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ABSTRACT
We formalize a realistic model for computations over massive
data sets. The model, referred to as the adversarial sketch
model, unifies the well-studied sketch and data stream mod-
els together with a cryptographic flavor that considers the
execution of protocols in “hostile environments”, and pro-
vides a framework for studying the complexity of many tasks
involving massive data sets.

The adversarial sketch model consists of several partici-
pating parties: honest parties, whose goal is to compute a
pre-determined function of their inputs, and an adversarial
party. Computation in this model proceeds in two phases.
In the first phase, the adversarial party chooses the inputs
of the honest parties. These inputs are sets of elements
taken from a large universe, and provided to the honest par-
ties in an on-line manner in the form of a sequence of insert
and delete operations. Once an operation from the sequence
has been processed it is discarded and cannot be retrieved
unless explicitly stored. During this phase the honest par-
ties are not allowed to communicate. Moreover, they do
not share any secret information and any public informa-
tion they share is known to the adversary in advance. In
the second phase, the honest parties engage in a protocol in
order to compute a pre-determined function of their inputs.

In this paper we settle the complexity (up to logarithmic
factors) of two fundamental problems in this model: testing
whether two massive data sets are equal, and approximating
the size of their symmetric difference. We construct explicit
and efficient protocols with sublinear sketches of essentially
optimal size, poly-logarithmic update time during the first
phase, and poly-logarithmic communication and computa-
tion during the second phase. Our main technical contribu-
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tion is an explicit and deterministic encoding scheme that
enjoys two seemingly conflicting properties: incrementality
and high distance, which may be of independent interest.

Categories and Subject Descriptors
F.1.1 [Theory of Computation]: Models of Computation;
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity.

General Terms
Algorithms, Theory.

Keywords
Massive data sets, sketch model, data stream model.

1. INTRODUCTION
The past two decades have introduced striking techno-

logical breakthroughs in information collection and storage
capabilities. These breakthroughs allowed the emergence of
enormous collections of data, referred to as massive data
sets, such as the World Wide Web, Internet traffic logs, fi-
nancial transactions, the human genome, census data and
many more. This state of affairs introduces new and excit-
ing challenges in analyzing massive data sets and extracting
useful information.

From a computational point of view, most of the tradi-
tional computational models consider settings in which the
input data is easily and efficiently accessible. This is, how-
ever, usually not the case when dealing with massive data
sets. Such data sets may either be stored on highly con-
strained devices or may only be accessed in an on-line man-
ner without the ability to actually store any significant frac-
tion of the data. In recent years several computational ap-
proaches which are suitable for computing over massive data
sets have been developed, such as sketch and lossy compres-
sion schemes [13, 23], data stream computations [3, 21, 26],
and property testing [25, 36].

Motivated by the challenges posed by computational tasks
involving massive data sets, and by the existing approaches
for performing such tasks, we formalize a realistic model
of computation which we refer to as the adversarial sketch
model. This model can be seen as unifying the standard
sketch model and the data stream model together with a
cryptographic flavor that considers the execution of proto-
cols in “hostile environments”. The model under consider-
ation provides a framework for studying the complexity of



many fundamental and realistic problems that arise in the
context of massive data sets. In what follows we briefly de-
scribe the standard sketch model and the data stream model,
as well as our approach for modeling computations in hostile
environments in this context.

The standard sketch model. In the standard sketch
model the input is distributed among several parties. Each
party runs a compression procedure to obtain a compact
“sketch” of its input, and these sketches are then delivered
to a referee. The referee has to compute the value of a pre-
determined function applied to the inputs of the parties by
using only the sketches and not the actual inputs. The par-
ties are not allowed to communicate with each other, but
are allowed to share a random reference string which is cho-
sen independently of their inputs. This string can be used,
for example, to choose a random hash function that will
be applied by each party to obtain a compressed sketch of
its input. The standard sketch model fits many scenarios
in which a massive data set is partitioned and stored in a
distributed manner in several locations. In each location a
compressed sketch of the stored data is computed, and then
sent to a central processing unit that uses only the sketches
and not the actual data. The main performance criterion for
protocols in this model is the size of the sketches. We note
that this model is the public-coin variant of the simultaneous
communication model introduced by Yao [40].

The data stream model. In the data stream model the
input is received as a one-way stream. Once an element from
the stream has been processed it is discarded and cannot be
retrieved unless it is explicitly stored in memory, which is
typically small relative to the size of the data stream. The
data stream model captures scenarios in which computations
involve either massive data sets that are stored on sequen-
tial magnetic devices (for which one-way access is the most
efficient access method), or on-line data which is continu-
ously generated and not necessarily stored. The main per-
formance criteria for algorithms in this model is the amount
of storage they consume and the amount of time required for
processing each element in the stream. For a more complete
description of this model, its variants and the main results
we refer the reader to a survey by Babcock et al. [5].

The adversarial factor. In the standard sketch model de-
scribed above, it is assumed that the parties share a random
string, which is chosen independently of the inputs held by
the parties1. In many real-life scenarios, however, it is not
at all clear that such an assumption is valid. First, since the
parties are assumed not to communicate with each other,
this enforces the introduction of trust in a third party to
set up the random string. In many situations such trust
may not be available, and if the shared string is set up in
an adversarial manner there are usually no guarantees on
the behavior of the protocol. That is, there may be “bad”
choices of the shared string that cause the protocol to fail
with very high probability. Second, even when a truly ran-
dom string is available, this string may be known to an ad-
versary as well (and in advance), and serve as a crucial tool
in attacking the system. For example, an adversary may be
able to set the inputs of the parties after having seen the

1We note that in the data stream model, when dealing only
with insertions, several deterministic algorithms are known,
most notably those based on the notion of core-sets (see, for
example, [2, 6]).

random string. Thus, when considering computations in a
setting where the inputs of the parties may be adversarially
chosen, it is usually not justified to assume independence
between the shared random string and the inputs of the
parties2. For these reasons we are interested in exploring
the feasibility and efficiency of computations over massive
data sets in hostile environments. In such environments the
honest parties do not share any secret information, and any
public information they share is known to the adversary in
advance who may then set the inputs of the parties. Proto-
cols designed in such a model have significant security and
robustness benefits.

Sketching in adversarial environments. We consider a
model with three participating parties: two honest parties,
Alice and Bob, and an adversarial party3. Computation
in this model proceeds in two phases. In the first phase,
referred to the as the sketch phase, the adversarial party
chooses the inputs of Alice and Bob. These inputs are sets
of elements taken from a large universe U , and provided to
the honest parties in an on-line manner in the form of a se-
quence of insert and delete operations. Once an operation
from the sequence has been processed it is discarded and
cannot be retrieved unless explicitly stored. This phase de-
fines the input sets SA ⊆ U and SB ⊆ U of Alice and Bob,
respectively. During this phase the honest parties are com-
pletely isolated in the sense that (1) they are not allowed
to communicate with each other, and (2) the sequence of
operations communicated to each party is hidden from the
other party. In addition, we assume that the honest parties
do not share any secret information, and that any public in-
formation they share is known to the adversary in advance.
In the second phase, referred to as the interaction phase,
Alice and Bob engage in a protocol in order to compute (or
approximate) a pre-determined function of their input sets.

When designing protocols in the adversarial sketch model
we are mainly interested in the following performance crite-
ria: (1) the amount of storage (i.e., the size of the sketches),
(2) the update time during the sketch phase (i.e., the time
required for processing each of the insert and delete oper-
ations), and (3) the communication and computation com-
plexity during the interaction phase.

The most natural question that arises in this setting is
to characterize the class of functions that can be computed
or approximated in this model with sublinear sketches and
poly-logarithmic update time, communication and computa-
tion. In the standard sketch model, a large class of functions
was shown to be computed or approximated with highly
compressed sketches whose size is only poly-logarithmic in
the size of the input. Therefore, one can ask the rather
general question of whether the adversarial sketch model
“preserves sublinearity and efficiency”. That is, informally:

Is any function, computable in the standard sketch

2Typical examples include: (1) Plagiarism detection – two
parties wish to compute some similarity measure between
documents. In this case the inputs (i.e., the documents)
are chosen by the assumed plagiarizer. (2) Traffic logs com-
parison: two internet routers wish to compare their recent
traffic logs. The inputs of the routers can be influenced by
any party that can send packets to the routers.
3For concreteness we focus in this informal discussion on the
simplest case where only two honest parties are participat-
ing in the computation. We note that the model naturally
generalizes to any number of honest parties.



model with highly compressed sketches, also computable
in the adversarial sketch model with sublinear sketches
and poly-logarithmic update time, communication and

computation?

In fact, one can consider a relaxed variant of this ques-
tion that does not take into account the adversarial factors.
Namely, the question of characterizing the class of functions
that can be computed in the standard sketch model in an
incremental manner. A negative answer to this question in
turn implies a negative answer to the above question.

1.1 Our Contributions
In this paper we study the two fundamental problems of

testing whether two massive data sets are equal, and approx-
imating the size of their symmetric difference. For these
problems we provide an affirmative answer to the above
question. We construct explicit and efficient protocols with
sketches of essentially optimal size, and poly-logarithmic up-
date time, communication, and computation. We settle the
complexity, up to logarithmic factors, of these two problems
in the adversarial sketch model.

Our main technical contribution, that serves as a build-
ing block of our protocols, is an explicit and determinis-
tic encoding scheme that enjoys two seemingly conflicting
properties: incrementality and high distance. That is, the
encoding guarantees that (1) for any set S and element x
the encodings of the sets S ∪ {x} and S \ {x} can be easily
computed from the encoding of S by modifying only a small
number of entries, and (2) the encodings of any two distinct
sets significantly differ with respect to a carefully chosen
weighted distance. In addition, the scheme enables efficient
(linear time) decoding. We believe that an encoding scheme
with these properties can find additional applications, and
may be of independent interest. In what follows we formally
state our results4.

Equality testing. An equality testing protocol in the ad-
versarial sketch model is parameterized by the size N of the
universe of elements from which the sets are taken, and by
an upper bound K on the size of the sets to be tested5. Our
construction provides an explicit protocol, and in addition
a non-constructive proof for the existence of a protocol that
enjoys slightly better guarantees6. We prove the following
theorem:

Theorem 1.1. In the adversarial sketch model, for every
N , K and 0 < δ < 1 there exists a protocol for testing the
4Our protocols have the property that, during the inter-
action phase, the amount of computation is linear in the
amount of communication. Therefore, for simplicity, we
omit the computation cost and only state the communica-
tion complexity.
5We note that the upper bound K on the size of the sets only
imposes a restriction on the size of the sets at the end of the
sketch phase. During the sketch phase the parties should be
able to deal with sets of arbitrary size, and nevertheless the
size of the sketches refers to their maximal size during the
sketch phase. A possible adversarial strategy, for example,
is to insert all the N possible elements and then to delete
N −K of them.
6The poly-logarithmic gap between the implicit and the ex-
plicit parameters in this paper is due to a poly-logarithmic
gap between the optimal and the known explicit construc-
tions of dispersers (see, for example, [38]). Any improved
explicit construction of dispersers will, in turn, improve our
explicit protocols.

equality of two sets of size at most K taken from a universe
of size N with the following properties:

1. Perfect completeness: For any two sequences of insert
and delete operations communicated to the parties that
lead to the same set of elements, the parties always
output Equal.

2. Soundness: For any two sequences of insert and delete
operations communicated to the parties that do not
lead to the same set of elements, the parties output
Not Equal with probability7 at least 1− δ.

3. The size of the sketches, the update time during the
sketch phase, and the communication complexity dur-
ing the interaction phase are described in Table 1.

A rather straightforward reduction of computations in the
private-coin simultaneous communication model to compu-
tations in the adversarial sketch model implies that the size
the sketches in our protocols is essentially optimal (the fol-
lowing theorem is stated for protocols with constant error).

Theorem 1.2. Equality testing in the adversarial sketch

model requires sketches of size Ω
(√

K log(N/K)
)
.

Approximating the size of the symmetric difference.
We construct a protocol that enables two parties to approx-
imate the size of the symmetric difference between their two
input sets determined during the sketch phase. We prove
the following theorem:

Theorem 1.3. In the adversarial sketch model, for every
N , K, 0 < δ < 1 and constant 0 < ρ ≤ 1, there exists a pro-
tocol for approximating the size of the symmetric difference
between two sets of size at most K taken from a universe of
size N with the following properties:

1. For any two sequences of insert and delete operations
communicated to the parties that lead to sets with sym-
metric difference of size ∆OPT, the parties output ∆APX

such that

Pr [∆OPT ≤ ∆APX ≤ (1 + ρ)∆OPT] > 1− δ .

2. Sketches of size O
(√

K log N · (log log K + log(1/δ))
)
.

3. Update time O (log K · log N).

4. Communication complexity
O

((
log2 K + log K · log log N

)
(log log K + log(1/δ))

)
.

As with the equality testing protocol, our construction
provides an explicit protocol as well. The explicit protocol
guarantees that Pr [∆OPT ≤ ∆APX ≤ polylog(N)∆OPT] > 1− δ,
and the size of sketches, update time and communication
complexity match those stated in Theorem 1.3 up to poly-
logarithmic factors.

Dealing with multisets and real-valued vectors. For
simplicity, we stated the above results assuming that the
inputs of the parties are sets. Both of our protocols, how-
ever, can in fact be used when the inputs of the parties are
multisets containing at most K distinct elements each, and

7The probability is taken only over the internal coin tosses
of the honest parties.



Non-explicit protocol Explicit protocol

Size of sketches O
(√

K · log N · log(1/δ)
) √

K · polylog(N) · log(1/δ)

Update time O (log K · log N) polylog(N)

Communication O
((

log2 K + log K · log log N
) · log(1/δ)

)
polylog(N) · log(1/δ)

Table 1: The non-explicit and explicit parameters of the equality testing protocol.

even real-valued vectors of length N with at most K non-
zero entries. In these cases, the equality protocol determines
whether the inputs are equal as multisets or as real-valued
vectors, and the symmetric difference protocol approximates
the number of distinct elements in the symmetric difference
between the multisets or the number of non-zero entries in
the difference between the vectors.

For concreteness, in this paper we present our protocols for
multisets, and note that they can be easily adapted for real-
valued vectors given an appropriate representation. When
applied to multisets, an additional parameter of the prob-
lems under consideration is an upper bound, M , on the num-
ber of appearances of any element in each multiset. This
generalization, however, hardly affects the performance of
our protocols. The only change is that the size of sketches,
the update time, the communication and the computation
increase by a multiplicative factor of log M .

1.2 Related Work
Due to the recent blow-up in the emergence of massive

data sets, extensive work has been devoted to designing
sketch-based algorithms for many tasks, such as estimating
various similarity and distance measures, compressed data
structures, histogram maintenance, and many more. It is
far beyond the scope of this paper to present an exhaus-
tive overview of this ever-growing line of work. The reader
may find Bar-Yossef’s Ph.D. thesis [7] (and the many refer-
ences therein) and the Handbook of Massive Data Sets [1] as
sources of preliminary information and reference. We focus
only on the main results that are relevant to our setting.

Gibbons and Matias [23] denoted as synopsis data struc-
tures any data structures that are substantively smaller than
their base data sets. Their goal was to design data struc-
tures that support queries for massive data sets while mini-
mizing the number of disk accesses. They constructed such
data structures for estimating frequency moments, estimat-
ing the number of distinct elements, identifying frequent ele-
ments and maintaining histograms and quantiles. Broder et
al. [13, 14] developed efficient sketching techniques to deter-
mine the syntactic similarity of documents. They defined a
similarity measure known as resemblance, which was shown
to be applicative in eliminating near-duplicates of web pages.
Sketch computations were found useful in particular for ap-
proximate nearest-neighbor algorithms in high-dimensional
spaces by Indyk and Motwani [28] and by Kushilevitz, Os-
trovsky and Rabani [31]. Both of these approaches were
based on compressed sketches for estimating various distance
measures, such as the Hamming distance and Lp norms.
Sketches for approximating such distance measures were also
developed by Feigenbaum et al. [20, 21] and by Indyk and
Woodruff [29]. Additional sketch-based approximations in-
clude an edit distance approximation due to Bar-Yossef,
Jayram, Krauthgamer and Kumar [8], and Cosine similar-
ity and earth mover distance due to Charikar [16]. We note
that the above mentioned results rely on public randomness
which enables highly compressed sketches (usually of poly-

logarithmic size), which are much smaller than the possible
sketches in the adversarial model (given the lower bound
stated in Theorem 1.2).

Compressed sensing. Sketch computations are of key im-
portance in compressed sensing [15, 18], a rapidly developing
field of research in signal processing. Algorithms for com-
pressed sensing receive as input a signal and output a short
sketch of the signal, usually via a small set of non-adaptive
linear measurements, that can be used to approximate the
signal (see, for example, [15, 17, 24, 27]). Compressed sens-
ing is most effective when the signal can be well approxi-
mated using much fewer vectors from some fixed basis than
the signal’s nominal dimension.

Early results on compresses sensing showed that the set
of measurements can be chosen from some distribution, and
the reconstruction algorithm was guaranteed to be correct
for any specific signal with high probability over the choice
of the set of measurements. However, for any set of measure-
ments it may be possible to choose a specific signal on which
the reconstruction fails. Recently, sets of measurements with
significantly stronger uniform recovery properties have been
discovered. Specifically, it is possible to choose one set of
measurements which is “good” (in the above sense) for all
signals. Although this coincides with the approach under-
lying the adversarial sketch model, two desiderata of proto-
cols in the adversarial sketch model are incompatible with
existing compressed sensing mechanisms: poly-logarithmic
update time and sublinear space requirement.

1.3 Overview of Our Techniques
In this section we provide an informal overview of the main

techniques underlying our protocols. We focus here on the
problem of testing whether two massive data sets are equal,
as it already illustrates the main ideas. We first make an
attempt to point out the difficulties of designing an efficient
equality testing protocol in the adversarial sketch model by
demonstrating that known solutions to several relaxations
do not seem to extend to the model under consideration.

Relaxation 1: The standard sketch model. In the
standard sketch model there are highly efficient solutions
which take advantage of the fact that the parties share a ran-
dom string which is chosen independently of their inputs. A
very simple protocol proceeds as follow: The shared random
string is a description of a randomly chosen function h from
a family of pair-wise independent functions that map sets
of size K to {0, 1}. The sketch of each party consists of a
single bit obtained by applying h to its input set8. Clearly,
if the sets are equal then the sketches are equal as well,
and if the sets are not equal then the sketches differ with
probability 1/2 over the choice of h. Such an approach was
demonstrated by Blum et al. [11] (in the context of memory
checking) to efficiently support incremental updates by using

8More specifically, the parties agree ahead of time on a
canonical representation for sets, and apply h to the rep-
resentations of their sets.



ε-biased hash functions [33] instead of pair-wise independent
hash functions.

Relaxation 2: The private-coin simultaneous com-
munication model. The above solution heavily relies on
the shared random string available to the parties. When
such a string is not available, but arbitrary access to the in-
puts during the sketch phase is allowed, the model is equiva-
lent to the private-coin simultaneous communication model
[30, 40] (this is exactly the standard sketch model with-
out shared randomness). In this model the complexity of
the equality function is well-studied and tight bounds are
known. Babai and Kimmel [4] (generalizing Newman and
Szegedy [34]) proved that in any equality testing protocol in
this model it holds that s× t = Ω(K) where s and t are the
amount of communication sent to the referee by the parties
when comparing two K-bit strings.

In the simultaneous communication model there is an ex-
plicit protocol that matches this lower bound. For simplic-
ity we present the protocol for comparing two K-bit strings.
Alice and Bob agree ahead of time on an error-correcting
code C : {0, 1}K → {0, 1}O(K) for which any two distinct
codewords differ on at least a (1 − ε)-fraction of their en-
tries (for some constant 0 < ε < 1). Alice and Bob encode

their inputs, and view the codewords as O(
√

K) × O(
√

K)
matrices. Alice sends a random row to the referee and Bob
send a random column. The referee compares the bits at the
intersection of these row and column, and outputs Equal if
and only if they match. Clearly, if the inputs of the parties
are equal then the bits in the intersection always match, and
if the inputs are not equal then bits differ with probability
at least 1− ε.

Such a solution does not seem to extend to the adversarial
sketch model in which the parties are given only restricted
access to their inputs. The inputs are provided in an on-line
manner and once an operation from the sequence has been
processed it is discarded and cannot be retrieved. Therefore
it does not seem possible for the parties to encode their
inputs in an incremental manner (i.e., with only a small
cost for each update operation) and still obtain codewords
that significantly differ. Overcoming the inherent difficulty
of constructing an incremental encoding scheme with high
distance is the main idea underlying our protocols.

Relaxation 3: Comparing “close” sets. The final re-
laxation we consider is not a relaxation of the model, but a
relaxation of the problem. Suppose that we are guaranteed
that the symmetric difference between the inputs sets SA

and SB of the honest parties is rather small. In this case
there is a simple protocol with highly compressed sketches,
very fast updates and low communication. Denote by ` the
maximal size of the symmetric difference between the two
sets. The honest parties agree ahead of time on a map-
ping T from the universe U of elements to vectors over some
domain with the following simple property: For every ` dis-
tinct elements x1, . . . , x` ∈ U the vectors T (x1), . . . , T (x`)
are linearly-independent. As a concrete mapping, for exam-
ple, we assume that U = [N ] and use T : [N ] → GF(Q)`

defined by T (x) = (1, x, . . . , x`−1) for some prime Q in the
range [N, 2N ]. The sketch of a set S is given by

∑
x∈S T (x),

and is clearly easily updated given an on-line sequence of
insert and delete operations that determine the set S. In
the interaction phase the parties compare their sketches and
output Equal if and only if the sketches are equal. Then, for

equal sets the sketches are always equal. If the sets are not
equal but the size of their symmetric difference is at most
` then the sketches always differ. The property of this so-
lution is that the size of the sketch and the communication
complexity are proportional to the size of the assumed sym-
metric difference between the sets and not to the size of the
sets. We use this solution as a tool in our construction9.

Conflicting properties: incrementality vs. high dis-
tance. Our main technical contribution is a deterministic
encoding that enjoys two seemingly conflicting properties:

• Incrementality: Given an encoding of a set S ⊆ U
and an additional element x ∈ U , the encodings of the
sets S ∪ {x} and S \ {x} can be easily computed from
the encoding of S without having to recompute the
entire encoding of the new set. By “easily computed”
we mean that only a small number of modifications is
required (for example, poly-logarithmic in the size of
the encoding of S).

• High distance: For any two distinct sets SA, SB ⊆ U
of size at most K, the encodings of the sets significantly
differ.

Clearly, if we consider the Hamming distance between code-
words then such an encoding scheme does not exist: take any
set S ⊆ U of size less than K, and an element x /∈ S. Then,
on one hand the incrementality property implies that the
encodings of S and of S∪{x} differ only on very few entries,
while on the other hand the high distance property implies
that they differ on a significant fraction of the entries.

In our construction we manage to circumvent this con-
flict by considering a more generalized weighted distance, in
which different entries are associated with different weights.
More specifically, we map each set S ⊆ U to a logarithmic
number of codewords C(S) = {CS

1 , . . . , CS
k }, and consider

the following distance measure:

dist (C(SA), C(SB)) = 1−
k∏

i=1

(
1− dH

(
CSA

i , CSB
i

))
,

where dH denotes the normalized Hamming distance. This
approach enables us to construct an incremental encoding
scheme in which the above distance between any two dis-
tinct codewords is at least 1 − ε, for constant ε. The chal-
lenge in constructing such an encoding is to minimize the
number k of codewords while enabling incremental updates.
The number k of codewords corresponds in our protocols to
the communication complexity during the interaction phase.
When k = 1, the above distance is the normalized Hamming
distance and in this case, as discussed above, the encoding
cannot be incremental. When k is rather large, the encoding
may be incremental, but this will lead to high communica-
tion complexity in our protocols. In our encoding, we show
that k ≈ log K suffices in order to enjoy “the best of the two
worlds”: updates require only a poly-logarithmic number of
modifications, and the normalized distance between any two
distinct codewords at least is 1− ε.

9Similar ideas are well-known in coding theory and also
found applications in various other settings (for example,
public-key traitor tracing [12], amortized communication
complexity [19], signal processing [39] and many more). The
set of linearly independent vectors is usually derived from
the parity-check matrix of a linear error-correcting code.



We make a concentrated effort to provide an explicit en-
coding without relying on public randomness. The con-
struction is based on a certain form of unbalanced bipar-
tite graphs with random-like properties, that can be easily
shown to be satisfied by random graphs. Obtaining explicit
constructions, however, is much more subtle. In many cases,
one can replace random bipartite graphs with explicit con-
structions of extractors, as was very recently done by Indyk
[27] in the context of explicit constructions for compressed
sensing [15, 18]. Explicit constructions of extractors, how-
ever, are still rather far from optimal. In this paper we
emphasize the importance of identifying the minimal prop-
erties needed for the constructions, and as a result of identi-
fying these properties we manage to base our constructions
on “weaker” objects – dispersers, instead of extractors. Ex-
plicit constructions of dispersers are more practical, and are
optimal up to poly-logarithmic factors.

More specifically, the encoding scheme is based on un-
balanced bipartite graphs, which we refer to as bounded-
neighbor dispersers. Very informally, we use these graphs
as a deterministic way of mapping elements into “buckets”
such that any set of elements of certain size does not lead to
too many “overflowing buckets”. In each bucket we apply a
local encoding that “resolves collisions” among the elements
mapped to the bucket10. A formal description of our encod-
ing scheme is provided in Section 2.

The equality testing protocol. Given such an incremen-
tal encoding scheme, our protocol proceeds as follows: Dur-
ing the sketch phase each party incrementally updates an
encoding that corresponds to the set defined by the sequence
of insert and delete operations it receives from the adversary.
That is, at the end of the sketch phase the sketches held by
the parties are the encodings of their inputs sets. In the
interaction phase, the parties compare a few entries of their
sketches, and output Equal if and only if they all match. The
size of the sketches in this protocol, however, is not sublinear
in the size of the sets. In order to overcome this difficulty,
we follow the approach described above in the simultaneous
communication model, and have each party store and up-
date only a small random sample of the entries of its code-
word. Such a small sample (of size square-root of the size
of a codeword) will still allow the parties to compare a few
random entries. This results in a very efficient protocol with

sketches of size Õ(
√

K), poly-logarithmic update time dur-
ing the sketch phase and poly-logarithmic communication
and computation during the interaction phase. Moreover,
the above mentioned lower bound of Babai and Kimmel [4]
implies that the size of the sketches in our protocol is es-
sentially optimal. A formal description of the protocol is
provided in Section 3.

1.4 Paper Organization
The remainder of this paper is organized as follows. In

Section 2 we describe the encoding scheme which serves as
a building block of our protocols. In Section 3 we present
an equality testing protocol in the adversarial sketch model,
and in Section 4 we demonstrate that a similar approach can
be refined and extended to approximate the size of the sym-
metric difference between two sets. In Section 5 we present

10Ideas along these lines were also used by Moran et al. [32]
for designing history-independent data structures and con-
flict resolution algorithms.

constructions of bounded-neighbor dispersers that are used
to instantiate our protocols. Section 6 provides some con-
cluding remarks and open problems.

2. THE INCREMENTAL ENCODING
In this section we present the encoding scheme that serves

as the basis of our protocols. The scheme encodes multisets,
and is parameterized as follows: N – the size of the universe
U of elements (for simplicity we assume that U = [N ]), K
– the maximal number of distinct elements in each multi-
set, and M – the maximal number of appearances of each
element in any multiset. In the longer version of this paper
we show that the scheme can be augmented to enable fast
decoding as well11.

The encoding of a multiset S ⊆ [N ] consists of a se-
quence of codewords C(S) = {CS

0 , . . . , CS
k+1}, where k =

dlog1+ρ Ke for some constant ρ > 0, with the following prop-

erties12:

• Incrementality: Given an encoding C(S) of a multi-
set S ⊆ U and an additional element x ∈ U , the encod-
ings of S ∪ {x} and S \ {x} can be computed from the
encoding of S by modifying only a poly-logarithmic
number of entries in each codeword CS

i .

• High distance: For any two distinct multisets A, B ⊆
U , each containing at most K distinct elements and no
element appears more than M times, there exists an
integer 0 ≤ i ≤ k + 1 for which the codewords CA

i and
CB

i differ on a (1 − ε)-fraction of their entries (note
that this in particular implies distance at least 1 − ε
according to the metric discussed in Section 1.3).

The scheme incorporates two encodings: a global encoding
that maps each element x ∈ [N ] to several entries of each of
the k+2 codewords, and a local encoding that applies to the
sets of elements mapped to each entry. More specifically,
given a multiset S ⊆ [N ], we denote by Si,y ⊆ S the set of
elements in S that are mapped to entry y of the i-th code-
word, denoted CS

i [y] (note that we consider Si,y as a set and
not as a multiset). We construct a mapping with the follow-
ing property: for any two distinct multisets A, B ⊆ [N ] that
contain at most K distinct elements each, there exists an
index i for which 1 ≤ |Ai,y∆Bi,y| ≤ ` for a significant frac-
tion of the entries y and for some integer ` (where ∆ denotes
symmetric difference). The local encoding will then guaran-
tee that CA

i [y] 6= CB
i [y] by using the solution for “close” sets

described in Section 1.3 as relaxation 3.
For each codeword Ci, we view the global encoding as a bi-

partite graph G = (L, R, E), where the set of vertices on the
left, L, is identified with the universe of elements [N ], and
the vertices on the right, R, are identified with the entries
of Ci. An element x ∈ [N ] is mapped to entry Ci[y] if and
only if the edge (x, y) exists. We are interested in bipartite
graphs with the following property: For every set S ⊆ [N ] of
size roughly K′, at least (1−ε)-fraction of the vertices y ∈ R

11Although our protocols do not take advantage of this prop-
erty, an encoding scheme with the three properties of incre-
mentality, high distance and fast decoding may be of inde-
pendent interest and find additional applications beyond the
setting of this paper.

12For the equality testing protocol it is sufficient to only con-
sider ρ = 1. For approximating the size of the symmetric
difference it will be useful to consider the more general case.



have at least one and at most ` neighbors from S. Now con-
sider any two different multisets A, B ⊆ [N ] that contain at
most K distinct elements each, and suppose that the number
of distinct elements in the multiset S = A∆B is roughly K′.
Then, such a property of the bipartite graph corresponding
to the i-th codeword implies that 1 ≤ |Ai,y∆Bi,y| ≤ ` for at
least (1 − ε)-fraction of the entries Ci[y]. We refer to such
graphs as bounded-neighbor dispersers. Formally, we define:

Definition 2.1. Let G = (L, R, E) be a bipartite graph.
For a set S ⊆ L and an integer ` we denote by Γ(S, `) the
set of all vertices in R that have at least one and at most `
neighbors in S.

Definition 2.2. A bipartite graph G = (L, R, E) is a
(K, ε, ρ, `)-bounded-neighbor disperser if for every S ⊆ L
such that K ≤ |S| < (1 + ρ)K, it holds that |Γ(S, `)| ≥
(1− ε)|R|.

For such graphs we denote |L| = N , and in addition we
assume that all the vertices on the left have the same degree
D, which is called the left-degree of the graph.

The local encoding uses the solution described in Section
1.3 that applies whenever we are guaranteed to compare
multisets for which the number of distinct elements in their
symmetric difference is rather small. Denote by ` the bound
on the size of the symmetric difference provided by the global
encoding. That is, for any two different multisets A, B ⊆ [N ]
that contain at most K distinct elements each the global
encoding guarantees that there exists an index i for which
1 ≤ |Ai,y∆Bi,y| ≤ ` for a significant fraction of the entries y.
The local encoding consists of a mapping T from the universe
U of elements to vectors over some domain with the follow-
ing property: For every ` distinct elements x1, . . . , x` ∈ U
the vectors T (x1), . . . , T (x`) are linearly-independent. As a
concrete mapping, for example, we use T : [N ] → GF(Q)`

defined by T (x) = (1, x, . . . , x`−1) for some prime Q such
that max{N, M} < Q ≤ 2max{N, M}. The local encoding
in each entry CS

i [y] is given by
∑

x∈Si,y
](x, S) ·T (x), where

](x, S) denotes the number of appearances of x in S. This
is clearly easily updated given an on-line sequence of insert
and delete operations that determine the multiset S.

A formal description. Let G0, . . . , Gk+1 denote a se-
quence of bipartite graphs Gi = (L = [N ], Ri, Ei) with
left-degree Di. The graphs are constructed such that each
Gi is a (Ki = (1+ρ)i, ε, ρ, `)-bounded-neighbor disperser for
some constant 0 < ε < 1 and an integer ` ≥ 1. The encoding
consists of a sequence of codewords C0, . . . , Ck+1 (initialized
with all zero entries). Each codeword Ci is identified with
the right side Ri of the bipartite graph Gi, and contains |Ri|
entries denoted by Ci[1], . . . , Ci[|Ri|]. An additional tool in
our construction is a mapping T from the universe [N ] to
vectors over some domain that was described above.

Figure 1 describes the incremental update operations of
the encoding. That is, given an encoding {C0, . . . , Ck+1}
of a multiset S ⊆ [N ] and an element x ∈ [N ], Figure 1
describes the required modifications to the codewords in or-
der to obtain the encodings of S ∪ {x} and of S \ {x}. We
note that the update operations naturally extend to deal
with real-valued multiplicities of elements. The following
two lemmata state properties of the encoding that will be
used in our protocols: unique encoding and high distance.

Insert(x, {C0, . . . , Ck+1}):

1: for i = 0 to k + 1 do
2: for all neighbors y of x in the graph Gi do
3: Ci[y] ← Ci[y] + T (x)

Delete(x, {C0, . . . , Ck+1}):

1: for i = 0 to k + 1 do
2: for all neighbors y of x in the graph Gi do
3: Ci[y] ← Ci[y]− T (x)

Figure 1: The insert and delete operations.

Lemma 2.3. Any two sequences of insert and delete op-
erations that lead to the same multiset result in the same
encoding.

Lemma 2.4. Fix two distinct multisets A, B ⊆ [N ], each
containing at most K distinct elements and no element ap-
pears more than M times. Denote by CA = {CA

0 , . . . , CA
k+1}

and by CB = {CB
0 , . . . , CB

k+1} the encodings of A and B, re-
spectively, and denote by d the number of distinct elements
in A∆B. Then, for i =

⌊
log1+ρ d

⌋
, the codewords CA

i and

CB
i differ on at least (1− ε)-fraction of their entries.

In Table 2 we describe the size of the codewords and
the update time. The generic parameters are obtained di-
rectly from the parameters of the bounded-neighbor dis-
persers G0, . . . , Gk+1. For simplicity, we assume in Table
2 that M ≤ N , but note that this is not essential for our
construction. The non-explicit and explicit parameters are
obtained by instantiating these graphs with the explicit and
non-explicit constructions from Theorem 5.1 and Corollary
5.4, respectively.

Finally, we note that in the implicit parameters (where
the construction of bounded-neighbor dispersers guarantees
` = 1) in the special case that M = 1 (i.e., we consider sets
and not multisets), it is not necessary to use the mapping
T described above over GF(Q). Instead, it is possible to
only store the parity of the number of elements mapped to
each entry of the codeword. This enables us to reduce the
codeword size to O(K · log(N/K)) and the update time to
O(log K · log N).

3. THE EQUALITY TESTING PROTOCOL
The incremental encoding scheme described in Section 2

serves as our main tool in designing an equality testing pro-
tocol in the adversarial sketch model.

First attempt. In the sketch phase, Alice and Bob in-
crementally encode the sequences of insert and delete oper-
ations they receive (using the encoding scheme from Sec-
tion 2 with parameter ρ = 1) and obtain the encodings
CA = {CA

0 , . . . , CA
k+1} and CB = {CB

0 , . . . , CB
k+1} of their

multisets SA and SB , respectively. In the interaction phase,
the honest parties compare a random entry from each of
the codewords. More specifically, Alice picks k + 2 uni-
formly distributed entries y0, . . . , yk+1 and sends the values
(y0, C

A
0 [y0]), . . . , (yk+1, C

A
k+1[yk+1]) to Bob. Bob compares

these entries to the corresponding entries of his codewords,
and if CB

i [yi] = CA
i [yi] for every 0 ≤ i ≤ k + 1 then they

output Equal. Otherwise, they output Not Equal.
Lemma 2.3 guarantees that the protocol is perfectly com-

plete. That is, any two sequences of insert and delete oper-
ations that lead to the same multiset of elements induce the



Generic parameters Non-Explicit Explicit

Codeword size ` log N ·∑k+1
i=0 |Ri| O(K · log2 N) K · polylog(N)

Update time ` log N ·∑k+1
i=0 Di O(log K · log2 N) polylog(N)

Table 2: The codeword size and update time of the encoding scheme.

same representation, and therefore the parties will always
output Equal. Lemma 2.4 guarantees the soundness of the
protocol. That is, if Alice and Bob are given two sequences
of operations that do not lead to the same multisets, then
there exists an integer 0 ≤ i ≤ k+1 for which the codewords
CA

i and CB
i differ on at least (1− ε)-fraction of their entries

(recall that this is the distance property guaranteed by the
encoding scheme). In this case the parties output Not Equal

with probability at least 1− ε.

The protocol. A drawback of the above protocol is that
the size of the sketches (i.e., the size of the encodings CA

and CB) is not sublinear in the size of the input sets SA

and SB . To overcome this undesirable property, we modify
the protocol as follows: The parties view each codeword Ci

(corresponding to CA
i and to CB

i ) as a square matrix. Prior
to the sketch phase, Alice chooses uniformly distributed rows
a0, . . . , ak+1 and Bob chooses uniformly distributed columns
b0, . . . , bk+1. During the sketch phase Alice only stores and
updates the entries of each codeword CA

i along row ai, and
Bob only stores and updates the entries of each codeword CB

i

along column bi. Notice that each party now stores only a
square-root of the entries of each codeword, and this leads to

sketches which are of size Õ(
√

K). In the interaction phase,
for every 0 ≤ i ≤ k + 1 Alice and Bob compare the entry at
the intersection of row ai and column bi in the codewords
CA

i and CB
i , and output Equal if and only if they all match.

Amplifying the success probability. The protocol de-
scribed above guarantees that if Alice and Bob are given two
sequences of operations that do not lead to the same sets,
then they both output Not Equal with probability at least
1 − ε (where ε in our constructions of bounded neighbor-
dispersers is some constant). More generally, given an ac-
curacy parameter 0 < δ < 1, we would like to amplify the
probability that they output Not Equal to 1 − δ. Naively,
this can be achieved by having Alice and Bob compare s =

O
(

1
1−ε

log 1
δ

)
uniformly and independently chosen entries

of each codeword. This will require each party to store
and update s rows or columns of each codeword, result-

ing in sketches of size Õ(
√

K · log(1/δ)). We now show
that it is possible, however, to reduce this amount to only

Õ
(√

K · log(1/δ)
)
. We partition each codeword Ci (corre-

sponding to CA
i and to CB

i ) to s disjoint parts of roughly
equal size (the partition is part of the description of the
protocol, and is known to the adversary in advance). Al-
ice and Bob will compare a random entry from each such
part. This will require each of them to store and update
only O(

√
|Ci|/s) entries from each part, and therefore a to-

tal of O(
√
|Ci|s) entries from each codeword. This turns

out to have essentially the same effect as comparing s inde-
pendently chosen entries from each codeword, and results in

sketches of size Õ
(√

K · log(1/δ)
)
. A formal proof of the

properties of the protocol is provided in the longer version
of this paper.

4. SYMMETRIC DIFFERENCE APPROXI-
MATION

We present a protocol for approximating the size of the
symmetric difference of two massive data sets in the adver-
sarial sketch model. We note that the protocol can be ap-
plied also when the inputs of the parties are multisets, and
in this case it approximates the number of distinct elements
in the symmetric difference.

The approximation ratio of our protocol depends on the
properties of the graphs G0, . . . , Gk+1 used to construct the
incremental encoding scheme in Section 2, and stating the
result requires introducing the following notation. Recall
that each Gi = (L = [N ], Ri, Ei) is a (Ki, ε, ρ, `)-bounded-
neighbor disperser with left-degree Di. We let

r = max
0≤i≤k+1

KiDi

(1− ε)|Ri| .

Theorem 5.1 shows that such graphs exist with r ≈ 1,
and Corollary 5.4 provides an explicit construction with
r = polylog(N).

The protocol. In the sketch phase, Alice and Bob incre-
mentally encode the sequences of insert and delete oper-
ations they receive (using the encoding scheme from Sec-
tion 2 with parameter ρ), and obtain the encodings CA =
{CA

0 , . . . , CA
k+1} and CB = {CB

0 , . . . , CB
k+1} of their mul-

tisets SA and SB , respectively. In the interaction phase,

the parties compare s = Θ
(

1
(1−ε)ρ2 log

log1+ρ K

δ

)
indepen-

dently chosen and uniformly distributed entries from each
of the k + 2 codewords. For every 0 ≤ i ≤ k + 1 denote
by di the number of differing entries out of the s entries
that the parties compare from the i-th codeword. The par-
ties output ∆APX = (1 + ρ)i+1 for the maximal i for which

di ≥ 1
2

(
1 + 1

1+ρ

)
(1 − ε)s. If there is no such i, then the

parties output ∆APX = 0.
In order to reduce the size of the sketches, we observe once

again that the parties are not required to store and update
their entire codewords. The parties view each codeword Ci

(corresponding to CA
i and to CB

i ) as a square matrix, and
store and update only the entries that correspond to s ran-
dom rows or columns from each codeword. The following
lemma states the approximation guarantee, and a formal
proof is provided in the longer version of this paper.

Lemma 4.1. For any two sequences of insert and delete
operations communicated to the parties that lead to multi-
sets with symmetric difference that contains ∆OPT distinct
elements, the parties output ∆APX such that

Pr
[
∆OPT ≤ ∆APX ≤ (1 + ρ)3r∆OPT

]
> 1− δ .

5. BOUNDED-NEIGHBOR DISPERSERS
Given N , K and ρ we are interested in constructing a

(K, ε, ρ, `)-bounded-neighbor disperser G = (L = [N ], R, E),
such that ε, ` and |R| are minimized. A rather standard ar-
gument shows the existence of a bounded-neighbor disperser



with essentially optimal parameters: a constant ε, ` = 1 and
|R| = O(K log(N/K)). We prove the following theorem:

Theorem 5.1. For every N , K ≤ N and constant 0 <
ρ ≤ 1, there exists a (K, ε = 1 − ρ

(1+ρ)4
, ρ, ` = 1)-bounded-

neighbor disperser G = (L, R, E), with |L| = N , left-degree

D = O(log(N/K)), and |R| =
⌈

(1+ρ)2

ρ
KD

⌉
.

As for explicit constructions, we show that any disperser
[37] is also a bounded-neighbor disperser for some parame-
ters13. Once again, we emphasize the importance of basing
our protocols on dispersers and not on extractors: Whereas
the existing explicit constructions of extractors are rather far
from optimal, the existing explicit constructions of disperser
are optimal up to poly-logarithmic factors. This yields a sig-
nificant performance differences.

Dispersers are combinatorial objects with many random-
like properties. Dispersers can be viewed as functions that
take two inputs: a string that is not uniformly distributed,
but has some randomness; and a shorter string that is com-
pletely random, and output a string whose distribution is
guaranteed to have a large support. Dispersers have found
many applications in computer science, such as simulation
with weak sources, deterministic amplification, and many
more (see [35] for a comprehensive survey).

Definition 5.2. A bipartite graph G = (L, R, E) is a
(K, ε)-disperser if for every S ⊆ L of size at least K, it
holds that |Γ(S)| ≥ (1− ε)|R|, where Γ(S) denotes the set of
neighbors of the vertices in S.

Lemma 5.3. Any (K, ε)-disperser G = (L, R, E) with left-
degree D is a (K, ε′, ρ = 1, `)-bounded-neighbor disperser, for

ε′ = 1+ε
2

and ` =
⌈

4DK
(1−ε)|R|

⌉
.

Lemma 5.3 can be instantiated, for example, with the dis-
perser construction of Ta-Shma, Umans and Zuckerman [38].
In this case we obtain the following corollary:

Corollary 5.4. For every n and k there exists an ef-
ficiently computable (K = 2k, ε = 3/4, ρ = 1, `)-bounded-
neighbor disperser G = (L, R, E), with |L| = N = 2n,
|R| = Θ(K/ log3(N)), left-degree D = polylog(N) and ` =
polylog(N).

6. CONCLUDING REMARKS
Relying on computational assumptions. We consid-
ered the adversarial sketch model in an information-theoretic
setting (i.e., we did not impose any restrictions on the com-
putational capabilities of the adversary). In any realistic
setting, however, it is reasonable to assume that the adver-
sary is polynomially bounded . It will be interesting to ex-
plore whether computational assumptions can significantly
improve the efficiency of protocols in the adversarial sketch
model. For example, the existence of incremental collision
resistant hash functions [9, 10] implies an equality testing

13A similar observation was used by Moran et al. [32] who de-
fined the notion of bounded-neighbor expanders, and showed
that it can be satisfied by any disperser with certain param-
eters. Our graphs have slightly weaker properties, and this
enables more efficient constructions. That is, the parameters
of dispersers are better preserved.

protocol with highly compressed sketches which dramati-
cally circumvents the lower bound stated in Theorem 1.2 in
the computational setting. A major drawback of existing
constructions of such hash functions is that they either rely
on a random oracle, or are inefficient (more specifically, the
construction of Bellare, Goldreich and Goldwasser [9] can be
proved secure without a random oracle, but in this case the
size of the description of each hash function is too large to
be used in practice – linear in the number of input blocks)14.

In addition, for the problem of approximating the size
of the symmetric difference we are not aware of any proto-
col in the computational setting that similarly improves our
protocol. It would be very interesting to take advantage of
computational assumptions and construct such a protocol
with highly compressed sketches.

Preserving sublinearity and efficiency. As discussed in
Section 1, the most natural question that arises in the con-
text of the adversarial sketch model is to characterize the
class of functions that can be computed or approximated
in this model with sublinear sketches and poly-logarithmic
update time, communication and computation. In partic-
ular, we have asked whether the adversarial sketch model
“preserves sublinearity and efficiency” of problems from the
standard sketch model.

In this paper we provided an affirmative answer for the
problems of testing whether two massive data sets are equal,
and approximating the size of their symmetric difference. It
would be interesting to consider other distances and simi-
larity measures that can be efficiently approximated in the
standard sketch model (See Section 1.2). For example, an in-
triguing measure, due to its application in eliminating near-
duplicates of web pages is the resemblance measure [14],
defined as

r(S, T ) =
|S ∩ T |
|S ∪ T | .

There are highly compressed sketches for estimating the re-
semblance between two sets using a collection of min-wise
independent permutations [13]. It is not clear, however,
that without shared randomness this technique can result
in sketches that can be updated in an efficient incremental
manner. It would be interesting to construct an efficient
protocol for approximating resemblance in the adversarial
sketch model.
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