
Shi-Ding Lin
Microsoft Research Asia

i-slin@microsoft.com

Qiao Lian
Tsinghua University

lq97@mails.tsinghua.edu.cn

Ming Chen
Tsinghua University

cm01@mails.tsinghua.edu.cn

Zheng Zhang
Microsoft Research Asia
 zzhang@microsoft.com

Abstract— Mutual exclusion is one of the well-studied
fundamental primitives in distributed systems. However, the
emerging P2P systems bring forward several challenges that
can’t be completely solved by previous approaches. In this paper,
we propose the Sigma protocol that is implemented inside a
dynamic P2P DHT and circumvents those issues. The basic idea
is to adopt queuing and cooperation between clients and replicas
so as to enforce quorum consensus scheme. We demonstrate that
this protocol is scalable with system size, robust to contention,
and resilient to network latency variance and fault-tolerant.

I. INTRODUCTION

One of the fundamental primitives to implement more
generic systems and applications on top of P2P DHTs
[4][13] is mutual exclusion. Such primitive is also a
rudimentary service needed by applications running on
top to guard arbitrary resources when necessary. For
example, a concurrency control mechanism is obviously
needed for a mutable distributed file system.

For the applications and systems we envision to be
built and deployed on those P2P DHTs, one can all but
rule out the possibility of enforcing concurrency using
stable transaction servers, whether they are external or
internal to the system. Therefore, such primitives must
be implemented inside P2P DHT. The protocol is thus
by definition distributed, it must be simple and efficient,
and yet robust enough to be of practical use.

Our basic idea is simple: utilizing the fact that nodes
in the DHT collectively form a logical space that does
not have holes, institute a set of logical replicas upon
which a quorum consensus protocol grants access to
critical section (CS). From a client’s perspective, these
replicas are always online. However, they may suffer
from complete memory loss from time to time. Such
random reset occurs when the node that acts as a logical
replica crashes and gets replaced by one of its logical
neighbor in DHT.

The open and dynamic nature of P2P environment
brings another serious challenge. Many previous
approaches [10] assume a close system with fixed and
relatively moderate number of nodes, and nodes
communicate among themselves to reach consensus.
These solutions are inapplicable in our context where
the number of clients is unpredictable and can swing to
be very large. The protocols are designed for a harsh
and open environment such as a wide-area P2P.

The work in this paper presents a few novel
contributions:

• We start by investigating a straightforward,
ALOHA-like strawman protocol and show that,
the high variation of network latency between

clients and replicas is responsible for the large
performance degradation. We believe this insight
is valuable for any wide-area consensus protocols.

• We demonstrate that a cooperative strategy
between clients and replicas is necessary to
circumvent latency variance and contention, thus
achieving scalability and robustness.

• We propose the informed backoff mechanism,
which intelligently rebuilds replica’s state, to
handle the random reset problem of replicas.

The resulting protocol, Sigma, is fully implemented,
analyzed and evaluated. We present both analytical and
experimental results that demonstrate its performance
and efficacy.

We discuss the system model in Section II. The
strawman protocol and its performance evaluation are
presented in Section III. Building on this, we describe
the Sigma protocol in Section IV and experiment results
in Section V. Related work is in Section VI and we
conclude in Section VII.

II. SYSTEM MODEL

In its essence, a P2P DHT offers a virtual space
populated by participating peers. The space does not
have any holes except for a very transient period of time
during membership change.

Figure 1. Majority consensus in a P2P DHT; “bucket” is the unit of DHT and
is synonym of “zone”, “R” denotes a logical replica. The diagram illustrates

that the node crash can be modeled as logical replica reset.

For a given resource R, its associated server CS(R)
can be logical. For instance, there can be n replicas
whose names are “/foo/bar:i” where i � [1..n] (see Figure
1). We can hash these names to derive the keys, and the
hosting node of each key can serve as one replica. This
decoupling of naming and actual server means that we
are working with a peculiar “server” who is always
available but may suffer from memory loss at random

A Practical Distributed Mutual Exclusion Protocol
in Dynamic Peer-to-Peer Systems

point of time. Moreover, as we shall see, the
introduction of multiple replicas implies that the
latencies between a client to these replicas be highly
variable, exerting a significant impact on performance.

Formally speaking, our system model is as follows:

• The replicas are always available, but their internal
states may be randomly reset. This is also termed
as the failure-recovery model in [8].

• The number of clients is unpredictable and can be
very large. Clients are not malicious and fail stop.

• Clients and replicas communicate via message, but
the channel between them is unreliable. Messages
could be replicated, lost, but never forged.

In the context of this paper, both clients and replicas
are peers in the DHT (in practice, however, it’s only the
replicas that have to be DHT members). When a replica
grants permission (or vote) to a client, the latter is
called owner of the former. A client who has collected
majority permissions is said to be the winner of a round.

We assume that the typical lifetime of a DHT node is
long enough so a client can talk directly to the current
node who acts as a logical replica, invoking O(logN)
DHT lookup only after the logical replica takes a reset.

Our primary goal is to derive a set of efficient and
highly reliable protocols. We want the protocol to
perform as robust as possible, in both low and high
contention situation. Finally, it should correct itself
rapidly after faults occur.

III. A STRAWMAN PROTOCOL

In this section, we will introduce a strawman protocol
which is straightforward to implement, but nevertheless
illustrates essential attributes as well as problems of a
highly available, majority-based consensus protocol.

The main idea is similar to ALOHA [11] protocol’s
way of resolving conflicting packets; all clients that
want to enter critical section (CS) send requests to each
of the replicas and wait for responses. A replica grants a
lease if it is not owned by anyone, and otherwise rejects
the request but informs the client the current owner.
The one who obtains m out of n replicas (m>n/2) is the
winner at this round. Losers release acquired votes (if
any), back-off and retry after a random period. This also
guarantees that deadlock will not occur.

The replicas, however, can suffer from random reset
after which it forgets about its previous decision and is
open to new request. The “change of heart” can cause
the mutual exclusion to be broken. Assume that average
life of a node is T, the probability that the node may
crash in a period of t is t/T. The probability that any k

out of m voted replicas resets is
kmk

T

t

T

t

k

m −−��
�

�
��
�

�
)1()(

.
So, the safety will be broken when more than or equal
to 2m-n resets occur during t, and the probability would

be
�

−=

−−��
�

�
��
�

�m

nmk

kmk

T

t

T

t

k

m

2

)1()(
. It turns out that in a

given round, to tolerate up to k replica reset n=3k+1
and m=2k+1 are needed. Thus, as a design choice, we
can raise the value of m.

Figure 2 shows the probability of violating exclusivity,
where T is of 10000 seconds, which is the reported
average life of a P2P node [12], and t is chosen as 10
seconds, which gives a conservative upper bound of
clients staying in the CS. We show the results with
different parameters of m/n.

It can be observed that accomplishing robust mutual
exclusion with this protocol is realistic. Even with n=32
and m/n=0.75 (i.e. m=24), a very practical setting, the
chance of breaking the exclusivity is 10-40. Using this
configuration to guard a document whose availability
requirement is 15-18 nines is entirely reasonable. The
broader point we want to make is that it makes little
practical sense to guarantee the conflict probability
substantially lower than the availability of the resource
to be protected.

0.5 0.6 0.7 0.8 0.9 1
10

−40

10
−30

10
−20

10
−10

m/n ratio

br
ok

en
 p

ro
ba

bi
lit

y

n=4
n=8
n=16
n=32
n=64

Figure 2. Probability to break exclusivity.

The performance of this protocol, however, is an
entirely different story. Figure 3 depicts the throughput
in various network conditions, where m and n is 24 and
32 respectively. The average network latency of any
client to all replicas is fixed at 100ms, but latency of a
given client-replica pair is a random variable. This is a
reasonable assumption in a wide-area DHT.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

incoming request rate (#/s)

su
cc

es
s

ra
te

 (
#/

s)

(a,b)=(0,200)ms
(a,b)=(50,150)ms
(a,b)=(90,110)ms

Figure 3. Performance of strawman protocol, with latency uniformly

distributed in (a, b).

The first thing to notice is that the curve looks just
like that of ALOHA(see [11]): the throughput increases
linearly when contention is low, reaches a peak, and
then degrades essentially to zero. It is clear that latency
variance has a significant impact: the higher the
variance, the worse the throughput.

IV. THE SIGMA PROTOCOL

The main culprit of the strawman protocol’s poor
performance is the variance of network latency between
one client and each replica. Client requests will reach
different replicas at different time, so it is hard for all
replicas to build a consistent view of competing clients.
A second, more subtle issue has to do with is the greedy
behavior of the clients: they would keep on retrying
when collision occurs; therefore nobody can win out
finally. There should be a comprehensive set of
techniques to address both problems.

We deal with the first problem by installing a queue
at replicas and reshuffle them towards a consistent view
in case of high contention. To combat the second issue,
we adopt a strategy to enforce clients into a state of
active waiting.

Figure 5 and Figure 6 present pseudo code, described
in terms of message handler, for clients and replicas
respectively. The two sides exchange messages and the
relevant entities and their interactions are depicted in
Figure 4.

OnRelease

OnRequest

OnYield

SendResponse

Client

R
eq

u
e
st

SendRequest

SendYield

OnResponse

R
e
lea

se

Replica

SendRelease

Insert

Front

Remove

Contains

Empty

Q
u
e
u
e O

p
era

tion
s

M
e
ssa

g
es

Figure 4. Architecture of Sigma protocol.

The client states include its id , and an array resp[] .
resp[i] records the response from the i-th replica,
stating its owner and the associated timestamp. The
replica maintains the following: who owns this replica
(Cowner), and a value of nil indicates this replica has
not voted for anyone; Towner stores the timestamp of the
request; Queue stores waiting clients in order of their
timestamp. We use Lamport’s logical clock [7] to
generate timestamp.

Client starts by firing REQUEST messages to all
replicas (Request in Figure 5). These requests are
handled by the OnRequest at the replica, which either
grants its vote outright or queue the request up,
depending on whether this replica has already voted.
Regardless, the id and timestamp of the current owner
of the replica (equals to the client’s only if the queue is
empty) are returned to client by a RESPONSE message.

As the responses arrive at the client (OnResponse in
Figure 5), it gradually forms the idea about its place in
the race. Suppose m out of n replicas is needed to
achieve quorum consensus, there will be all but three
outcomes and each can be easily distinguished by
examining owner attached in the RESPONSE messages:

1. The client is the winner by quorum consensus. It
succeeds and gets the permission to enter CS.

2. Some one does win but not this client. The client
does nothing because it knows it has been
registered on the replicas already. We will detail
later when and how it will be notified.

3. Nobody has won, if jsame + n – j < m where j is the
number of returned responses and the maximal
number of same item in j is jsame. The client then
sends out a YIELD message to each of the
acquired replicas.

Figure 5. Client-side pseudo code.

Figure 6. Replica-side pseudo code.

The YIELD operation reflects the collaborative nature
of Sigma protocol and is a critical performance
optimization. The semantic of YIELD is
RELEASE+REQUEST. When replica receives a
YIELD message, it removes the client from the winning
seat and inserts it into the queue, chooses the earliest
one and notifies the winner.

The function of the YIELD handling is to reshuffle
the queue. The fact that nobody wins indicates that
contention happens. This, in turn, implies that queues

State Variables:
Cowner // the client it accepts
Towner // time stamp of Cowner
Queue // queue requests up

OnRequest(C, timestamp) {
if (Cowner = nil) {

Cowner := C;
Towner := timestamp;

}
else

Queue.Insert(C, timestamp);
SendResponse(C, Cowner, T owner);

}

OnRelease(C) {
if (C = C owner) {

Cowner := nil;
if (not Queue.Empty())
 RespQueue();

}
else if (Queue.Contains(C))

Queue.Remove(C);
}

OnYield(C) {
if (C = C owner) {

Queue.Insert(C, T owner);
RespQueue();

}
}

RespQueue() { // helper routine
<Cowner , T owner > := Queue.Front();
SendResponse(C owner , C owner , T owner);
Queue.Remove(C owner);

}

State Variables:
 id // the identity of the client
 resp[] // responses from replica

Request(CS) {
timestamp := GetLogicalClock(); //lamport’s clock
for each R[i] of CS

SendRequest(R[i], id, timestamp);
}

OnResponse(R[i], owner, timestamp) {
resp[i].owner := owner;
resp[i].timestamp := timestamp;
if (enough responses received) {

winner := ComputeWinner();
if (winner = self) // case 1
 return success;
else if (winner = nil) { // case 3
 for each resp[i].owner is self {
 SendYield(R[i], id);
 Clear(resp[i]); // reset the state

 }
 }

// case 2: some one else wins, just wait
}

}

Release(CS) {
for all R[i] of CS

SendRelease(R[i], id);
}

are being built up but the winners are out of place. By
issuing the YIELD request, clients are collectively
offering the replicas a chance to build a more consistent
view and, consequently, choose the right winner. It is
important to understand that this will go on until a
winner is settled, as such could be multiple rounds of
YIELD. Typically, this self-stabilization process will
quickly settle.

The release operation is straightforward: the client, if
is the owner simply relinquishes, or is removed from
the queue otherwise. In either case, the next client (if
any) is notified by the RESPONSE message.

So far, we have described Sigma in a failure-free
environment. In reality, many things may go wrong:

1) After crash, a replica might grant the vote to a new
client, despite the fact that it might have already done
so to the previous one. We deal with this by raising m/n
ratio to reduce the probability of breaking safety. With
appropriate parameter, the risk can be negligible in
practice (Section III).

2) More seriously, its queue has gone and those
waiting clients will get stuck forever. What is called for
is a way to rebuild the replica’s memory. This is
addressed by the informed backoff mechanism
discussed later.

3) If the client who is currently in the CS crashes
before exit, replicas will be stuck. Therefore, replica
grants permission to clients with renewable lease [1].
When the lease expires, replica will grant permission to
the next client (if any) in the queue.

4) The unreliable communication channel between a
client and a replica will cause similar problems as well.
In essence, message loss can be mapped to arbitrary
crash of clients or replicas, which simplifies the
handling.

The combination of informed backoff and lease builds
a reliable communication over the unreliable channel
and is a variation of failure detector [15] plus timeout.
This best-effort approach leverages replica knowledge
to achieve better tradeoff between communication cost
and system throughput.

Informed backoff is a way to rebuild a restarted
replica’s state without overloading those healthy
replicas. It is extremely simple at its core. Upon a
request, replica could predict the expected waiting time
Tw and advise it to wait so long before next retry. An
empirical calculation of Tw is Tw = TCS * (P + 1/2),
where P is the client’s position in the queue and TCS is
the average CS duration, as observed by the replica of
interval between any two consecutive release operations.
The 1/2 in the formula is to take current owner of the
replica into consideration. Notice that Tw is always
updated upon the reception of a retry.

Let’s consider the case that the replica has not
crashed at all. If the client is notified before its
scheduled retry, no harm is done. Otherwise it means
that the advised Tw was not accurate (such as some
earlier clients take extra time). In this case the client
will renew its Tw in its retry. This is of course an
overhead, but hopefully we are not too far off from the
future point when the permission will be granted and
thus hopefully this is the only retry that the client will
have to endure. If, on the other hand, replica does go
through a reset, then the queue is reconstructed with the
order similar to the original one, fulfilling our goal.

We now offer a brief analysis of the Sigma protocol:

• Service policy. The use of logical clock and the First-
Come First-Serve policy at replica does not guarantee
FCFS, since client requests can take arbitrary long to
arrive. Thus, Sigma can be best described as quasi-
FCFS.

• Safety. We guarantee safety with high probability. No
known protocols can ensure 100% correctness under
failure. We treat replica failure and imprecise failure
detector in a uniform manner. As shown in Section III,
the probability of violating safety can be practically
negligible by setting appropriate m/n.

• Liveness. Progress is ensured by using lease.

V. EXPERIMENTAL RESULTS

The Sigma protocol is fully implemented and
deployed in a distributed testbed, which can be
configured by different network topology models.

We assume a pool of infinity clients, and each client
will fire request contending for CS according to a
Poisson distribution, of which is the incoming request
rate. To focus on the performance aspects of the
protocol, we let client exit CS immediately after it
enters. After 5 minutes warm-up period we test 10
minutes during which throughput, in terms of the
number of serviced requests per second, is measured.
This is then repeated for different incoming request rate.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

incoming request rate (#/s)

th
ro

ug
hp

ut
 (#

/s
)

(a,b)=(0,200) ms
(a,b)=(50,150) ms
(a,b)=(90,110) ms
(a,b)=(0,200) ms (strawman)
(a,b)=(50,150) ms (strawman)
(a,b)=(90,110) ms (strawman)
saturated service rate

Figure 7. Throughput versus latency variance and contention, with latency
uniformly distributed in (a, b) and average latency being 100ms. The 3-

dashed lines correspond to theoretical predictions of saturated throughput,
which differ with latency distribution. Data for both the strawman and Sigma

are shown. m/n is 24/32.

Figure 7 depicts the throughput against different
incoming request, varying the latency distribution. One

can see that network latency distribution has little
impact: the throughput increases linearly when request
rate ramps up, until a point when it reaches the
saturated rate and then stays flat as predicted by a
theoretical model (see [14]). This is the ideal behavior.
For comparison purposes, the throughput of the
strawman protocol (Figure 3) is also plotted. We can
see that the performance improvement is significant.

When replicas suffer from crash and thereafter
undergo memory reset, performance will drop. There
are many causes contributing to performance
degradation and it’s difficult to obtain a succinct
reasoning. However, in a way a reset has the net effect
of enlarging latency variance: a REQUEST, which
would otherwise result in a successful RESPONSE,
reaches the restarted replica behind those from others
who should have been queued.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

incoming request rate (#/s)

th
ro

ug
hp

ut
 (

#/
s)

replica life=10000s
replica life=100s
replica life=50s
replica life=30s
saturated service rate

Figure 8. Throughput versus replica availability, with latency uniformly

distributed in (0, 200)ms and m/n being 24/32. The dashed line corresponds
to theoretical prediction of saturated throughput. When replica life is 10000

seconds, theoretical throughput can be achieved.

We set the average lifetime of replica to be
excessively short. The lifetime is exponentially
distributed [2] and different average values are tested.
Figure 8 presents our results. The penalty of throughput
is perceptible if the replica life is 30 seconds; however,
it becomes less and less significant when replica life
increases. Given that in a P2P environment, nodes
typically will be online for about 10000 seconds [12],
we believe that the ideal throughput of Sigma can be
achieved in practice.

We have analyzed and measured message cost and
show that it is asymptotically bound by 4n. Due to
space limitation, we refer readers to the full technical
report [14].

VI. RELATED WORK

From the taxonomy of [10], the Sigma protocol would
fall into the “permission-based” category. These
protocols assume a closed system, in which clients are
also the replicas. The context of this work mandates an
open system where number of clients is unpredictable.

The more relevant work includes the Byzantine
protocols [6][9][5] which also operates in an open-
system setting. Obviously, Sigma’s idea of virtual
replicas is immediately applicable to these protocols to
tailor-fit them in a P2P environment. The objectives,

however, differ. Sigma is a light-weight synchronization
protocol with O(n) message costs and does not attempt
to deal with malicious client. Whereas the Byzantine
protocols takes a replicated state machine approach
with O(n2) cost and handles malicious client. It is
interesting to note that, for a total of 3f+1 replica, when
faults exceed f, both protocols will yield unpredictable
results.

Sigma’s emphasis is more on the practicality side and
pays much attention for performance. In the P2P space,
[3] is similar to the strawman protocol, but is
augmented with exponential backoff. It is not clear
whether its property will hold in face of latency
variance, which we believe is the prevailing pattern of a
P2P environment.

VII. CONCLUSION AND FUTURE WORK

The emerging P2P scenario brings forward several
challenges to mutually exclusive access of the resource
stored in it, such as the huge variance of network
latency, unpredictable (and often very large) number of
clients and finally high dynamism. These issues are
partially addressed in previous works but not
completely solved. In this paper, we propose the Sigma:
a practical, efficient and fault-tolerant protocol for
distributed mutual exclusion inside P2P DHT.

The key points of Sigma protocol are to use logical
replicas and quorum consensus to deal with system
dynamisms. Quasi-consistency and cooperation
between clients and replicas circumvent the large
variance of network latency and high contention. Sigma
also gracefully deals with failure by two techniques:
informed backoff and lease, making protocol fault-
tolerant.

We verified that this protocol offers high performance
in heterogeneous network condition and various
contention rates. In a practical environment, the failure
handling mechanism works well with negligible
performance penalty and moderate communication
overhead.

References
[1] B. Pawlowski, S. Shepler, et al. The NFS Version 4 Protocol, in

Proceedings of the 2nd international system administration and
networking conference (SANE2000)

[2] D. Liben-Nowell, H. Balakrishnan, and D. Karger, Analysis of the
Evolution of Peer-to-Peer Systems, in 21st ACM Symposium on
Principles of Distributed Computing (PODC), Monterey, CA, July
2002.

[3] G. Chokler, D. Malkhi, and M. Reiter, Backoff Protocols for
Distributed Mutual Exclusion and Ordering, in Proceedings of 21st
International Conference on Distributed Computing Systems (ICDCS),
2001.

[4] I. Stoica, et al, Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications, in Proceedings of ACM SIGCOMM 2001, San
Deigo, CA, August 2001.

[5] J. Yin, et al. Separating Agreement from execution for Byzantine Fault
Tolerant Services, in Proceedings of the 19th ACM Symposium on
Operating Systems Principles, Octobor 2003.

[6] L. Lamport, R. Shostak and M. Pease, The Byzantine Generals
Problem, ACM Transactions on Programming Languages and
Systems, 4(3):382-401, July 1982

[7] L. Lamport, Time, Clocks and the Ordering of Events in a Distributed
System, Communications of the ACM 21, 7 (July 1978), 558-565.

[8] M. K. Aguilera, W. Chen, and S. Toueg, Failure detection and
consensus in the crash-recovery model. Distributed Computing,
Springer-Verlag, 13:2, April 2000, pp. 99-125.

[9] M. Castro, B. Liskov, Practical Byzantine Fault Tolerance. in
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, New Orleans, February 1999.

[10] M. G. Velazquez, A Survey of Distributed Mutual Exclusion
Algorithms, Colorado State University, Technical Report CS-93-116.

[11] N. Abramson, The Aloha System – Another Alternative for Computer
Communications. In AFIPS Conference Proceedings, Vol. 36, 1970,
pp. 295-298.

[12] S. Saroiu, P. Krishna Gummadi, S. D. Gribble, A Measurement Study
of Peer-to-Peer File Sharing Systems, in Proceedings of Multimedia
Computing and Networking (MMCN) 2002.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, A
Scalable Content-Addressable Network, in Proceedings of ACM
SIGCOMM 2001.

[14] S. Lin, et al, A Practical Distributed Mutual Exclusion Protocol in
Dynamic Peer-to-Peer Systems, Microsoft Research, Technical Report.

[15] T. D. Chandra and S. Toueg, Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2):255-267.

