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Abstract— Mutual exclusion is one of the well-studied 
fundamental primitives in distributed systems. However, the 
emerging P2P systems bring forward several challenges that 
can’t be completely solved by previous approaches. In this paper, 
we propose the Sigma protocol that is implemented inside a 
dynamic P2P DHT and circumvents those issues. The basic idea 
is to adopt queuing and cooperation between clients and replicas 
so as to enforce quorum consensus scheme. We demonstrate that 
this protocol is scalable with system size, robust to contention, 
and resilient to network latency variance and fault-tolerant. 

I. INTRODUCTION 

One of the fundamental primitives to implement more 
generic systems and applications on top of P2P DHTs 
[4][13] is mutual exclusion. Such primitive is also a 
rudimentary service needed by applications running on 
top to guard arbitrary resources when necessary. For 
example, a concurrency control mechanism is obviously 
needed for a mutable distributed file system. 

For the applications and systems we envision to be 
built and deployed on those P2P DHTs, one can all but 
rule out the possibility of enforcing concurrency using 
stable transaction servers, whether they are external or 
internal to the system. Therefore, such primitives must 
be implemented inside P2P DHT. The protocol is thus 
by definition distributed, it must be simple and efficient, 
and yet robust enough to be of practical use.  

Our basic idea is simple: utilizing the fact that nodes 
in the DHT collectively form a logical space that does 
not have holes, institute a set of logical replicas upon 
which a quorum consensus protocol grants access to 
critical section (CS). From a client’s perspective, these 
replicas are always online. However, they may suffer 
from complete memory loss from time to time. Such 
random reset occurs when the node that acts as a logical 
replica crashes and gets replaced by one of its logical 
neighbor in DHT.  

The open and dynamic nature of P2P environment 
brings another serious challenge. Many previous 
approaches [10] assume a close system with fixed and 
relatively moderate number of nodes, and nodes 
communicate among themselves to reach consensus. 
These solutions are inapplicable in our context where 
the number of clients is unpredictable and can swing to 
be very large. The protocols are designed for a harsh 
and open environment such as a wide-area P2P. 

The work in this paper presents a few novel 
contributions: 

• We start by investigating a straightforward, 
ALOHA-like strawman protocol and show that, 
the high variation of network latency between 

clients and replicas is responsible for the large 
performance degradation. We believe this insight 
is valuable for any wide-area consensus protocols. 

• We demonstrate that a cooperative strategy 
between clients and replicas is necessary to 
circumvent latency variance and contention, thus 
achieving scalability and robustness. 

• We propose the informed backoff mechanism, 
which intelligently rebuilds replica’s state, to 
handle the random reset problem of replicas. 

The resulting protocol, Sigma, is fully implemented, 
analyzed and evaluated. We present both analytical and 
experimental results that demonstrate its performance 
and efficacy. 

We discuss the system model in Section II. The 
strawman protocol and its performance evaluation are 
presented in Section III. Building on this, we describe 
the Sigma protocol in Section IV and experiment results 
in Section V. Related work is in Section VI and we 
conclude in Section VII.  

II. SYSTEM MODEL 

In its essence, a P2P DHT offers a virtual space 
populated by participating peers. The space does not 
have any holes except for a very transient period of time 
during membership change.  

 
Figure 1. Majority consensus in a P2P DHT; “bucket” is the unit of DHT and 
is synonym of “zone”, “R” denotes a logical replica. The diagram illustrates 

that the node crash can be modeled as logical replica reset. 

For a given resource R, its associated server CS(R) 
can be logical. For instance, there can be n replicas 
whose names are “/foo/bar:i” where i � [1..n] (see Figure 
1). We can hash these names to derive the keys, and the 
hosting node of each key can serve as one replica. This 
decoupling of naming and actual server means that we 
are working with a peculiar “server” who is always 
available but may suffer from memory loss at random 
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point of time. Moreover, as we shall see, the 
introduction of multiple replicas implies that the 
latencies between a client to these replicas be highly 
variable, exerting a significant impact on performance.  

Formally speaking, our system model is as follows: 

• The replicas are always available, but their internal 
states may be randomly reset. This is also termed 
as the failure-recovery model in [8]. 

• The number of clients is unpredictable and can be 
very large. Clients are not malicious and fail stop.  

• Clients and replicas communicate via message, but 
the channel between them is unreliable. Messages 
could be replicated, lost, but never forged. 

In the context of this paper, both clients and replicas 
are peers in the DHT (in practice, however, it’s only the 
replicas that have to be DHT members). When a replica 
grants permission (or vote) to a client, the latter is 
called owner of the former. A client who has collected 
majority permissions is said to be the winner of a round.  

We assume that the typical lifetime of a DHT node is 
long enough so a client can talk directly to the current 
node who acts as a logical replica, invoking O(logN) 
DHT lookup only after the logical replica takes a reset. 

Our primary goal is to derive a set of efficient and 
highly reliable protocols. We want the protocol to 
perform as robust as possible, in both low and high 
contention situation. Finally, it should correct itself 
rapidly after faults occur. 

III.  A STRAWMAN PROTOCOL 

In this section, we will introduce a strawman protocol 
which is straightforward to implement, but nevertheless 
illustrates essential attributes as well as problems of a 
highly available, majority-based consensus protocol.  

The main idea is similar to ALOHA [11] protocol’s  
way of resolving conflicting packets; all clients that 
want to enter critical section (CS) send requests to each 
of the replicas and wait for responses. A replica grants a 
lease if it is not owned by anyone, and otherwise rejects 
the request but informs the client the current owner. 
The one who obtains m out of n replicas (m>n/2) is the 
winner at this round. Losers release acquired votes (if 
any), back-off and retry after a random period. This also 
guarantees that deadlock will not occur.   

The replicas, however, can suffer from random reset 
after which it forgets about its previous decision and is 
open to new request. The “change of heart” can cause 
the mutual exclusion to be broken. Assume that average 
life of a node is T, the probability that the node may 
crash in a period of t is t/T. The probability that any k 
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given round, to tolerate up to k replica reset n=3k+1 
and m=2k+1 are needed. Thus, as a design choice, we 
can raise the value of m. 

Figure 2 shows the probability of violating exclusivity, 
where T is of 10000 seconds, which is the reported 
average life of a P2P node [12], and t is chosen as 10 
seconds, which gives a conservative upper bound of 
clients staying in the CS. We show the results with 
different parameters of m/n. 

It can be observed that accomplishing robust mutual 
exclusion with this protocol is realistic. Even with n=32 
and m/n=0.75 (i.e. m=24), a very practical setting, the 
chance of breaking the exclusivity is 10-40. Using this 
configuration to guard a document whose availability 
requirement is 15-18 nines is entirely reasonable. The 
broader point we want to make is that it makes little 
practical sense to guarantee the conflict probability 
substantially lower than the availability of the resource 
to be protected.  
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Figure 2.  Probability to break exclusivity. 

The performance of this protocol, however, is an 
entirely different story. Figure 3 depicts the throughput 
in various network conditions, where m and n is 24 and 
32 respectively. The average network latency of any 
client to all replicas is fixed at 100ms, but latency of a 
given client-replica pair is a random variable. This is a 
reasonable assumption in a wide-area DHT.  
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Figure 3. Performance of strawman protocol, with latency uniformly 

distributed in (a, b).  

The first thing to notice is that the curve looks just 
like that of ALOHA(see [11]): the throughput increases 
linearly when contention is low, reaches a peak, and 
then degrades essentially to zero. It is clear that latency 
variance has a significant impact: the higher the 
variance, the worse the throughput. 



IV. THE SIGMA PROTOCOL 

The main culprit of the strawman protocol’s poor 
performance is the variance of network latency between 
one client and each replica. Client requests will reach 
different replicas at different time, so it is hard for all 
replicas to build a consistent view of competing clients. 
A second, more subtle issue has to do with is the greedy 
behavior of the clients: they would keep on retrying 
when collision occurs; therefore nobody can win out 
finally. There should be a comprehensive set of 
techniques to address both problems.  

We deal with the first problem by installing a queue 
at replicas and reshuffle them towards a consistent view 
in case of high contention. To combat the second issue, 
we adopt a strategy to enforce clients into a state of 
active waiting. 

Figure 5 and Figure 6 present pseudo code, described 
in terms of message handler, for clients and replicas 
respectively. The two sides exchange messages and the 
relevant entities and their interactions are depicted in 
Figure 4. 
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Figure 4. Architecture of Sigma protocol. 

The client states include its id , and an array resp[] . 
resp[i] records the response from the i-th replica, 
stating its owner and the associated timestamp. The 
replica maintains the following: who owns this replica 
(Cowner ), and a value of nil  indicates this replica has 
not voted for anyone; Towner  stores the timestamp of the 
request; Queue stores waiting clients in order of their 
timestamp. We use Lamport’s logical clock [7] to 
generate timestamp. 

Client starts by firing REQUEST messages to all 
replicas (Request  in Figure 5). These requests are 
handled by the OnRequest  at the replica, which either 
grants its vote outright or queue the request up, 
depending on whether this replica has already voted. 
Regardless, the id and timestamp of the current owner 
of the replica (equals to the client’s only if the queue is 
empty) are returned to client by a RESPONSE message. 

As the responses arrive at the client (OnResponse  in 
Figure 5), it gradually forms the idea about its place in 
the race. Suppose m out of n replicas is needed to 
achieve quorum consensus, there will be all but three 
outcomes and each can be easily distinguished by 
examining owner  attached in the RESPONSE messages: 

1. The client is the winner by quorum consensus. It 
succeeds and gets the permission to enter CS. 

2. Some one does win but not this client. The client 
does nothing because it knows it has been 
registered on the replicas already. We will detail 
later when and how it will be notified. 

3. Nobody has won, if jsame + n – j < m where j is the 
number of returned responses and the maximal 
number of same item in j is jsame. The client then 
sends out a YIELD message to each of the 
acquired replicas. 

Figure 5. Client-side pseudo code. 

Figure 6. Replica-side pseudo code. 

The YIELD operation reflects the collaborative nature 
of Sigma protocol and is a critical performance 
optimization. The semantic of YIELD is 
RELEASE+REQUEST. When replica receives a 
YIELD message, it removes the client from the winning 
seat and inserts it into the queue, chooses the earliest 
one and notifies the winner.  

The function of the YIELD handling is to reshuffle 
the queue. The fact that nobody wins indicates that 
contention happens. This, in turn, implies that queues 

State Variables: 
Cowner      // the client it accepts 
Towner      // time stamp of Cowner 
Queue     // queue requests up 

OnRequest(C, timestamp) { 
if (Cowner = nil) { 

Cowner := C; 
Towner := timestamp; 

} 
else  

Queue.Insert(C, timestamp); 
SendResponse(C, Cowner, T owner ); 

} 

OnRelease(C) { 
if (C = C owner ) { 

Cowner := nil; 
if (not Queue.Empty()) 
  RespQueue(); 

} 
else if (Queue.Contains(C)) 

Queue.Remove(C); 
} 

OnYield(C) { 
if (C = C owner ) { 

Queue.Insert(C, T owner ); 
RespQueue(); 

} 
} 

RespQueue() {  // helper routine 
<Cowner , T owner > := Queue.Front(); 
SendResponse(C owner , C owner , T owner ); 
Queue.Remove(C owner ); 

}  

 

State Variables: 
  id      // the identity of the client 
  resp[]  // responses from replica 

Request(CS) { 
timestamp := GetLogicalClock(); //lamport’s clock 
for each R[i] of CS 

SendRequest(R[i], id, timestamp); 
} 

OnResponse(R[i], owner, timestamp) { 
resp[i].owner := owner; 
resp[i].timestamp := timestamp; 
if (enough responses received) { 

winner := ComputeWinner(); 
if (winner = self)   // case 1 
  return success; 
else if (winner = nil) { // case 3 
  for each resp[i].owner is self { 
    SendYield(R[i], id); 
    Clear(resp[i]);  // reset the state 

   } 
 } 

// case 2: some one else wins, just wait 
} 

} 

Release(CS) { 
for all R[i] of CS 

SendRelease(R[i], id); 
} 

 



are being built up but the winners are out of place. By 
issuing the YIELD request, clients are collectively 
offering the replicas a chance to build a more consistent 
view and, consequently, choose the right winner. It is 
important to understand that this will go on until a 
winner is settled, as such could be multiple rounds of 
YIELD. Typically, this self-stabilization process will 
quickly settle.  

The release operation is straightforward: the client, if 
is the owner simply relinquishes, or is removed from 
the queue otherwise. In either case, the next client (if 
any) is notified by the RESPONSE message. 

So far, we have described Sigma in a failure-free 
environment. In reality, many things may go wrong:  

1) After crash, a replica might grant the vote to a new 
client, despite the fact that it might have already done 
so to the previous one. We deal with this by raising m/n 
ratio to reduce the probability of breaking safety. With 
appropriate parameter, the risk can be negligible in 
practice (Section III). 

2) More seriously, its queue has gone and those 
waiting clients will get stuck forever. What is called for 
is a way to rebuild the replica’s memory. This is 
addressed by the informed backoff mechanism 
discussed later. 

3) If the client who is currently in the CS crashes 
before exit, replicas will be stuck. Therefore, replica 
grants permission to clients with renewable lease [1]. 
When the lease expires, replica will grant permission to 
the next client (if any) in the queue. 

4) The unreliable communication channel between a 
client and a replica will cause similar problems as well. 
In essence, message loss can be mapped to arbitrary 
crash of clients or replicas, which simplifies the 
handling. 

The combination of informed backoff and lease builds 
a reliable communication over the unreliable channel 
and is a variation of failure detector [15] plus timeout. 
This best-effort approach leverages replica knowledge 
to achieve better tradeoff between communication cost 
and system throughput. 

Informed backoff is a way to rebuild a restarted 
replica’s state without overloading those healthy 
replicas. It is extremely simple at its core. Upon a 
request, replica could predict the expected waiting time 
Tw and advise it to wait so long before next retry. An 
empirical calculation of Tw is Tw = TCS * (P + 1/2), 
where P is the client’s position in the queue and TCS is 
the average CS duration, as observed by the replica of 
interval between any two consecutive release operations. 
The 1/2 in the formula is to take current owner of the 
replica into consideration. Notice that Tw is always 
updated upon the reception of a retry. 

Let’s consider the case that the replica has not 
crashed at all. If the client is notified before its 
scheduled retry, no harm is done. Otherwise it means 
that the advised Tw was not accurate (such as some 
earlier clients take extra time). In this case the client 
will renew its Tw in its retry. This is of course an 
overhead, but hopefully we are not too far off from the 
future point when the permission will be granted and 
thus hopefully this is the only retry that the client will 
have to endure. If, on the other hand, replica does go 
through a reset, then the queue is reconstructed with the 
order similar to the original one, fulfilling our goal. 

We now offer a brief analysis of the Sigma protocol: 

• Service policy. The use of logical clock and the First-
Come First-Serve policy at replica does not guarantee 
FCFS, since client requests can take arbitrary long to 
arrive. Thus, Sigma can be best described as quasi-
FCFS. 

• Safety. We guarantee safety with high probability. No 
known protocols can ensure 100% correctness under 
failure. We treat replica failure and imprecise failure 
detector in a uniform manner. As shown in Section III, 
the probability of violating safety can be practically 
negligible by setting appropriate m/n.  

• Liveness. Progress is ensured by using lease.  

V. EXPERIMENTAL RESULTS 

The Sigma protocol is fully implemented and 
deployed in a distributed testbed, which can be 
configured by different network topology models.  

We assume a pool of infinity clients, and each client 
will fire request contending for CS according to a 
Poisson distribution,  of which is the incoming request 
rate. To focus on the performance aspects of the 
protocol, we let client exit CS immediately after it 
enters. After 5 minutes warm-up period we test 10 
minutes during which throughput, in terms of the 
number of serviced requests per second, is measured. 
This is then repeated for different incoming request rate. 
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Figure 7. Throughput versus latency variance and contention, with latency 
uniformly distributed in (a, b) and average latency being 100ms. The 3-

dashed lines correspond to theoretical predictions of saturated throughput, 
which differ with latency distribution. Data for both the strawman and Sigma 

are shown. m/n is 24/32. 

Figure 7 depicts the throughput against different 
incoming request, varying the latency distribution. One 



can see that network latency distribution has little 
impact: the throughput increases linearly when request 
rate ramps up, until a point when it reaches the 
saturated rate and then stays flat as predicted by a 
theoretical model (see [14]). This is the ideal behavior. 
For comparison purposes, the throughput of the 
strawman protocol (Figure 3) is also plotted. We can 
see that the performance improvement is significant. 

When replicas suffer from crash and thereafter 
undergo memory reset, performance will drop. There 
are many causes contributing to performance 
degradation and it’s difficult to obtain a succinct 
reasoning. However, in a way a reset has the net effect 
of enlarging latency variance: a REQUEST, which 
would otherwise result in a successful RESPONSE, 
reaches the restarted replica behind those from others 
who should have been queued.  
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Figure 8. Throughput versus replica availability, with latency uniformly 

distributed in (0, 200)ms and m/n being 24/32. The dashed line corresponds 
to theoretical prediction of saturated throughput. When replica life is 10000 

seconds, theoretical throughput can be achieved. 

We set the average lifetime of replica to be 
excessively short. The lifetime is exponentially 
distributed [2] and different average values are tested. 
Figure 8 presents our results. The penalty of throughput 
is perceptible if the replica life is 30 seconds; however, 
it becomes less and less significant when replica life 
increases. Given that in a P2P environment, nodes 
typically will be online for about 10000 seconds [12], 
we believe that the ideal throughput of Sigma can be 
achieved in practice.  

We have analyzed and measured message cost and 
show that it is asymptotically bound by 4n. Due to 
space limitation, we refer readers to the full technical 
report [14].   

VI. RELATED WORK 

From the taxonomy of [10], the Sigma protocol would 
fall into the “permission-based” category. These 
protocols assume a closed system, in which clients are 
also the replicas. The context of this work mandates an 
open system where number of clients is unpredictable.  

The more relevant work includes the Byzantine 
protocols [6][9][5] which also operates in an open-
system setting. Obviously, Sigma’s idea of virtual 
replicas is immediately applicable to these protocols to 
tailor-fit them in a P2P environment. The objectives, 

however, differ. Sigma is a light-weight synchronization 
protocol with O(n) message costs and does not attempt 
to deal with malicious client. Whereas the Byzantine 
protocols takes a replicated state machine approach 
with O(n2) cost and handles malicious client. It is 
interesting to note that, for a total of 3f+1 replica, when 
faults exceed f, both protocols will yield unpredictable 
results.  

Sigma’s emphasis is more on the practicality side and 
pays much attention for performance. In the P2P space, 
[3] is similar to the strawman protocol, but is 
augmented with exponential backoff. It is not clear 
whether its property will hold in face of latency 
variance, which we believe is the prevailing pattern of a 
P2P environment.  

VII.  CONCLUSION AND FUTURE WORK 

The emerging P2P scenario brings forward several 
challenges to mutually exclusive access of the resource 
stored in it, such as the huge variance of network 
latency, unpredictable (and often very large) number of 
clients and finally high dynamism. These issues are 
partially addressed in previous works but not 
completely solved. In this paper, we propose the Sigma: 
a practical, efficient and fault-tolerant protocol for 
distributed mutual exclusion inside P2P DHT.  

The key points of Sigma protocol are to use logical 
replicas and quorum consensus to deal with system 
dynamisms. Quasi-consistency and cooperation 
between clients and replicas circumvent the large 
variance of network latency and high contention. Sigma 
also gracefully deals with failure by two techniques: 
informed backoff and lease, making protocol fault-
tolerant. 

We verified that this protocol offers high performance 
in heterogeneous network condition and various 
contention rates. In a practical environment, the failure 
handling mechanism works well with negligible 
performance penalty and moderate communication 
overhead. 
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