
Struggles of New College Graduates in their First Software

Development Job
Andrew Begel

Microsoft Research
1 Microsoft Way

Redmond, WA 98052
+1 (425) 705-1816

andrew.begel@microsoft.com

Beth Simon
Computer Science and Engineering Dept.

University of California, San Diego
La Jolla, CA 92093-0404

+1 (858) 534-5419

bsimon@cs.ucsd.edu

ABSTRACT

How do new college graduates experience their first software

development jobs? In what ways are they prepared by their

educational experiences, and in what ways do they struggle to be

productive in their new positions? We report on a “fly-on-the-

wall” observational study of eight recent college graduates in their

first six months of a software development position at Microsoft

Corporation. After a total of 85 hours of on-the-job observation,

we report on the common abilities evidenced by new software

developers including how to program, how to write design

specifications, and evidence of persistence strategies for problem-

solving. We also classify some of the common ways new

software developers were observed getting stuck: communication,

collaboration, technical, cognition, and orientation. We report on

some common misconceptions of new developers which often

frustrate them and hinder them in their jobs, and conclude with

recommendations to align Computer Science curricula with the

observed needs of new professional developers.

Categories and Subject Descriptors

D.2.9 [Software Engineering]: Management – productivity.

General Terms

Human Factors.

Keywords

Human Aspects of Software Engineering, Software development,

computer science education.

1. INTRODUCTION
Preparing computer science graduates for eventual roles in the

software development industry is a goal for many undergraduate

Computer Science programs. However, employers recognize that

students entering the workforce directly from university training

often do not have the complete set of software development skills

that they will need to be productive, especially in large software

development companies. Whereas a significant body of literature

has documented the costs of bringing software developers up to

speed on a project or a new team, little has been written about the

kinds of needs that recent graduates exhibit when joining their

first software development team. Our study discovers what occurs

during the beginning of the transition period from college

graduate to experienced software engineer.

In this study, we spent 85 hours observing eight new software

developers (NSDs) in their first six months of employment at

Microsoft Corporation. A review of our observation logs shows

that recent college graduates have a number of abilities which

they engage effectively as they onboard1 into the workforce.

Some of the strongest skills our subjects exhibit are for writing

code, writing design specifications, and persisting in the presence

of difficult-to-solve problems. However, we see five ways in

which recent graduates struggle to be effective: communication,

collaboration, technical, cognition, and orientation. Note, only

one of these five struggles focuses on the technical issues in

software engineering. Additionally, some misconceptions of

recent graduates also contributed in pervasive ways to difficulties

in becoming effective developers in the workplace.

In this paper, we analyze the observed difficulties and recommend

changes for computing curricula, including cross-curricular

reforms and software engineering courses.

2. BACKGROUND
The software engineering industry often believes that the

academic community is missing the mark in the education of

computer science students. Eric Brechner, Director of Developer

Excellence at Microsoft, identified 5 subjects that were lacking in

CS education: design analysis, embracing diversity (i.e.

accessibility and internationalization), multidisciplinary project

teams, large-scale development and quality code that lasts – and

suggests five new courses to teach them [1]. Unfortunately, while

the problems with software development skills are clear from the

perspective of industry, the causes underlying these problems are

not. Our study uncovers some of those causes.

Lethbridge conducted a survey in 1997 across 168 professional

software developers to learn about which university courses were

most and least important [4]. They identified computer

architecture, data structures, quality testing, and requirements

gathering as most important. The survey, however, emphasizes

only technical skills, which we find are but one component in the

1 “Onboarding” is the Microsoft term for the orientation process

by which new hires adjust to and become effective software

developers within the corporation.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.

Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.

mailto:andrew.begel@microsoft.com

learning that happens in a professional setting. In addition, his

survey population was long past their university education, which

can make reflection on these subjects inaccurate.

Perlow conducted an important ethnographic study of software

engineers [6] which used similar methodology to ours. She found

that engineers value the time they spend creating software, but

spend a lot of time interacting with other engineers in order to ask

questions, plan joint work, or achieve coordination. Engineers

were able to complete their work only by incorporating these

social interactions; they could not do it alone. Another study in

1994 shows that unplanned interactions with other developers

occupies 75 minutes a day (encompassing an average of 7 people)

[7]. Our new hires are reluctant to engage their colleagues early

in their problem-solving processes – which only hinders their

ultimate productivity and frustrates them.

3. METHODOLOGY
Our study is primarily ethnographic. For two months, we

observed the struggles of NSDs using fly-on-the-wall

observations (85 hours). We also conducted pre-study and post-

study interviews to learn about our subjects' backgrounds and

reflections on their progress.

We studied recent college graduates hired by Microsoft between

one and seven months before the start of the study. We identified

25 available subjects (based on manager approval and schedule

consideration) and selected 8 (7 men and 1 woman), mainly

balancing years of schooling and divisions within the

company. Subjects W, X, Y and Z had BS degrees, V had an MS,

and U, R, and T had PhDs, all in computer science or software

engineering. 2 were educated in the US, 2 in China, 1 in Mexico,

1 in Pakistan, 1 in Kuwait, and 1 in Australia. All 3 PhDs were

earned in US universities. We also selected for the least amount of

previous software development experience (none outside of

limited internships, with the exception of Subject Y who had two

years development experience outside of Microsoft).

Subjects were compensated weekly ($50) for their participation.

Absolutely no information from the study was shared with the

subjects’ management chain. Human subjects permission was

obtained at the University of California, San Diego. Similar

permission was obtained at Microsoft.

Each subject was observed 8-13 hours over two 2-week periods

with a month break in between. Observations occurred in the

subjects' standard work environments without interruption, and

included meetings and subjects' interactions with others.

Observation was conducted mostly in silence, with the observer

sitting behind or next to the participant, watching the participant's

screen. It was occasionally necessary to prompt the participant to

tell the observer what was going on, explain why something was

happening, or introduce a visitor. Much of the inference of an

activity's ultimate purpose came from the observers, who are

formally trained in computer science and have experience as

computer science educators, but only have on-the-job practice of

ethnography. The subjects' tasks were usually simple enough to

surmise what they were trying to do by watching, much as a

lecturer of first-year computer science students can easily tell

what a student is trying to do without having to ask.

4. RESULTS
Our observations revealed that NSDs demonstrate a wide variety

of abilities and deficiencies which we discuss below.

4.1 Abilities

4.1.1 Coding
NSDs demonstrated many programming strengths. They were

capable of dealing with complex issues regarding macros and

pointers. They were capable of using critical coding tools like

diff to help them locate code areas of interest. They evidenced

excellent debugging strategies, debated various test cases, and

explained how their solution would work in those cases. They

tried not just to complete their tasks but to understand why the

code change was the right one to make (though occasionally time

deadlines got in the way of that goal) (Subject X).

Other abilities we saw related to coding include using online

documentation to explore and utilize APIs. When Subject Y

needed to transform an existing code into a threaded one, he

started by reading a web page on synchronous sockets, then went

on to copy and modify sample code from the MSDN web site to

test out his usage of the basic functionality he wanted. Most of the

subjects were observed using MSDN documentation to develop

new code. Other techniques include copying code segments from

other sections of their own team’s code (Subjects U, X, Y, Z).

4.1.2 Reading and Writing Specifications
Subject X was assigned two software features which had

preliminary design specifications written by his team lead. He

showed excellent ability in reading these documents, engaging in

discussion with the lead which led to further clarification of the

design, and in outlining specific use cases that needed to be

considered. Subject X seemed confident in developing a

structured, lengthy feature planning document. It is likely that

this experience contributed directly to Subject X’s relative

comfort, in the second month of observation, with writing a

development plan document.

Also notable was the team lead’s skill in mentoring -- being very

open in asking for and guiding Subject X’s input, sprinkling in

background information on the code and design decisions that

stemmed from his historical knowledge, and in providing advice

about appropriate level of detail for the current design stage.

4.1.3 Persisting/Generating Hypotheses
Persistence was commonly observed of NSDs. While this

evidenced itself in a variety of ways (in dealing with new and

large codebases, in struggling to utilize new tools, in seeking to

understand institutional norms, etc.), one of specific interest in the

software development experience is in generating hypotheses for

unexpected behavior. For example, Subject W was working with

an officemate to debug why auto-generated email from the build

system was being flagged as spam. Over a period of 30-40

minutes, he brainstormed and provided both test ideas and

feedback on tests run to correct this problem.

Most of the evidence of persistence and hypothesis generation

was implicit in the sometimes slow, but dogged, forward progress

made by all NSDs. Though it was exceedingly common for NSDs

to run into difficulties in using tools, in general, they were very

capable of taking this in stride – considering a variety of

possibilities for failures and engaging in a series of tests to get the

tool to perform. All of our subjects were observed multiple times

using help commands, searching the web for information, and

interfacing with source control, using diff-like tools, and engaging

other tools. NSDs seem experienced at struggling with simple

tools and generally manage to make them function, although

sometimes in a non-optimal way. Casual complaints about tools

were also common, but seldom reported to others.

4.2 Difficulties
Of particular interest to educators are those issues which cause

difficulty or frustration for NSDs. We discuss those here.

4.2.1 Communication
An overarching theme of new developers’ communication

problems is knowing how and when to ask questions of others. In

general, NSDs do not ask questions soon enough, and often

struggle to ask questions at an appropriate level. Sometimes they

would go into too much detail in design meetings (Subject W). At

other times, they would not provide enough detail (Subjects T, V,

W), nor push for enough detail in a response from others

(Subjects T, V), which often led to miscommunication.

Everyone was very careful in crafting work-related emails

(accurate, succinct, etc.), however, Subject W reflected several

times that he needed to be even more detailed and circumspect in

his emails – especially with those outside his immediate team.

English skills were a problem for some non-native speakers. At

times, their written reports had to be corrected by an experienced

coworker or manager. They had difficulty understanding native

English speakers pronouncing abbreviations as words, rather than

speaking their individual letters. Homophones caused difficulty as

well; for instance, the use of “pseudo” prompted a search on a

dictionary web site for “sudo,” a commonly-used Unix utility,

which was not the intended spelling.

4.2.2 Collaboration
The social issues we observed focused on working in large teams,

working in conjunction with multiple teams, and working with a

large, pre-existing codebase. Many times, NSDs were explicitly

told that there was little written documentation on a feature, and

that the original developers had left the team or the company

(Subjects V, X, Y, Z). This was often stated with the emphasis

“you are on your own here [w.r.t. documentation]” and “life will

be more difficult, because there is no one to go ask about this.”

Several NSDs recognized that their team interaction skills were

something they needed to focus on. Subject X found that not

preparing for team meetings was “not good,” and that he was

expected to be ready to participate actively. This meant finding

time to critically read and analyze design specifications that had

been sent out earlier.

Subject T learned another form of team interaction. He had fixed a

bug and submitted it for check-in. However, his bug fix was not

shippable, not due to code quality, but due to the fact that

managers (in other groups) had not yet had time to approve it.

Subject T believed he had addressed the customer's bug; but

obediently accepted the decision of the managers so as “not to

rock the boat.” Developers here are not just programmers, but in

some situations, must be their own best advocates at moving their

code and ideas through the software development process. A

month later, Subject T again faced this issue – but was better

prepared. In the bug triage meeting, he described his bug’s status

efficiently and detailed his efforts to get another group to sign off

on it.

For several developers, their naïveté in collaborating with others

meant that their colleagues could dump work on them without

protest, even if it was not assigned to them by their managers.

Subject R was interrupted and instructed by a colleague to make

revisions in a report to be passed out at a meeting that day. The

first time this happened, he accepted the demand, immediately

stopping his current task and editing the report. As he settled in,

he started negotiating with colleagues and even his manager about

how many tasks he would take on, and when he would do them.

4.2.3 Technical
Tools to support large-scale development were often a source of

difficulty for NSDs. Most subjects were seen to flounder at one

time or another with the revision control system (Subjects U, V,

W, X, Y, Z). These episodes ranged from small interruptions in

which the subject seemed to understand their mistake, to random

failures which few seemed to understand and were occasionally

solved through arcane processes that somehow worked.

Testing robustly was also an issue. Subjects V, W, and Z

experienced difficulties in not having access to a required

environment in order to perform necessary tests. In each case they

avoided the issue by using manual inspection of code and then

sent the code out for review without a real test.

Using debuggers such as Visual Studio are critical for a common

NSD task – reproducing and fixing a bug. One of the key

techniques used to diagnose a bug is to use breakpoints to look for

certain changes in the code (or the display of an error message or

GUI event). Some NSDs reported that they had been clued in to

certain debugging techniques which allowed them to navigate in

large code bases without documentation, while others clearly

spent a great deal of time trying to find the “right” part of the

code. Even when they could find information online or in

documentation, it was often outdated (Subjects U, V, X, Z).

These technical difficulties often coupled with collaboration and

orientation issues. In his first programming project, Subject U

struggled with a new API, a new operating system, and a new

programming language – in addition to new tools. Despite the

almost overwhelming challenge, Subject U felt it necessary to try

to do everything himself, without asking questions – in part to

demonstrate his value to his manager. Subject U said he learns

best by programming his own code and working through the

mistakes.

4.2.4 Cognition
NSDs struggled to collect, organize, and document the wide range

of information that they needed to absorb. Subject X reflected that

he usually takes notes in a paper notebook, but “it’s always very

scattered, I can’t usually understand them. I wish I had a better

way to take notes.” He mentioned this as he was describing his

team's move to the product OneNote (an electronic note-binder) to

maintain design and specification documents. This issue was

observed with other subjects. Subject V often took notes in a

paper notebook, and sometimes transferred them to emails to

himself. Subject T summarized email threads into separate

documents – to isolate the important material and keep task-

related materials in one place.

The process of taking notes was also difficult. Sometimes an

impromptu teaching session on revision control or the bug

database would occur in the middle of a general request for

information (Subjects U, V) and was not necessarily well

organized or stated in terms or context with which the NSD was

familiar. Subject R experienced this in a meeting after his

manager determined that his understanding of the code’s

execution was insufficient. In these cases, the NSD may not

always interrupt for full information, out of concern for using the

time of the experienced developer or because the “teacher” barrels

through the instruction without stopping. As such, some of their

knowledge is built haphazardly in an unstructured and piecemeal

fashion.

NSDs often struggle to know “when they don't know” something.

Because there is so much new infrastructure to learn, it becomes

the norm to have only partial knowledge of a tool or some code.

While this is their reality, it also leads many NSDs to fail to

recognize when they are truly stuck and should ask for help. The

subject most recently hired (Subject V) exhibited this on a

frequent basis. Even after asking for help on some code and

getting a very specific answer that the specification was

ambiguous, Subject V continued attempting to reason through it.

Subject W experienced this in a debugging context. After working

(with a colleague) on a bug issue for a while, Subject W finally

came to the conclusion, “I don’t know what the behavior should

be here.” When trying to reproduce a bug, Subject T spent a long

time trying to get the right libraries set up. After a colleague

pointed out that he had the wrong binaries, he tried again without

success. Subject T finally realized that his mental model about the

libraries was wrong. His colleague taught him the proper model,

enabling Subject T to return to work, but he continued to struggle,

and even hours later, appeared to have made little progress.

4.2.5 Orientation
NSDs had difficulty orienting themselves in the low information

environments in their project team, codebase, and

resources. However, this was sometimes coupled with confusing

and poorly organized documentation – which was difficult for a

novice to navigate or engage with effectively.

NSDs experience extra difficulties in that they often experience

“firsts” on their teams. In one scenario, a NSD would get the

newest hardware or software on their development box and be the

first to try to install or compile on that system (Subjects V, Y).

This meant that the least experienced person was left to try to

figure out if errors were coming from mistakes they made or the

installation setup. Subject W was assigned to lead his team’s first

use of a support product provided by another group. While being

asked to estimate the amount of time needed for this task, he was

stymied by the lack of internal information on the tool. He

requested some from an email alias for the group, but eventually

found answers on a site for external users.

Although there was great variation, some NSDs were woefully

isolated from their teams, sometimes not even knowing all the

members of their team, and rarely knowing who to talk to about

certain issues (or where that person's office was). This impacted

both NSD productivity and frustration greatly. Even though

Microsoft has an established mentoring program, Subject V had to

request a mentor from his manager after four weeks, only to find

that his new mentor was very busy and didn't have time for

him. This led to the mentor giving him incomplete or incorrect

references to resources which increased his confusion. Subject V

chose to seek other forms of information and (somewhat

fruitlessly) spent much time reading high-level documents and

PowerPoint presentations in an attempt to gather any information

on his team's work. In contrast, Subject Z learned early on that all

knowledge was most easily discovered through people. Instead of

searching for specifications online, he would roam the hallway

looking for colleagues to ask. If one was not there or did not know

the answer, Subject Z went to the next person down the hall.

When the right person was absent, Subject Z fell back to less

efficient forms of knowledge acquisition, such as reading code

and debugging through test cases.

4.3 Misconceptions which Hinder
We characterize ubiquitous misconceptions that pervaded an

NSD’s actions and team interactions.

1. I must do everything myself so that I look good to my

manager. This misconception is particularly dangerous,

especially in large, complex development environments. Mostly

seen in new hires from outside the USA, the perceived need to

“perform” and not “reveal deficiencies” makes for much wasted

time. It also seems to contribute to poor communication and a

longer acclimatization. Communication suffered both by waiting

too long to seek help and by trying to cover up issues that the

NSD perhaps felt he “should know.” Additionally, NSDs were

occasionally seen to continue to work on issues deemed (by

teammates) either not worth solving or someone else's

problem. Though our sample size is extremely small, this

misconception was not evidenced in native USA new hires.

Over the two months of observation, the subjects in our study

became more self-confident, less stressed-out, and gained self-

esteem. At the final exit interview, many participants revealed that

their early worries and expectations had been unrealistic.

2. I must be the one to fix any bug I see – and I should fix it the

“right” way, even if I do not have time for it. This is one of the

most ubiquitous misconceptions – likely driven by the lack of

team-based development and the deadline-driven grading system

of academia. NSDs had the perception that anything they found

which was “not working” had to be fixed immediately. Even

though they had been made aware of established procedures for

reporting, triaging, and dealing with bugs, they often sought to

work around them. Albeit, some NSDs were chastised when

“caught out” in this respect, it appears to be a very ingrained

belief and one that would require time to drill out of them.

3. If there was only more documentation… Not so much a

misconception as a daily plea, the desire for accurate and findable

documentation was pervasive. Even though some of more

experienced NSDs accompanied these pleas with recognition that

such documentation becomes stale quickly, they still wished that

more existed. More experienced NSDs desired information on

people, i.e. who to go talk to about specific issues or code. They

recognized that the complexity and timelines of software

development limit documentation, and that people are considered

the most valuable documentation resource.

4. I know when I am stuck when solving a problem. Based

on explicit statements made by subjects (Subjects U, T, V, Z) and

contrary to explicit observations, it is clear that NSDs almost

always waste time, effort, and money by flailing – and do not

recognize that they are stuck. This may not be a surprising result

as explicit instruction in meta-cognitive skills for programming is

not common. Although greatly frustrated at these times, NSDs

seem to lack the resources for either recognizing they are stuck or,

perhaps more likely, the resources to do something about it.

Notably, despite a greater propensity for reflection on their own

progress, PhD graduates were just as likely to get stuck and flail

when trying to solve a problem as the BS graduates.

5. IMPLICATIONS FOR EDUCATORS

Many computer science undergraduate programs have a class on

software engineering. In a typical course, three to five students

form a software development team who receive a set of

requirements from a “customer.” They design a software product

to address the requirements, divide up the labor, either by feature

or by role (manager, developer, tester), implement the software,

test and document the final product, and “ship” it by the end of

the term. This class is designed to simulate a “greenfield,” or new,

software product, exposing students to a full design,

implementation and test cycle, and in doing so, teach students

how to work on a team of many people on a relatively large piece

of software, yet remain in a pedagogically supportive setting.

Our study reveals that new developers find themselves in

situations that differ considerably from the university class

described above. We see new developers joining large, pre-

existing teams of software developers as the most inexperienced

member, and spending their first several months resolving bugs

that predate their employment, with little access to easily

consumable documentation. Many of the problems they have are

not due to lack of experience in programming, design or

debugging. In fact, all of our study subjects said their university

preparation in these areas was more than adequate. The problems

instead centered around the particular social conditions of a new

software job. This could be addressed by simulating higher

fidelity legitimate peripheral participation in a modified university

software engineering course [2, 3].

Instead of a greenfield project, a more valuable experience would

provide students a large pre-existing codebase to which they must

fix bugs (injected or real) and write additional features. Also

valuable would be a management component, where students

must interact with more experienced colleagues (students who

have taken the class previously, who can act as mentors) or

project managers (teaching assistants) who teach them about the

codebase, challenge them to solve bugs several times until the

“right” fix is found, or who give them sometimes capricious and

cryptic weekly commandments on requirements or testing that

they must puzzle out and solve together as a team.

Designing such a class presents opportunities and challenges to

the computer science instructor. Students can be engaged in

particular misconceptions (at best through genuine experience, at

least through storytelling) commonly held by new software

developers so that they can seek to recognize these in their own

behavior. The debugging process, in particular, should be held up

and broken down. Assignments which call for finding,

documenting, and triaging bugs without fixing them can be

incorporated in many CS classes. For example, in a data

structures class, an instructor might engage students in critical

reflection on their work by providing them with a sample, buggy,

solution of an assignment recently completed.

Instead of asking students to “grade” the solution, they could log

bugs in a bug database, develop bug reproduction steps, and/or

triage bugs given some planned release schedule.

Additionally, what are the best techniques or structures for

engaging with a mentor in order to gain familiarity with a large

codebase? How should one document (personally) the

information provided by a mentor regarding tools, code, and

processes that support the software development enterprise? The

issue of teaching students techniques to recognize when they are

stuck is one instantiation of the more general call for educators to

teach content and context specific meta-cognitive strategies [5].

Students could also be taught to serve as agents of change who

improve the onboarding process so that developers hired after

them benefit from an improved experience.

6. CONCLUSIONS
This paper reports on one of the most in-depth studies of new

developer experiences in a professional software context. Our

findings show that while training from university computer

science curricula provides NSDs with adequate design and

development skills, their communication, collaboration, and

orientation skills are not as well addressed. Our suggestions for

curricular reform are a preface for renewed dialogue between the

needs of industry and the goals of computer science education.

7. ACKNOWLEDGMENTS
We thank Microsoft Corporation for inviting and funding Beth

Simon to conduct this study with Andrew Begel. We also thank

our study participants for their patience during our observations.

8. REFERENCES
[1] Brechner, E. (2003). Things They Would Not Teach Me of in

College: What Microsoft Developers Learn Later. In

Proceedings of OOPSLA ‘03. ACM.

[2] Guzdial, M., Tew, A. E. (2006). Imagineering inauthentic

legitimate peripheral participation: An instructional design

approach for motivating computing education. In Proceedings

of ICER '06. ACM Press, New York, NY, 51-58

[3] Lave, J. and Wenger, E. (1991). Situated learning: Legitimate

Peripheral Participation. Cambridge: Cambridge University

Press.

[4] Lethbridge, T. C. (1998). A Survey of the Relevance of

Computer Science and Software Engineering Education. In

Proceedings of CSEET ‘98. IEEE Computer Society,

Washington, D.C.

[5] National Research Council. (1999). How people learn: Brain,

mind, experience, and school. Washington, D.C.: National

Academy Press.

[6] Perlow, L. (1999) The time famine: Toward a sociology of

work time, Administrative Science Quarterly, 44(1), 57–81.

[7] Perry, D. E., Staudenmayer, N., Votta, L. G. (1994). People,

Organizations, and Process Improvement, IEEE Software,

11(4), 36-45.

