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ABSTRACT
Query suggestion refers to the process of suggesting related
queries to search engine users. Most existing researches have
focused on improving the relevance of suggested queries. In
this paper, we introduce the concept of diversifying the con-
tent of the search results from suggested queries while keep-
ing the suggestion relevant. Our framework first retrieves a
set of query candidates from search engine logs using random
walk and other techniques. We then re-rank the suggested
queries by ranking them in the order which maximizes the
diversification function that measures the difference between
the original search results and the results from suggested
queries. The diversification function we proposed includes
features like ODP category, URL and domain similarity and
so on. One important outcome from our research which
contradicts with most existing researches is that, with the
increase of suggestion relevance, the similarity between the
queries actually decreases. Experiments are conducted on a
large set of human-labeled data, which is randomly sampled
from a commercial search engine’s log. Our experimental re-
sults indicate that the post-ranking framework significantly
improves the relevance of suggested queries by comparing to
existing models.
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General Terms
Algorithms
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1. INTRODUCTION
Query suggestion technique has been widely used in most

commercially web search engines which facilitates the inter-
action between users and search engines. By its definition, a
set of relevant queries are suggested to a user on the search
engine result page (SERP) after the user submitted a query.
If the user is not satisfied with the results shown on the page,
he/she may choose to click on one of the suggested queries to
refine the search. Research works have indicated that query
suggestion greatly improves user satisfaction rate, especially
for informational queries.

Previous efforts on improving the quality of query sug-
gestion have mainly focused on discovering relevant queries
from search engine logs. For example, leveraging co-clicked
URLs and session information to identify relevant queries [2,
16, 3] have shown significant improvement over other meth-
ods. In the meantime, random-walk based models [17, 19]
have been extensively studied due to their simplicity and
scalability.

While many approaches have exhibited their effectiveness,
most of them have failed to address an important issue,
which is the diversification of the query suggestions. When a
user clicks on a suggested query, he/she is expecting to gain
additional information from a SERP with relevant topics to
the original query. Therefore, we define the diversification
between a query-suggestion pair to be different but relevan-
t of their contents. Essentially, we try to find the optimal
balancing point between the similarity and diversification
between query-suggestion pairs. If the diversification factor
is removed from our model, then the model should exhibit
the same behavior as previous similarity-based approaches.

Since it is relatively difficult to measure the diversification
directly by only looking at two query strings, we propose
a query suggestion framework which leverages post-ranking
features from search results. Specifically, post-ranking fea-
tures are different from pre-ranking computation where al-
l features are required to be computed before the ranked
search results are returned to the users. Post-ranking fea-
tures generally means the observable elements on the SERP,
e.g., the titles, snippets and URLs of the results. Therefore,
we define SERP diversification between two queries to be the
difference between their top-returned search results. For ex-
ample, Figure 1 shows an example where “delta air” is the
user query and “Delta Airline” and “Delta Air Lines Jobs”
are suggested queries. In this example, we treat “Delta Air-
line” as a bad suggestion since the top-3 results are almost



identical to those of “delta air”. On the other hand, “Delta
Air Lines Jobs” is recognized as a good suggestion with di-
versified SERP results. The detailed diversification function
will be discussed in our framework in Section 3.

The rest of the paper is organized as follows: Section 2
presents the related work of query suggestion; Section 3 in-
troduces our post-ranking query suggestion framework; in
Section 4 we conduct experiment to evaluate our proposal;
we conclude this paper with future work in Section 5.

2. RELATED WORK
(Query Suggestion) Improving the performance and qual-

ity of query suggestion techniques have been extensively s-
tudied in the past decades. As a method mainly for inter-
action between search engines and users, query suggestion
techniques usually cannot directly improve the relevance
of the search results, but rather enhancing the entire us-
er search experience within the same search intent. Most
of the existing works rely on search engine server logs to
suggest relevant queries to user inputs. Among all propos-
als, random walk-based methods [20, 17, 19] have exhibit-
ed noticeable performance improvement when comparing to
other models. The basic idea behind random walk models
is quite straightforward. Queries and URLs are represent-
ed as nodes in a bipartite graph where each edge connects
one query with one URL, which indicates a click. A random
walk model calculates the stable transition probability from
one node to another and uses the probability to estimate the
closeness between two nodes.

In [8], the authors used entropy to estimate the weight of
edges instead of using the raw count. The model addressed
the fact that various user clicks have different importance
and therefore should be treated differently. For example, a
click on a more specific URL is weighted higher than a click
on a general (more common) URL. The authors introduced
inverse query frequency (IQF) for edge weight estimation,
which exhibited better performance than raw count-based
random walk models.

The authors in [19] focused on a more difficult problem:
suggest queries for rare queries. As rare queries often have
very few or not click information, traditional click-based
models are unable to perform well in this scenario. The
authors therefore proposed to combine the information from
clicked URLs and skipped URLs (URLs that are observed by
the user who chose not to click) by constructing two bipar-
tite graphs respectively. Two random walks are performed
on each graph. Their results are combined optimally by
minimizing the error function that calculates the correlation
between URLs. Experiments suggested significant improve-
ment over all other random walk models for rare queries.

(Diversify Query Suggestions) Recently, authors in
[15] proposed a framework for diversifying query suggestion
results. Their method leveraged Markov random walk model
on the query-URL bipartite graph by calculating the query
hitting time. The model was capable of encouraging di-
versities in the search results while keeping the queries se-
mantically related. There are some key differences between
our approach and theirs. First of all, we leverage the full
SERP information which contains rich signals and features,
while their approach only leveraged click information from
log. Since it is well known that query-URL bipartite graph
is often very sparse, the quality of suggestion may be im-
pacted. Secondly, due to the sparseness of the query-URL

Figure 2: An illustration of our framework. Step
1 generates suggestion candidates. Step 2 rank the
candidates by applying a diversification function.

graph, a rare query may not exist in the log and therefore
the authors’ method cannot work in this case, which has no
impact on our framework. Finally, our framework is quite
flexible and responsive. Given a set of suggestions, we are
able to rank them in real-time and adjust to the change of
SERP accordingly, while their approach worked on a static
set of query-URL logs that needs to retrain itself very often.

(Diversify Search Results) There has been many re-
searches that addressed the diversification of search result-
s [1, 5, 25]. The basic idea is that search results should
not only be relevant to the user query, but also relevant
and different from each other. While resembles some of the
techniques in this area, the objective of our research in this
paper is quite different. Rather than focusing on improving
the relevance of documents by re-ranking them, we aim at
re-ranking suggested queries which help users refine their in-
tent. Besides, previous researches mainly focused on with-in
query document re-ranking for a particular query, while our
approach handles between-query document list comparison–
arguably a more challenging problem. One concern is that
most of the existing works on diversifying search results only
focused on ambiguous queries where those queries have more
than one user intents, while our approach does not possess
such limitation and can be generalized to all queries. In
general, these two approaches are orthogonal to each other
and can both be leveraged to improve user search experience
without affecting each other.

(Post-ranking Relevance Improvement) To the best
of our knowledge, there exists only a few techniques that
leverage post-ranking or SERP features to improve the re-
trieval quality in real-time. In [22], the authors collect nega-
tive implicit feedbacks from users to improve ranking. Specif-
ically, when a user clicks the next page button on SERP, the
authors assume that all previous results are irrelevant. Giv-
en those top-N negative examples, the authors propose to
re-rank the remaining U results in real-time. Consequently,
the authors introduce two strategies for negative feedback:
1. modifies query directly given the negative feedback, and
2. combines scores from positive and negative feedbacks op-
timally. Improvements are observed on benchmark TREC
data sets over traditional retrieval systems.

3. THE FRAMEWORK
Our framework is divided into primarily two steps. Dur-



Figure 1: An example of SERP results for three queries. “Delta Airline” is a bad suggestion for query “delta
air” due to identical search results. “Delta Airline Jobs” offers better diversification.

ing the first step, we generate query suggestion candidates
from different sources based on log information. After that,
we apply our diversification function to rank the candidates
by leveraging post-ranking features. Figure 2 sketches the
process.

3.1 Generating Suggestion Candidates
Step 1 of our process focuses on generating candidates

from search logs. In this step we put emphasis on the recall
of the suggestion, therefore a raw set of candidates from
different sources are generated, regardless of their relevance,
and to be ranked in the next step.

The first source of candidates we collect comes from ran-
dom walk models. A basic random walk with restart (RWR)
model is applied to the query-click logs due to its simplicity
and scalability. For detail implementation of RWR, we refer
interested users to [20].

User session is another important source for generating
candidates. A user session is defined by search engines which
often contains all user activities within a certain period of
time. Search engines usually record user queries, clicks,
timestamps and other information in the log. If the user
becomes inactive for a while (e.g., 30 minutes), that user
session ends. There exists much useful information that can
be used to extract relevant queries. Specifically, we pay at-
tention to user refined queries within the same user session.
A user refined query is defined as the query reformulated by
the user which followed immediately after a no-click query.
For example, a user issued query “super bowl” but did not
get the desired results. The user then reformulated the query
to “super bowl 2011” and clicks on one of the results.

Note that there also exist many other sources that related
queries can be discovered, which we do not explore in this
paper. Since the focus of this paper is the diversification
effect on query suggestion, this part only serves as a prelim-
inary source that generates a set of query candidates, which
could certainly be improved in the future work.

3.2 The Ranking Function
To achieve the diversification of search results while keep

the suggested queries relevant, we introduce the following
ranking function R:

R(Qo, Qs) = D(Qo, Qs) + λS(Qo, Qs), (1)

where Qo denotes the original query and Qs a suggested
query. The first term on the right hand side of eq.(1) mea-
sures the SERP diversification between two queries, while
the second term estimates the similarity between them. λ
is a tuning parameter which balances the contributions of

these two terms. This equation indicates that queries with
high diversification score and high similarity with the orig-
inal queries are likely to achieve high ranking scores (for
λ > 0). Next, we discuss how the functions D and S are
defined.

Since it is difficult to directly measure the diversification
between two queries, we instead resort to post-ranking fea-
tures, i.e., SERP features returned by search engines. Our
assumption is similar to the traditional pseudo-relevance
feedback strategy [11, 24] which treats all top results as rel-
evant to the user queries. Specifically, the diversification of
two queries is defined as the aggregated score over top N
returned search results (SR):

D(Qo, Qs) = D(SRQo , SRQs), (2)

where SRQo indicates the ordered search results list for
query Qo. Furthermore, a set of features f is defined, where
an adoption of a linear function for D that combines the
scores from features is assumed.

D(SRQo , SRQs) =
∑

k

wkfk(SRQo , SRQs), (3)

with wk measuring the weight of the kth feature.
In Table 1, we list several features used in this paper.

The first feature f1 measures the similarity of the ODP
categories between two URL sets SRQo and SRQs , which
aggregates the similarity over each individual pairs of URL-
s. Specifically, the Open Directory Project (ODP) contains
a repository of human-labeled URL categories with over 4
million URLs. A tree-based taxonomy is specified in ODP
where lower levels indicate more specific categories, e.g.,
/Sports/Baseball/International/. To determine the cat-
egory of URLs, we leverage a sophisticated content-based
hierarchical classifier [4]. Algorithm 1 sketches the method
to calculate the similarity between two hierarchical labels.
Basically, two labels are more similar if their lowest com-
mon ancestor (LCA) is located at lower level. For example,
as illustrated in Figure 3, label /Sports/Football/NFL/
has lower similarity with /Sports/Baseball/International/
than /Sports/Baseball/Amateur/.

Features f2 and f3 check the similarity between URL
strings and domain names. The indicator function I equals
to 1 if the two strings are the same and 0 otherwise. A dis-
counted denominator is applied to address the importance
of the URL position. Similar to the DCG [10] measurement,
if URLi and URLj are the same with very high SERP po-
sitions (smaller values of i and j), they will be penalized a
lot by the denominator.



Figure 3: An example of calculating similarities between ODP categories. The left figure shows the subtree
under node Sports. Tree L1 and L2 has higher similarity than L3 since their lowest common ancestor Football

is closer to the leaf node. Here the similarity is calculated using m = 2.

Algorithm 1 URL Similarity Calculation

1: Input two URLs {URL1, URL2}, labels {lb1, lb2}, weight m
(m > 1)

2: Initialize base = 1, sim = 0, denominator = 0
3: for each level i in the tree
4: if lb1(i) = lb2(i)
5: sim = sim+ base
6: end if

7: denominator = denominator + base
8: base = base ∗m
9: end for

10: sim = sim
denominator

11: Output sim

Feature f4 uses Kendall τ rank correlation coefficient [12]
to compute the correlation between two ordered SERP lists.
A pair is said to be concordant if and only if both URLs are
identical and ranked at the same position. Otherwise, they
are discordant.

On the other hand, the second term S(Qo, Qs) in eq.(1)
measures the string similarity between the query and a sug-
gestion. A standard Levenshtein distance-based algorithm
is applied here, with λ a free parameter controlling its rel-
ative weight. Algorithm 2 sketches the process. Note that
there are lots of more sophisticated methods to calculate
query similarity and arguably ours is an oversimplified one.
However, since the focus of this paper is primarily on the
diversification part, we leave this part for improvement in
the future. Besides, as we shall see in the experiments, the
query string similarity in general decreases with the increase
of suggestion relevance. Nevertheless, even this oversimpli-
fied function leads to significant performance improvement
when combined with several diversification features.

3.3 Learning The Ranking Function
Combining eq.(2) and eq.(3) into eq.(1), we have

R(Qo, Qs) =
∑

k

wkfk(SRQo , SRQs) + λS(Qo, Qs), (4)

which contains parameters λ and w = {w1, ..., wk}. We re-
name λ = w0 and expand w = {w0, w1, ..., wk} to be the fea-
ture weights to learn. The objective is therefore to optimize
these parameters given a set of labeled query-suggestion

Algorithm 2 Query Similarity Calculation

1: Input two queries Qo, Qs, a list of stop words
2: max length = max(len(Qo), len(Qs))
3: word distance = LevenshteinDistance(RemoveStopWords(Qo ),

RemoveStopWOrds(Qs))
4: query similarity = word distance / max length
5: output query similarity

pairs. Similar to the learning-to-rank [14] framework, we
use a supervised learning approach in our paper.

3.3.1 Training Labels
We use human assessors to evaluate the relevance between

query and suggestions. For each pair of query suggestion-
s, the assessors are given the queries, their corresponding
search result pages side-by-side, and asked to make a bina-
ry decision of whether these two queries are related. Every
pair is given to three independent assessors. The final score
is the number of assessors who labeled that pair as related.
Therefore, the label is always between 0 and 3 with 3 being
the most related and 0 unrelated.

It is important to notice that in the judgment guidelines,
the assessors are only asked to label the pairs as related
or not based on their impressions on the SERP. Because if
the assessors are asked to judge the diversification of the
page or the similarity between queries, then the judgment
labels may not reflect the true relevance of the suggested
query. The weight of the diversification function should be
learnt from the labels rather than being used as a guideline
for judgment, since diversifying the SERP may or may not
lead to a higher click through rate (CTR) on the suggested
queries, before we have the true relevance labels.

Besides the “related” label, we also ask assessors to judge
if the two SERPs are totally identical on their top K (K = 3
in our guideline) results. If so, a “Duplicate” label becomes
positive which overrides the related label to be zero.

3.4 Learning Algorithms
The general ranking function in eq. (4) presents us with

opportunity to apply more than one categories of learning
algorithms to the training data. Specifically, we learn the
ranking function by using classification, linear regression,
ordinal regression and learning-to-rank frameworks.



3.4.1 Classification
With four classes of labels ranging from 0 to 3, a multi-

class Support Vector Machines (SVMs) classifier [21, 7] is
applied to classify instances into one of the four classes. The
objective of SVMs is to maximize the margin of the sepa-
ration hyper plane while subject to minimizing the classi-
fication error rate. The output of SVMs is a probability
distribution over the classes. Therefore, the final ranking of
an instance is calculated as follows:

Rank(Qt) =
3∑

c=0

cP (c). (5)

For example, the instance with probability distribution of
{0.1, 0.3, 0.2, 0.4} has a higher rank (1.9) than the instance
of {0.3, 0.1, 0.1, 0.5} which has a rank of 1.8, even though
both instances are classified into class 3. This approach has
shown very effective ranking results in previous models [13].

3.4.2 Linear Regression
A linear regression model estimates the label (response)

yi as a continuous variable given a set of C independent
variables xi = {xi1, ...xiC}:

yi = β0 +
C∑

c=1

βcxic + ǫi, (6)

with ǫi being the error term. Linear regression optimizes by
minimizing the sum-of-squared residuals (SSE). The output
is directly used as the final ranking of the queries.

3.4.3 Ordinal Regression
Ordinal regression is essentially an extension of the multi-

nomial logistic regression, which is a regression model but
generalizes logistic regression to discrete outputs. The short-
coming of logistic regression is due to its ignorance of the
orders of categories. Instead, ordinal regression considers
this situation by using a logit function in the model:

f(Z(x) = log
Z(x)

1− Z(x)

= log
P (Y ≤ yi|X)

P (Y > yi|X)

= αi + βX, i = 1, ..., k − 1

where Z(x) =
e(αi+βX)

1 + e(αi+βX)
, (7)

The model is usually estimated using maximum likelihood
method. Previous results have indicated its superiority over
logistic regression [6].

3.4.4 Learning To Rank
Unlike all aforementioned algorithms, the learning-to-rank

framework directly optimizes the ranking loss, i.e., it focuses
on the relative order between two list items. Therefore, the
objective of learning is to directly minimize the number of
misclassified pairs. Out of all loss functions used in learning-
to-rank, Normalized Discounted Cumulated Gain (NDCG)
is most commonly used. Specifically, NDCG is defined as the
DCG score of a ranking result, divided by the ideal DCG,

NDCG =
DCG

IDCG
, (8)

Algorithm 3 The LambdaSMART algorithm

1: Input: N = # of queries, M = # of iterations,
L = # of leaf nodes, v = the shrinkage parameter

2: for i = 1 to N
3: Initialize F0(xi) to be the base model
4: end for

5: for m = 1 to M
6: for i = 1 to N
7: yi ← λi

8: wi ←
∂yi

∂F (xi)

9: end for
10: Create L−terminal node tree {Rlm}

L
l=1

11: for l = 0 to L

12: rlm ←

∑
xi∈Rlmyi∑
xi∈Rlmwi

13: end for
14: for i = 0 to N
15: Fm(xi)← Fm−1(xi) + v

∑
l rlmI(xi ∈ Rlm)

16: end for
17: end for

where the DCG score is calculated by dividing the relevance
score with the position of the ranking,

DCG =

M∑

i=1

2s(i) − 1

log(1 + i)
, (9)

where s(i) is the relevance score assigned by human asses-
sors. The higher the NDCG score is, the better the ranking
result is assumed.

We choose the LambdaSMART [23] algorithm as our frame-
work due to its superior ranking performance. The algorith-
m leverages the MART (multiple additive regression trees)
boosting framework [9] to perform gradient descent at each
iteration. Algorithm 3 sketches the framework.

4. EMPIRICAL ANALYSIS
This section presents experimental results on real-world

data mined from a commercial Web search engine. We dis-
cuss how the diversification function affects the relevance
of related queries, as well as the importance of individual
features and their combinations.

4.1 Data Acquisition
From search engine server logs, we randomly sampled 13,421

queries between September 2010 and November 2010. These
are queries that trigger at least one related search on the
search result page. The search engine we use generates re-
lated queries from a combination of different resources, in-
cluding but not limited to: random walk on the query-click
graph, similar queries from the same user session, collabora-
tive filtering from similar users and so on. Since generating
query candidates is not the focus of this paper, we won’t
discuss in detail about this part. However, we will show the
improvement of our approach by comparing to one of the
techniques in later sections.

As mentioned above, the query-suggestion pairs are given
to assessors for evaluation and assigned with a score between
0 and 3. Table 2 summarizes the statistics of the data set.
In Table 3, we show several query-suggestion pairs and their
judgment labels.

4.2 Parameter Initialization
We pre-define the following parameters in our experiments.



Label Count
Unrelated (0) 1597

Somewhat related (1) 2099
Related (2) 2471

Closely related (3) 7254
Duplicate (0) 1875

Table 2: Statistics of data used in our experiment.

For comparing SERP difference, we choose the top-10 (N =
10) blue links returned by a major search engine. For the
LambdaSMART algorithm, we choose M = 500 iterations
and v = 0.1 the shrinkage parameter. These parameters
are fixed since the algorithms are relatively robust to their
changes, as shown in previous researches [23]. We show the
sensitivity of the remaining parameters in later sections.

4.3 Feature Correlation
Figure 4 plots the boxplots of feature values vs. the hu-

man assigned labels. The first plot shows the query simi-
larity vs. the labels, where the query similarity is used as a
regularization factor in eq.(1). It can be observed that with
the increase of relevance (from 0 to 3), the similarities be-
tween queries and suggestions generally decrease. This find-
ing is contradictory to many existing researches that lever-
aged query similarity to find related queries, which strongly
supports our introduction of the diversification metric. The
second figure shows the ODP category similarity scores with
the change of labels. We show that the most related query
suggestions have higher category similarity than unrelated
suggestions, which indicates that users are still interested in
seeing more results from similar topics (categories), rather
than switching to other intents.

The third and fourth figures plot the URL and domain
similarity scores vs. labels. Both results demonstrate that
the increase of relevance demands a decrease in result sim-
ilarity. Comparatively, the decrease of URL similarity is
more drastic than domain similarity, which makes sense s-
ince URLs within the same domain might still exhibit dif-
ferent topics which are potentially of interests to the users.
The Kendall τ rank shows similar results as the domain sim-
ilarity in Figure 5.

We further use Pearson’s χ2 test [18] to test the correlation
significance between features and labels. Table 4 depicts
the results of χ2 as well as their corresponding p-values,
where in general high χ2 values with low p-value indicates
higher significance (for a fixed degree of freedom). It can
be observed that all five features have strong correlation
with the labels, with statistically significance given p-values
< 0.05.

4.4 Performance Analysis
In this section, we present the detailed results of the four

learning algorithms. We separate the data into 60% train-
ing, 10% validation and 30% testing for tuning the parame-
ters. For multi-class SVM, we use the linear kernel since it
performed better than sigmoid and polynomial kernels for
our data. The best balancing factor c is tuned using cross
validation and found to be 0.85. For the LambdaSMART
algorithm, we specify L the number of nodes in the leaf to
be 2 (stump) and 20, respectively. The weight of a feature
from LambdaSMART is calculated according to the number

of times that feature is used to split the decision tree. Table
5 lists the feature weights learnt from all models. In gener-
al, the URL similarity and ODP category similarity features
demonstrate the highest weights. The query similarity fea-
ture ranks second to the last, which indicates the importance
of diversification features in overall performance.

Next, we compare the ranking performance of these algo-
rithms. As illustrated in eq.(8) and eq.(9), NDCG is the
most popular metric for retrieval performance which ad-
dresses both relevance and the position of the returned re-
sults. Since most of the time search engines return no more
than six suggested queries, we will measure NDCG@5 and
NDCG@1 in our experiments. For regression, the output
is used directly to rank the suggestions. For SVM, eq. (5)
is used to calculate the ranking based on the classification
output. Figure 5 summarizes the results of NDCG@1 and
NDCG@5. While linear regression shows the worst perfor-
mance, the LambdaSMART algorithm significantly outper-
forms all others. In general, LambdaSMART achieves 0.79
and 0.74 for NDCG@1, with 20 and 2 leaf nodes respective-
ly. For NDCG@5, it also performs well with 0.63 and 0.59
NDCG scores.

Furthermore, we illustrate the importance of individual
features in retrieval performance. Specifically, we calculate
the NDCG scores by using only one feature at a time, ver-
sus combining the only similarity feature (Query) with each
individual diversification features. Since in our previous ex-
periment, LambdaSMART demonstrated significantly bet-
ter performance than all others, we will only use LambdaS-
MART for all our remaining experiments. Table 6 tabu-
lates the results. In general, for individual feature compar-
ison, ODP and URL similarity yield the highest NDCG s-
cores. With the combination of similarity measurement and
diversification criteria, we observe that Query+URL yields
the best performance among all, whereas Query+ODP al-
so shows competitive performance. Both combinations are
very close to the optimal performance of LambdaSMART
that uses all features, which suggests the usefulness of the
similarity and diversification mixtures in real-world applica-
tions.

4.5 Performance for Different Query Types
Furthermore, we slice and dice the results to see how the

proposed diversification measurement affects different types
of queries. Statistically, in our data set, the average length
of queries is 2.51, whereas the average length of suggestions

Query Suggestion Label
priceline.com IMS Health 0

jet blue Blue Jet Lightning 0
sign up for hotmail Create Free Hotmail Account 1

inception Dictionary Inception 1
youtube broadcast YouTube Videos 2

broan Home Depot 2
dessert Dessert Recipes 3

yahoo maps MapQuest Driving Directions 3
fun school fun school kaboose Dup

swa Southwest Airlines Dup

Table 3: Examples of query-suggestion pairs with
their labels. Dup = 0 in our definition.
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Figure 4: Boxplot of feature values vs. human-judged labels. Query similarity decreases with the increase of
label relevance. The ODP category similarity increases when suggested queries are more related. All other
diversification features indicate negative correlations with the labels.

Feature χ2 p-value
Query Similarity 22.0454 0.009098

ODP Category Similarity 27.4349 0.003289
URL Similarity 24.5443 0.005405

Domain Similarity 10.1814 0.012545
Kendall τ rank 18.5849 0.008500

Table 4: Pearson’s χ2 Test result with df = 13, 420
and corresponding p-values.

is 3.02. We break down the queries into Long (length > 4),
Medium (2 ≤ length ≤ 4) and Short (length < 2). In to-
tal, there are 1350 long queries, 7551 medium queries, and
4283 short queries. On the other hand, we split queries into
frequent queries and infrequent queries. Arguably, most fre-
quent queries can be treated as navigational queries such as
“facebook”, while infrequent queries are mostly information-
al queries. Figure 6 shows the log-log plot of query length
vs. query frequency. In our experiment, we specify the top
1% most frequent queries to be navigational, and the bottom
50% to be informational1. Table 7 summarizes the statistics.

In Figure 7, we report the comparison for different query
types in terms of NDCG values, where the overall NDCG
of all queries (the top bar) is measured against all query
types. It is evident to observe that informational queries
gain higher NDCG scores than navigational queries, whereas
short queries gain lower NDCG scores than medium and
long queries. As shown in Table 7, the average suggestion
lengths for short and navigational queries are much higher
than the queries themselves. In our opinion, users who issue

1Note that our cut-off threshold is not very strict, since the
definition of navigational and informational are quite vague
and varies from different data sets.

Type Query Length Suggestion Length
Short 1 2.47

Medium 2.76 3.2
Long 4.87 3.7

Navigational 1.62 2.46
Informational 2.26 2.73

Overall 2.51 3.02

Table 7: Statistics of average query-suggestion
lengths in several query types.

navigational or short queries to search engines often have a
quite clear intent in mind, and thus don’t click on suggested
queries very often. On the other hand, users who issue longer
queries are less clear about their intent, and more likely to
use related queries to reformulate their intent.

4.6 Comparison to Random Walk
Recall that our framework is essentially a ranking (or re-

ranking) algorithm based on an existing set of query candi-
dates. As discussed in Section 3.1, random walk techniques
have shown noticeable performance on related search area.
It is therefore important to see how much NDCG gain our
framework can achieve by comparing to the results from
random walks.

The underlying algorithm is quite straightforward which
iteratively performs random walk on query-click bipartite
graph until convergence. For details of using random walk on
click graphs, we refer interested users to [20]. After random
walk, each query and its related queries are represented in a
vector, where each entry is a float point number indicating
how close the suggestion is to the query. This number is
naturally used to rank related queries.
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Figure 5: NDCG comparison of the four algorithms. Both NDCG@1 and NDCG@5 are shown. LambdaS-
MART demonstrates the best overall performance.
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Figure 6: Log-log plot of query frequency vs. query
length in our data set.

In addition, we also compare with the method (DQS)
in [15] which essentially used random walk to find related
queries and leveraged hitting time to measure their diver-
sification qualities. All the parameters are set default as
described in their paper.

Figure 8 compares the NDCG scores among four model-
s. It is clearly that both our algorithms improve retrieval
quality on the basis of random walk results. While linear
regression gains 2.3% NDCG gain at position 1, LambdaS-
MART achieves more than 20% improvement against ran-
dom walks. Both LambdaSMART and linear regression have
relatively small standard deviation across all queries. On
the other hand, the DQS algorithm has an overall perfor-
mance close to the baseline algorithm. Although achieved
a better NDCG score than baseline and linear regression
for position 1 (0.5037), DQS exhibits the highest standard
deviation among all algorithms and gradually loses the ad-
vantage over the baseline. Table 8 shows several examples of
query-suggestion pairs, which demonstrates the effectiveness
of re-ordering the related queries from random walk results.

5. CONCLUSION AND FUTURE WORK
In this work, we presented a novel way of improving the

relevance of query suggestion by diversifying search engine
results page. Specifically, our framework first gathered a set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Short

Medium

Long

Navigational

Informational

Overall

Figure 7: NDCG@5 performance on different query
types. The overall performance is from LambdaS-
MART (20).

of suggestion candidates, and then ranked these suggestions
in the descending order of their diversification scores. Our
diversification function considered both the query similari-
ty as well as several diversification features, including URL
difference, domain difference, ODP category difference and
Kendall τ coefficient rank. We randomly sampled a large
set (over 10,000) of query-suggestion pairs from a commer-
cial search engine, and asked human assessors to label their
level of relevance. Given these labeled training data, we
proposed to leverage different kinds of learning algorithms
to optimize the ranking function, including SVM classifier,
linear regression, ordinal regression and learning-to-rank al-
gorithms. Experimental results indicated that the learning-
to-rank algorithm – LambdaSMART – was able to achieve
outstanding performance by outperforming all other learn-
ing algorithms, as well as two random walk-based algorithm-
s, significantly. Our framework was able to improve the ND-
CG score from 0.45 to 0.79, for position 1 by comparing to
random walk framework. Experimental results also demon-
strated the importance of the diversification features which
significantly improved the relevance of the suggested queries
when combining with the query similarity feature.

An important discovery of this paper was that, with the
increase of the suggestion relevance, the similarity between
queries and suggested queries indeed drops. This is contra-
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Figure 8: Comparison of NDCG between random
walk results and two of our models: linear gression
and LambdaSMART.

dictory to many existing researches with aimed at making
suggestions based on query similarity solely. The human-
judged labels indicated that users of search engines are more
willing to click on suggestions that could potentially lead to
more diversified search results, but still within the same us-
er search intent. This fact is especially obvious for medium
and long queries, as well as informational queries.

As a preliminary research towards the direction of using
post-ranking features, there exists lots of room for improve-
ment. In the future, we plan to explore more features and
signals on the search result pages to improve the power of the
diversification function. Another direction is to incorporate
user behaviors into real-time suggestion re-ranking, includ-
ing but not limited to, user clicked URLs, skipped URLs as
well as behaviors from similar users.
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Feature Description
f1(SRQo , SRQs) = Sim(ODP (SRQo ), ODP (SRQs )) The similarity of the ODP category between

=
∑

i

∑
j
Sim(ODP (SRi

Qo
), ODP (SRj

Qo
)) two URL sets

f2(SRQo , SRQs ) = Sim(URL(SRQo), URL(SRQs)) check if URLi is the same as URLj , discounted by

=
∑

i

∑
j
I(URL(SRi

Qo
) = URL(SRj

Qo
))/ log2 (i+ j) the position of URLi

f3(SRQo , SRQs) = Sim(DM(SRQo ), DM(SRQs )) check if the domain of URLi is the same as URLj ,

=
∑

i

∑
j
I(DM(SRi

Qo
) = DM(SRj

Qo
))/ log2 (i+ j) discounted by its position

f4(SRQo , SRQs ) = τ (SRQo , SRQs ) Kendall τ rank correlation coefficient for
= {(# concordant pairs) - (# discordant pairs)} /0.5n(n − 1) two ordered URL lists

Table 1: Features used to calculated diversification between two queries.

Query Sim ODP Sim URL Sim Domain Sim Kendall τ Rank
(Linear) SVM 0.0145 0.0230 0.0783 0.0092 0.0110

Linear Regression 0.1341 0.1613 0.2935 0.2540 0.1755
Ordinal Regression 0.1758 0.2390 0.2406 0.1973 0.2055
LambdaSMART (2) 0.8391 0.8305 0.9512 0.9336 0.7795
LambdaSMART (20) 0.8214 0.9676 0.9827 0.7382 0.5882

Average 0.39698 0.44428 0.50926 0.42646 0.35194

Table 5: The weights of features from four learning algorithms. For SVM, linear kernel is applied. For
LambdaSMART, we try both L = 2 and 20 for the number of leaf nodes.

Query ODP URL Domain Kendall Query+ODP Query+URL Query+Domain Query+Kendall
NDCG@1 0.6466 0.6997 0.6606 0.5925 0.5641 0.7284 0.7245 0.6933 0.6873
NDCG@5 0.5728 0.6433 0.6082 0.5218 0.5039 0.6489 0.6407 0.6284 0.6177
Average 0.6097 0.6365 0.6694 0.5572 0.5340 0.6686 0.6826 0.6608 0.6525

Table 6: The NDCG scores of using individual features alone vs. combining similarity feature (Query) with
individual diversification features. Results are measured using LambdaSMART algorithm.

Query Random Walk Result LambdaSMART Result DCG RW DCG Lambda DCG Gain

delta airline

Delta Air Lines SkyMiles Delta Airline Flight

7.81 10.82 +3.01
Alaska Airlines Delta Air Lines Reservations

Delta Air Lines Credit Union Delta Air Lines SkyMiles
Delta Airline Flight Alaska Airlines

Delta Air Lines Reservations Delta Air Lines Credit Union

sierra trading
Sierra Equipment Sierra Trading Post Jobs

6.10 10.39 +4.29post
Sierra Trading Post Jobs Lands’ End

Sierra Traders Sierra Traders
sierra club reviews Sierra Equipment

Lands’ End sierra club reviews

old cars

cool cars antique cars

6.51 9.39 +2.88
Police Student cool cars
oldsmobile cars oldsmobile cars
antique cars old houses
old houses Police Student

Table 8: Examples of query-suggestion pairs from random walk and re-ordered by LambdaSMART algorithm.
DCG RW is the DCG score achieved by random walk. DCG Lambda is the score from LambdaSMART.


