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Abstract— Mutual exclusion is one of the well-studied
fundamental primitives in distributed systems. Howeer, the
emerging P2P systems bring forward several challeeg that
can't be completely solved by previous approachem this paper,
we propose the Sigma protocol that is implementednside a
dynamic P2P DHT and circumvents those issues. Theaic idea
is to adopt queuing and cooperation between clienend replicas
so as to enforce quorum consensus scheme. We demats that
this protocol is scalable with system size, robugb contention,
and resilient to network latency variance and fauktolerant.
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clients and replicas is responsible for the large
performance degradation. We believe this insight
is valuable for any wide-area consensus protocols.

We demonstrate that a cooperative strategy
between clients and replicas is necessary to
circumvent latency variance and contention, thus
achieving scalability and robustness.

We propose theinformed backoffmechanism,

l. INTRODUCTION which intelligently rebuilds replica’s state, to

One of the fundamental primitives to implement more handle the random reset problem of replicas.
generic systems and applications on top of P2P DHTs The resulting protocol, Sigma, is fully implemented,
[4][13] is mutual exclusion. Such primitive is also a analyzed and evaluated. We present both analytical and
rudimentary service needed by applications running orexperimental results that demonstrate its performance
top to guard arbitrary resources when necessary. Foand efficacy.
example, a concurrency control mechanism is obviously \we discuss the system model in Section Il. The
needed for a mutable distributed file system. strawman protocol and its performance evaluation are

For the applications and systems we envision to bepresented in Section lll. Building on this, we describe
built and deployed on those P2P DHTSs, one can all buthe Sigma protocol in Section IV and experiment results
rule out the possibility of enforcing concurrency using in Section V. Related work is in Section VI and we
stable transaction servers, whether they are external aronclude in Section VII.
internal to the system. Therefore, such primitives must Il SYSTEM MODEL

be implementednside P2P DHT. The protocol is thus ] ]
In its essence, a P2P DHT offers a virtual space

by definition distributed, it must be simple and efficient, e e
populated by participating peers. The space does not

and yet robust enough to be of practical use. _ : _
. .. _ have any holes except for a very transient period of time
Our basic idea is simple: utilizing the fact that nOdeSduring membership change

in the DHT collectively form a logical space that does s roon
. . . . ket - Replica
not have holes, institute a setlofical replicasupon [owpetnreptcaia] Memary lost
. Client1 Client2 appens
which a quorum consensus protocol grants access tc p b

critical section (CS). From a client’s perspective, these ook oauest 4'9°k"3=4\u%s'\ [ hasn uncton |
replicas are always online. However, they may suffer N 2. Peers
from complete memory loss from time to time. Such " N Y thebuckees

(R) (RrR) (Rr) (Rr)

random reset occurs when the node that acts as a logice ">
replica Crashes and gets rep|aced by one Of itS Iogical DHT [ bucket | bucket | bucket | bucket | bucket | bucket | bucket | bucket
neighbor in DHT. T O N N L,

The open and dynamic nature of P2P environment = @

brings another serious challenge. Many previous Peert  Peerz  Reem Peet reert
approaches [10] assume a close system with fixed anc @
relatively moderate number of nodes, and nodes_ . % : L _
communicate among themselves to reach consensu§Zyi0 o T Enee e B8 P I et agran flustrates
These solutions are inapplicable in our context where that the node crash can be modeled as logicateepset.
the number of clients is unpredictable and can swing to gqor g given resourc®, its associated serv&@SR)
be very large. The protocols are designed for a harskan pelogical. For instance, there can ereplicas
and open environment such as a wide-area P2P. whose names are “/foo/bdrwherei €[1..n] (see Figure

The work in this paper presents a few novel 1). We can hash these names to derive the keys, and the
contributions: hosting node of each key can serve as one replica. This

- We start by investigating a straightforward, decoupling of naming and actual server means that we

ALOHA-like strawman protocol and show that, &€ Working with a peculiar “server” who @ways
the high variation of network latency betwee’n available but may suffer from memory loss at random

1. Peer5 moves away



point of time. Moreover, as we shall see, the [m](L)k @- Lymx

introduction of multiple replicas implies that the be «=zn-n\k /)J'T T . It turns out that in a
latencies between a client to these replicas be highlygiven round, to tolerate up toreplica resein=3k+1
variable, exerting a significant impact on performance. and m=2k+1 are needed. Thus, as a design choice, we

Formally speaking, our system model is as follows: ~€an raise the value af.

« The replicas are always available, but their internal Figureé 2 shows the probability of violating exclusivity,

states may be randomly reset. This is also termedVnere T is of 10000 seconds, which is the reported
as the failure-recovery model in [8]. average life of a P2P node [12], ahi chosen as 10

seconds, which gives a conservative upper bound of

* The number of clients is unpredictable and can begjients staying in the CS. We show the results with
very large. Clients are not malicious and fail stop. ifferent parameters oh/n

* Clients and replicas communicate via message, but |t can be observed that accomplishing robust mutual
the channel between them is unreliable. Messagegyclusion with this protocol is realistic. Even with32
could be replicated, lost, but never forged. and m/r=0.75 (i.e.m=24), a very practical setting, the

In the context of this paper, both clients and replicaschance of breaking the exclusivity is*0Using this

are peers in the DHT (in practice, however, it's only the configuration to guard a document whose availability
replicas that have to be DHT members). When a replicaequirement is 15-18 nines is entirely reasonable. The
grants permission (or vote) to a client, the latter isbroader point we want to make is that it makes little
calledowner of the former. A client who has collected practical sense to guarantee the conflict probability
majority permissions is said to be thnerof a round.  substantially lower than the availability of the resource

We assume that the typical lifetime of a DHT node is 0 P& protected.
long enough so a client can talk directly to the current
node who acts as a logical replica, invoking Ofpg
DHT lookup only after the logical replica takes a reset.

Our primary goal is to derive a set of efficient and
highly reliable protocols. We want the protocol to
perform as robust as possible, in both low and high
contention situation. Finally, it should correct itself

10

rapidly after faults occur. I
Il. A STRAWMAN PROTOCOL

Figure 2. Probability to break exclusivity.
In thi i il introd N tocol The performance of this protocol, however, is an
N this section, we wilh Infroduce a strawman protoco entirely different storyFigure 3depicts the throughput
which is straightforward to implement, but nevertheless
illustrates essential attributes as well as problems of

in various network conditions, whemeandn is 24 and

. . S %2 respectively. The average network latency of any
highly available, majority-based consensus protocol.  jiant g all replicas is fixed at 100ms, but latency of a

The main idea is similar to ALOHA [11] protocol's given client-replica pair is a random variable. This is a
way of resolving conflicting packets; all clients that reasonable assumption in a wide-area DHT.
want to enter critical section (CS) send requests to each 25
of the replicas and wait for responses. A replica grants a
lease if it is not owned by anyone, and otherwise rejects
the request but informs the client the current owner.
The one who obtaing out ofn replicas h>n/2) is the
winner at this round. Losers release acquired votes (if
any), back-off and retry after a random period. This also o5 4
guarantees that deadlock will not occur.
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The replicas, however, can suffer from random reset incoming request rate (#5) _

after which it forgets about its previous decision and is ~ 79ure 3 Performance of strawman &prb")mco" witbriay uniformly

open to new request. The “change of heart” can cause , . o .

the mutual exclusion to be broken. Assume that averangThi flrs:c :TLWC]?H;(\) nOt'Clel'S_ tnat Lhe cm;‘rve I.OOkS Just

life of a node isT, the probability that the node may <€ thato (see [11]): the throughput increases

crash in a period df is t/T. The probability that ank linearly when contention s low, reqches a peak, and
m then degrades essentially to zero. It is clear that latency

t k t m -k
out of m voted replicas resets g§<j(?) - . variance has a significant impact: the higher the

So, the safety will be broken when more than or equal’@rance, the worse the throughput.
to 2m-nresets occur during t, and the probability would



2. Some one does win but not this client. The client
does nothing because it knows it has been

V. THE SIGMA PROTOCOL

The main culprit of the strawman protocol's poor . : . .
performance is the variance of network latency between registered on the re_phqas alree_w_ly. LR
one client and each replica. Client requests will reach  1ater when and how it will be notified.
different replicas at different time, so it is hard for all 3. Nobodyhas won, ifsame+ N — ] < mwherej is the
replicas to build a consistent view of competing clients. number of returned responses and the maximal
A second, more subtle issue has to do with is the greedy number of same item inis jsame The client then
behavior of the clients: they would keep on retrying sends out a YIELD message to each of the

when collision occurs; therefore nobody can win out

acquired replicas.

finally. There should be a comprehensive set of
techniques to address both problems.

We deal with the first problem by installing a queue
at replicas and reshuffle them towards a consistent viey
in case of high contention. To combat the second issue
we adopt a strategy to enforce clients into a state o
active waiting

Figure 5 and Figure 6 present pseudo code, describe
in terms of message handler, for clients and replicas
respectively. The two sides exchange messages and tl
relevant entities and their interactions are depicted i
Figure 4.

State Variables:
id /I the identity of the client
resp[] // responses from replica
Request (CS) {
timestamp := GetLogicalClock();
for each R[i] of CS
SendRequest(R[i], id, timestamp);

/Nlamport’s clock

OnResponse(R[i], owner, timestamp) {
respli].owner := owner;
respli].timestamp := timestamp;
if (enough responses received) {

winner := ComputeWinner();
if (winner = self) /I case 1
return success;
else if (winner = nil) { // case 3
for each respli].owner is self {
SendYield(R[i], id);

Clear(resp[i]); /I reset the state

/I case 2: some one else wins, just wait
}
}
Rel ease(CS){

for all R[i] of CS
SendRelease(R([i], id);

Figure 5. Client-side pseudo code.
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Figure 4. Architecture of Sigma protocol.

The client states include ii$ , and an arrayespl]
respli] records the response from th¢h replica,
stating its owner and the associated timestamp. Th
replica maintains the following: who owns this replica
(Cowner), @nd a value ofil indicates this replica has
not voted for anyonel,,.., stores the timestamp of the
request;Queue stores waiting clients in order of their
timestamp. We use Lamport’s logical clock [7] to
generate timestamp.

Client starts by firing REQUEST messages to all
replicas Request in Figure 5). These requests are
handled by thénRequest at the replica, which either
grants its vote outright or queue the request up
depending on whether this replica has already voted
Regardless, the id and timestamp of the current owner

State Variables:

Cowner /I the client it accepts
Towner /I time stamp of Cowner
Queue /I queue requests up

OnRequest(C, timestamp) {
if (Cowner = nil) {
Cowner :=C;

Towner = tifnestamp;

else
Queue.Insert(C, timestamp);
SendResponse(C, Cowner, T

owner );

OnRelease(C) {
if(C=C  quer){
wner += Nil;
if (not Queue.Empty())
RespQueue();

else if (Queue.Contains(C))
Queue.Remove(C);

OnYield(C) {
if(C=C " ouner) {
Queue.Insert(C, T
RespQueue();

owner );

}

RespQueue() { /I helper routine
<Cowner» T owner> := Queue.Front();
SendResponse(C owner; C owners T owner);
Queue.Remove(C owner);

of the replica (equals to the client’s only if the queue is
empty) are returned to client by a RESPONSE message.

As the responses arrive at the cliebhResponse in

of Sigma protocol and
optimization.

Figure 6. Replica-side pseudo code.

The YIELD operation reflects the collaborative nature
is a critical performance

The semantic of

Figure 5), it gradually forms the idea about its place in RELEASE+REQUEST. When replica receives a
the race. Suppose out of n replicas is needed to vy p message, it removes the client from the winning

achieve quorum consensus, there will be all but thregeai and inserts it into the queue, chooses the earliest
outcomes and each can be easily distinguished byne and notifies the winner.

examinin attached in the RESPONSE messages: . L
xaminingowner I g The function of the YIELD handling is to reshuffle

1. The client is the winner by quorum consensus. Itihe queue. The fact that nobody wins indicates that
succeeds and gets the permission to enter CS.  contention happens. This, in turn, implies that queues



are being built up but the winners are out of place. By Let's consider the case that the replica has not
issuing the YIELD request, clients are collectively crashed at all. If the client is notified before its

offering the replicas a chance to build a more consistenscheduled retry, no harm is done. Otherwise it means
view and, consequently, choose the right winner. It isthat the advisedl,, was not accurate (such as some
important to understand that this will go on until a earlier clients take extra time). In this case the client
winner is settled, as such could be multiple rounds ofwill renew its T,, in its retry. This is of course an

YIELD. Typically, this self-stabilization process will overhead, but hopefully we are not too far off from the
quickly settle. future point when the permission will be granted and

The release operation is straightforward: the client, ifthus hopefully this is the only retry that the client will

is the owner simply relinquishes, or is removed from have to endure. If, on the other hand, replica does go
the queue otherwise. In either case, the next client (”through a reset, then the queue is reconstructed with the

any) is notified by the RESPONSE message. order similar to the original one, fulfilling our goal.
So far, we have described Sigma in a failure-free We now offer a brief analysis of the Sigma protocol:
environment. In reality, many things may go wrong:  Service policy The use of logical clock and the First-

1) After crash, a replica might grant the vote to a new Come Fi.rst—Ser_ve policy at replica does not guarantee
client, despite the fact that it might have already done FCFS, since client requests can take arbitrary long to
s0 to the previous one. We deal with this by raisig arrive. Thus, Sigma can be best described as quasi-
ratio to reduce the probability of breaking safety. with FCFS.
appropriate parameter, the risk can be negligible ine Safety. We guarantee safety with high probability. No
practice (Section Ilf). known protocols can ensure 100% correctness under

2) More seriously, its queue has gone and those failure. We treat replica failure and imprecise failure
waiting clients will get stuck forever. What is called for ~ detector in a uniform manner. As shown in Section Ill,
is a way to rebuild the replica’'s memory. This is the probability of violating safety can be practically
addressed by theinformed backoff mechanism negligible by setting appropriate/n

discussed later. « Liveness Progress is ensured by using lease.
3) If the client who is currently in the CS crashes V. EXPERIMENTAL RESULTS

before exit, replicas will be stuck. Therefore, replica The Sigma protocol is fully implemented and

grants permission to clients with renewable lease [1]'deployed in a distributed testbed. which can be

Yggenré;?(e:”lggf zfe;npylﬁﬁ'tﬁpgﬁ;m I .grant permission toconfigured by different network topology models.

4) The unreliable communication channel between a _\Ne_assume a pool of in.finity clients, and e‘?‘Ch client
client and a replica will cause similar problems as weII.WIII fire request contending for CS according to a

In essence, message loss can be mapped to arbitrani'SSqrn dlfstrlbutlom ?:l Wh'Chf'S the incoming rtequ?s:[[h
crash of clients or replicas, which simplifies the 'ate. 10 Tocus on ihe perlormance aspects of the
handling. protocol, we let client exit CS immediately after it

o _ _enters. After 5 minutes warm-up period we test 10
The combination of informed backoff and lease builds minytes during which throughput, in terms of the

and is a variation of failure detector [15] plus timeout. Thjs js then repeated for different incoming request rate.
This best-effort approach leverages replica knowledge

to achieve better tradeoff between communication cost
and system throughput.

Informed backoffis a way to rebuild a restarted
replica’'s state without overloading those healthy
replicas. It is extremely simple at its core. Upon a
request, replica could predict the expected waiting time
T. and advise it to wait so long before next retry. An
empirical calculation ofT,, is Ty, = Tes * (P + 1/2), : R v
whereP is the client’s position in the queue afg; is _ incoming request rate (#/5) _ _
th csS d ti b d bv th l fFlgure 7. Throughput versus latency variance amdecdion, with latency
: € average uration, as o Se_rve y the rep |c_a 0 uniformly distributed in (a, b) and average latebejng 100ms. The 3-
interval between any two consecutive release operationsdashed lines correspond to theoretical predictirsturated throughput,
The 1/2 in the formula is to take current owner of thewhich differ with latency distribution. Data for thothe strawman and Sigma

. . . . R . are shownm/nis 24/32.
replica into consideration. Notice thdt, is always

updated upon the reception of a retry. Figure 7 depiCtS the throughput against different
incoming request, varying the latency distribution. One
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can see that network latency distribution has little however, differ. Sigma is a light-weight synchronization
impact: the throughput increases linearly when requesprotocol with Of) message costs and does not attempt
rate ramps up, until a point when it reaches theto deal with malicious client. Whereas the Byzantine
saturated rate and then stays flat as predicted by protocols takes a replicated state machine approach
theoretical model (see [14]). This is the ideal behavior.with O(n? cost and handles malicious client. It is
For comparison purposes, the throughput of theinteresting to note that, for a total df3 replica, when
strawman protocol (Figure 3) is also plotted. We canfaults exceed, both protocols will yield unpredictable
see that the performance improvement is significant.  results.

When replicas suffer from crash and thereafter Sigma’s emphasis is more on the practicality side and
undergo memory reset, performance will drop. Therepays much attention for performance. In the P2P space,
are many causes contributing to performance[3] is similar to the strawman protocol, but is
degradation and it's difficult to obtain a succinct augmented with exponential backoff. It is not clear
reasoning. However, in a way a reset has the net effeavhether its property will hold in face of latency
of enlarging latency variance: a REQUEST, which variance, which we believe is the prevailing pattern of a
would otherwise result in a successful RESPONSE P2P environment.
reaches the restarted replica behind those from others VII.  CONCLUSION AND FUTURE WORK

who should have been queued. ) , _
The emerging P2P scenario brings forward several

3‘: R ’ . ] challenges to mutually exclusive access of the resource
I A 1 stored in it, such as the huge variance of network
T,s ] latency, unpredictable (and often very large) number of
£, clients and finally high dynamism. These issues are
E1s R e oo partially addressed in previous works but not

1 Tk eplea tetee completely solved. In this paper, we propose the Sigma:

05 7 —_saturated service rate |1 a practical, efficient and fault-tolerant protocol for

% 2 4 & & 1 distributed mutual exclusion inside P2P DHT.

incoming request rate (#/s)

The key points of Sigma protocol are to use logical
replicas and quorum consensus to deal with system
dynamisms.  Quasi-consistency and cooperation
o i between clients and replicas circumvent the large

We set the average lifetime of replica to be yariance of network latency and high contention. Sigma
excessively short. The lifetime is exponentially 5150 gracefully deals with failure by two techniques:

distributed [2] and different average values are testedinformed backoff and lease, making protocol fault-
Figure 8 presents our results. The penalty of throughpu{glerant.

is perceptible if the replica life is 30 seconds; however, " . ,
it becomes less and less significant when replica life. We verified that this protocol offers high performance

increases. Given that in a P2P environment, noded” nthenttgr(r)lgrert\eou; ne';wotr_k ICO:QI:“?]?n 2?% v?rl_?)urs
typically will be online for about 10000 seconds [12], contention rates. In a practical environment, the faiure

Figure 8. Throughput versus replica availabilitjthAatency uniformly
distributed in (0, 200)ms armd/nbeing 24/32. The dashed line corresponds
to theoretical prediction of saturated throughpuhen replica life is 10000

seconds, theoretical throughput can be achieved.

we believe that the ideal throughput of Sigma can behandlmg mechanism  works well with negll_glbl_e
performance penalty and moderate communication

achieved in practice.
P overhead.

We have analyzed and measured message cost and
show that it is asymptotically bound by.4Due to
space limitation, we refer readers to the full technical!!
report [14].
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