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ABSTRACT
In this paper, we study whether the need for efficient XML
publishing brings any new requirements for relational query
engines, or if sorting query results in the relational engine
and tagging them in middleware is sufficient. We observe
that the mismatch between the XML data model and the
relational model requires relational engines to be enhanced
for efficiency. Specifically, they need to support relation-
valued variables. We discuss how such support can be pro-
vided through the addition of an operator, GApply, with
minimal extensions to existing relational engines. We dis-
cuss how the operator may be exposed in SQL syntax and
provide a comprehensive study of optimization rules that
govern this operator. We report the results of a prelimi-
nary performance evaluation showing the speedup obtained
through our approach and the effectiveness of our optimiza-
tion rules.

1. INTRODUCTION
While XML is rapidly emerging as a standard for exchang-

ing business data, a large amount of this business data is cur-
rently stored in relational databases. Consequently, there
has been substantial interest in finding ways to efficiently
publish existing relational data as XML [1, 2, 11, 16, 17].
Indeed, all commercial systems have incorporated some sup-
port for XML publishing. The approach in all of this work
is to define XML views of relational data and to issue XML
queries over these views. For the most part the focus has
been on issues external to the RDBMS, for example, deter-
mining the class of XML views that can be defined, studying
the languages used to specify the conversion from relational
data to XML, and investigating methods of composing XML
queries with the XML view.

In this paper, we focus more closely on the class of SQL
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queries that are typically generated by XML publishing ap-
plications, and ask if anything needs to be changed within
the relational engine to efficiently evaluate these queries.
Our answer is yes — due to the difference in the XML and
relational data models, some translated XML queries result
in relational queries that are awkward to express in SQL
and inefficient to evaluate using traditional relational engine
query evaluation operators.

The basic issue is that a hierarchical model makes it very
convenient and natural to talk about subtrees of a given
node in a data set. For example, in a classical part and sup-
plier data set, one might refer to the subtree rooted at a node
for a given supplier to conveniently reference that supplier,
all the parts it supplies, and all associated information about
those parts. Going one step further, in an XML query, it is
convenient and natural to perform operations on that sub-
tree, for example, to retrieve all parts in that subtree that
cost more than the average price of the parts in that subtree.
It is precisely this kind of query, which is natural to express
in XML query languages over the hierarchical XML data
model, that cause trouble when translated to SQL (when
the data originates from an RDBMS).

We do not mean to imply that these queries cannot be
translated into SQL. They can; the formal expressive power
of SQL is more than sufficient for the task. However, as we
will explore in Section 2, with traditional relational technol-
ogy the resulting queries will be hard to express and ineffi-
cient to evaluate. The reason is that the notion of a subtree
in XML translates into a set of tuples in the relational model,
and classical relational languages and execution engines do
not support the notion of binding a variable to sets of tu-
ples and executing subqueries over these sets (we will show
that a traditional group by operation is not enough for this
purpose).

We propose a three-pronged approach to rendering re-
lational database query processing more effective in XML
publishing applications:

1. At the query evaluation level, we identify the need
for an operator, which we will call GApply, that binds
variables to sets of tuples and allows subqueries to be
executed over the relations that are bound to these
variables — in other words, an operator that handles
relation-valued variables. To the best of our knowl-
edge, the first reference to this operator and its im-
plementation in Microsoft SQL Server 2000 appeared
in [12]1 . The notion of binding variables to sets of

1It is called SegmentApply in [12]



tuples has also been proposed in [5, 6]. Interestingly,
the motivation in this previous work was to support
data warehousing applications. In this respect our
work adds weight to the claim that such an operator
is an important addition to relational query evaluation
engines.

2. Even with the GApply operator added to the query
evaluation engine, the relational query optimizer will
not be able to effectively optimize queries using this
operator without useful equivalences or transforma-
tion rules that let it consider alternative plans. To
attack this problem we propose a number of transfor-
mation rules that modify query plan trees containing
the GApply operator. This allows the GApply operator
to be seamlessly integrated into a Volcano-style opti-
mizer [13]. We note here that since GApply has been
identified to be useful in the data warehousing context,
all our rules are automatically applicable to decision
support queries.

3. Finally, based on our experiments with SQL Server 2000,
we argue that it is necessary to expose GApply in the
syntax since it is difficult for the parser to detect whether
it applies given an arbitrary SQL query. We accom-
plish this through a minor extension to the SQL lan-
guage. This explicit representation of the GApply op-
erator in SQL does not change the expressive power of
SQL, but it renders XML publishing queries easier to
express and, more importantly, makes the need for the
GApply operator transparent to the parser. There is
some precedent for adding such constructs to SQL; for
example, the CUBE and ROLLUP operators do not
increase the theoretical expressive power of SQL, but
were added for ease of query generation and evalua-
tion.

To get a sense of the efficacy of adding GApply to facili-
tate the evaluation of XML publishing SQL queries, we per-
formed a preliminary performance study. Our study showed
that it is common to get a speedup by a factor of up to 2
times by using our techniques. We also evaluated the ef-
fectiveness of our optimization rules in reducing the cost of
queries involving GApply, and found them to be effective in
optimizing a wide range of queries.

The rest of the paper is organized as follows. In Section 2,
we provide examples to motivate our ideas. Section 3 de-
scribes the algebraic functionality of GApply. It also de-
scribes extensions to SQL to accommodate this operation.
The optimization rules are discussed in Section 4. Our per-
formance evaluation is discussed in Section 5. We describe
related work in Section 6. Finally, we conclude in Section 7.

2. MOTIVATION
In this section we explore, through examples, the difficul-

ties that arise in expressing and evaluating SQL queries that
result from publishing relational data in XML. In such a sce-
nario, the assumption is that the data resides in a relational
system; accordingly we have chosen a well-known relational
schema for our examples.

Consider the TPCH [9] data. We have reproduced a part
of the schema for three tables relevant to us below.

supplier(s_key,s_name)

partsupp(ps_suppkey,ps_partkey)

part(p_partkey,p_name,p_retailprice)

Next consider an XML view of this data as shown in Fig-
ure 1. We use the representation of [1] to associate an SQL
query with each node in the schema tree shown. The queries
associated with the nodes are shown beside them. Intu-
itively, we associate a supplier element with each supplier
tuple. All parts supplied by a supplier are nested within the
supplier element. The parts are bound to the corresponding
suppliers through the binding variable $s. Relational at-
tributes can be mapped to sub-elements or attributes. We
have omitted some details of the mapping for clarity of expo-
sition. In this paper we assume an unordered model of XML
since we believe that this is applicable across a wide spec-
trum of business applications (in particular, the underlying
relational data is not ordered, so it is highly likely that the
XML view of this data will not require an ordered model).

*

*

supplier (select * from supplier), $s

part (select * from part
where p_partkey = partsupp.ps_partkey

and partsupp.ps_suppkey = $s.s_suppkey)

suppliers

Figure 1: XML view

Now consider the following queries:

Q1: For each supplier element, return the names and retail
prices of all parts supplied by that supplier, and also
the over-all average retail price of all parts supplied.

Q2: For each supplier element, compute the average retail
price of all parts supplied and find the number of parts
priced above and below this average.

The above queries perform multiple operations on each sup-
plier element and return their results. In Q1, we return a
part of the element along with an aggregate while in Q2, we
perform several aggregations over the element.

These queries are readily expressible in XQuery [4]. Q1
in XQuery reads as:

For $s in /doc(tpch.xml)/suppliers/supplier

Return <ret> $s/s_suppkey

<parts>

For $p in $s/part

Return <part>

$p/p_name,

$p/p_retailprice

</part>

</parts>

avg($s/part/p_retailprice)

</ret>

while Q2 reads as:

For $s in /doc(tpch.xml)/suppliers/supplier

Return <ret>

$s/s_suppkey,

<count_above>

count($s/part[p_retailprice >=

avg($s/part/p_retailprice)])

</count_above>

<count_below>



count($s/part[p_retailprice <

avg($s/part/p_retailprice)])

</count_below>

</ret>

Now assume that these XQuery queries are evaluated by
pushing as much of the computation as possible to the server.
This is an approach used in projects such as XPeranto to
handle XML queries. Thus, a single sorted outer union SQL
query [17] is issued to the server to perform the computa-
tion and the results are tagged in middleware by a constant
space tagger. One way in which query Q1 can be pushed to
the server in SQL is:

(select ps_suppkey,p_name,p_retailprice, null

from partsupp, part

where ps_partkey = p_partkey

union all

select ps_suppkey,null,null,avg(p_retailprice)

from partsupp, part

where ps_partkey = p_partkey

group by ps_suppkey)

order by ps_suppkey

while one way to push down Q2 would be:

(select ps_suppkey, count(*), null

from partsupp ps1, part

where p_partkey = ps_partkey and

p_retailprice >=

(select avg(p_retailprice)

from partsupp, part

where p_partkey=ps_partkey

and ps_suppkey=ps1.ps_suppkey)

group by ps_suppkey

union all

select ps_suppkey, null, count(*)

from partsupp ps2, part

where p_partkey = ps_partkey and

p_retailprice <

(select avg(p_retailprice)

from partsupp, part

where p_partkey=ps_partkey

and ps_suppkey=ps2.ps_suppkey)

group by ps_suppkey)

order by ps_suppkey

(We have to order each result by the supplier key since we
are assuming a constant space tagger in the middleware [16]
and so the result tuples must be clustered by the element
to which they correspond. The only way of ensuring this in
SQL is by ordering them by the key.)

What we observe in the SQL formulation as opposed to
the XQuery formulation is the high degree of redundancy.
In XQuery, neither Q1 nor Q2 specifies the “construction”
of a supplier element more often than needed. Intuitively,
this is because XQuery lets us “refer” to the entire subtree
rooted at a supplier by a single syntactic element. In SQL,
when we join the partsupp and part tables and group by
ps suppkey, each group defines a (part of a) supplier element.
But the group by operation cannot perform anything more
sophisticated than an aggregate. Hence, we need to join the
partsupp and part tables more often than is conceptually
necessary.

A direct evaluation of these resulting SQL queries using
a classical set of relational query implementation operators

translates to redundant computation within the relational
engine. Unfortunately, the fact that such queries can be
expressed so naturally in XQuery makes it imperative for
relational systems to efficiently support them for XML pub-
lishing applications.

For a relational engine to efficiently evaluate this kind of
query, we need an evaluation of the above queries that avoids
redundant joins between the partsupp and part tables. This
means that we must have a handle on each supplier “ele-
ment” that is constructed dynamically by joining the part-
supp and part tables, that is, a handle on the group of tuples
that defines a supplier element (this is the relational coun-
terpart of the subtree rooted at the supplier node). Thus,
for instance, we should be able to evaluate query Q2 by

1. Joining the part and partsupp tables and grouping by
ps suppkey, where each group defines a (part of) a sup-
plier element, and

2. For each group of tuples, use the handle on the group
to iterate over the group to compute the average retail
price of all parts supplied and count the number of
parts priced above and below this average.

As we will see, the addition of the GApply operator men-
tioned in the introduction, enables the relational query eval-
uation engine to find and execute exactly these plans. Our
experimental evaluation in Section 5 shows that by this ap-
proach we obtain a considerable speedup over current re-
lational implementations. For instance, in our experiments
query Q2 runs about twice as fast with GApply than without
GApply.

3. THE GAPPLY OPERATOR
What we conclude from the previous sections is that we

need a handle on groups of tuples in order to perform oper-
ations on those groups. In order to process sets of groups of
tuples, we introduce the GApply operator. We now formally
describe this operator. The operator GApply(GCols,PGQ)
is specified through a set of grouping (alternatively called
partitioning) columns GCols and a query PGQ (short for
per-group query). The semantics of GApply are that:

• The input tuple stream is partitioned on the specified
columns in GCols to yield a set of groups of tuples.

• The query PGQ is applied on each individual group
and a cross product is taken of the result with the
value in the grouping columns.

• The output is the union of all the above results taken
over all groups.

We refer to the input tuple stream as the outer tuple stream
and the per-group query as the inner query and the roots
of the respective queries as the outer and inner children of
GApply. We restrict the power of the per-group query PGQ

as follows.

• The only relation it can operate on is the temporary
relation associated with the group of tuples under con-
sideration.

• The operators in the per-group query we consider are
scan, select, project, distinct, apply, exists, union(all),
groupby, aggregate, and orderby. Here, apply is a logical
operator that models a subquery [3, 12, 18].
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GApply

union all

scan

$group

aggregate
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part partsupp

join

union all
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partition
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table−valued
param

table−valued
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Logical operation Physical operation

Figure 2: Execution of GApply

For instance, query Q1 is represented in our algebra as
shown to the left in Figure 2. As opposed to [5], we allow
only traditional relational operations in the per-group query.
Adding new operators that perform multiple aggregations
more efficiently is an orthogonal extension but is not the
focus of this paper. Finally, pursuing the terminology of [6],
we refer to the operation of GApply as groupwise processing.

Formally, the expression RE1 GAC RE2 denotes the ap-
plication of GApply(denoted as GA) on the result of rela-
tional algebra expression RE1 where C is the list of group-
ing columns and RE2 is a parameterized relational algebra
expression corresponding to the per-group query. The result
of this expression is

�

c∈distinct(πC(RE1))

({c} × RE2(σC=cRE1))

where the union is the union all operation in SQL. Note
that we follow multiset semantics. In particular, π does not
eliminate duplicates. Instead, we explicitly use distinct for
this purpose.

The physical implementation of the GApply operator can
be modeled on the way correlated subqueries are currently
handled, where a subquery is executed once for each value of
the outer tuple. The operator GApply differs in that instead
of executing the subquery once for each value of an outer
tuple, it executes the inner query for each group of tuples.
Thus, we have relation-valued parameters that bind to a set
of tuples. The physical implementation takes place in two
phases:

• Partitioning Phase: The input tuple stream is parti-
tioned based on the values in the grouping columns
GCols. This can be implemented either through sort-
ing or through hashing.

• Execution Phase: This is performed in a nested loops
fashion. Each group of tuples is read and the per-group
query PGQ is evaluated on each group of tuples. This
is achieved by treating each group as a temporary re-
lation, binding a relation-valued parameter $group to
each group in succession and passing this parameter
to the operator tree for PGQ. When the leaf scan
operator receives the relation-valued parameter, it un-
derstands this to be a temporary relation and reads
from it. After PGQ is executed on a group, its results
are returned.

The figure on the right in Figure 2 shows the operator tree

for query Q1. Thus, this operation can be implemented with
minimal changes to existing relational operators.

We argue that it is difficult for the parser and optimizer
to determine when GApply applies. This is particularly so
in the presence of the union operation, which is unfortunate
since union queries arise very naturally in XML publishing
applications. As an example, all of our experiments were
run on Microsoft SQL Server 2000 that supports the GAp-
ply operator, without however exposing it in the syntax. Al-
though SQL Server succeeds some times in identifying the
need for GApply, for the example queries in Section 2, the
plans picked by the optimizer do not involve the GApply op-
erator. On the other hand, using the GApply operator in
each case considerably speeds up the performance. We thus
argue the need to expose GApply in the SQL syntax. This
will (a) enable XQuery translators better exploit this func-
tionality in the relational system and (b) help the optimizer
identify the GApply operation more easily, especially in the
presence of unions.

3.1 Syntax
We propose the following extensions to SQL syntax to

handle the incorporation of GApply. The general form of an
SQL query performing groupwise processing is:

select gapply(PGQ(x)) as <column list>

from <relation list>

where <conditions>

group by <grouping columns> : x

The groupby clause has the usual list of grouping columns
followed by a special separator ’:’ which is followed by a
single variable name x. Here, x is a relation-valued variable.
All columns in the joining tables are associated with x. The
select clause has a new key word, gapply. This is followed
by a query PGQ on a single table, x.

The associated semantics are that the variable x gets
bound to each group in succession, the query PGQ is run on
x treating it as a temporary relation, the results are crossed
with the value in the grouping columns and the output of
the whole query is the union of the results of all these evalua-
tions. The results are clustered by the values in the grouping
columns (thus eliminating the need for the order by clause
used in Section 2). We allow the result of the query to be
bound to a list of column names through the key word as.

The example queries in Section 2 can be written using this
syntax as follows. Query Q1 becomes:

select gapply(PGQ1(tmpSupp))



from partsupp, part

where ps_partkey = p_partkey

group by ps_suppkey: tmpSupp

where PGQ1(tmpSupp) is:

select p_name,p_retailprice,null

from tmpSupp

union all

select null,null,avg(p_retailprice)

from tmp

while query Q2 becomes:

select gapply(PGQ2(tmpSupp))

from partsupp, part

where ps_partkey = p_partkey

group by ps_suppkey: tmpSupp

where PGQ2(tmpSupp) is:

select count(*), null

from tmpSupp

where p_retailprice >=

(select avg(p_retailprice)

from tmpSupp)

union all

select null,count(*)

from tmpSupp

where p_retailprice <

(select avg(p_retailprice)

from tmpSupp)

These versions of queries Q1 and Q2 match the corre-
sponding XQuery queries, which suggests that they may be
easily generated by automatic query generation tools. With
this syntax, we enable the optimizer start off with a plan
that has the GApply operator.

We now give our reasons for differing from the syntax
proposed in [5].

1. We draw inspiration from the XQuery syntax that al-
lows FLWR expressions in the return clause. The SQL
analog of the return clause is the select clause. Hence,
we allow subqueries in the select clause.

2. Subqueries in the select clause are already allowed by
some systems [12] although with completely different
semantics.

Note that while the syntax guarantees that the results
are clustered by the grouping columns, the semantics of the
GApply operator do not. Hence, the parser should translate
a query with the gapply keyword into an operator tree with
GApply and a partition operator on top of it. However, if the
physical implementation of GApply guarantees the required
clustering, then the partition operation is redundant above
GApply.

4. TRANSFORMATION RULES
In this section we present transformation rules that en-

able an optimizer to generate and consider alternatives for
query plans containing the GApply operator. All our rules
are described in terms of operator trees. In the outer query
corresponding to GApply:

1. We assume that the operators are among select, project,
scan and join. All leaf nodes are scans while all inter-
nal nodes are joins that are annotated with the ap-
propriate selection and projection conditions. Thus,
we assume that all selections and projections in the
outer query are pushed down. This is basically the
annotated join tree representation of [15].

2. We only focus on left-deep join trees where the right
child of every internal node is a leaf.

We extend these join trees to allow GApply as an internal
node. Before discussing the rules, we present the precise
semantics of the operators we consider. We operate under
multi-set semantics as standard relational query processors
do. Duplicates are eliminated using the distinct operation.
The semantics of scan, select, project, join, groupby, union
and unionall are as usual (under multi-set semantics), with
join referring to inner joins. The apply operator models sub-
queries and has the following semantics. It takes a relational
input R and a parameterized expression E; it evaluates E

for each row r ∈ R, and collects the results. Formally,

R A E =
�

r∈R

({r} × E(r))

where the union is the union all operation in SQL. In the
corresponding operator tree, there is a node for the apply
operation with an outer child that is the root of the operator
tree for R and an inner child that is the root of the operator
tree for E. An aggregate operator takes a relational input
R and performs a suitable aggregation (such as sum, count
and average) over it. If R is empty, its behavior depends on
the exact aggregate being computed. For our purposes, it is
sufficient to know that the result is not necessarily empty.
Finally, the exists operation takes a relational input R and
returns a relation {φ} with one tuple over a null schema
if R has atleast one tuple, otherwise it returns the empty
relation φ. For ease of exposition, we assume that exists can
only appear as the inner child of apply. For any relation S,
S × φ = φ and S × {φ} = S.

We now present our transformation rules. There are two
classes of rules involving GApply.

• Rules that depend on the properties of the per-group
query. In order to fire them, we must traverse the
operator tree of the per-group query.

• Rules that do not need the per-group query to be tra-
versed. Such rules include:

– σ(RE1 GAC RE2) = RE1 GAC σ(RE2) if σ in-
volves only columns returned by RE2.

– πC∪B(RE1 GAC RE2) = RE1 GAC πB(RE2)

In the rest of this paper, we focus on rules that involve prop-
erties of the per-group query. We classify the discussion into
three categories as follows. Applying any of the rules we dis-
cuss needs cost estimation methods for the GApply operator.
We defer a discussion of this to Section 4.4.

4.1 Pushing Computation into the Outer Query
The idea here is to factor out computation from the GAp-

ply operation and perform it as part of the outer query.



join

partsupp part

select
(p_brand=’A’

or p_brand=’B’)

project(p_retailprice)

aggr(avg)

select(p_brand=’B’)

$gp

select
(p_retailprice > avg(p_retailprice))

select(p_brand=’A’)

$gp

apply

project(p_retailprice)

aggr(avg)

select(p_brand=’B’)

$gp

select
(p_retailprice > avg(p_retailprice))

select(p_brand=’A’)

$gp

apply

GApplyGApply(group col: ps_suppkey)

join

partsupp part

Figure 3: Rule to push selects before GApply

Placing Projections Before GApply

We extract from the outer query, only those columns re-
quired by the per-group query, PGQ. Thus, only the group-
ing columns and those columns referred to somewhere in
PGQ need be projected from the result of the outer query.
Since the syntax we propose binds all columns of the outer
query to the relation-valued variable, this rule can have a
significant impact.

Placing Selections Before GApply

If we think of the per-group query PGQ as a function oper-
ating on a single input relation x that begins by applying a
selection σ on x, then this selection can be applied before the
GApply operator. We want to find a minimal subset of the
group, in terms of selection conditions, such that running
the per-group query on this subset is equivalent to running
it on the whole group. For this purpose, we identify the sub-
set of the group that each individual operator needs for the
subtree under it to correctly function. We call this selection
condition the covering range of that operator. The covering
ranges are set as follows.

• The covering range of scan is the whole group, defined by
the boolean condition true.

• For a select, the covering range depends on its position in
the operator tree. If it has an apply, groupby or aggregate
descendant, then it is the same as the covering range of its
child, otherwise it is the range of its child ANDed together
with the condition associated with it.

• The covering range of each of the other unary operators is the
same as that of its child.

• The covering range of apply, union and union all is the
disjunction of the ranges of the children.

A simple induction on the number of levels in the operator
tree of the per-group query leads to the following result.

Theorem 1. Let the per-group query be PGQ. Let the
temporary relation corresponding to a group be $gp. Let the
covering range of the inner child of GApply correspond to the
condition σ on $gp. Then, PGQ($gp) = PGQ(σ($gp)).

The above theorem suggests that we could push the cover-
ing range of the inner child of GApply into the outer query.
However, we must be careful with the empty relation. Thus,
in the statement of the above theorem, if σ($gp) = φ, it does
not imply that the result of the per-group query is empty
— for instance, a count(*) on the empty relation returns a
single row, 0. However, if we push σ into the outer query,

the per-group query will never be called on the empty rela-
tion. Hence, we need to check whether the per-group query
PGQ is such that PGQ(φ) = φ. If this condition is satisfied,
then the covering range of the inner child of GApply can be
pushed into its outer query. Any selection in the operator
tree of the per-group query that is logically equivalent to the
covering range of the root can then be eliminated. We check
that PGQ(φ) = φ by traversing the operator tree bottom up
and setting a bit emptyOnEmpty for each node in the tree
indicating whether the tree rooted at that node produces an
empty output on an empty input.

• For scan, emptyOnEmpty is true.

• For select, project, distinct, groupby, orderby and exists,
emptyOnEmpty is the value of emptyOnEmpty of the child
node.

• For aggregate, emptyOnEmpty is false.

• For apply, emptyOnEmpty is the value of emptyOnEmpty of
the outer child.

• For union and unionall, emptyOnEmpty is true if and only if
emptyOnEmpty is true for all the children nodes.

The rule states that:

RE1 GAC RE2 = σcovering-range(RE2)(RE1) GAC RE2

if RE2(φ) = φ

The selection that is inserted on top of the outer tree can
then be pushed down using the traditional rules for doing
so.
Example: One simple instance of this rule is shown in Fig-
ure 3. The operator tree to the left is the one before the
rule is fired. It tries to find for each supplier, all parts of
brand A that are priced above the average price of parts of
brand B. Through the above rule, we get the operator tree
on the right. This extracts information only pertaining to
parts of brand A and B for each supplier.

Gapply

scan

$gp

aggregate (non−grouping cols)

groupby

Figure 4: Rule to convert GApply into groupby



T scan

$gp

exists

selection S

$gp

scan

selection S

distinct

project gp cols

T

Tapply

GApply
join (outer.gp cols = inner.gp cols)

Figure 5: Rule to handle group selection

GApply(partition on s_suppkey)

$gp

scan exists

select (p_retailprice > 1000)

$gp

scan

select (p_retailprice > 1000)

project s_suppkey

distinct

supplier partsupp

part

join

join

supplier partsupp

part

join

join

supplier partsupp

part

join

join

apply

join (s_suppkey=s_suppkey)

Figure 6: Example of this rule

Converting GApply to groupby

If all the per-group query does is to compute aggregates on
non-grouping columns, the GApply operator can be replaced
with a groupby. The set of grouping columns is the same as
the set of partitioning columns for GApply. The aggregates
returned from the groupby are the same as the aggregates re-
turned from the per-group query. With a little care, this can
be extended even if the aggregate is on grouping columns.
This rule is illustrated in Figure 4.

Similarly, if all the per-group query does is scan the group
and group by a set of columns B, then GApply can be re-
placed with a groupby where the grouping columns are C∪B

(here, C is the set of partitioning columns of GApply) and the
aggregates are the ones in the per-group query. The above
rules when applied in conjunction with the rule involving
selections can lead to many transformations.

4.2 Group Selection
We now consider a class of queries that, if we think of each

group as representing a complex object, select objects based
on expensive predicates. The per-group query either returns
the whole group or nothing at all based on some predicate.
This is conceptually the case with XPath [8] queries that
return the whole sub-tree under a node based on say, an
exploratory search within the tree.

Let us consider the example query on the XML schema in
Figure 1 that finds all suppliers that supply some expensive
part. Written in XQuery, this query reads as follows.

For $s in /doc(tpch.xml)/suppliers

/supplier[/part/p_retailprice > 1000]

Return $s

There are two ways of evaluating this query. One is to join
suppliers with parts, group by the supplier key, suppkey
(i.e., construct all supplier objects), and for each supplier
key, check whether the group-selection predicate is true by
evaluating a query on its group and if so, to return the
group. This corresponds to an evaluation of the above query
involving GApply where suppkey is the grouping column.
The other alternative involves two phases, the first being one
where the selection condition is used merely to extract the
supplier keys followed by one where the groups associated
with these keys are constructed by evaluating the necessary
joins again. Clearly, if the predicate is highly selective, the
latter strategy will win.

The above is formulated as a rule shown pictorially in
Figure 5. The operator tree to the left has a GApply instance.
Its outer child is the root of the operator tree T. The per-
group query checks for the existence of some tuple satisfying
selection condition S. If the condition is satisfied by some
tuple in the group, the whole group is returned. Otherwise,
nothing is returned. This operator tree is transformed to

the one shown on the right. This operator tree represents
the following evaluation. The outer query T corresponding
to GApply is evaluated first with the selection condition S
attached to it. If we now project the partitioning columns
of GApply, what we have is the set of “group ids” since the id
of a group is defined by the values in the grouping columns.
However, we do not necessarily have the rest of the group.
As a result, we have to join these group ids with the operator
tree T to reconstruct the groups. The join condition is the
natural equijoin on the grouping columns. Since we need to
ensure that each group id is produced only once (for multiset
semantics), we add a distinct operator. An application of this
rule to the above example is shown in Figure 6.

We next consider object selection based on aggregate con-
ditions. For example, consider the query (on the schema in
Figure 1):

For $s in /doc(tpch.xml)/suppliers/supplier

Where avg($s/part/p_retailprice) > 10000

Return $s

As in the other query above, this query can be evaluated in
two ways. We can construct the supplier groups first and
then check the aggregate condition, or push down the con-
dition to extract qualifying supplier keys and then construct
the respective groups. The question arises what is the ad-
vantage at all of the latter plan. The key is to note that if
GApply were to be implemented by hashing on the supplier
key s suppkey, a lot of memory would have to be managed
whereas if for each supplier, all we store is a sum and a
count (which are stored while computing the average) the
space required is all of a sudden less. Moreover, comput-
ing an average per supplier can be performed in a pipelined
manner. Coupled with this, if the condition is selective, then
the latter plan is likely to be cost-effective. This rule can be
formulated in a manner analogous to the previous rule.

4.3 Pushing GApply below joins
Finally, we consider a generalization of the rules for opti-

mizing groupby in relational systems [7, 14, 19, 20]. The idea
there briefly is to think of groupby as an operator and push it
below joins, the motivation being that groupby reduces the
number of output tuples considerably since it outputs one
tuple per group. Rules to pull groupby above joins are also
discussed in this body of work. The same motivation also
applies to GApply since as a special case, GApply can return
one tuple per group (for instance the one having the mini-
mum value on some column). A rule to pull GApply above
a join is proposed in [12]. We consider the problem of push-
ing GApply below a join which unlike the above, involves an
analysis of the operator tree of the per-group query.

For definiteness, we pick the invariant grouping transfor-
mation rule [7] for pushing groupby below joins and show
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Figure 7: Example of invariant grouping transformation

how this can be extended to pushing GApply below joins.
Other rules to push groupby below joins such as simple coa-
lescing grouping can be extended analogously.

Definition 1. [7] The join columns of a node n are all
columns that participate in join predicates evaluated at an-
cestors of n. Required columns of n are its join columns
together with the grouping columns of the query.

Let us now define the notion of group-evaluation (gp-eval)
columns. Intuitively, gp-eval columns are those columns that
are needed to evaluate the per-group query. This includes all
columns over which there is a selection predicate. However,
with projected columns, unless they are aggregated, they are
not gp-eval columns since they could potentially be obtained
by performing joins later. More formally, for each operator
o in the per-group query we associate a set of columns —
call them eval columns — that correspond to the columns
needed by the operator tree rooted at o.

• For a scan, this is the empty set
• For a select, it is the union of the eval columns of the child of

o with the columns over which there is a selection condition
at o.

• For a groupby, it is the union of the eval columns of the child
with the grouping columns of o and the columns returned
from o.

• For aggregate and orderby, it is the union of the eval columns
of the child with the corresponding aggregated/ordering columns.

• For other unary operators, it is the eval columns of the child.
• For apply, it is the union of the eval columns of both children.
• For union and unionall, it is the union of the eval columns of

all children.

Finally, the gp-eval columns of the per-group query are
the eval-columns of its root.

If the GApply operator is to be placed above a node n in
the left-deep join tree, then it must be the case that n has
the gp-eval columns. However, the per-group must be mod-
ified to project only columns available at n. Other columns
presumably get attached later through joins. This can be
achieved by simply eliminating the columns not available
at n from all project lists. We call the modified per-group
query the adapted per-group query. It is conceivable that at
some node o in the per-group query, the only columns pro-
jected are those not available at n. This can only happen
in a subquery where the apply condition is an exists or not
exists where the projected column does not really matter.
We avoid this case if we assume without loss of generality
that such subqueries project only grouping columns.

Let us now consider when the whole GApply operation can
be executed above a given node n, instead of at the top of

the (left-deep) join tree. The GApply node must first of all
make sense above n, which means that all grouping columns
and gp-eval columns must be present at n. The joins above
n should also make sense when the GApply instance is placed
above n. In addition, for the evaluation of GApply to be cor-
rectly preserved under multi-set semantics, all joins above
n must be foreign-key joins — a join is a foreign-key join
if the join condition is a key foreign-key equality condition
where the outer (left) child has a foreign key to the inner
(right child) in the left-deep tree.

Definition 2. A node n in the given left-deep tree has the
invariant grouping property if

1. The columns present at n contain the grouping columns
and the gp-eval columns.

2. Every join column of n is a grouping column of the
query.

3. Every join above n is a foreign-key join.

If node n satisfies the invariant grouping property, then we
can then move GApply above n.

Theorem 2. If a node n in a left-deep tree T has the
invariant grouping property, then the extended left-deep tree
T ′ obtained by moving the GApply node as the parent of n

along with the adapted per-group query is equivalent to T .

Note that if n has the invariant grouping property, so do its
ancestors. Thus, GApply can be moved on top of any of n’s
ancestors.

Consider for instance a query that finds for each supplier,
the supplier name and the part that is least expensive. This
query can be evaluated in groupwise fashion for each supplier
key. The plan is shown on the left in Figure 7. Now the top
most join is a foreign key join with the supplier table. Also,
to define a group and compute the least expensive part, we
do not need any supplier details except the supplier key.
Thus, the whole groupwise processing can be pushed below
this join to yield the plan to the right in Figure 7.

We note again that other rules to push groupby below joins
can be similarly generalized to GApply.

4.4 Integrating the Rules into an Optimizer
In order to integrate the above rules into a Volcano-style

rule-based optimizer, we must address the following issues.
First of all, the above rules either push GApply down in

the join tree, or altogether eliminate GApply, or add new
selections and projections in the outer subtree corresponding
to GApply, none of which can be reversed by any of the other
rules. Hence, successive firing of rules will terminate.

Secondly, the optimizer must be able to estimate the cost
of the GApply operation. We sketch how this can be achieved.



With a uniformity assumption on the groups, we can esti-
mate the cost of GApply as the cost of evaluating the per-
group query on one group multiplied by the number of groups.
The number of groups is the number of distinct values in the
grouping columns. In order to estimate the cost of evalu-
ating the per-group query on a single group, we need to
know the size of the group and also need statistics on the
group for purposes such as selectivity estimations. We can
obtain the size by observing that the average size of a group
is the result size of the outer query divided by the number
of groups. As for the statistics, since we assume uniformity
among the groups, implying for instance that the selectivity
of a predicate is the same in all groups, all we need to do
is obtain statistics on a single group. A single group can
be defined by placing a selection condition on the grouping
columns fixing them to a certain value. Now, we have re-
duced the problem to the traditional problem of obtaining
statistics for the result of a (traditional) query.

5. PRELIMINARY EXPERIMENTS
The goals of our performance study are two-fold. Firstly,

we wish to get a sense of the efficacy of the GApply operator
in speeding up queries. Secondly, we wish to understand the
impact of each of our transformation rules. Our experiments
are run on Microsoft SQL Server 2000 that supports GApply,
without exposing it in the syntax. Since for our experiments
we need control over the invocation of GApply, we simulate
the operation of GApply on the client side.

5.1 Client Side Simulation of GApply

As explained in Section 3, GApply operates in two phases:
Partition and Execute. We describe how each of these phases
is simulated on the client side. The partition phase can be
implemented either by sorting or hashing the input on the
grouping columns of GApply.

• The sorting alternative can be implemented by adding
an order by clause to the outer query.

• For the hashing alternative, what we want to sim-
ulate is the cost of reading the input tuple stream
from the outer query, hashing each tuple on the group-
ing columns, managing main memory resources in this
process. Note that this cannot be performed directly
on the server since such an operation is not exposed
in SQL syntax — in particular, a simple groupby only
maintains aggregates discarding the actual values. How-
ever, a groupby that counts the number of distinct val-
ues in some column has to maintain the actual values
to check for distinctness. We exploit this fact to per-
form our simulation. We create a temporary table,
tmpTable, that stores the result of the outer query
and wish to scan this table, group by the grouping
columns and count the number of distinct values in all
non-grouping columns. However, SQL does not allow
a count distinct operation on more than one column.
To circumvent this problem, we arrange for tmpTable
to have the grouping columns with a single extra col-
umn, miscCols, that stores the result of concatenating
the values in all non-grouping columns. We then run
the query Qpartition:

select <grouping cols>,count(distinct(miscCols))

from tmpTable

group by <grouping cols>

This query needs to partition the tmpTable on the
grouping columns while at the same time retaining
the column value of miscCols, since it needs to check
distinctness. By forcing all miscCols to be distinct
(by performing a bit-xor with a counter that is incre-
mented for each row), we force all miscCols values to
be managed by the server. Our argument is that this
operation simulates the partition phase of GApply. The
above computation however performs the extra task of
hashing the miscCols value and checking distinctness
through string matching. These are parts that are not
present in the real partition phase we wish to simu-
late. We estimate the extra work done as the CPU
effort spent on the query Qoverestimate:

select count(distinct(miscCols))

from tmpTable

Next, we come to the execution phase. This is simulated
in the following manner. We store the result of the outer
query in another table without disturbing the columns this
time. For each distinct value in the grouping columns, we
extract an appropriate range of this temporary table defined
by the grouping columns into another temporary table and
run the per-group query on the latter table. This is repre-
sentative of the work done in the execution phase.

5.1.1 Estimating Running Time
We measure both the elapsed time and the CPU time since

our queries are usually CPU bound. We consider operator
trees where GApply is the top most operator. Such queries
involve three parts: (1) running the outer query, (2) par-
tition phase of GApply and (3) execution phase of GApply.
The time involved in running the outer query is obtained
directly by running it on the server.

If we partition by sorting on the grouping columns, the
time taken for this can be measured by forcing the outer
query to order the results by the grouping columns. For the
hashing alternative, accounting for the partition and execu-
tion times is more subtle. The elapsed time for Qpartition

includes not only the cost of hashing the output of the outer
query, but also cost of retrieving whatever buckets spill to
disk. Having fetched the buckets however, Qpartition moves
on to count the number of distinct values in miscCols. What
GApply is supposed to do is to retrieve the buckets into mem-
ory and perform the execution phase. Thus, we only count
the CPU time of running the per-group query on each group.
This is added to the time taken by Qpartition, and the CPU
time taken by Qoverestimate is subtracted to yield the total
time for the partition and execute phases.

We argue that the above over-estimates the cost of the ex-
ecution of GApply. The reason is that while every component
of a server side processing is accounted for, our simulation
is blocked. For instance, with a hash-based partitioning, we
include the time for returning all results of the outer query
and also the time for reading all these results back from
tmpTable. In addition, running a query over every group
and measuring the total time by adding individual running
times will add up the per-query overheads those many times.
For all these reasons, we expect that the real elapsed time
taken by the full server side implementation will be less than



the time taken by our simulation. As we will see in the
next section, for the one query where the server picks a plan
involving GApply, the corresponding client-side simulation
takes 20% more time.

5.2 Results

Experimental Setup
The data set we use is the TPCH benchmark data. We
use the 5GB database. The server has a processor speed
of 1GHz while the main memory size is 784MB. The buffer
pool size is set to 512MB. Each query is run several times
and the average time is taken. All results are based on a
cold buffer pool. As discussed above, we measure both the
elapsed and CPU times.

Figure 8: Speedup using GApply

Effectiveness of GApply

We pick a set of queries including the ones presented in
Section 2. We run them with and without GApply. Figure 8
shows the results. The X-axis shows the queries. The Y-
axis shows the ratio of the time taken without GApply to the
time taken with GApply. Thus, a ratio of 2 indicates 50%
speedup. Queries Q1 and Q2 are the ones from Section 2.

• Query Q3 also involves a union of two queries intended
to represent multiple operations over a supplier ele-
ment. Stated in English, Q3 finds for each supplier,
all part names and prices where the prices are high-
end or low-end, where a price is high-end if it is more
than a certain fraction of the maximum and low-end
if it is less than a certain multiple of the minimum.

• Query Q4 is: for each supplier, for each part size sup-
plied, compute the average retail price and find all
parts with this size priced more than the average.

In our experiments, the impact of GApply is comparable
whether we perform partitioning through sorting or through
hashing. What is shown in Figure 8 is the speedup obtained
through hash-based partitioning. Let us recall that the sys-
tem we are using has the GApply operator implemented.
Query Q4 is one where we are able to force the use of this
operation in the server. It yields us a wholly server-side ex-
periment to evaluate the impact of GApply. Q4 is expressed
in SQL as:

select tmp.ps_suppkey,p_name,p_size,p_retailprice

from (select ps_suppkey, p_size, avg(p_retailprice)

from partsupp, part

where p_partkey = ps_partkey

group by ps_suppkey, p_size)

as tmp(ps_suppkey,p_size,avgprice),

partsupp, part

where ps_partkey = p_partkey and

partsupp.ps_suppkey = tmp.ps_suppkey and

partsupp.p_size = tmp.p_size and

p_retailprice > tmp.avgprice

order by tmp.ps_suppkey

In this case, the optimizer correctly identifies this to be an
opportunity for using GApply and this query is executed in
the following manner — join partsupp and part, group by
ps suppkey and p size, and iterate over each group to com-
pute the average and the parts priced more than the average.
Query Q4 thus provides us with an opportunity to test the
overhead of client-side simulation. The client side simulation
of Q4 takes 20% longer than the server-side implementation.
Not surprisingly, writing query Q4 in a different but seman-
tically equivalent manner yields a plan that takes orders of
magnitude longer to execute than the plan using GApply,
just as writing a CUBE query using group by is likely to
perform poorly. This is further evidence of the need for
syntactic support for GApply.

The main conclusions to be drawn from the above graph
are:

• GApply is a useful operator even in the context of sim-
ple XQuery queries, such as the ones in Section 2,
yielding improvements of factors of up to 2 times faster.

• The queries picked are representative of a wide class
of queries. Hence, the operator has a potentially wide
applicability.

• The performance improvements for queries Q1, Q2 and
Q3 are likely to be even better if we deploy the server
side implementation of GApply. This is so since our
simulation from the client side is conservative, as evi-
denced by the results for query Q4.

Effectiveness of Optimization Rules
We determine the effectiveness of each optimization rule by
testing the improvement obtained by firing the rule. Our
methodology is the following. For each rule, we pick a rele-
vant parameterized query. We then vary the parameter and
for each of its values, find the performance benefit obtained
by applying the rule. The performance metric is elapsed
time.

For instance, consider the transformation rule that han-
dles group selection predicates, described in Figure 5. We
test the effectiveness of this rule in the following manner.
We pick the parameterized query:

For $s in /doc(tpch.xml)/suppliers

/supplier[/part/p_retailprice > x]

Return $s

where the parameter x determines the selectivity of the se-
lection condition. We then vary x to obtain a series of selec-
tivity values for each of which we find the benefit of applying
this rule. Table 1 shows the results.

The benefit is measured as the ratio of the (elapsed) time
taken without the rule application to the time taken after



Rule Class Rule Maximum Benefit Average Benefit Average over Wins

Basic Rules Placing Selection 732.94 124.97 124.97
Before GApply

Placing Projection 5.05 3.42 3.42
Before GApply

Converting GApply 1.3 1.19 1.19
To groupby

Group Selection Exists 14.6 1.67 1.93

Aggregate Selection 6.3 2.08 3.72

GApply and Joins Invariant Grouping 2.56 1.32 1.32

Table 1: Effect of Transformation Rules

the rule is fired. The maximum benefit indicates the best
performance improvement among the experiments we con-
ducted. The “average over wins” column indicates the aver-
age benefit of firing a rule when it actually lowers the cost.

The main observations to be made are:

• Over all, the rules we propose can have a significant
impact on the elapsed time of a query involving GAp-
ply.

• There are some rules that always lower the cost of
the query, indicated by equal values in the “average
benefit” and “average over wins” columns. For the
other rules, depending on the query, firing the rule
can have a positive or negative impact on cost.

• The benefit of converting GApply into groupby is com-
paratively lower. This is not surprising since the amount
of work performed by a GApply when it aggregates non-
grouping columns is the same as the work performed
by groupby. However, GApply is blocked. Hence, the
conversion to groupby helps.

6. RELATED WORK
There has been lots of work in the area of publishing re-

lational documents as XML. As part of the Xperanto [2]
project, in [17], an extension of SQL is proposed to specify
the construction of XML documents from relational data
and several ways of implementing this conversion are dis-
cussed. The conclusion there is that in most cases, it is best
to push as much computation as possible into the relational
engine. Further, in [16], the problem of executing XML
queries over the XML view of relational data is considered.
They describe how to compose an XML view definition with
the XML query and push down computation into the rela-
tional engine. The SilkRoute [11] project also a language
to specify the conversion between relational data and XML.
In [10], several alternatives are considered between push-
ing all the computation as a single query into the relational
engine and issuing several smaller queries. They provide a
greedy heuristic algorithm to be implemented in middleware
that explores several alternatives between these extremes in
a cost-based manner and returns the cheapest alternative.

In addition, a view composition algorithm to compose XML
queries over an XML view is proposed. All these imple-
mentations do not modify the set of relational operators.
In the ROLEX project [1], the authors observe that at the
end of executing an XML query over a relational database,
the resulting XML fragment is then parsed by the applica-
tion. To overcome this inefficiency, they change the world
view so that relational engines return a navigable result tree.
When the query results are navigable, the navigation pat-
terns vary across applications. To accommodate this, they
modify a traditional cost-based optimizer to be cognizant of
the navigation profiles of applications. However, again, the
traditional set of relational operators is unchanged.

Our work differs from all of the above in asking whether
the whole process of XML publishing has any impact on the
core relational operators and answering the question in the
affirmative. In setting out our syntax, we draw inspiration
from the syntax proposed in [17] where subqueries in the
select clause of SQL are used.

In the context of data warehousing, earlier work [5, 6]
has identified the need for what is referred to as group-
wise processing of tuples for data warehousing applications.
Briefly the idea is to address queries that intuitively par-
tition the data into groups of tuples and perform repeated
computations on them. Expressing this simple intuition in
SQL is cumbersome and the authors of [5] propose exten-
sions to SQL to handle this along with a new operator to
perform groupwise processing. In [6], the authors adopted
the alternative approach of syntactically processing a SQL
query to identify whether groupwise processing was possible.
The above papers do not discuss how this operation affects
the optimization framework and how this operator interacts
with traditional relational operators. In [12], the implemen-
tation of an operator that performs groupwise processing is
described. As noted in Section 3, this is the GApply opera-
tor we recommend. We also propose a syntax to expose this
operator in the syntax and Section 3 discusses why and how
how our syntax is different from the one proposed in [5].
Two rules for optimizing an operator tree in the presence
of GApply are presented in [12] one of which is identified
in Section 4. The other rule describes when the optimizer
considers the use of GApply, given an operator tree without



GApply. We study the impact of GApply on query optimiza-
tion in detail to complete the picture.

Some of our transformation rules are a generalization of
the rules involving groupby in the traditional setting [7, 14,
19, 20]. Thus, our rules to push GApply below joins general-
ize similar operations on groupby, addressed in [7, 19] while
the rules to pull GApply above joins generalize the “lazy ag-
gregation” technique proposed in [20].

7. CONCLUSIONS
In this paper, we asked what impact the requirement for

efficient XML publishing had on the core relational engine.
Our answer was that relational engines must provide sup-
port for binding variables to sets of tuples as opposed to
single tuples. We described how such support may be en-
abled through the GApply operator with seamless integration
into existing relational engines. We discussed how this op-
erator can be exposed in the syntax and studied a series of
optimization rules that govern the interaction between this
operator and traditional relational operators. Our perfor-
mance study underlined the effectiveness of our techniques.
We believe our study provides insight into a fundamental
difference between the XML and relational data models.

There are several problems left open for discussion.

1. How should the modified syntax be exploited by algo-
rithms to translate XML queries over XML views of
relational data?

2. Are any other changes necessary within the relational
query engine to meet the requirement of XML publish-
ing?

3. What about changes to the query optimizer? If we
assume that the relational database returns navigable
results, then the work in [1] addresses this question.
However, if we assume we are running “sorted outer
union” SQL queries, this question is open.

We hope to address them in future work.
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