
Extending Autocompletion To Tolerate Errors

Surajit Chaudhuri
Microsoft Research
One Microsoft Way

Redmond, WA, USA
surajitc@microsoft.com

Raghav Kaushik
Microsoft Research
One Microsoft Way

Redmond, WA, USA
skaushi@microsoft.com

ABSTRACT
Autocompletion is a useful feature when a user is doing a
look up from a table of records. With every letter being
typed, autocompletion displays strings that are present in
the table containing as their prefix the search string typed so
far. Just as there is a need for making the lookup operation
tolerant to typing errors, we argue that autocompletion also
needs to be error-tolerant. In this paper, we take a first step
towards addressing this problem. We capture input typing
errors via edit distance. We show that a naive approach of
invoking an offline edit distance matching algorithm at each
step performs poorly and present more efficient algorithms.
Our empirical evaluation demonstrates the effectiveness of
our algorithms.

Categories and Subject Descriptors
H.2 [Database Management]: Systems

General Terms
Design, Algorithms, Experimentation

Keywords
Autocompletion, Edit Distance

1. INTRODUCTION
Autocompletion is a ubiquitous feature found to be useful

in several environments. As the user types, a list of appro-
priate completions is returned by such a feature. The goal
is not only to reduce typing effort but also to help guide the
user’s typing.

Not surprisingly, autocompletion has found wide adop-
tion as a feature in a variety of applications. This feature
is available today in program editors such as Visual Studio,
command shells such as the Unix Shell, search engines such
as Google, Live and Yahoo, and desktop search. Autocom-
pletion is also gaining popularity for mobile devices since it
can assist the user in keying in contacts and text messages.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

Autocompletion is also valuable in the database context
as such a feature can help ensure data integrity by substan-
tially reducing the probability of data entry errors. The
specific scenario that is our focus is when a user is look-
ing up a record from a table by entering a string, such
as when a sales clerk is looking up a customer’s name or
one is looking up a product catalog online. For instance,
http://www.amazon.com suggests completions when we are
looking up a product item. Similarly, Yahoo Finance sug-
gests completions when we are looking for a stock symbol
or organization name.

One way of viewing autocompletion is as an online method
of performing exact matching, since in the absence of auto-
completion, a user would have to type out the string in its
entirety and then match it against the table of records. In
contrast to the online autocompletion process, we call the
latter an offline lookup.

In an offline lookup setting, the data cleaning community
has long recognized the need to go beyond exact matching.
This is because the input string being typed can contain er-
rors and differences in representation making exact match-
ing inadequate. This observation has motivated the vast
body of work on record matching [12].

In this paper, we argue that in the same way, the scope
of autocompletion should be extended to tolerate errors and
differences in representation. At first glance, this may not
be obvious since even exact autocompletion does act as a
hint in guiding the user’s typing and to some extent reduces
the likelihood of errors being committed in the first place.
However, there are many important scenarios where error-
tolerant autocompletion would add significant value. For
example, consider the name Schwarzenegger. It is quite
likely that a user looking up this name is likely to start
with the prefix Shwarz or Swarz instead of the correct prefix
Schwarz. In this case, the only opportunity for an exact
autocompletion approach to suggest the correct completion
is when the prefix S has been entered; but at this point, the
number of completions is likely to be too high to be useful
in a database of any realistic scale.

This problem is only exacerbated in domains such as prod-
uct model numbers where we cannot rely on phonetics and
intuition to guess the correct spelling. Further, even if we
knew the correct spelling of a string, we may still mistype,
especially when typing fast. There is no reason to believe
that such typing errors are less likely at the beginning of
the string. Error-tolerant autocompletion is also useful in
maintaining data integrity since being quickly able to browse
approximate completions can reduce duplicate entries.

Motivated by these observations, we study the problem of
error-tolerant autocompletion. We begin by laying out the
framework for exact autocompletion (Section 2) which we
then extend to tolerate errors (Section 3). Just as we view
exact autocompletion as an online version of exact lookup,
we model the error-tolerant autocompletion problem as an
online version of error-tolerant lookup. As is standard in
data cleaning, in order to define what it means to tolerate
errors, we need to use a notion of string similarity. While
there are several sophisticated ways of modeling errors in
data [12], in this paper, we take a first step by adopting
the classical edit distance as our measure of similarity be-
tween strings. We generalize the notion of the extension of
a string to tolerate edit errors. We show that it is possible
to implement this strategy by using an vanilla edit distance
matching algorithm at each step and argue that this can be
quite expensive (Section 3.4). Accordingly, we propose two
improved edit-tolerant autocompletion algorithms. The first
is based on the state-of-the-art q-gram based edit distance
matching algorithms (Section 4). The second is a trie-based
algorithm that is even more suited to autocompletion (Sec-
tion 5).

Often, when only a few characters of the lookup string
have been entered, there are too many completions for au-
tocompletion to be useful. We thus consider an alternate
buffered strategy that performs autocompletion only after a
few input characters have been entered (Section 5.2). We
use pre-computation to handle kick start the autocomple-
tion. By hashing characters to a small number of bits and
exploiting the fact that we are performing pre-computation
only for short strings, we control the amount of state needed
for pre-computation. We show that pre-computation cou-
pled with the trie has formal guarantees for edit distance
matching (Section 5.3). Not surprisingly, we find that pre-
computation further improves the performance of the trie-
based algorithm significantly.

Often, the records in the table being looked up have an
application specific static score. For example, in a table of
product records, the static score could be used to reflect
the popularity of the product, say based on the number of
recent purchases. It is natural to factor this in addition to
the edit distance in ordering the autocompletion output. We
show how to extend our algorithms to return only the top-l
extensions exploiting such an ordering (Section 5.4).

We then conduct a detailed empirical evaluation of the
techniques we propose over real data sets (Section 6).
Among other things, we empirically show the effectiveness of
error tolerant autocompletion by measuring the additional
key strokes saved over and above exact autocompletion. By
comparing edit-tolerant autocompletion with offline edit-
distance matching, we also study the additional overhead
incurred in invoking an online approach to edit distance
matching. We show that while our solution does impose an
additional overhead as expected, this is substantially better
than the additional overhead imposed by exact autocomple-
tion when compared to exact string lookup.

We discuss related work in Section 7 and conclude in Sec-
tion 8. Finally, we note that despite the availability of error-
tolerant autocompletion in a limited number of products,
little is known about their underlying algorithms. To the
best of our knowledge, this is the first piece of work that
systematically studies error-tolerant autocompletion in the
context of database lookups.

2. AUTOCOMPLETION: STATE OF THE
ART

At its core, autocompletion is about suggesting valid com-
pletions of a partially entered lookup string with the in-
tention of minimizing and guiding the user’s typing. The
concept of autocompletion is not new. There are various
approaches studied in prior work on autocompletion. There
is a vast body of work on predictive autocompletion [4, 8,
16] where the idea is to use information retrieval techniques,
language models and learning to suggest potential comple-
tions.

In contrast, our focus is on the scenario where there is
a table T of strings being looked up and thus completions
are suggested based on matches in T . This is the form of
autocompletion supported by http://www.amazon.com and
Yahoo Finance for instance. The most common form of
such autocompletion is based on exact matching. In this
section, we formalize some of the key concepts involved in
exact autocompletion.

2.1 Autocompletion Interface
Autocompletion is an online problem where at any point,

there is a partially typed string s that we call the lookup
string. In response, the autocompletion produces a list
Completions(s). The lookup string is modified via some
user move. In general, the user can modify the string using
any of a large space of moves — the user can append a char-
acter, insert or delete a character either at the end of the
string or anywhere in the string, choose one of the suggested
completions, and invoke a lookup. In this paper, we focus
primarily on the following user moves.

• Append(c): append a character to the end of the
lookup string s,

• Choose(s′) where s′ ∈ Completions(s): choose one of
the suggested completions.

We choose these moves since these are the most common
moves made by the user. We defer a study of other moves
to future work.

2.2 Autocompletion Strategy
There are multiple ways in which exact autocompletion

may be performed. We call these possibilities autocomple-
tion strategies.

Perhaps the simplest strategy is to return all strings in T
that are extensions of the lookup string. When the number
of characters in the lookup string is very small — at the
extreme case when only the first character has been entered
— the number of extensions can be too large to be useful.
This motivates an alternate strategy where we perform au-
tocompletion only after a minimum number of characters
have been input.

Another exact autocompletion approach is to return at
each point all strings in T that contain the partially entered
lookup string as a substring. This is the strategy supported
by Yahoo Finance for instance. As with the prefix based
approach above, we could consider doing this only after the
lookup string has a minimum number of characters.

In general, the autocompletion strategy could be quite
complex as illustrated by prior work on multi-word auto-
completion [2, 15, 16].

Often, we can order the completions by leveraging an ap-
plication specific static score assigned to each string in T .
For example, if T represents a table of products and we store
a log of lookup queries posed against T , then we can use the
static score to reflect the popularity of a product, say based
on the number of recent purchases. Alternately, the static
score can be used to bias the lookup toward newer products.
Another example is when T consists of author names and
we use the static score to bias one subject area over others
— an application that is targeted toward database users can
use the static score to assign a higher preference to database
authors.

A given autocompletion strategy can be supported by a
variety of algorithms. For instance, if our strategy is to
return all extensions of the lookup string, we could (a) at
each point issue an offline prefix lookup using say a B-Tree
that finds all extensions in T , or (b) use a trie to find all
extensions in an online fashion.

2.3 Efficiency Considerations
An important goal of an autocompletion system is to be

responsive — it must look instantaneous to the user. Prior
work [14] has shown that this implies a maximum response
time of 100ms. In a client-server setting, this 100ms bound
includes not only the autocompletion time, but other over-
heads such as the communication overheads. Thus, it is de-
sirable to make the per-character autocompletion cost itself
minimal.

As noted above, we view autocompletion as an online
method of performing the underlying lookup. We expect
the online algorithm to be slower than an offline lookup. For
instance, finding an exact match by hashing a string in its
entirety is substantially faster than looking up a trie charac-
ter by character. Thus, the benefits of autocompletion come
with the price of invoking an online algorithm.

3. INCORPORATING ERROR TOLER-
ANCE

This paper

Amazon.com Yahoo!

Finance

[16]

Si
m
ila
ri
ty

Fu
n
ct
io
n

Prefix Substring Phrase
completion

Exact

Edit
Distance

Autocompletion strategy

Figure 1: Autocompletion Methods

Our goal as argued in Section 1 is to extend autocomple-
tion to be error tolerant. In Section 2, we considered vari-
ous ways in which autocompletion could be performed. The
question arises how error tolerance influences these options.
In general, any of these methods can be extended to be error-
tolerant. As shown in prior work on record matching [12],
error tolerance can be achieved in many ways, for exam-
ple by choosing different similarity functions. Any of these
similarity functions can be used to make autocompletion
error-tolerant. This leaves us with a two-dimensional space
of options plotted in Figure 1. The figure shows examples of
prior work covering exact autocompletion approaches. Note

that only one similarity function (edit distance) is shown in
the Figure for illustration. In general, the space of similarity
functions is much larger.

In this paper, we focus on extending the prefix based
approach to be error tolerant. The similarity function we
choose is the classic edit distance. Even though our tech-
niques generalize to also handle substring matching, we omit
the details owing to a lack of space. In this section, we re-
view the definition of edit distance, extend the concept of
string extensions to tolerate string edits via the notion of
k-Extensions. We then discuss some of the properties of
k-Extensions which provide the basis for all algorithms we
propose.

3.1 Edit Distance Based Matching
We choose edit distance as our notion of tolerating errors

in this paper. Given two strings s1 and s2, we are allowed to
insert and delete characters as well as replace one character
with a different one. The minimum number of moves we
need to perform on s1 such that the result is equal to s2 is
the edit distance between the two strings, denoted ed(s1, s2).
We use the phrase “edit distance within k” to refer to the
expression ed(s1, s2) ≤ k.

Example 1. The string Shwarzenegger has edit distance 1
to the string Schwarzenegger. In order to transform
Shwarzenegger to Schwarzenegger, we need to insert char-
acter c after S. 2

Fix a string s and a threshold k. The (offline) edit lookup
operation returns all strings r ∈ T that are within edit dis-
tance k in increasing order of edit distance.

3.2 k-Extension
We now extend the concept of string extensions to be

tolerant of string edits. Figure 2 shows an example of our
intuition.

Completions

Query

Figure 2: Error Tolerant Autocompletion

We formalize this intuition through the following defini-
tion.

Definition 1. A string s1 is defined to be a k-prefix of
string s2, denoted s1 ≺k s2 if there is some extension of s1

that is within edit distance k of s2. s2 is called a k-extension
of s1. The smallest k such that s2 is a k-extension of s1 is
called the extension distance of s2 given s1.

We illustrate this definition with an example.

Example 2. In Figure 2, observe that each of the strings
Ashwin Navin, Schwarzenegger, Arnold and Schwarz,

Hermann is a 1-extension of Shw.
The extension of the input string that yields edit dis-

tance 1 to Schwarzenegger is Shwarzenegger. The exten-
sion distance of Schwarzenegger given Shwarz is 1. 2

If instead of using string extensions, we were to perform
edit-tolerant substring matching, then in Figure 2, we would
return additional strings such as Graeme Swann.

We consider two autocompletion strategies in this paper.
The first is as follows.

Definition 2. Fix an edit threshold k. The Full k-
Extension Strategy is as follows: At each point as the lookup
string is modified by appending characters, our goal is to re-
turn all k-extensions in the order of increasing extension
distance.

Often, when only a few characters of the lookup string have
been entered, there are too many completions for autocom-
pletion to be useful. We therefore consider a Buffered Strat-
egy where we are required to return the k-extensions, but
only after the lookup string has a minimum number b of
characters. We refer to this number b as the transition
length.

As with exact autocompletion, we can leverage the appli-
cation specific static score associated with each string in T ,
if available. We assume an overall scoring function that is
monotonic [6] in both the edit distance and the static score.
We can return completions ordered by this overall scoring
function, independent of the specific function chosen so long
as it is monotonic.

Finally, as argued in Section 2.3, we expect online auto-
completion to be slower than offline matching. However, our
goal is to make this efficiency gap comparable to the case of
exact autocompletion.

3.3 Properties of k-Extensions
We now discuss some properties of k-Extensions. We first

establish the relationship between extensions and prefixes
when allowing for string edits. We use this relationship to
show how to compute the pairwise extension distance de-
fined above by adapting the classic dynamic programming
based edit distance computation algorithm [17]. This dis-
cussion forms the basis for all algorithms in this paper.

3.3.1 Relating Extensions to Prefixes
First we show the following equivalence which forms the

basis for all algorithms we propose in this paper.

Property 1. s1 ≺k s2 if and only if there is some prefix
s′2 of s2 such that s1 and s′2 are within edit distance k.

We illustrate this property with an example below.

Example 3. As noted earlier, the string Schwarzenegger

is a 1-extension of Shwarz. In this case, the prefix Schwarz

is within edit distance 1 of Shwarz. 2

3.3.2 Pairwise Extension Distance
We develop our algorithm to solve this problem by first

considering the following more basic problems.

• Extension Distance: Given strings s1 and s2, compute
the extension distance of s2 given s1.

• k-Extension Distance: Given strings s1 and s2, check
if the extension distance of s2 given s1 is at most k
and if so, compute the extension edit distance.

These problems can be solved by a straightforward adap-
tation of the standard dynamic programming algorithm for

(0) J(1) o(2) h(3) n(4) n(5) y(6)
(0) 0 1 2 3 4 5 6
J(1) 1 0 1 2 3 4 5
o(2) 2 1 0 1 2 3 4
n(3) 3 2 1 1 1 2 3

Figure 3: Pairwise Edit Distance

computing the edit distance between s1 and s2 [17]. We first
review this algorithm. Suppose that the two strings under
consideration are s1 and s2. We place the two strings on a
matrix D with s1 top-down and s2 left-to-right, and incre-
mentally compute the edit distance between all prefixes of
s1 and s2. Figure 3 illustrates the dynamic programming
matrix for the two strings s1=“Jon” and s2=“Johnny”. Let
i be the index of the rows in the dynamic programming ma-
trix and j be the index of the columns. The row numbers
increase as we go down whereas the column numbers in-
crease from left to right. Both begin at 0. The numbers in
parentheses in Figure 3 indicate the row and column num-
bers. The number entered in cell D(i, j) denotes the edit
distance between the prefixes ending at i and j respectively.
The recurrence relation that completes D is as follows [17].

D(i, j) = min(D(i− 1, j) + 1,

D(i, j − 1) + 1,

D(i− 1, j − 1) + δ(i, j))

where δ(i, j) is 0 or 1 according as the ith character of s1

and the jth character of s2 are equal. For example,

D(“Jo”,“Joh”) = D(2, 3) = min(D(1, 3) + 1, D(2, 2) + 1,

D(1, 2) + δ(2, 3)) = min(3, 1, 2) = 1

Note that in this process, we find the edit distance be-
tween s1 and all prefixes of s2 — this is captured in the
last row of D. We can then find the prefix of s2 with the
smallest edit distance from s1 by finding the smallest entry
in the last row. Using Property 1, we can see that this yields
the extension distance. We can see from Figure 3 that even
though the edit distance is 3, the extension distance is 1 for
s1 and s2 as defined above.

Now consider the k-Extension Distance problem. Intu-
itively, we can ignore parts of the matrix D where the value
is guaranteed to be larger than k. The following property
of matrix D follows from the recurrence relation above and
lets us formalize this intuition.

Property 2. (1) D(i, 0) = i and D(0, j) = j, and
(2) D(i, j) ≥ D(i− 1, j − 1).

Now define the c-diagonal to be all cells such that i− j = c
(c can be negative). By Property 2, it follows that we only
need to track the entries of D in diagonals −k through k
— all other cells in D are guaranteed to have values larger
than k. For each cell in these diagonals, we need to store
the edit distance only if it is at most k (otherwise we store
∞). The recurrence relation can be used to compute the
edit distance so long as it is at most k. Then we read off
the minimum value in the last row as before to compute
the extension distance. Figure 4 illustrates this for the case
k = 1. Observe that this algorithm takes O(kn) time where
n is the length of s1.

Finally, we can see that the above algorithm is naturally
incremental. Adding a new character to s1 corresponds to

(0) J(1) o(2) h(3) n(4) n(5) y(6)
(0) 0 1
J(1) 1 0 1
o(2) 1 0 1
n(3) 1 1 1

Figure 4: 1-Extension Distance

adding a new row to the matrix D. By the form of the re-
currence relation, we see that the old entries of D do not
change and that the 2k+ 1 entries for this row can be com-
puted left to right from the old entries of D in constant time
per new entry.

3.4 Baseline Algorithm for Edit-Tolerant Au-
tocompletion

We can use Property 1 coupled with any offline edit dis-
tance matching algorithm to implement both the Full and
Buffered strategies. We first introduce some notation to talk
about the prefixes of strings. Given a string r, the set con-
sisting of r and all its prefixes is denoted r̄. Given a table of
strings T , the set of strings in T along with all their prefixes
is denoted T̄ .

We index all strings in T̄ . At any point in the autocomple-
tion, we invoke the offline algorithm to find matching strings
in T̄ and then return their corresponding extensions. We call
this the baseline algorithm. It is sketched in Algorithm 3.1
for the Full strategy and can be trivially extended to handle
the Buffered strategy.

Algorithm 3.1 Baseline Algorithm

Input: String s input incrementally with new
character being appended at each step and edit threshold k.

Output: At each step, all k-extensions
1. Build an index for offline edit matching over all strings in T̄
2. For each character c of the input
3. Use the index to find all r ∈ T such that

some prefix of r is within edit distance k of s

The baseline algorithm has serious shortcomings. If
we performed no autocompletion, we would invoke offline
matching on the entire lookup string. This matching would
occur over the strings in T . In contrast, the baseline algo-
rithm invokes offline matching on a much larger set, namely
T̄ . Further, this matching is performed for each character
appended.

There is considerable room for improvement over this ap-
proach, by exploiting (1) the structure of the set of being
indexed, namely T̄ , and (2) the commonality among the suc-
cessive lookups which only differ in one character. This is
the focus of the next two sections.

4. Q-GRAM BASED ALGORITHM
We now discuss our q-gram based autocompletion algo-

rithms. Q-gram based techniques constitute the state-of-
the-art algorithms for offline edit distance matching [1, 3,
9, 21]. We first briefly review these algorithms before intro-
ducing our extensions for autocompletion.

4.1 Review of Offline Q-Gram Based Lookup
A q-gram of a string s is a contiguous substring of s of

length q. The q-gram set is the bag of all q-grams of s.

Intuitively, if the edit distance between two strings s and
r is small, then the overlap between the corresponding q-
gram sets must be large. Formally if ed(r, s) ≤ k then the
(bag) intersection between their q-gram sets must be at least
(max (|r|, |s|)−q+1)−q·k where |r| and |s| denote the lengths
of r and s respectively [9].

Example 4. The edit distance between Shwarzenegger

and Schwarzenegger is 1. Consider their 1-gram sets which
is the set of all characters in the strings. Their intersection
size is 13 which is larger than or equal to (max(13, 14)−1 +
1)− 1 · 1 = 13.

This relationship is used to invoke a set-similarity based
matching. The detail of set-similarity matching that is rel-
evant here is that most previously proposed algorithms are
based on signature schemes [1]. The idea is to create a
set of signatures for each string based on its q-gram set.
The signature scheme must have the property that when-
ever two strings are within edit distance k, they share at
least one common signature. Examples of signature schemes
are Prefix-Filter [3, 21], PartEnum [1] and Locality Sensi-
tive Hashing(LSH) [7]. The index consists of an inverted
list that maps a signature to all strings that generate this
signature. At lookup time, signatures are generated for the
lookup string and the union of all the corresponding rid-lists
is taken. Each string in this union is then passed through
a verification where we check whether its edit distance to
the lookup string is indeed within k. This verification step
is necessary since the signature lookup can generate false
positives.

4.2 Q-Gram Based Autocompletion
Fix a signature scheme Sig . Consider a string r ∈ T .

Recall from Property 1 that we need to consider returning
r whenever some prefix of r is within edit distance k of the
lookup string.

We illustrate the problem of using the q-gram approach
coupled with the baseline algorithm shown in Figure 3.1
through an example. Suppose that T consists of the sin-
gle string r = Schwarzenegger. Suppose also that the
signature scheme Sig returns all 1-grams. We have one in-
verted list per character of the string Schwarzenegger. Each
of these lists contains all prefixes of r that contain the re-
spective character. For instance, the list for character ’S’

contains all (non-empty) prefixes of r. This is shown in
the column called “Baseline List” in Figure 5. Now con-

Signature Baseline List Modified List
’S’ {S, Sc, Sch, ..., {Schwarzenegger}

Schwarzenegger}
.

Figure 5: Q-gram approach

sider the lookup string Shwarz. Under the baseline algo-
rithm, we consider each string in the inverted list of ‘S’

for verification. Thus, we invoke the k-Extension Distance
algorithm discussed in Section 3.3.2 for every prefix of the
string Schwarzenegger.

We improve upon this as follows. We modify the sig-
nature scheme to obtain a signature scheme Sig ′ where
Sig ′(r) = ∪r′∈r̄Sig(r′). Since the strings in r̄ have sub-
stantial overlap, they generate many common signatures.

Unlike the baseline approach, these common signatures are
represented only once. We build an inverted index over
the signatures generated by Sig ′. The inverted index for
the character ‘S’ in our example above consists of the sin-
gle string Schwarzenegger — this is shown in the column
marked “Modified List” in Figure 5.

The verification phase can be optimized by exploiting the
commonality among the strings in r̄. We noted in Sec-
tion 3.3.2 that the k-Extension Distance computation be-
tween r and s actually performs the k-Extension Distance
computation for all pairs of strings in r̄, s̄. By Property 1,
we can perform verification in one invocation of the dynamic
programming algorithm described in Section 3.3.2.

We can further optimize the q-gram based algorithm by
exploiting the the fact that successive lookup strings only
differ in one character. At each step, we avoid re-scanning
the lists of signatures that we have already examined. For
example, since the signatures for Sh and Shw contain the
character ‘S’, the list for ‘S’ is accessed only once.

These optimizations lead to significant improvements in
the running time of the q-gram based algorithm. However,
despite these optimizations, the number of strings being re-
trieved at each step for verification can be significant leading
to poor performance as we will see in Section 6. Ideally, we
would like to “transition” from the results in one step to the
results in the next. We achieve this in an automaton-style
traversal over a trie.

5. TRIE-BASED ALGORITHM
We now discuss our trie-based autocompletion algorithms.

The idea is to transition from the k-extensions in one step to
the next just as we do in an automaton. This also results in a
novel trie-based algorithm for offline edit distance matching
that processes the lookup string character by character (see
Section 7 for a detailed discussion of related work).

5.1 Full k-Extension Strategy
We organize the set of strings in T as a trie. We represent

the transitions as edge labels. Figure 6 shows an example
trie. Owing to potential edit errors at any given time, we
could be at multiple nodes in the trie. The algorithm main-
tains the set of all prefixes of the strings in the database that
are within edit distance k. We call the corresponding nodes
in the trie valid. It can be shown that for any k-extension
of the lookup string, there at most 2k + 1 prefixes that are
within distance k, and that these prefixes correspond to a
contiguous path in the trie.

The pseudo-code is shown in Algorithm 5.1. As characters
are appended to the input, we make transitions roughly cor-
responding to how we populate the edit matrix. We think
of the input string as populating the rows of the edit matrix
D. Before the next character is appended, we have the val-
ues for row i populated in the valid buffer in Algorithm 5.1.
We are trying to populate the entries for the next row which
is captured in the buffer new-valid.

Recall that the cells in row i + 1 are populated left to
right. In the trie, this corresponds to a top-down traversal.
Cell D(i+ 1, j) is influenced by the values in D(i+ 1, j− 1),
D(i, j−1) and D(i, j). In the trie, the value of D(i+1, j−1)
is stored in new-valid whereas the value of D(i, j − 1) is
stored in valid. The influence of D(i+1, j−1) and D(i, j−
1) is captured in Steps 12-16. The influence of D(i, j) is
captured in Steps 8-9. Note that we only consider marking

Algorithm 5.1 Trie-Based Autocompletion

Input: String s input incrementally with new
character being appended at each step and edit threshold k.

Output: At each step, all k-extensions
Let valid denote the buffer storing current valid nodes
Let new-valid denote the buffer storing the next set of valid
nodes
Let root denote the root of the trie

1. Add(valid, root, 0)
2. For i = 1 . . . k
3. For each node nd at distance i from root
4. Add(valid, nd , i)
5. For each character c of the input

Traverse the nodes in valid in queue order
6. For each valid node nd
7. Let lcurr = Distance(valid, nd)
8. If lcurr + 1 ≤ k
9. Add(new-valid, nd , lcurr + 1)

10. If nd has a child nd ′ through edge label c
11. Add(new-valid, nd ′, lcurr)
12. Let lnew = Distance(new-valid, nd)
13. Let l = min(lcurr, lnew)
14. If l + 1 ≤ k
15. For each child nd ′ of nd
16. Add(new-valid, nd ′, l + 1)
17. Swap new-valid and valid
18. Clear new-valid
19. Return leaf nodes reachable from nodes in valid

Procedure Add(buffer, nd , l)
1. If (nd , l′) is already present in buffer
2. Replace l′ with l if l < l′

3. Else
4. Enqueue nd in buffer
5. Set the distance of nd in buffer to be l

Procedure Distance(buffer, nd)
1. If (nd , l) is present in buffer
2. Return l
3. Else
4. Return ∞

a node valid if the edit distance is at most k. Further, since
it is possible to reach a cell in multiple ways, we keep track
of the minimum distance (Procedure Add).

Note that this procedure requires that we process the valid
nodes in a top-down order where the parent of a node is pro-
cessed before its children. The valid nodes are maintained
in a buffer that has two components — a queue to maintain
these nodes in top-down order, and a hash table to store the
edit distance for each valid node. By the way Algorithm 5.1
operates, the top-down order is maintained without the need
for an explicit sort.

The algorithm is initialized for the empty input string.
This corresponds to marking the root and all nodes reach-
able within distance k from the root as valid (Steps 1-4).
Finally, just as for the exact case, we return all leaf nodes
reachable from the valid nodes. Note that the edit distance
ordering can be ensured by sorting the node distances before
retrieving the leaf nodes reachable from them.

Figure 6 illustrates how the algorithm operates on a
database consisting of three strings — Johnny, Josef and
Bond. The input string being entered is Jonn. The shaded
nodes denote the valid nodes and the edit distances are
shown beside them.

J B

O

S H

E

F

N

N

Y

O

N

D

J B

O

S H

E

F

N

N

Y

O

N

D

0

1 1

Input: Input: J
1

1

1 0

J B

O

S H

E

F

N

N

Y

O

N

D

J B

O

S H

E

F

N

N

Y

O

N

D

Input: Jon Input: Jo

1

0 1

1 1

1

1 1

1

1

J B

O

S H

E

F

N

N

Y

O

N

D

Input: Jonn

1

Figure 6: Illustrating Algorithm 5.1

Algorithm 5.2 Algorithm for Buffered k-Extension Strat-
egy

Input: String s1 input incrementally with new
character being appended at each step, edit threshold k and
transition length len.

1. Set current threshold = 0
2. For each character c of the input
3. if (length of s1 is len)

RefreshValidNodes(l)
Return leaf nodes as in Algorithm 5.1

4. else
5. Run Algorithm 5.1 with current threshold

Procedure RefreshValidNodes(l)
1. Match s1 against pre-computed index
2. Mark nodes corresponding to output as valid
3. Set current threshold to k

5.2 Buffered k-Extension Strategy
Efficiency-wise, one of the problems with the full-

extension strategy above is that the number of valid nodes
can be large. For instance, when the input string is empty,
all nodes that are within distance k of the root of the trie
are deemed valid.

We empirically study how the number of valid nodes
changes as we progress in the lookup string. We work with
an address data set consisting of 100 thousand strings (see
Section 6 for more details of the experimental set up). We
select lookup strings at random from the same database and
compute the average number of valid nodes at any given
lookup length, for various edit distance thresholds. The re-
sulting plot is shown in Figure 7. The X-axis shows the
length of the lookup string and the Y-axis plots the number
of valid nodes on a logarithmic scale. As we can see, the
number of valid nodes rises sharply with the edit distance
threshold reaching a maximum of close to 25% of the num-
ber of strings in the data for k = 4, but also drops rather
quickly once some initial portion of the string has been pro-
cessed. This sharp increase in the number of valid nodes
leads to a significant increase in execution time.

In addition to the utility argument presented in Section 2,
this observation further motivates us to consider the buffered
autocompletion strategy. In order to use Algorithm 5.1 to
support this strategy, we need a way to determine the set
of valid nodes at the transition length. While we could ac-
complish this by performing the traversal in Algorithm 5.1,
this would perform poorly as explained above.

1

10

100

1000

10000

100000

0 1 2 3 4 5 6 7 8 9 10
N

o
. o

f
V

al
id

 N
o

d
e

s
(L

o
g

Sc
al

e
)

Lookup Length

k=1 k=2 k=3 k=4

Figure 7: Valid Nodes (log scale) Vs. Lookup
Lengths and Edit Distance Thresholds

We therefore maintain a separate index and invoke an
offline edit distance matching algorithm at the transition
length. The fact that the transition length is small can be
used to pre-compute all edit distance matches. We reduce
the alphabet size by hashing all characters to a small num-
ber of bits. Note that in this process, the edit distance be-
tween two strings can only decrease. In this hashed space,
the number of strings of a small length is not very large.
For instance, if we hash all characters to 4 bits and con-
sider a transition length of 5, the number of possible hashed
strings is 1 million. For each of these, we pre-compute all
distance k neighbors from T . Note that at lookup time, we
need to verify the strings returned from pre-computation to
check whether they are within edit distance k in the orig-
inal alphabet space (this can be achieved via the dynamic
programming algorithm described in Section 3.3.2).

As can be seen from Figure 7, the number of valid states
drops sharply as the transition length increases. By set-
ting an appropriate transition length, we can utilize pre-
computation to overcome the problem with short strings.
This algorithm is outlined in Figure 5.2. Indeed, we provide
a formal basis for this intuition in Section 5.3.

5.3 Analysis
We now formally analyze the trie-based algorithms pro-

posed above. We first analyze them from the point of view
of autocompletion, and then from the point of view of offline

edit distance matching. Owing to lack of space, all proofs
are omitted.

5.3.1 Autocompletion
For the Full k-Extension strategy, if we are required to

output all k-extensions at each step, then Algorithm 5.1 in
a sense does the minimal amount of work — the number of
valid nodes at each point is at most 2k+1 times the number
of strings that are returned in this step. Algorithm 5.1 tran-
sitions from one set of valid nodes to the next in time linear
in the number of such nodes. Suppose that the eventual
lookup string s consists of m characters. Then, we perform
autocompletion m times. Let the total output size of these
completions across all m steps be ACOutput(s). We also
count the running time of Algorithm 5.1 over all m charac-
ter appends.

Lemma 1. Algorithm 5.1 runs in time O(k·ACOutput(s)).

Note that this is the worst case. In practice, the number
of valid states is likely to be much smaller since the trie
compresses common prefixes.

For the Buffered strategy, a similar analysis holds after
the transition length. At the transition length, since the
output is pre-computed in the hashed space, there is addi-
tional work in verifying the edit distance condition in the
original alphabet space. We therefore need to analyze the
probability of false positives produced after hashing.

Let the original alphabet size be σ and the size of the
hashed alphabet be γ. We can show the following result
assuming a perfect hash function h. Given string s, we refer
to its hash image as h(s).

Lemma 2. Suppose that ed(s1, s2) > c · k and that both
strings consist of unique characters from the alphabet Σ.
Then the probability that ed(h(s1), h(s2)) ≤ k is at most

(1
γ

)
(c−1)k

6 .

This result can be generalized to the case where each char-
acter appears at most a bounded number of times.

5.3.2 Edit Distance Matching
Observe that by construction, both Algorithm 5.1 and Al-

gorithm 5.2 are algorithms for edit distance matching. More
precisely:

Property 3. For a lookup string s, consider the set of
active nodes after all characters of s have been consumed
that also correspond to full strings in T . These full strings
are exactly the set of strings within edit distance k of s.

We also analyze the running time of this algorithm viewed
as an edit distance matching algorithm. The cost of Al-
gorithm 5.1 is proportional to the total number of nodes
in the trie that are considered valid in some iteration. At
each step, the valid nodes are precisely those that are within
edit distnace k of the string typed thus far. Based on this
observation, we can show that:

Lemma 3. Algorithm 5.1 adapted for edit distance match-
ing of a string of length m runs in time O(m · min((m +
1)k(σ + 1)k, |T |)).

The question arises whether the buffered strategy can be
shown to be formally better. Assuming that the transition
length b << m, the length of the entire lookup string, as

is the case in practice, the worst case cost stays the same,
which raises the question whether the running time is better
on average. We perform an analysis for the case of a con-
stant sized alphabet, since this assumption holds once the
characters are hashed. (As noted above, the scope for an
excessive number of hash collisions is low.) We obtain the
following result. Here, Output(s) denotes the output of edit
distance matching for string s.

Lemma 4. Suppose we are performing edit distance
matching for a constant edit distance k. Suppose that the
strings in T are generated as follows. We fix a skeleton of
table T where for each string, its length is fixed. We then
generate each string by choosing each character indepen-
dently uniformly at random from an alphabet of constant
size γ > 1.

Consider Algorithm 5.2 with transition length O(log |T |).
The lookup time for string s of length m is O(m+Output(s))
with high probability.

We note that the above analysis merely merely provides a
principled basis for our approach. In particular, we do not
necessarily choose the transition length in accordance with
the above result.

5.4 Top-l Semantics
As noted in Section 2 we can order the extensions even in

the case of exact autocompletion via a static score associated
with each string in T . This ordering can be used to return
only the top-l extensions. This further helps in keeping the
output size small.

In the presence of string edits, we similarly have the option
of returning only the top-l extensions sorted by a ranking
function Score which combines the edit distance with the
static score of a string in a monotonic fashion (as described
in Section 3.2). Finding all extensions and then sorting them
by their score can be inefficient since the number of exten-
sions can be large whereas we only want to return the top-l.

We address this by pre-computing the top-l completions
by static score for each node in the trie. For exact autocom-
pletion, we use this to simply read off the top-l extensions
from the current node in the trie.

When allowing for edits, we have multiple valid nodes in
the trie. Therefore we merge the sorted lists corresponding
to each valid node to obtain the overall top-l. Since the
overall score is monotonic in the static score and the edit
distance, we can invoke any of the previously published al-
gorithms such as the Threshold Algorithm [6] that perform
early termination when computing the top-l results.

We can extend this idea to the case of the q-gram based
algorithms by viewing the q-gram technique as a way of
obtaining the valid nodes in the trie at each step.

6. EXPERIMENTS
In this Section, we discuss our empirical study of error-

tolerant autocompletion. The goals of our study are:

1. To measure the effectiveness of incorporating error tol-
erance in autocompletion by studying the number of
key strokes saved when typing.

2. To compare the performance of the Full and Buffered
strategies for error-tolerant autocompletion.

3. To compare the performance of trie-based autocom-
pletion with the q-gram based algorithms.

4. To compare the performance of online autocompletion
against offline edit distance matching algorithms.

5. To study the impact of data size on autocompletion
performance.

We first discuss some details of our implementation and
the experimental setting.

6.1 Experimental Setting

6.1.1 Implementation Details
Our prototype is implemented in managed code (C#). All

of our implementation is in-memory. The trie is compressed
in order to reduce its memory footprint. Specifically, we
identify “chains” in the trie where no node has more than
one child. These chains are compressed by creating only one
node per chain that represents the entire chain. This tech-
nique yields significant compression since the trie of data
sets we encounter in practice have a large number of chains.
We store a separate table of the top-l completions at each
node in a separate (in-memory) table. As noted in Sec-
tion 5.1, the set of active nodes is maintained using a queue
and a hash table. For the buffered autocompletion strategy,
we consider various transition lengths up to 7 characters set-
ting the hashed alphabet size appropriately so that the total
number of strings for which we perform pre-computation is
at most 2 million. We pick the best transition length. We
refer to the trie-based algorithms as Trie in this section.

For the q-gram based algorithm, we study three of
the state-of-the-art signature schemes — Locality Sensitive
Hashing (LSH) [7], PartEnum (PE) [1] and the improved
Prefix Filtering (PF) technique proposed recently [21]. LSH
is an approximate technique that can miss some results with
a tunable probability. We configure LSH so that this failure
probability is 5%. In contrast, both PE and PF are accurate
— they are guaranteed not to miss any results. For each of
these signature schemes, we do not perform any set-based
post-filtering once the signatures are looked up. This is be-
cause we require an edit distance check that incorporates
prefixes and doing a set-based verification for all prefixes
would be wasteful. Our implementation of the q-gram based
indexes is also in-memory. Each of these signature schemes
is parameterized. We manually choose these settings to ob-
tain the best performance. We report the best results over
all accurate and approximate signature schemes. We refer
to these results as QGram Accurate and QGram Approx. re-
spectively. Since accurate schemes are also approximate, the
results for QGram Approx. can never be worse than those
for QGram Accurate.

6.1.2 Data
We report results over two real-world data sets. The first

is a collection of author names from DBLP [5] (DBLP). This
data set has 550000 names and the average string length
is 14. The second data set we use is a collection of pro-
prietary addresses (Address) that has a total of 1.7 million
addresses of average length 36. We use a subset of 500k
addresses for most experiments.

Our experiments are run on a workstation running Mi-
crosoft Windows Server 2003 with a 3.6GHz Intel Xeon pro-

Trie QGram QGram QGram QGram
(Approx.) (Acc.) offline offline

(Approx.) (Acc.)
DBLP 121 777 777 248 248

Address 173 2378 2608 162 356

Figure 8: Memory Consumption (MB)

cessor and 8GB of main memory. Figure 8 reports the mem-
ory consumption of various techniques in MB. For the Trie
algorithms, the memory consumed counts the space for pre-
computation. For the QGram techniques, we report the
minimum memory consumed among all relevant signature
schemes (for their best performing parameter choices). We
find that the memory consumption of Trie is significantly
better than either of the q-gram approaches. The space
consumption of the online q-gram approaches is significantly
higher because the number of signatures generated is much
larger — we generate signatures not only for a string but
also many of its prefixes. Thus, we find that the space con-
sumption is worse when the strings are longer as is the case
with addresses. As a point of comparison, we also report
the memory consumption of offline techniques. We find that
the memory consumption of Trie is comparable to the space
consumed by the offline indexes for the Address data and
substantially better for the DBLP data set.

6.2 Effectiveness of Error Tolerance in Auto-
completion

In this experiment, we empirically study how critical error
tolerance is when performing autocompletion. Our method-
ology is as follows. We fix a data set and a set of pairs of
strings obtained by performing a separate “fuzzy” self-join
on the data set at a small distance threshold. This rep-
resents pairs that that are different representations of the
same underlying (author or address) entity.

For each of these pairs (s1, s2), we fix s1 as the lookup
string and measure the total number of key strokes needed
to find s2. In the absence of autocompletion, this number is
the number of characters in s1. In the presence of autocom-
pletion, we count the number of characters of s1 need to be
entered before s2 appears in the top 10 results of autocom-
pletion, and the number of key strokes needed to navigate
the top 10 list before finding s2. The difference between the
above yields the number of key strokes saved due to auto-
completion. We measure this both for exact autocompletion
and error-tolerant autocompletion for various settings of the
autocompletion edit distance threshold, denoted k.

Data Set k=0 k=1 k=2
DBLP 2.84 3.53 4.39

Address 11.65 16.24 23.98

Figure 9: Key Strokes Saved Per Lookup String

Figure 9 reports the results of our study. We report the
average number of key strokes saved per lookup string for
various values of error threshold k. On the DBLP data
set, we observe that in contrast with exact autocompletion
(k = 0), 54.58% additional key strokes are saved when auto-
completion is performed with threshold 2 for the DBLP data
set. For the Address data set that consists of larger strings,

more than 100% additional key strokes are saved. Even
for k = 1, we find that close to 24% additional keystrokes
are saved for DBLP and the corresponding number for Ad-
dress is close to 39%. This indicates that tolerating errors
when performing autocompletion significantly reduces the
user’s typing.

6.3 Autocompletion Strategy

1

10

100

1000

10000

100000

1 2 3

Lo
o

ku
p

 T
im

e
 (

m
s)

Edit Distance

Buffered Full

Figure 10: Full Vs Buffered (log scale): DBLP

We first compare the Full and Buffered strategies. The
transition length used is 7 with all characters hashed to 3
bits. In order to make the comparison meaningful, we
use the autocompletion algorithms to perform edit distance
matching. We perform the comparison only for the Trie
approach — the results are similar even for q-gram based
approaches. Figure 10 reports the result of our study over
the DBLP data set (the results look similar for the Address
data). The X-axis shows the edit distance threshold used
and the Y-axis reports the execution time for 1000 lookups
in milli-seconds, on a log scale. We find that the full strat-
egy is at least 5 times slower than the buffered strategy for
k = 2 and k = 3.

Recall from Section 5.2 that the primary reason for this
disparity is that the number of valid nodes in the initial
stages of autocompletion is extremely large for the Full strat-
egy. This number sharply drops once a few characters of
the input have been processed. Thus, the initial overhead
incurred by the Full strategy is saved. Henceforth in this
section, we do not consider the Full strategy.

6.4 Efficiency: Trie Vs NGram
The rest of this section studies the overall efficiency of

our autocompletion. We first compare the Trie and q-gram
based autocompletion algorithms for the same (buffered)
strategy. Figure 11 shows the comparison over both the
data sets. We vary the edit threshold plotted on the X-axis
and compute the lookup time aggregated over 1000 lookups,
plotted on the Y-axis on a log scale. We find that the trie-
based Algorithm 5.2 significantly out-performs the ngram
based algorithm, irrespective of the signature scheme cho-
sen often by an order of magnitude. The primary reason
for this is that Algorithm 5.2 pretty much navigates at each
step from the previous answer set to the current answer set.
Instead, the q-gram approach needs to access the rid-list
corresponding to several q-grams. Over the course of a long
string such as an address string, this can be quite expensive.
Since the trie-based Algorithm 5.2 for the Buffered strategy
is the most efficient, we only report for this algorithm in the
rest of this section.

6.5 Per-Character Response Time
Recall that in order to look instantaneous to the user, the

response time must be less than 100ms. In a client-server
setting, this 100ms bound includes not only the autocomple-
tion time, but other overheads such as the communication
overheads. Thus, it is desirable to make the autocompletion
cost itself minimal. In this section, we report the average
per-character execution time of the Trie-based Algorithm 5.2
for the Buffered strategy. We find the per-character response
times to be 0.39ms for the DBLP data set and 0.32ms for
the Address data set even when the edit distance threshold
is 3.

6.6 Online Vs Offline
We next compare the performance of our algorithm to

offline edit distance matching algorithms. As discussed in
Section 2.3, we expect the offline algorithms to perform bet-
ter and our goal is to measure the difference in performance
and contrast this difference with the case of exact matching.
Accordingly, we also measure the performance of trie-based
exact autocompletion by setting the edit distance threshold
to 0. We use hashing as our method of performing offline
exact matching.

Figure 12 plots the results. The figure on the left re-
ports the results for the Address data and the one on the
right, for the DBLP data. The X-axis shows the edit dis-
tance threshold and the Y-axis plots the execution time (in
milli-seconds) for 1000 lookups on a log scale. For this ex-
periment, in addition to the q-gram based offline matching
algorithms, we also consider previously proposed offline trie-
based pattern matching algorithms [18]. As noted above, we
only report the best running times over all offline algorithms
we consider.

For the Address data, as expected, the offline algorithms
out-perform the online algorithm described in this paper.
The performance gap is close to an order of magnitude.
However, this gap is worse for exact matching where the
online approach is more than two orders of magnitude more
expensive.

For the DBLP data, the Trie algorithm is much more com-
petitive with the offline algorithms. When compared to the
accurate offline algorithms, for k = 1, the online approach
is about twice as worse, whereas for k = 2, 3, the gaps drop
to 25% and 12% respectively. Only the QGram Approx.
technique performs substantially better for k = 3, but this
comes with the tradeoff that 5% of the results can be missed.
The main reason for this smaller gap in the DBLP data is
that the strings are much shorter compared to addresses.
For the q-gram based approaches, the set-similarity thresh-
old for the underlying set-similarity match is much lower for
the same value of k, leading to a larger execution time for
all of the signature schemes. In contrast, the gap between
exact offline matching and exact autocompletion remains at
more than two orders of magnitude for the DBLP data.

We recall that our goal as discussed in Section 2.3 is that
the online vs. offline performance gap be comparable to
the case of exact matching. We can see from the above
discussion that we meet this goal on the data sets we study.

6.7 Overhead of Error Tolerance
We can use the results in Figure 12 to also study the

overhead of error tolerance in autocompletion. As expected,
the greater the magnitude of error we wish to tolerate, the

1

10

100

1000

10000

100000

1 2 3

Lo
o

ku
p

 T
im

e
 (

m
s)

Edit Distance

Trie Qgram (Accurate) Qgram (Approx.)

1

10

100

1000

10000

100000

1 2 3

Lo
o

ku
p

 T
im

e
 (

m
s)

Edit Distance

Trie Qgram (Accurate) Qgram (Approx.)

Figure 11: Efficiency of Trie Vs NGram: (a)Address, (b)DBLP

0.1

1

10

100

1000

10000

100000

0 1 2 3

Lo
o

ku
p

 T
im

e
 (

m
s)

Edit Distance

Trie (Online) Offline (Accurate) Offline (Approx.)

0.1

1

10

100

1000

10000

0 1 2 3
Lo

o
ku

p
 T

im
e

 (
m

s)
Edit Distance

Trie (Online) Offline (Accurate)

Figure 12: Autocompletion: Online Vs Offline (Log Scale): (a)Address, (b)DBLP

greater is the price we pay. Performing autocompletion with
k = 1 is a factor of 2 times worse than exact autocomple-
tion (k = 0), whereas the gap between k = 3 and k = 0
(exact autocompletion) is close to two orders of magnitude
for both the data sets. This is not very surprising. In the
offline world, there is an even worse price to be paid for error
tolerance — observe that the gap between edit distance 3
and exact matching is close to four orders of magnitude.

6.8 Effect of Data Size

1

10

100

1000

10000

100000

1 2 3

Lo
o

ku
p

 T
im

e
 (

m
s)

Edit Distance

100k

500k

1M

Figure 13: Increasing Data Size: Address

We next study the effect of data size by choosing subsets
of the address data of size 100k, 500k and 1 Million records.
Figure 13 shows the results. For each data set, we compute
the running time for edit thresholds 1 to 3. The X-axis shows
varies the edit distance threshold. For each value of the
threshold, we report the lookup time for the different subsets

of the address data. Overall, we see that the execution time
increases linearly with the data size. This is consistent with
the analysis captured in Lemma 3 and Lemma 4.

7. RELATED WORK
Autocompletion is a widely used mechanism to find in-

formation quickly. It has been adopted in a variety of ap-
plications including program editors such as Visual Studio,
command shells such as the Unix Shell, search engines such
as Google, Live and Yahoo, and desktop search. More re-
cently, it is also gaining popularity for mobile devices such
as cell phones. These applications often work over a pre-
defined dictionary of strings over which autocompletion is
performed. As noted in Section 1, despite the availability of
variants of error-tolerant autocompletion in a limited num-
ber of these products, little is known about their underlying
algorithms.

There is also a vast body of work on predictive autocom-
pletion [4, 8, 16] where the idea is to use information re-
trieval techniques, language models and learning to suggest
potential completions. While error tolerance is also appli-
cable in these approaches, our paper focuses on the case
where autocompletion is performed on the basis of matches
in a pre-specified table.

There has been recent work in the research community
on autocompletion. Bast and Weber [2] propose an auto-
completion method where we have an underlying document
corpus and the goal is to return word-level completions such
that the resulting multi-word query has non-empty results.
Nandi and Jagadish [16] propose a phrase prediction algo-

rithm as a part of the MUSIQ project [11], targeting scenar-
ios such as email composition and introduce the concept of a
significant phrase for this purpose. To the best of our knowl-
edge, none of the above bodies of work on autocompletion
focus on systematically studying error-tolerant autocomple-
tion in a database lookup scenario.

A functionality that is closely related to autocompletion
and is also widely available is autocorrection where at the
end of a string typed in, the system suggests corrections
by matching it against a dictionary. This functionality is
present in text editors such as Microsoft Word and is also
offered recently by search engines. The key difference from
autocompletion is that autocorrection and spelling sugges-
tions are offered at the end of the input string, presumably
through an offline error-tolerant match against a pre-defined
dictionary. In contrast, autocompletion is online.

Another body of work that is closely related to this paper
is the prior work on computing edit distance matches of a
(small) pattern string P in a (large) piece of text T [10, 13,
17, 18, 19, 20]. The goal is to find all substrings of T that
are within a small edit distance of P . These algorithms can
be divided into two parts — algorithms where there is no
preprocessing of the text T [17], and algorithms where we
are allowed to create an index over T to match the pattern
string faster [18]. The body of work that closely relates to
this paper clearly is the latter class of algorithms. Some
of these algorithms proceed over suffix tries/trees which is
similar to our technique, but their basic approach is not on-
line in the sense required by autocompletion. That is, they
do not consume the pattern string character by character.
In contrast, our algorithms process the lookup string incre-
mentally.

Viewed purely as an edit distance matching algorithm the
running time of our algorithm is O(m · min((m + 1)k(σ +
1)k, N)) where m is the size of the pattern string, k is the
edit distance threshold and N is the size of the text string.
This is identical to the worst case analysis for the algorithms
proposed in [18]. There is recent work that improves on this
worst case. Specifically, Maáı and Nowak [13] recently pro-
posed the first linear time edit distance matching algorithm.
However, this algorithm is not practical since the size of their
data structure can be unbounded in terms of the input table
size in the worst case.

Finally, there is also the body of work on edit distance
matching using q-grams [1, 3, 9, 21]. These algorithms are
also “offline” in the sense they do not consume the lookup
string character by character. We incorporate these tech-
niques in our paper for autocompletion (Section 4).

8. CONCLUSIONS
We considered the problem of performing autocompletion

when a record is being looked up against a database table.
By viewing autocompletion as an “online” lookup, we ar-
gued that just as “offline” lookup needs to be error-tolerant,
so does autocompletion. We took a first step in this paper
in designing an error-tolerant autocompletion based on edit
distance as our similarity function. We proposed algorithms
for autocompletion using both on q-gram based techniques
and trie traversal techniques coupled with pre-computation
for short strings. Our empirical study indicated both the
utility of error-tolerant autocompletion and the fact that
we can perform error-tolerant autocompletion with perfor-
mance trade offs similar to the case of exact autocompletion.

Autocompletion is used in a wide variety of applications
depending on the nature of which, other issues need to be ad-
dressed such as performing autocompletion in a client-server
setting. This paper however focuses on the algorithmic as-
pects of error-tolerant autocompletion which are relevant re-
gardless of the specific application. The issue of performing
error-tolerant autocompletion for other similarity functions
also needs to be addressed. We hope to tackle these ques-
tions in future work.

9. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set

similarity joins. In VLDB, 2006.

[2] H. Bast and I. Weber. Type Less, Find More: Fast
Autocompletion Search with a Succinct Index. In SIGIR,
2006.

[3] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
2006.

[4] J. Darragh, I. Witten, and M. James. The reactive
keyboard: a predictive typing aid. Computer, 11(23):41–49,
1990.

[5] Dblp. http://dblp.uni-trier.de/.
[6] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation

algorithms for middleware. In PODS, 2001.
[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In VLDB, 1999.
[8] K. Grabski and T. Scheffer. Sentence completion. In 27th

International Conference on Research and Developement
in Information Retrieval, 2004.

[9] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate string
joins in a database (almost) for free. In VLDB, 2001.

[10] T. N. D. Huynh, W. K. Hon, T. W. Lam, and W. K. Sung.
Approximate string matching using compressed suffix
arrays. Theoretical Computer Science, 2006.

[11] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian,
Y. Li, A. Nandi, and C. Yu. Making database systems
usable. In SIGMOD, 2007.

[12] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage:
similarity measures and algorithms. In SIGMOD, 2006.

[13] M. G. Maáı and J. Nowak. Text indexing with errors.
Journal of Discrete Algorithms, 5(4):662–681, 2007.

[14] R. Miller. Response time in man-computer conversational
transactions. In Proceedings of the AFIPS Fall Joint
Computer Conference, 1968.

[15] A. Nandi and H. V. Jagadish. Assisted querying using
instant-response interfaces. In SIGMOD Conference, 2007.

[16] A. Nandi and H. V. Jagadish. Effective phrase prediction.
In VLDB, 2007.

[17] G. Navarro. A guided tour to approximate string matching.
ACM Computing Surveys, 33(1):31–88, 2001.

[18] G. Navarro, R. A. Baeza-Yates, E. Sutinen, and J. Tarhio.
Indexing methods for approximate string matching. IEEE
Data Eng. Bull., 24(4):19–27, 2001.

[19] G. Navarro, T. Kida, M. Takeda, A. Shinohara, and
S. Arikawa. Faster approximate string matching over
compressed text. In Data Compression Conference, pages
459–468, 2001.

[20] E. Ukkonen. Approximate string-matching over suffix trees.
In Combinatorial Pattern Matching, pages 228–242, 1993.

[21] C. Xiao, W. Wang, and X. Lin. Ed-Join: An Efficient
Algorithm for Similarity Joins With Edit Distance
Constraints. In VLDB, 2008.

