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ABSTRACT
Load balancing is a foundational function of datacenter infrastruc-
tures and is critical to the performance of online services hosted
in datacenters. As the demand for cloud services grows, expen-
sive and hard-to-scale dedicated hardware load balancers are being
replaced with software load balancers that scale using a distributed
data plane that runs on commodity servers. Software load balancers
offer low cost, high availability and high flexibility, but suffer high
latency and low capacity per load balancer, making them less than
ideal for applications that demand either high throughput, or low la-
tency or both. In this paper, we present DUET, which offers all the
benefits of software load balancer, along with low latency and high
availability – at next to no cost. We do this by exploiting a hith-
erto overlooked resource in the data center networks – the switches
themselves. We show how to embed the load balancing functional-
ity into existing hardware switches, thereby achieving organic scal-
ability at no extra cost. For flexibility and high availability, DUET
seamlessly integrates the switch-based load balancer with a small
deployment of software load balancer. We enumerate and solve
several architectural and algorithmic challenges involved in build-
ing such a hybrid load balancer. We evaluate DUET using a pro-
totype implementation, as well as extensive simulations driven by
traces from our production data centers. Our evaluation shows that
DUET provides 10x more capacity than a software load balancer,
at a fraction of a cost, while reducing latency by a factor of 10 or
more, and is able to quickly adapt to network dynamics including
failures.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems—Network Oper-
ating Systems

General Terms: Design, Performance

Keywords: Load Balancing, Datacenter, SDN

1. INTRODUCTION
A high performance load balancer is one of the most important

components of a cloud service infrastructure. Services in the data
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center scale by running on multiple servers, each with an individ-
ual direct IP (DIP). The service exposes one or more virtual IP
addresses (VIP) outside the service boundary. The load balancer
receives the traffic destined for the VIP, splits it among the DIPs,
and routes it to the individual DIPs using IP-in-IP encapsulation.

The load balancer thus touches every packet coming into the
data center from the Internet, as well as a significant fraction of
all intra-DC traffic. This traffic volume induces heavy load on both
data plane and control plane of the load balancer [17]. The per-
formance and reliability of the load balancer directly impact the
latency, throughput and the availability of the cloud services hosted
in the DC.

Traditional load balancers are dedicated hardware middle-
boxes [1, 4] that are very expensive. In contrast, Ananta [17] is
a software load balancer that runs on commodity servers. Ananta
consists of a central controller, and several software Muxes (SMux)
that provide a distributed data plane. Each SMux maintains all VIP-
to-DIP mappings, and implements traffic splitting and encapsula-
tion functionality in software. The Ananta architecture is flexible,
highly scalable and ensures high availability.

However, software load balancers have two fundamental limita-
tions, both of which stem from the fact that they process the packets
in software. First, processing packets in software limits capacity.
Experiments show that the CPU on individual Ananta SMux be-
comes a bottleneck once the incoming traffic exceeds 300K packets
per second. While the aggregate capacity of software load balancer
can be scaled out by adding more servers, doing so raises cost. For
example, handing 15Tbps traffic (typical for a mid-sized DC) re-
quires over 4000 SMuxes, costing over USD 10 million.

Second, processing packets in software incurs high, and highly
variable latency. An Ananta SMux, handling as little as 100K
packets per second can add anywhere from 200µsec to 1ms of la-
tency. Applications such as algorithmic stock trading and high per-
formance distributed memory caches demand ultra-low (a few mi-
croseconds) latency within the data center. For such applications,
the latency inflation by the software load balancer is not acceptable.

In this paper, we propose DUET, which addresses these two
drawbacks of software load balancers. DUET uses existing switch
hardware in data centers to build a high performance, in-situ, organ-
ically scalable hardware load balancer and seamlessly combines it
with a small deployment of software load balancer for enhanced
availability and flexibility.

DUET is based on two key ideas. The first idea is to build a
load balancer from existing switches in the data center network.
The key insight is that the two core functions needed to imple-
ment a load balancer – traffic splitting and packet encapsulation
– have long been available in commodity switches deployed in data
center networks. Traffic splitting is supported using ECMP, while



packet encapsulation is supported using tunneling. However, it is
only recently that the switch manufacturers have made available
APIs that provide detailed, fine-grained control over the data struc-
tures (ECMP table and tunneling table) that control these two func-
tions. We re-purpose unused entries in these tables to maintain a
database of VIP-to-DIP mappings, thereby enabling the switch to
act as a Mux in addition to its normal forwarding function. This
gives us an in-situ, hardware Mux (HMux) – without new hardware.
Since splitting and encapsulation are handled in the data plane, the
switch-based load balancer incurs low latency (microseconds) and
high capacity (500 Gbps).

While HMuxes offer high capacity, low latency and low cost, the
architecture is less flexible than software load balancers. Specifi-
cally, handling certain cases of switch failures is challenging (§5.1).
Thus, our second idea is to integrate the HMuxes with a small de-
ployment of SMuxes, to get the best of both worlds. We make
the integration seamless using simple routing mechanisms. In the
combined design, most of the traffic is handled by the switch-
based hardware load balancer, while software load balancer acts
as a backstop, to ensure high availability and provide flexibility.

Compared to dedicated hardware load balancers, or pure soft-
ware load balancers (Ananta), DUET is highly cost effective. It
load-balances most of the traffic using existing switches (HMuxes),
and needs only a small deployment of software load balancer as a
backstop. Because most of the traffic is handled by the HMuxes,
DUET has significantly lower latency than software load balancers.
At the same time, use of software load balancer enables DUET to
inherit high availability and flexibility of the software load balancer.

To design DUET, we addressed two main challenges. First, in-
dividual switches in the data center do not have enough memory
to hold the entire VIP-to-DIP mapping database. Thus, we need
to partition the mappings among the switches. We devise a simple
greedy algorithm to do this, that attempts to minimize the “left-
over” traffic (which is perforce handled by the software load bal-
ancer), while taking into account constraints on switch memory and
demands of various traffic flows.

The second challenge is that this mapping must be regularly up-
dated as conditions change. For example, VIPs or DIPs are added
or removed by customers, switches and links fail and recover etc.
We devise a migration scheme that avoids memory deadlocks and
minimizes unnecessary VIP movement.

We evaluate DUET using a testbed implementation as well as ex-
tensive, large-scale simulations. Our results show that DUET pro-
vides 10x more capacity than the pure software load balancer, at a
fraction of the SMux cost, while also reducing the latency inflation
by 10x or more. Additionally, we show that DUET quickly adapts
to the network dynamics in the data center including failures.

In summary, the paper makes the following three contributions.
First, We characterize the conditions, design challenges, and de-
sign principles for moving load balancing functionality directly
into hardware switches which offer significantly lower latency and
higher capacity than software servers. Second, we present the de-
sign and implementation of a switch-based load balancer. To the
best of our knowledge, this is the first such design. Third, we show
how to seamlessly combine the switch-based load balancer with
software load balancer to achieve high availability and flexibility.
Again, to the best of our knowledge, this is the first “hybrid” load
balancer design.

2. BACKGROUND AND MOTIVATION
We provide background on load balancing functionality in

DCs, briefly describe a software-only load balancer architecture
(Ananta), and point out its shortcomings.
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Figure 1: Performance of software Mux.

A DC typically hosts multiple services. Each service is a set of
servers that work together as a single entity. Each server in the set
has a unique direct IP (DIP) address. Each service exposes one or
more virtual IP (VIP) outside the service boundary. The load bal-
ancer forwards the traffic destined to a VIP to one of DIPs for that
VIP. Even services within the same DC use VIPs to communicate
with each other, since the indirection provided by VIPs offers sev-
eral benefits. For example, individual servers can be maintained
or upgraded without affecting dependent services. Management of
firewall rules and ACLs is simplified by expressing them only in
terms of VIPs, instead of DIPs, which are far more numerous and
are subject to churn.

The key to the efficient functioning of the indirection architec-
ture is the load balancer. A typical DC supports thousands of ser-
vices [17, 9], each of which has at least one VIP and many DIPs as-
sociated with it. All incoming Internet traffic to these services and
most inter-service traffic go through the load balancer. As in [17],
we observe that almost 70% of the total VIP traffic is generated
within DC, and the rest is from the Internet. The load balancer de-
sign must not only scale to handle this workload but also minimize
the processing latency. This is because to fulfill a single user re-
quest, multiple back-end services often need to communicate with
each other — traversing the load balancer multiple times. Any extra
delay imposed by the load balancer could have a negative impact
on end-to-end user experience. Besides that, the load balancer de-
sign must also ensure high service availability in face of failures of
VIPs, DIPs or network devices.

2.1 Ananta Software Load Balancer
We first briefly describe the Ananta [17] software load balancer.

Ananta uses a three-tier architecture, consisting of ECMP on the
routers, several software Muxes (SMuxes) that run on commodity
servers, and are deployed throughout the DC, and a host agent (HA)
that runs on each server.

Each SMux stores the VIP to DIP mappings for all the VIPs
configured in the DC. Using BGP, every SMux announces itself



to be the next hop for every VIP. Incoming packets for a VIP are
directed to one of the SMuxes using ECMP. The SMux selects a
DIP for the VIP, and encapsulates the packet, setting the destination
address of the outer IP header to the chosen DIP. At the DIP, the HA
decapsulates the incoming packet, rewrites the destination address
and port, and sends it to server. The HA also intercepts outgoing
packets, and rewrites their IP source addresses from the DIP to the
VIP, and forwards the direct server return (DSR).

Ananta can support essentially an unlimited number of VIPs and
DIPs, because it stores this mapping in the large main memory on
commodity servers. While a single SMux in Ananta has limited ca-
pacity (due to software processing), Ananta can still scale to handle
large volumes of traffic. First, Ananta deploys numerous SMuxs,
and relies on ECMP to split the incoming traffic among them. Sec-
ond, DSR ensures that only the incoming or the VIP traffic goes
through the load balancer. Ananta also includes a mechanism called
fast path to enhance scalability. Fast path allows all inter-service
traffic to directly use DIPs, instead of using VIPs. However, this
negates the benefits of the VIP indirection. For example, if fast path
is enabled, service ACLs have to be expressed in terms of DIPs.

In summary, implementing parts of load balancing functionality
in software allows Ananta to be highly scalable and flexible. How-
ever, processing packets in software is also the Achilles heel for
Ananta, because it adds latency, and limits the throughput, as we
discuss next.

2.2 Limitations of Software Load Balancer
Figure 1(a) shows the CDF of the RTTs for the VIP traffic load-

balanced by a production Ananta SMux as traffic to the VIP varies
between 0 and 450K packets/sec. Even at zero load the SMux adds
a median latency of 196µsec. The latency variance is also signifi-
cant, with the 90th percentile being 1ms. The median RTT (without
load balancer) in our production DCs is 381µsec, so the inflation
in latency is significant for the intra-DC traffic, which accounts for
70% of the total VIP traffic. (For the remaining traffic from the In-
ternet, it is a lesser problem due to larger WAN latencies). The high
latency inflation and high latency variability result from processing
the packets in software. We also see that the added latency and the
variance get much worse at higher load.

The results also illustrate that an individual SMux instance has
low capacity. Beyond 300K packets/sec, the CPU utilization
reaches 100% (Figure 1(b)). Thus, for the hardware SKU used
in our DCs, each SMux can handle only up to 300K packets/sec,
which translates to 3.6 Gbps for 1,500-byte packets. At this rate,
supporting 15 Tbps VIP traffic for a mid-sized (40K servers) DC
would require over 4K SMuxes, or 10% of the DC size; which is
unacceptable1.

3. DUET: CORE IDEAS
In the previous section, we saw that while software load bal-

ancers are flexible and scalable, they suffer from low throughput
and high latency. In this paper, we propose a new design called
DUET that offers scalability, high throughput and low latency, at a
small fraction of the software load balancer’s cost.

DUET is based on two novel ideas. First, we leverage idle re-
sources of modern, commodity data center switches to construct
a hardware load balancer. We call this design Hardware Mux
(HMux). HMux offers microsecond latency, and high capacity,

1Newer technologies such as direct-packet IO and RDMA may
help match packet processing capacity of the SMux to that of the
NIC (10 Gbps), but they may not match packet processing capacity
of the switch (600 Gbps+) as we explain in § 3.1.
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Figure 2: Storing VIP-DIP mapping on a switch.

without the need for any additional hardware. However, the HMux
design suffers from certain shortcomings. Thus, our second idea
is to combine the HMux with Ananta-like software Mux (SMux).
The combined system is called DUET in which the SMux acts as a
backstop for the HMux.

We now describe the design of HMux. To simplify the descrip-
tion, we will assume that the DC is not virtualized, i.e., one DIP
corresponds to one server. The changes required to support VMs
are described in §5.2.

3.1 HMux
Ananta’s SMux implements two key functions to load balance

traffic: (1) for each VIP, split traffic equally among its DIPs, and
(2) use IP-in-IP encapsulation to route the VIP traffic to the corre-
sponding DIPs. Both of these functions have long been available on
commodity switches, i.e., traffic splitting is supported using ECMP
and IP-in-IP encapsulation is supported using tunneling. However,
major switch vendors have only recently started to provide the APIs
for fine-grained control over ECMP and tunneling functionality.

Our key insight is that by carefully programming the ECMP and
tunneling tables using these new APIs, we can make a commod-
ity switch act as a hardware Mux (HMux), in addition to its nor-
mal functionality. In fact, this can be easily done on most of the
switches used in our DCs today.

Figure 2 shows the HMux design. A packet arriving at a switch
goes through a processing pipeline. We focus on three tables used
in the pipeline. The packet matches one entry in the host for-
warding table which then points to multiple ECMP table entries.
These ECMP table entries correspond to multiple next hops for the
packet2. The actual next hop for the packet is selected by using the
hash of the IP 5-tuple to index into the ECMP table. The tunnel-
ing table enables IP-in-IP encapsulation by storing the information
needed to prepare the outer IP header for a given packet.

To construct HMux, we link the ECMP and tunneling function-
alities. Consider a packet destined for VIP 10.0.0.0 that arrives at
the HMux. There are two DIPs (100.0.0.1 and 100.0.0.2) for this
VIP. The host forwarding table indicates that the first two entries in
the ECMP table pertain to this VIP. The ECMP entries indicate that
packets should be encapsulated, and point to appropriate entries in
the tunneling table. The switch encapsulates the packet using IP-in-
IP encapsulation, and the destination address in the outer IP header
is set to the DIP address specified in the tunneling table entry. The
packet is then forwarded to the appropriate interface.

Thus, at the expense of some entries in the host forwarding,
ECMP and tunneling tables, we can build a load balancer using

2The information is split between ECMP group table and ECMP
table; we omit such details due to lack of space.
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commodity switches. In fact, if all the VIP-to-DIP mappings are
stored on every top-of-rack (ToR) switch as well as every access
switch, this HMux design can provide load balancing functionality
to all intra-DC and inter-DC traffic. However, the amount of space
available in the three tables is limited, raising two distinct issues.

Number of VIPs: The first problem is the size of the host for-
warding table. The switches in our DC have 16K entries in the host
table. The host table is mostly empty, because it is used only for
routing within a rack. But even the 16K entries may not be enough
to hold all VIPs in a large DC. One way to address this problem is
by using longest prefix match (LPM) forwarding table. However,
LPM table is heavily used for routing within and across DCs, and
is not available to be used for load balancing. We support higher
number of VIPs using SMuxes as explained in §3.3.

Number of DIPs: The second problem concerns the sizes of the
ECMP and tunneling tables. ECMP table typically holds 4K en-
tries, and is mostly empty (see § 9). The tunneling table typically
holds 512 entries. In our DC, few applications use tunneling, so
these entries are mostly free as well. The number of DIPs an in-
dividual HMux can support is the minimum of the number of free
entries in the ECMP and the tunneling tables (see Figure 2). Thus,
an individual HMux can support at most 512 DIPs. This is orders
of magnitude smaller than the total number of DIPs. We address
this challenge next.

3.2 Partitioning
We address the problem of limited size of ECMP and tunneling

tables using two mechanisms: (1) We divide the VIP-to-DIP map-
ping across multiple switches. Every switch stores only a small
subset of all the VIPs, but stores all the DIPs for those VIPs. This
way of partitioning ensures all the traffic for a particular VIP ar-
rives at a single switch and the traffic is then equally split among
the DIPs for that VIP. (2) Using BGP, we announce the VIPs that
are assigned to the switches, so that other switches can route the
VIP packets to the switch where the VIP is assigned.

Figure 3 illustrates this approach. VIP1 has two DIPs (D1 and
D2), whereas VIP2 has one (D3). We assign VIP1 and VIP2 to
switches C2 and A6 respectively, and flood the routing information
in the network. Thus, when a source S1 sends a packet to VIP1,
it is routed to switch C2, which then encapsulates the packet with
either D1 or D2, and forwards the packet.

Another key benefit of partitioning is that it achieves organic
scalability of HMuxes — when more servers are added in the DC
and hence traffic demand increases, more switches will also be

added and hence the aggregate capacity of HMuxes will also in-
crease proportionally.

3.3 DUET: HMux + SMux
While partitioning helps increase the number of DIPs HMux can

support, that number still remains limited. The HMux design also
lacks the flexibility of SMux, because VIPs are partitioned and
“pinned” to specific HMuxes. This makes it challenging to achieve
high VIP availability during network failures. Although replicat-
ing VIP across a few switches may help improve failure resilience,
it is still hard to achieve the high availability of Ananta because
Ananta stores the complete VIP-DIP mappings on a large number
of SMuxes.

This motivates us to architect DUET— a new load balancer de-
sign to fuse the flexibility of SMux and the high capacity and low
latency of HMux.

3.3.1 Design
DUET’s goal is to maximize VIP traffic handled using HMux,

while using SMux as a backstop. Thus, besides an HMux on each
switch, DUET also deploys a small number of SMuxes on commod-
ity servers (figure 3). The VIPs are partitioned among HMuxes as
described earlier. In addition, each SMux announces all the VIPs.
The routing protocol preferentially routes VIP traffic to HMux, en-
suring that VIP traffic is primarily handled by HMux – thereby
providing high capacity and low latency. In case of HMux fail-
ure, traffic is automatically diverted to SMux, thereby achieving
high availability. To ensure that existing connections do not break
as a VIP migrates from HMux to SMux or between HMuxes, all
HMuxes and SMuxes use the same hash function to select DIPs for
a given VIP.

The preferential routing to HMux can be achieved in several
ways. In our current implementation, SMux announces the VIPs
in aggregate prefixes, while HMux announces /32 routes to indi-
vidual VIPs. Longest prefix matching (LPM) prefers /32 routes
over aggregate prefix routes, and thus directs incoming VIP traffic
to appropriate HMux, unless that HMux is unavailable.

The number of SMuxes needed depends on several factors in-
cluding the VIP traffic that cannot be assigned to HMux due to
switch memory or link bandwidth limits (§4), the VIP traffic that
failovers to SMux due to HMux failure (§5.1), and the VIP traffic
that is temporarily assigned to SMux during VIP migration (§4.2).
We estimate it based on historical traffic and failure data in DC.

3.3.2 Benefits
The key benefits of DUET are summarized below.
Low cost: DUET does not require any additional hardware – it

uses idle resources on existing switches to provide load balancing
functionality. DUET also requires far fewer SMuxes than Ananta,
since SMuxes are used only as a backstop for HMuxes, and hence
carry far less traffic.

High capacity and low latency: this is because VIP traffic is
primarily handled by HMux on switch.

High availability: by using SMux as a backstop during failures,
DUET enjoys the same high availability as Ananta.

High limit on number of VIPs: If the number of VIPs exceeds
the capacity of the host forwarding table (16K), the additional VIPs
can be hosted on SMux. Traffic data (Figure 15) in our production
DCs shows that VIP traffic distribution is highly skewed – most of
the traffic is destined for a small number of “elephant” VIPs which
can be handled by HMux. The remaining traffic to “mice” VIPs
can be handled by SMux.



Notation Explanation
V Set of VIPs
dv Set of DIPs for the v-th VIP
S,E Set of switches and links respectively
R Set of resources (switches and links)
Ci Capacity of i-th resource
ti,s,v v-th VIP’s traffic on i-th link, when it is

assigned to s-th switch
Li,s,v load (additional utilization) on i-th resource

if v-th VIP is assigned to s-th switch
Ui,s,v Cumulative utilization of i-th resource

if v-th VIP is assigned to s-th switch
Ui,v Cumulative utilization of i-th resource

after v VIPs have been assigned
MRUs,v Max. Resource Utilization (MRU)

after v-th VIP is assigned to s-th switch

Table 1: Notations used in VIP assignment algorithm.

These benefits can only be realized through careful VIP-switch
assignment. The assignment must take into account both memory
and bandwidth constraints on individual switches, as well as differ-
ent traffic load of different VIPs. The assignment must dynamically
adapt to changes in traffic patterns and network failures. In the next
two sections, we describe how DUET solves these problems, as well
as provides other load balancing functions.

4. VIP ASSIGNMENT ALGORITHM
We formalize the VIP-switch assignment problem using the no-

tations listed in Table 1.
Input: The input to the algorithm includes the list of VIPs (V ),

the DIPs for each individual VIP v (dv), and the traffic volume for
each VIP. The latter is obtained from network monitoring. The
input also includes the network topology, consisting of a set of
switches (S) and a set of links (E). The switches and links con-
stitute the two types of resources (R) in the assignment. Each re-
source instance has a fixed capacity Ci, i.e., the link bandwidth for
a link, and memory capacity that includes residual ECMP and tun-
neling table capacity available for DUET on a switch. To absorb the
potential transient congestion during VIP migration and network
failures, we set the capacity of a link to be 80% of its bandwidth.

Objective: Find the VIP-switch assignment that maximizes the
VIP traffic handled by HMux. As explained earlier, this will im-
prove latency and reduce cost by cutting the number of SMux
needed. We do not attempt to minimize the extra network propa-
gation delay due to indirection because the propagation delay con-
tributes only less than 30µsec of the 381µsec RTT in our DC.

Constraints: Any VIP-switch assignment should not exceed the
capacity of any of the resources.

The VIP assignment problem is a variant of multi-dimensional
bin-packing problem [10], where the resources are the bins, and
the VIPs are the objects. Multi-dimensional bin-packing problems
are NP-hard [10]. DUET approximates it with a greedy algorithm,
which works quite well in our simulations based on real topology
and traffic load of a large production network.

4.1 VIP Assignment
We define the notion of maximum resource utilization (MRU).

We have two types of resource – switches and links. MRU repre-
sents the maximum utilization across all switches and links.

Algorithm sketch: We sort a given set of VIPs in decreasing
traffic volume, and attempt to assign them one by one (i.e., VIPs
with most traffic are assigned first). To assign a given VIP, we con-
sider all switches as possible candidates to host the VIP. Typically,
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Figure 4: Memory deadlock problem during VIP migration.
VIPs V1 and V2 both occupy 60% of switch memory each. The
goal of migration is to migrate the VIPs from assignment in
(a) to (b); DUET eliminates this problem by migrating VIPs
through SMuxes, as shown in (c).

assigning a VIP to different switches will result in different MRU.
We pick the assignment that results in the smallest MRU, break-
ing ties at random. If the smallest MRU exceeds 100%, i.e., no
assignment can accommodate the load of the VIP, the algorithm
terminates. The remaining VIPs are not assigned to any switch –
their traffic will be handled by the SMuxes. We now describe the
process of calculating MRU.

Calculating MRU: We calculate the additional utilization (load)
on every resource for each potential assignment. If the v-th VIP
is assigned to the s-th switch, the extra utilization on the i-th link
is Li,s,v =

ti,s,v
Ci

where traffic ti,s,v is calculated based on the
topology and routing information as the source/DIP locations and
traffic load are known for every VIP. Similarly, the extra switch
memory utilization is calculated as Ls,s,v = |dv|

Cs
, i.e., the number

of DIPs for that VIP over the switch memory capacity.
The cumulative resource utilization when the v-th VIP is as-

signed to the s-th switch is simply the sum of the resource utiliza-
tion from previously assigned (v-1) VIPs and the additional utiliza-
tion due to the v-th VIP:

Ui,s,v = Ui,v−1 + Li,s,v (1)

The MRU is calculated as:

MRUs,v = max(Ui,s,v), ∀i ∈ R (2)

4.2 VIP Migration
Due to traffic dynamics, network failures, as well as VIP addition

and removal, a VIP assignment calculated before may become out-
of-date. From time to time, DUET needs to re-calculate the VIP
assignment to see if it can handle more VIP traffic through HMux
and/or reduce the MRU. If so, it will migrate VIPs from the old
assignment to the new one.

There are two challenges here: (1) how to calculate the new as-
signment that can quickly adapt to network and traffic dynamics
without causing too much VIP reshuffling, which may lead to tran-
sient congestion and latency inflation. (2) how to migrate from the
current assignment to new one.

A simple approach would be to calculate the new assignment
from scratch using new inputs (i.e., new traffic, new VIPs etc.),
and then migrate the VIPs whose assignment has changed between
the current assignment and the new one. To prevent routing black
holes during VIP migration, we would use make-before-break —
i.e., a VIP would be announced from the new switch before it is
withdrawn from the old switch. This simple approach is called
Non-sticky.
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Figure 5: When the VIP assignment changes from ToR T2 to
T3, only the links inside container-2 are affected. As a result,
we can first select best ToR in a container based on the links
within container, and then scan over all containers and remain-
ing Core and Agg switches.

The Non-sticky approach suffers from two problems. First, it
may lead to transitional memory deadlock. Figure 4 shows a sim-
ple example where initially VIP V1 and VIP V2 are assigned to
switches S2 and S3, respectively, but swap positions in the new
assignment. Further, either VIP takes 60% of the switch memory.
Because of limited free memory, there is no way to swap the VIPs
under the make-before-break approach. When there are a large
number of VIPs to migrate, finding a feasible migration plan be-
comes very challenging. Second, even if there was no such dead-
lock, calculating a new assignment from scratch may result in a lot
of VIP reshuffling, for potentially small gains.

DUET circumvents transitional memory deadlocks by using
SMux as a stepping stone. We first withdraw the VIPs that need
to be moved from their currently assigned switches and let their
traffic hit the SMux3. We then announce the VIPs from their newly
assigned switches, and let the traffic move to the new switches.
This is illustrated in Figure 4(c) where both VIP’s (V1 and V2)
traffic is handled by SMux during migration.

Because SMux is used as a stepping stone, we want to avoid un-
necessary VIP reshuffling to limit the amount of VIP traffic that is
handled by SMux during migration. Hence, we devise a Sticky ver-
sion of the greedy VIP assignment algorithm that takes the current
assignment into account. A VIP is moved only if doing so results in
significant reduction in MRU. Let us say that VIP v was assigned
to switch sc in the current assignment, and the MRU would be the
lowest if it is assigned to switch sn in the new assignment. We
assign v to sn only if (MRUsc,v −MRUsn,v) is greater than a
threshold. Else we leave v at sc.

Complexity: It is important for DUET to calculate the new as-
signment quickly in order to promptly adapt to network dynam-
ics. Since all Li,s,v can be pre-computed, the complexity to find
the minimum MRU (Equation 2) for VIP-switch assignment is
O(|V | · |S| · |E|).

This complexity can be further reduced by leveraging the hier-
archy and symmetry in the data center network topology. The key
observation is that assigning a VIP to different ToR switches inside
a container will only affect the resource utilization inside the same
container (shown in Figure 5). Therefore, when assigning a VIP,
we only need to consider one ToR switch with the lowest MRU
inside each container. Because ToR switches constitute a majority
of the switches in the data center, this will significantly reduce the
computation complexity toO(|V | ·((|Score|+ |Sagg|+ |C|) · |E|+
|Stor| · |Ec|)). Here C and Ec denote the containers and links in-
side a container. Score, Sagg and Stor are the Core, Aggregation
and ToR switches respectively.

3Recall that SMux announces all VIPs to serve as a backstop
(§3.3.1)
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Figure 6: Load balancing in virtualized clusters.

5. PRACTICAL ISSUES
We now describe how DUET handles important practical issues

such as failures and configuration changes.

5.1 Failure Recovery
A critical requirement for load balancer is to maintain high avail-

ability even during failures. DUET achieves this primarily by using
SMuxes as a backstop.

HMux (switch) failure: The failure of an HMux is detected by
neighboring switches. The routing entries for the VIPs assigned
to the failed HMux are removed from all other switches via BGP
withdraw messages. After routing convergence, packets for these
VIPs are forwarded to SMuxes, since SMuxes announce all VIPs.
All HMux and SMux use the same hash function to select DIPs for
a given VIP, so existing connections are not broken, although they
may suffer some packet drops and/or reorderings during conver-
gence time (<40ms, see §7.2). Because in our production DCs we
rarely encounter failures that are more severe than three switch fail-
ures or single container failures at a time, we provision sufficient
number of SMuxes to handle the failover VIP traffic from HMuxes
due to those failures.

SMux failure: SMux failure has no impact on VIPs assigned to
HMux, and has only a small impact on VIPs that are assigned only
to SMuxes. Switches detect SMux failure through BGP, and use
ECMP to direct traffic to other SMuxes. Existing connections are
not broken, although they may suffer packet drops and/or reorder-
ings during convergence.

Link failure: If a link failure isolates a switch, it is handled as a
switch failure. Otherwise, it has no impact on availability, although
it may cause VIP traffic to re-route.

DIP failure: The DUET controller monitors DIP health and re-
moves failed DIP from the set of DIPs for the corresponding VIP.
Existing connections to the failed DIP are necessarily terminated.
Existing connections to other DIPs for the corresponding VIP are
still maintained using resilient hashing [2].

5.2 Other Functionalities
VIP addition: A new VIP is first added to SMuxes, and then the

migration algorithm decides the right destination.
VIP removal: When a VIP assigned to an HMux is to be with-

drawn, the controller removes it both from that HMux and from all
SMuxes. VIPs assigned to only SMuxes need to be removed only
from SMuxes. BGP withdraw messages remove the corresponding
routing entries from all switches.

DIP addition: The key issue is to ensure that existing connec-
tions are not remapped if DIPs are added to a VIP. For VIPs as-
signed to SMuxes, this is easily achieved, since SMuxes maintain
detailed connection state to ensure that existing connections con-
tinue to go to the right DIPs. However, HMuxes can only use a
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Figure 7: Large fanout support.

hash function to map VIPs to DIPs (Figure 2). Resilient hashing
only ensures correct mapping in case of DIP removal – not DIP ad-
dition. Thus, to add a DIP to a VIP that is assigned to an HMux,
we first remove the VIP from the HMux, causing SMuxes to take it
over, as described earlier. We then add the new DIP, and eventually
move the VIP back to an appropriate HMux.

DIP removal: DIP removal is handled in a manner similar to
DIP failure.

Virtualized clusters: In virtualized clusters, the HMux would
have to encapsulate the packet twice – outer header carries the IP
of the host (native) machine, while inner header carries IP of the
VM hosting the DIP. However, today’s switches cannot encapsulate
a single packet twice. So, we use HA in tandem with HMux, as
shown in Figure 6. The HMux encapsulates the packet with the IP
of the host machine (HIP) that is hosting the DIP. The HA on the
DIP decapsulates the packet and forwards it to the right DIP based
on the VIP. If a host has multiple DIPs, the ECMP and tunneling
table on the HMux holds multiple entries for that HIP (HIP 20.0.0.1
in Figure 6) to ensure equal splitting. At the host, the HA selects
the DIP by hashing the 5-tuple.

Heterogeneity among servers: When the DIPs for a given VIP
have different processing power, we can proportionally split the
traffic using WCMP (Weighted Cost Multi-Path) where faster DIPs
are assigned larger weights. WCMP can be easily implemented on
commodity switches.

VIPs with large fanout: Typically the capacity of the tunneling
table on a single-chip switch is 512. To support a VIP that has more
than 512 DIPs, we use indirection, as shown in Figure 7. We divide
the DIPs into multiple partitions, each with at most 512 entries. We
assign a single transient IP (TIP) for each partition. As a VIP, a
TIP is a routable IP, and is assigned to a switch. When assigning
a VIP to an HMux, we store the TIPs (as opposed to DIPs) in the
tunneling table (Figure 7). When a packet for such a VIP is received
at the HMux, the HMux encapsulates the packet with one of the
TIPs and forwards it to the switch to which the TIP is assigned.
That switch decapsulates the TIP header and re-encapsulates the
packet with one of the DIPs, and forwards it. The latency inflation
is negligible, as commodity switches are capable of decapsulating
and re-encapsulating a packet at line rate. This allows us to support
up to 512∗512 = 262, 144 DIPs for a single VIP, albeit with small
extra propagation delay4.

Port-based load balancing: A VIP can have one set of DIPs for
the HTTP port and another for the FTP port. DUET supports this
using the tunneling table and ACL rules. ACL (Access Control)
Rules are similar to OpenFlow rules, but currently support a wider
range of fields. We store the DIPs for different destination ports at
different indices in the tunneling table (Figure 8). The ACL rules,

4The VIP assignment algorithm also needs some changes to handle
TIPs. We omit details due to lack of space.
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Figure 9: Components in DUET implementation.

match on the IP destination and destination port fields, and the ac-
tion is forwarding the packet to the corresponding tunneling table
entry. Typically the number of ACL rules supported is larger than
the tunneling table size, so it is not a bottleneck.

SNAT: Source NAT (SNAT) support is needed for DIPs to estab-
lish outgoing connections5. Ananta supports SNAT by maintaining
state on SMuxes [17]. However, as discussed earlier, switches can-
not maintain such connection state. Instead, DUET supports SNAT
by sharing the hash function used by HMux with the host agent
(HA). Like Ananta, DUET assigns disjoint port ranges to the DIPs,
but unlike Ananta, the HA on the DIP does not randomly choose an
unused port number. Instead, it selects a port such that the hash of
the 5-tuple would correctly match the ECMP table entry on HMux.
The HA can do this easily since it knows the hash function used
by HMux. Note that the HA needs to do this only during establish-
ment (i.e., first packet) of outgoing connections. If an HA runs out
of available ports, it receives another set from the DUET controller.

6. IMPLEMENTATION
In this section, we briefly discuss the implementation of the key

components in DUET: (1) DUET Controller, (2) Host Agent, and
(3) Switch Agent, and (4) SMux, as shown in Figure 9.

DUET Controller: The controller is the heart of DUET. It per-
forms three key functions: (1) Datacenter monitoring: It gathers
the topology and traffic information from the underlying network.
Additionally, it receives the VIP health status periodically from the
host agents. (2) DUET Engine: It receives the VIP-to-DIP mapping
from the network operator and the topology and traffic information
from the DC-monitoring module, and performs the VIP-switch as-
signment as described in § 4. (3) Assignment Updater: It takes
the VIP-switch assignment from the DUET engine and translates it
into rules based on the switch agent interface. All these modules
communicate with each other using RESTful APIs.

5Outgoing packets on established connections use DSR.
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Switch Agent: The switch agent runs on every switch. It uses
vendor-specific APIs to program the ECMP and tunneling tables,
and provides RESTful APIs which are used by the assignment up-
dater to add/remove VIP-DIP mapping. On every VIP change, the
switch agent fires touting updates over BGP.

Host Agent and SMux: The host agent and SMux implementa-
tion are the same as in Ananta. The host agent primarily performs
packet decapsulation, SNAT and DIP health monitoring. Addition-
ally, the host agents perform traffic metering and report the statis-
tics to the DUET controller.

Same as in Ananta, we run a BGP speaker along side of each
SMux to advertise all the VIPs assigned to the SMux.

In total, the controller code consists of 4200 LOC written in C#,
and the switch agent code has about 300 LOC in Python.

7. TESTBED EXPERIMENTS
Our testbed (Figure 10) consists of 10 Broadcom-based switches

and 60 servers. Of the 60 servers, 34 act as DIPs and the others are
used to generate traffic. Each of ToRs 1, 2 and 3 is also connected
to a server acting as SMux.

Our testbed experiments show: (1) HMuxes provide higher ca-
pacity, (2) DUET achieves high availability during HMux failure as
the VIP traffic seamlessly falls back to SMuxes, and (3) VIP mi-
gration is fast, and DUET maintains high availability during VIP
migration.

7.1 HMux Capacity
If the load balancer instances have low capacity, packet queues

will start building up, and traffic will experience high latency.
This experiment illustrates that individual HMuxes instances (i.e.,
a switch) have significantly higher capacity than individual SMux
instances.

The experiment uses 11 VIPs, each with 2 DIPs. We send UDP
traffic to 10 of the VIPs, leaving the 11th VIP unloaded.
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Figure 12: VIP availability during failure.

The experiment has three steps. (1) All 11 VIPs are assigned to
the SMuxes, and we generate a total traffic of 600K packets per
second to the 10 VIPs (60K per VIP). Since each VIP is announced
from every SMux, the traffic is split evenly between all SMuxes,
and each SMux is handling 200K packets per second. (2) At time
100 sec, we increase the traffic to 1.2M packets per second, so each
SMux is handling 400K packets per second. (3) Finally, at time
200 sec, we switch all VIPs to a single HMux hosted on ToR 1.

The metric of interest is the latency to the unloaded VIP, mea-
sured using pings sent every 3ms. We measure the latency to the
unloaded VIP so that the latency only reflects the delay suffered at
the SMux or HMux – the VIP or the DIP itself is not the bottleneck.
The results shown in Figure 11.

We see that until time 100 sec, the latency is mostly below 1ms,
with a few outliers. This is because each SMux is handling only
200K packets per second, which is well within its capacity (300K
packets per second – see §2), and thus there is no significant queue
buildup. At time 100, the latency jumps up – now each SMux is
handling 400K packets per second, which is well beyond its ability.
Finally, at time 200 sec, when all VIPs are on a single HMux, the
latency goes down to 1ms again. This shows that a single HMux
instance has higher capacity than at least 3 SMux instances.

In fact, since HMux processes all packets in the data plane of the
switch, it can handle packets at line rate, and no queue buildup will
occur till we exceed the link capacity (10Gbps in this experiment).

7.2 HMux Failure Mitigation
One of the most important benefits of using the SMux as a back-

stop is automatic failure mitigation, as described in §5. In this ex-
periment, we investigate the delay involved in failing over from an
HMux to an SMux. This delay is important because during failover,
traffic to the VIP gets disrupted.

We assign 7 VIPs across HMuxes and the remaining 3 to the
SMuxes. We fail one switch at 100 msec. We measure the impact
of HMux failure on VIP availability by monitoring the ping latency
to all 10 VIPs every 3ms.

Figure 12 shows the ping latency for three VIPs: (1) One on the
failed HMux (VIP3), (2) One on a healthy HMux (VIP2), and (3)
One on an SMux (VIP1), respectively.

We make three observations: (1) The traffic to VIP3 falls over
to SMux within 38 msec after HMux failure. The delay reflects
the time it takes for other switches to detect the failure, and for the
routing to converge. The VIP was not available during this period,
i.e., there is no response to pings. (2) After 38 msec, pings to VIP3

are successful again. (3) The VIPs assigned to other HMuxes and
SMuxes are not affected; their latency is unchanged during HMux
failure. These observations demonstrate the effectiveness of using
SMux as a backstop in the DUET design.
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Figure 13: VIP availability during migration.

7.3 VIP Migration
Recall that we also use SMux as a backstop during VIP migra-

tion. We now investigate the delays involved in this process. This
delay is important because it places a lower bound on how quickly
DUET can react to network conditions.

In this experiment, we assign 7 VIPs to the HMuxes and the re-
maining 3 VIPs to the SMuxes. We migrate a VIP from HMux-
to-SMux (VIP1), SMux-to-HMux (VIP2), and HMux-to-HMux
through SMux (VIP3) at different times. We measure the VIP avail-
ability by monitoring the ping latency (every 3ms) to these VIPs,
and we also measure the migration delay.

Figure 13 shows the ping latency. At time T1, the controller
starts the first wave of migration by sending the migrate command
(migrate to SMuxes) to the corresponding switch agents for VIP1

and VIP3. It takes about 450ms for the migration to finish (time
T2), at which time, the controller sends another migrate command
(migrate back to HMux) to VIP2 and VIP3, which takes about
400ms to take effect (time T3). We see that that all three VIPs
remain fully available during the migration process. The VIPs see
a very slight increase in latency when they are on SMux, due to
software processing of packets on SMux.

Note that unlike the failure scenario discussed earlier, during the
migration process, there is no “failure detection” involved. This is
why we see no ping packet loss in Figure 13.

Figure 14 shows the three components of the migration delay:
(1) latency to add/delete a VIP as measured from the time the
controller sends the command to the time other switches receive
the BGP update for the operation, (2) latency to add/delete DIPs
as measured similarly as the VIPs, (3) latency for the BGP up-
date (routing convergence), measured as the time from the VIP is
changed in the FIB on one switch till the routing is updated in the
remaining switches, i.e., BGP update time on those switches.

Almost all (80-90%) of the migration delay is due to the latency
of adding/removing the VIP to/from the FIB. This is because our
implementation of the switch agent is not fully optimized – improv-
ing it is part of our future work.

8. EVALUATION
In this section, we use large-scale simulations to show that: (1)

DUET needs far fewer SMuxes than Ananta to load balance the
same amount of VIP traffic; (2) Despite using fewer SMuxes (and
hence being cheaper), DUET incurs low latency on load balanced
traffic; (3) The VIP assignment algorithm is effective; (4) Net-
work component failures do not cause significant congestion, even
though DUET’s VIP assignment algorithm is oblivious to network
component failures; (5) The migration algorithm is effective.
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8.1 Simulation Setup
Network: Our simulated network closely resembles that of a

production datacenter, with a FatTree topology connecting 50k
servers connected to 1600 ToRs located in 40 containers. Each
container has 40 ToRs and 4 Agg switches, and the 40 containers
are connected with 40 Core switches. The link and switch memory
capacity were set with values observed in production datacenters:
routing table and tunneling table sizes set to 16k and 512, respec-
tively, and the link capacity set to 10Gbps between ToR and Agg
switches, and 40 Gbps between Agg and Core switches.

Workload: We run the simulations using the traffic trace col-
lected from one of our production datacenters. The trace consists
of 30K VIPs, and the number of DIPs and the traffic distribution
across the VIPs are shown in Figure 15. We divide the 3-hour trace
into 10-minute intervals, and calculate the VIP assignment in each
interval, based on the traffic demand matrix (the number of bytes
sent and received between all sources and destinations), the topol-
ogy and the forwarding tables.

8.2 SMux Reduction
We first compare the number of SMuxes needed in DUET and

Ananta to load-balance same amount of traffic in the datacenter.
We calculate the number of SMuxes needed by Ananta such that

no SMux receives traffic exceeding its capacity. We consider two
SMux capacities: 3.6Gbps, as observed on the production SMuxes
(§2), and 10Gbps, assuming the CPU will not be a bottleneck.

The number of SMuxes needed for DUET depends on the ca-
pacity of SMux, the traffic generated by VIPs that could not be
assigned to HMuxes, and specifics of failure model, and migra-
tion probabilities (§3.3). In this experiment, we assign the VIPs
to HMuxes using the algorithm described in §4, which tries to as-
sign as many VIPs to HMuxes as it can, subject to switch memory
and link bandwidth constraints. We have specified the memory and
bandwidth details earlier.

Based on failure scenarios in [13, 21], we provision the number
of SMuxes to handle the maximum traffic under either (1) entire
container failure, or (2) three random switch failures. For example,
if an entire container fails, the total traffic T to all the VIPs assigned
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to the switches inside need to fail over to SMuxes. Thus the number
of SMuxes needed is T

Csmux
where Csmux is SMux capacity.

We ignore migration – it is covered in §8.6.
Figure 16 shows that DUET requires far fewer SMuxes compared

to Ananta at all traffic rates. Note the log scale on Y axis. For all
the traffic rates, DUET was able to assign 16k VIPs to the HMuxes
(routing table limit). Overall, compared to Ananta, DUET requires
12-24x times fewer SMuxes when the SMux capacity is 3.6 Gbps
and 8-12x times fewer SMuxes when the SMux capacity is 10Gbps,
across different traffic loads.

We note that for all traffic scenarios, majority of the SMuxes
needed by DUET were needed to handle failure. The fraction of
SMuxes needed to handle the traffic to the VIPs that could not be
assigned to the HMux is small. This shows that the VIP assignment
algorithm does a good job of “packing” VIPs into HMuxes.

8.3 Latency vs. SMuxes
Another way to look at the trade-off described in §8.2 is to hold

the traffic volume constant, and see how many SMuxes Ananta
needs to provide the same latency as DUET. This is shown in fig-
ure 17.

We hold the traffic at 10Tbps, and vary the number of SMuxes
for Ananta from 2000 to 15,000. The black line shows median
latency for Ananta. The red dot represents DUET. DUET used 230
SMuxes, and achieved median latency of 474 µsec.

We see that if Ananta were to use the same number of SMuxes as
DUET (230), the median latency would be many times higher (over
6 ms). On the other hand, Ananta needs 15,000 SMuxes to achieve
latency comparable to DUET.

The absolute latency numbers may appear small – however, re-
call that median DC RTTs are of the order of 381 µsec6, and in
many cases, to satisfy a single user request, an application like
Search traverses load balancer multiple times. Any time lost in the
network is wasted time – which could have otherwise been used by
the application to improve user experience [8, 14, 19].

6Newer technologies such a RDMA lower this to 2-5 µsec!
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8.4 Duet vs. Random
To understand the impact of assigning VIPs based on the max-

imum resource utilization, we compare the performance of DUET
in terms of the number of SMuxes against a random strategy (Ran-
dom) that selects the first feasible switch that does not violate the
link or switch memory capacity. This assignment algorithm can be
viewed as a variant of FFD (First Fit Decreasing) as the VIPs are
assigned in the sorted order of decreasing traffic volume.

Figure 18 shows the total number of SMuxes needed by DUET
and Random (note the log scale). We see that Random results in
120%–307% more SMuxes compared to DUET as the traffic load
varies from 1.25 to 10 Tbps. This shows that by taking resource
utilization into account, DUET ensures that only a small fraction of
VIPs traffic is left to be handled by the SMuxes.

8.5 Impact of Failure
Microbenchmark results in §7.2 showed that DUET can handle

HMux failures well – the VIPs fall back to SMux, and the disrup-
tion to the VIP traffic is minimal. In §8.2, we considered the num-
ber of SMuxes DUET needs to cope with failures. We now consider
the bigger picture – what impact does failures of several switches,
or even a container have on overall traffic?

We consider the same failure model as was used in §8.2 – a con-
tainer or up to 3 switches can fail simultaneously. We evaluate fail-
ure resilience of DUET by measuring the maximum link utilization
under these two scenarios: failure of a randomly selected container,
or 3 randomly selected switches.

A random switch failure affects link traffic load in two ways.
It causes the traffic of the VIPs assigned to the failed switch to
be shifted to the backstop SMuxes, and other through traffic to be
shifted to the alternative path. A container failure affects the traffic
in more complicated ways: it not only causes all the switches inside
to be disconnected, but also makes all the traffic with sources and
destinations (DIPs) inside to disappear.

Figure 19 shows the measured maximum link utilization during
the two failure scenarios in the 10 experiments. We see that as
expected, link failures can result in transient congestion. However,
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the utilization increase of any link in the network is no more than
16%, and hence is comfortably absorbed by the 20% bandwidth
reservation made in the VIP assignment algorithm. Interestingly,
the single container failure (with 44 switches inside) often results
in less congestion than 3-switch failure. This can be explained by
two reasons: (1) any traffic with source and sinks (DIPs) inside the
container has disappeared, and (2) all the rest traffic which have
sources or sinks outside the container are not shifted to other paths
as their paths do not go through any switch inside the container.

8.6 VIP Migration
In this section, we evaluate the effectiveness of DUET’s VIP

migration algorithm, Sticky (§4.2). We set the threshold to be
δ = 0.05, i.e., a VIP will migrate to a new assignment only if
doing so reduces the MRU by 5%.

We compare Sticky with Non-sticky, which calculates the new
assignment from scratch based on current traffic matrix (§4.1), but
migrates all the VIPs at the same time through SMuxes to avoid
the memory deadlock problem. We evaluate these two schemes by
re-running the 3-hour traffic trace, where we reassign and migrate
the VIPs for Sticky and Non-sticky every 10 minutes. The total VIP
traffic varies between 6.2 to 7.1 Tbps in this trace.

Effectiveness: We first compare the portion of total traffic that
are handled by the HMuxes under the two assignment schemes –
the larger the portion, the more effective the assignment algorithm.
Here, we also compare Sticky and Non-sticky against One-time al-
gorithm, which assigns the VIPs at time 0 sec, and never change
it. Figure 20(a) shows the results over the duration of the trace.
First, as expected, while the portion of traffic handled by HMuxes

started out the same, the initial assignment which is used by One-
time throughout the trace, gradually loses its effectiveness, and re-
sults in only 60-89% (average 75.2%) of the total being handled by
HMuxes. In contrast, Sticky and Non-sticky handle 86-99.9% (av-
erage 95.3%) of the traffic in HMuxes, from continuously adapting
to the traffic dynamics. Second, even though Sticky only migrates
VIPs that reduce the MRU by at least 5%, it is as effective as Non-
sticky in maximizing the traffic assigned to HMuxes. In particular,
it handles 86-99.7% traffic (average 95.1%) in HMuxes, which is
almost identical to the 87-99.9% traffic (average 95.67%) handled
by HMuxes under Non-sticky.

Traffic shuffled: Next, we compare the fraction of the total
VIP traffic migrated under Sticky and Non-sticky– the less traffic
are migrated, the fewer SMuxes need to be reserved as stepping
stone. Figure 20(b) shows that migration using Non-sticky results in
reshuffling almost 25-46% (average 37.4%) of the total VIP traffic
each time throughout the trace duration, compared to only 0.7-4.4%
(average 3.5%) under Sticky. Such a drastic reduction in the traffic
shuffled under Sticky is attributed to its simple filtering scheme: a
VIP is only migrated if it improves the MRU by 5%.

Number of SMuxes: Figure 20(c) shows the number of SMuxes
needed by Sticky and Non-sticky. Additionally, we also calculate
the SMuxes needed without migration (marked as No-migration) as
well as number of SMuxes needed in Ananta considering the SMux
capacity to 3.6Gbps. The number of SMuxes needed in Sticky
and Non-sticky is calculated as maximum of SMuxes needed for
VIP traffic, failure and transition traffic. It can be seen that, Non-
sticky always requires more SMuxes compared to No-migration
and Sticky, showing that Sticky does not increase the number of
SMuxes to handle the traffic during migration.

9. DISCUSSION
Why are there empty entries in switch tables? DUET uses

empty entries in the host table, ECMP table, and tunneling table
in switches to implement HMux. Several reasons contribute to the
abundance of such free resources in our production datacenter. The
host table of ToR switches has only a few dozen entries for the
hosts within each rack, and that of the rest of the switches is mostly
empty. The ECMP table of switches is mostly empty because of
the hierarchical DC network topology, where each switch has a
small number of outgoing links among which all outgoing traffic
is split via ECMP. The tunneling table is mostly free since few on-
line services use encapsulation other than load balancing itself. We
acknowledge that other DCs may have a different setup, but we
believe that our design will be applicable in common cases.

VIP assignment: While the greedy VIP assignment algorithm
described in §4 works well in our scenarios, we believe that it can
be improved. The VIP assignment problem resembles bin pack-
ing problem, which has many sophisticated solutions. We plan to
study them in future. Also, while we consider VIPs in order of traf-
fic, other orderings are possible (e.g., consider VIPs with latency
sensitive traffic first).

Failover and Migration: DUET relies on SMuxes to simplify
failover and migration. As hinted in §3.3, it may be possible to
handle failover and migration by replicating VIP entries in multi-
ple HMuxes. We continue to investigate this approach, although
our initial exploration shows that the resulting design is far more
complex than our current design.

10. RELATED WORK
To the best of our knowledge, DUET is a novel approach to build-

ing a performant, low-cost, organically scalable load balancer. We



are not aware of any load balancing architecture that fuses switch-
based load balancer with the software load balancers. However,
there has been much work on load balancers, and we briefly review
it here.

Load balancer: Traditional hardware load balancers [4, 1] are
expensive and typically only provide 1+1 availability. DUET is
much more cost effective, and provides enhanced availability by
using SMuxes as a backstop. Importantly, compared to traditional
load balancers, DUET gives us control over very important vantage
point in our cloud infrastructure.

We have already discussed Ananta [17] software load balancer
extensively. Other software-based load balancers [5, 6, 7] are also
available, but they lack the scalability and availability of Ananta, as
shown in [17]. Embrane [3] promises scalability, but suffers from
the same fundamental limitations of the software load balancer.

OpenFlow based load balancer: Two recent proposals focus
on using OpenFlow switches for load balancing. In [20], authors
present a preliminary design for a load balancing architecture us-
ing OpenFlow switches. They focus on minimizing the number
of wildcard rules. The paper, perhaps because it is a preliminary
design, ignores many key issues such as handling switch failures.
Plug-n-Serve [15] is another preliminary design that uses Open-
Flow switches to load balance web servers deployed in unstruc-
tured, enterprise networks. DUET is very different from these ap-
proaches. DUET uses a combined hardware and software approach.
DUET does not rely on OpenFlow support. DUET is designed for
data center networks, and pays careful attention to handling nu-
merous practical issues including various types of failures and VIP
migration to adapt to network dynamics.

Partitioning OpenFlow rules: Researchers have also proposed
using OpenFlow switches for a variety of other purposes. For ex-
ample, DIFANE [22] uses some switches in the data center to cache
rules, and act as authoritative switches. While a load balancing ar-
chitecture can be built on top of DIFANE, the focus of the paper is
very different from DUET. In vCRIB [16] authors propose to of-
fload some of the traffic management rules from host agent to ToR
switches, as well as to other host agents. Their goal is to ensure
resource-aware and traffic-aware placement of rules. While vCRIB
also faces problems such as managing network dynamics (e.g., VM
migration), their main focus is quite different than DUET.

SDN architecture and middleboxes: Similar to DUET, re-
searchers have leveraged SDN architecture in the context of mid-
dleboxes to achieve policy enforcement and verification [18, 12],
which is again a different goal than DUET.

Improving single server performance: Researchers have sub-
stantially improved packet processing capabilities on commodity
servers [23, 11], which could potentially improve SMux perfor-
mance. But, these improvements are unlikely to bridge the differ-
ences in packet processing capabilities between HMux and SMux
for the load balancer workload.

Lastly, several algorithms for calculating flow hashes (e.g., re-
silient hashing [2], cuckoo-hashing [23]) offer a wide variety of
trade-offs. We do not review them here, although DUET can lever-
age any advances in this field.

11. CONCLUSION
DUET is a new distributed hybrid load balancer designed to pro-

vide high capacity, low latency, high availability, and high flexibil-
ity at low cost. The DUET design was motivated by two key ob-
servations: (1) software load balancers offer high availability and
high flexibility but suffer high latency and low capacity per load
balancer, and (2) commodity switches have ample spare resources
and now also support programmability needed to implement load

balancing functionality. The DUET architecture seamlessly inte-
grates the switch-based load balancer design with a small deploy-
ment of software load balancer. We evaluate DUET using a pro-
totype implementation and extensive simulations using traces from
our production DC. Our evaluation shows that DUET provides 10x
more capacity than a software load balancer, at a fraction of its cost,
while reducing the latency by over 10x, and can quickly adapt to
network dynamics including failures.
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