata [18].

Other Applications: The problem of learning of symbolic transducers has recently been studied in [12]. Classical automata learning is based on Angluin’s algorithm [4], which fundamentally relies on DFA minimality. An almost unexplored topic is whether such learning techniques can be extended to SFAs.

9. Conclusions

We presented three algorithms for minimizing Symbolic Finite Automata (SFAs). We first extended Moore’s algorithm and Hopcroft’s algorithm to the symbolic setting. We then show that, while in the classical setting Hopcroft’s algorithm is the fastest known minimization algorithm, in the presence of symbolic alphabets, it might incur in an exponential blowup. To address this issue, we introduced a new minimization algorithm that fully benefits from the symbolic representation of the alphabet and does not suffer from the exponential blowup. The new algorithm is a refinement of Hopcroft’s one in which splits are computed locally without having to consider the entire input alphabet. The new algorithm can also be adopted in the classical setting. Finally, we implemented all the algorithms and provided experimental evidence that the new minimization algorithm is the most efficient one in practice.

Acknowledgments. We thank Marco Almeida for helping us accessing his benchmark of randomly generated DFAs. Loris D’Antoni was supported by the NSF Expeditions in Computing award CCF 1138996, and this work was done as part of an internship at Microsoft Research. We also thank the anonymous reviewers for their insightful comments.