Strictness Logic and Polymorphic Invariance
P. N. Benton*

University of Cambridge

Abstract

We describe a, logic for reasoning about higher-order strictness properties of typed
lambda terms. The logic arises from axiomatising the inclusion order on certain
closed subsets of domajns. The axiomatisation of the lattice of strictness prop-
erties is shown to be sound and complete, and we then give a program logic for
assigning properties to terms. This places work on strictness analysis via type
inference on a firm theoretical foundation. We then use proof theoretic tech-
niques to show how the derivable strictness properties of different instances of
wo@BoGEop:% typed terms are related.

1 Introduction

Strictness analysis for non-strict functional languages is the problem of trying to work

Strictness analysis was first studied in Mycroft’s thesis [11], which applied the frame-

ork of abstract Interpretation to various analyses of functional Programs. Since then,

s address: University of Cambridge, Computer Laboratory, New Museums Site, Pembroke
idge CB2 3QG, United Kingdom. Internet: Nick.Benton@cl.cam.ac.uk, Research sup-

'he work described here came from trying to understand what was actually going on

smantically in their type system. Formation rules

é% € L,
'here seemed to be a fundamental shift from denotational analysis techniques to logical tfel, oAy €L,
nes, so the obvious place to look for insight was work on domain logics [2]. These arise €L, P €L, €L, $ €L,
i ; om Stone-type dualities between (topological) spaces and logics [8] — one can either (6 — %) € Lo, (&% %) € Loxs

| iew points as primary and then consider a property to be a set of points, or take
_ W roperties as primary and then consider a point to be determined by the properties it
, atisfies.

Inference rules

¢ < ¢refl] $<tlt] f<olf]

.bramsky’s work is concerned with the logic of observable properties — things we can $AP < $[AE-L] ¢ A < Y [AE-R]

bserve by looking at finite bits of output. These correspond to open sets in the Scott ¢ Pp<x [trans] $<th ¢ <1 (AL
M »pology. Strictness is non-observable, and the strictness properties which we shall é<x ¢ <1 Ay
>nsider correspond to closed sets. The logic presented here is nevertheless essentially p<¢ Py
W fragment of the open set logic in [2], although the interpretations of propositions are (8 x¥) < (&' x ¢) (x]

ery different. . toxr < o X t,[tX] £, X £, < f,xr [f]

i should be noted that the same system was arrived at independently in [7]. That (@xP)A (P xP') < ($A) x (¥ AP')[xA]

ork is complementary to this, however, in that Jensen considers the relation between P<éd H<y

>nventional abstract interpretation and the logic whereas this paper relates the logic - ~ -]

irectly to the standard semantics. Jensen does not consider polymorphic invariance. (6—=9)<(¢'—¢)

or reasons of space, all the proofs in this paper have been either omitted or sketched tomr < t, — t, [t—) t, = f, <f,,[{-]

riefly. More detailed proofs will appear in [4]. (6 = 1) A (6 = 12) < (6 = 1 Abg) [A]

The Language Ar

Figure 1: Formation and inference rules for £,

his section briefly describes the language with which we shall be working. Types,
inged over by o, 7, are formed from a single base type A, which we interpret as the.
atural numbers, pairs and function spaces.

3 The Logic of Strictness Properties

he properties in which we are interested will correspond to certain subsets of domains

the standard denotational semantics. More specifically, an ideal of a domain is a
on-empty subset of the domain which is down-closed and closed under sups of chains.
We will be interested in certain special ideals. Note that an ideal is the same thing as
non-empty Scott-closed set, or an element of the Hoare powerdomain.

” ogu=Alo—T1|oxT

Ve assume an infinite set {z°} of distinct typed variables for each type 0. Terms of
| T, ranged over with s,t and so on, are then formed as follows

t u= b _ z° _ QQIZ‘ Qvﬂ _ AV&Q ﬁﬂvﬁl}. _ A@Q ﬁinXﬂ _
no=m>1q1qlq _*.XAQIS.VIVQ _ _u_:m.»...v.blta _ ﬂ%x*lﬁ _ a.axalx.

m define a type-indexed family of propositional theories £, = (L,,<,), where L, is
. set of propositions and <, is the entailment relation, as shown in figure 1. We define
= 9, to mean ¢, < 1, and Py < .

.dding other base types, such as booleans, or other strict primitive functions makes _
o ommovz& difference to the work considered here, so we omit them in the interests o
revity. |

Note that the axioms [A] and [t—], which describe how the type structure interacts
with the logical structure, could both have been captured in the one axiom A;ez(¢ —
) = (¢ = Aier ¥:), if we allow the indexing set to be empty. It is probably also worth
ointing out that [t—] and [f—] explicitly identify L and Az..L.

T may be given a call by name denotational semantics in the usual way. We define th
it {D,} of domains inductively by D4 = INy, D,—., = [D, — D}, Dyxr = D,xD;
‘ext we define an environment p € Env to be a type-respecting partial function from
ariables to the disjoint union of all the D, and we then define [¢°] : Env — D, b
iduction on the structure of ¢°.

w at each type o we have a domain D,, and a propositional theory £,. The next
p is to relate them by giving an interpretation map [-] which takes each proposition

R ———

o/

The definition of the 4, proceeds by recursion on the type structure. The base case
is easy, just let ya(f) = L4 and 44(t) = 42 (say). For product types we define

p € L, to the set of elements of D; which satisfy it (ie. its extent):

[tl, = D, Aoxr(® X ¥) = (%(4),7-(¥)). We do not need explicitly to consider conjunctions of
Il = {1} ‘propositions at product types, since the rules of the logic allow us to remove them:
” sl e] @x DA x) = (BA) % (0 A D)),
| ¢ = 14 o

For function types, we need an auxiliary definition. For ¢ € LA, and ¢ € LA,, define
the co-step function [¢,9]: LA, — LA, by

i) ={ ¥ 5XSS

[¢ x ¥loxr = {(2,¥) € Doxr |z € [¥], and y € [¢].}
[¢— Yourr = {f€D,.. _ %:&q - _TBL
otherwise

_ Note that this is monotonic. A typical element of £LA,_,, looks like A;e; ¢; — 4, s0
we can define +,_,, inductively by

Yor(\ i = i) = 7 0 [s, %] 0 s
. iel
f,wﬁ.m Mili, :](x) = A{#i | x < ¢:}. It is easy to show that « is well-defined on
quivalence classes of propositions.

Proposition 3.1 For any ¢ € L,, [¢], is an ideal of D,. o
fxample Some examples of the sort of properties which we can express in this system:

e A function f : A — A is strict iff f € [f4 — fa].

e A ?,aozou f: A— Aisthe constant L function iff f € [ta — £4].)
N The next two results follow by induction on types and amount to showing that a0y =
o A function b : A x A — A is strict in both its arguments iff b € [(f4 x t4 — 4

».bv A Adb x4 — m.s»v“__ :

e A function g : (A — A) — (A — A) maps strict functions to strict functions iff Proposition 3.3 v(¢) = ¢. . o

g [S _HAH» - mbv —_ AW.» —_ M.Avﬁ :
Proposition 3.4 If v(4) = ¢ then ¢ < 4. O

>roposition 3.2 (Soundness) Ift ¢ <1 then [¢] C [¢/]. u} orollary 8.5 (Completeness) If [4] C [¢] then F 6 < .

\t first sight, it does not seem likely that the small set of rules which we have just given
s going to be complete. In fact it turns out that it is, and the reason for this is that
t each type we are restricting attention to a very well-behaved subset of the set of all
deals of the domain.

Proof. [$] S W] = 1(8) Ev = ¢ <. o

‘maozﬁ.% 3.6 (Disjunction Property) [¢] C [¢1] U [v2] implies either [¢] C [1]
4] <€ [#:]-

roof. WLOG 7(9) |= %1 and then ¢ < 1y so [¢] C [#1] by soundness. o

‘or the next bit we really want to work not in £,, but in its Lindenbaum algebra
poset reflection) LA, = (£,/ =,), which is obviously a finite lattice with all meets
and robow all joins). However, we will abuse notation and write ¢, when we really
1ean its equivalence class [¢]=,. We will also write ¢ < 4 for F ¢ <,z ¢for

€ [4] and omit type subscripts all over the place. is.an interesting observation that in some sense we only have completeness because of

he disjunction property. If we had [¢] C [¥:] U [1,] without [g] C [¢4] or [¢] C]
then we would certainly also have [¥1 — x A2 — x] € [¢ — x] but no way of proving
without adding disjunction to the logic.

et oy : D, — LA, be defined by o, (z) = A{¢ | = = 4}, so a takes a domain element
> the conjunction of all the propositions which it satisfies. The conjunction is finite as
he lattice is. b :

‘ e proof of Proposition 3.4 also leads to the following useful result:
'ompleteness will essentially come from the fact that o is surjective. The way we'
re going to show that is to construct an explicit map v, : L4, — D, such that
e0% = idp A,- This is not quite analagous to the concretisation map appearing
 traditional abstract interpretation, since we are only picking a representative of the

ctent of each equivalence class of propositions.

mma 3.7 (Entailment decomposition)

A=) < (¢ =) if Nwilg <o)<y

i€l

ov

The next proposition is useful in proving proof-theoretic properties of the program logic

T,z : ¢y F 27 : ¢, [var] 'k ¢7: t, [top] and would also be important in the design of an inference algorithm. It asserts that any
PRI ¢ -, Ths:¢, derivation may be transformed into one which is ‘almost’ syntax-directed. Note that
TF (s : 9, [app] is is the reason for the inclusion in the program logic of the (apparently redundant)
T,e% ity 71 8, bsbot] [,2° : ¢ F 17 2 9, [abs] ule [absbot]. Without it, the result would be false.
,. absbo
I'F (Az®.87)777 2 fps ﬁ Tk A\/w&.ﬁvqla t e — Py .
PRt :¢, THE e, [con] PRt ¢, ¢s<¢s [sub] Proposition 4.2 (Normal derivations) If T & s° : ¢, is derivable in the program
TRt :(dA Hi.n o LH:, logic then there is a derivation in which the only uses of the rule [sub] occur immediately
s“:i¢s THI 9y, ipai] elow azioms.

ﬁ Tk (s7,87)°% 1 ¢y X 9y

T+ cond#=7=7=7 : f4 — t, — t, — £, [cond]] roof. This is essentially a cut-elimination argument. We first do an induction on

he length of derivations with exactly one non-normal use of [sub), to show that such
es may be ‘floated up’ the derivation until they either disappear, hit an axiom or are
bsorbed into a normal use of [sub] by [trans]. A second induction on the number of
on-normal uses of [sub] in a derivation completes the proof. 0

T F cond===7 ;44 — ¢, — ¢ — .&q [cond?2)
T plush=4=4: (44 = f4 = fa) A (fa = ts — f4) [plus]
T Ffixe=)=7 : (¢, > ¢,) — ¢, [fix]

TEa{*™™% 1 e Xty = g [m1] T HEAT™7 18, X ¢ — ¢, [m5]

oposition 4.3 (Subject ,‘\w-oosaﬁmnmmo:v Derivable strictness properties are preser-
ed by both B-reduction and B-ezpansion:

Figure 2: The program logic. TF(\e”.t")""s" . ¢, iff TF #7s° /2] : 6,

t The Program Logic

oof. Both directions follow by induction on the structure of ¢” and consideration of

iow we know how the strictness properties behave, we need a program logic which wn possible forms of normal derivations in the logic. o

llows us to derive properties of terms in Ar. Since we want our system to be mm.om.m.
ble, we know that the program logic cannot be complete for elementary computability

easons. Polymorphic Invariance

i

he inference rules for the program logic appear in figure 2. The notation is pretty
tandard - a context I is a finite set of assumptions of the form z° : ¢, and we 45.#@.
',z : ¢, to mean the context I' with any existing binding for z° removed and ﬁ.ﬁ
inding z” : ¢, added. We restrict attention to well-formed judgements I' F 7 : 4, in
thich all the free variables of s° appear in T.

|

now consider moving from monomorphically typed terms to terms with explicit first-
er polymorphic types. We show that the derivable strictness properties of different
ances of a polymorphically typed term are related in a very pleasant way. As well
being an interesting theoretical result, this is important for any implementation, as

allows us to analyse polymorphic functions without analysing all their monotyped

o . . . ances separately.
‘o be able to talk about soundness, we have to extend the notion of satisfaction to terms P Yy

2 context. Write p |= T if for all 2° in dom(p), I =T",2° : ¢, and p(z°) |= #5. The;

a olymorphic invariance of strictness analysis was first studied in [1]. A complication
efine ' = 57 : ¢, to mean that for all environments p such that p = T, [s°]p k= ¢.. v

that work was that the characterisation of strictness was denotational (semantic)
hereas polymorphism came from the syntactic rules for type assignment. To recon-
le these two viewpoints, Abramsky had to go via an operational semantics (which is
herently syntactic) for the abstract functions. Hughes has approached the problem
mantically in [6], but the techniques used there are restricted to first-order func-
s. More recently, a better understanding of the semantics of polymorphism allowed
amsky and Jensen to give a much neater semantic proof of invariance [3]. Here
show that our logical formulation of strictness analysis allows an enlightening and
rely syntactic proof of invariance.

roposition 4.1 (Soundness of the program logic)

IfT+ 387 : ¢y thenT =57 : 45

property at all types if it detects it at one. It is the second form which we consider here,

10tion from the point of view of an implementation.

I fact, the situation is not as simple as the above might suggest. For example, the
dentity function specialised to arguments of type A — A has the property of taking
itrict functions to strict functions, but this cannot be a property of the version of the
dentity which is specialised to arguments of type A. What we actually show is that a

or which that property makes sense (in a sense to be made precise).

wer with a, 8

‘ou=alAlo—T|oxT

,, | Perms are formed as before. In particular, they are still explicitly typed — we are merely
! llowing the types to contain type variables. We do not need to consider how such typed
erms can be deduced from untyped terms. The propositional theory associated with
» type variable « just contains t, and f,, so £, & L4. The program logic remains
inchanged and our previous proof-theoretic results go through as before.

" Ve formalise the intuition that a property makes sense at any more complicated type
w s follows. We define the preorder < to be the smallest relation on types which is closed

mnder the following rules

cdo Ado ado

odo’ T 7 odo’ 7T
oc—=Td0 — 71 oxrtdo xT1! -

| f we define a substitution to be a map from type variables to types (which extend
b , 1 the obvious way to types), then it is plain that for any type o and substitution S,
| | ' §(o). We can also define the action of substitutions on terms, and it is clear tha
, '87 is a well-formed term in our language, so is S(s?).

Ve can now define the maps which embed one theory in a ‘more complicated’ one. Fo
‘A 1,0' A7, define &, , : L, — L, by

.Nﬁ.ﬂ?@.v =t, . N.q.iﬁm.ﬂv = Wﬂ

| : N.QL.A& A »\»v = N.n..ﬂ?wv A N.u._ﬂﬁﬁv
W , An\.a.low:ﬂloiﬁﬁq — @QQ = M\.Q.ﬂA&Qv - NQ:*A@Q\V
m.qxq:ﬂxiﬁﬁq X ﬁo\v = m\.q.ﬂﬁﬂav X M\.q:iﬁﬁiv

roposition 5.1 If o 4 7 and ¢, < ¢, then Eor(90) < Eor(s).

[t should be noted that there are really two notions of polymorphic invariance - we can
sither show that strictness properties are polymorphic invariants (eg. if one instance of

. . - valid when we interpret the
» function is strict, all instances are), or we can show that our analysis method detects a

our embedding maps respect equivalence classes of propositions. We shall also need to

ind which Abramsky’s work addresses. He observes that this is the more important

trictness property holds at a particular instance of a term iff it holds at all instances -

Ne now extend our definition of Az types to include type variables, which we range)

41
he above result says that entailments between Propositions at simple types are still
propositions at more complicated types, and hence that

ow that the converse holds - if an inclusion holds at-a complicated type between two

propositions that make sense at a simpler type, then the inclusion holds at the simple

e too.

position 5.2 Ifo <4 7 and Eoi1($0) < Eorn(ts) then ¢y < 1b,.

oof. It is slightly tricky to show this directly from the logic. This is because of the
ans] rule (which is essentially a form of cut). Instead we note that Proposition 5.1
hows that &, , induces &, : LA, — LA,. Since LA, has, and E,, preserves, all
eets, we know that &o,r has a left adjoint Nq.ﬁ LA, — LA, given by NBA&L =

Yo | WSA&L 2 ¢,}. This, together with Lemma 3.7, allows one to show by induction

, types that K., 0 €, , is the identity on LA, from which the result follows. s

‘enow turn to the relationship between the derivable strictness properties of differently
ped instances of the same term. Define the action of a substitution on a strictness

text by S({z” : 4,}) = {5 : &s,50($0)}. Then if T F s . #s is a well-formed
rictness judgement, so is ST - S(s%) : &,50(¢0)

roposition 5.3 IfT' | s ; ¢o then ST I 5(s%): Eo,50(¢s)]

as it says anything we can

t all its ground instances and
)y the previous soundness result) is therefore semantically valid at all of them.

e result which we really want is the converse to Proposition 5.3. However, the

ence (even in normal derivations) of the [app] rule, which has the cut-like property
ing a formula in the premises which does not appear i i

: ive induction from working. Instead, we use a (unary) logical relati
ms in the .mnﬁm of Tait’s proof of strong normalisation (see, for example, [10]). The
ils are slightly fiddly, but the argument is sketched below.

a term ¢7, we define P(¢°) to mean that for all I, S, ¢, we have
STHS(t):&50(s) = TFe: &5
e then define a type-indexed family G = {G“} of predicates on terms by
, th € g4 iff P(t4)
i* € g« iff P(t*)
1T e if Vs € G°.(t7"s%) e g7
“QX._‘ m QQXQ mm Aﬂﬁ“Xiva.NQX*vﬁ m QQ N.H_.&. AN.WX*I&*&QX*V.\. m Q.ﬁ

{
I
!
i
i

-

emma 5.4 (Admissibility) If s° € §° and t"[s”/2°] € §" then ((A2”.t7)s") € nw 6 Conclusions and Further Work

. We have shown how strictness analysis can be performed in a logical, rather than deno-
tational, way. The analysis has been proved correct relative to the standard semantics
~and we have shown how the syntactic nature of the proof system leads to a relatively
traightforward proof that the analysis is polymorphically invariant. An improvement
on previous work is that we consider polymorphic invariance of higher-order properties,
ather than just of a first-order property (simple strictness) of higher-order functions.

emma 5.5 1. IfP(tF) then (2747 .. AmYeg;
2 Ift' € g then P(t").

ensen has shown [7] that £A, is isomorphic to the abstract domain associated with o
‘the conventional abstract interpretation approach to strictness analysis.- One can also
see the logic as giving an operational semantics for the relational abstractions proposed
n, for example, [12]. This view deserves further investigation.

he proof of Lemma 5.4 is by induction on types and makes use of subject conversion.
he two vwﬁm of Lemma 5.5 are proved simultaneously by induction on types. Next

e show the following by induction on terms, using the previous two lemmas:

The treatment of products described in the present paper is rather weak. To get a
better abstraction of products, and to deal with sums, we are naturally led to add
disjunction to the logic. There is then no longer a simple equivalence between the logic
and traditional abstract interpretation; this shows the benefits of relating the logic
ctly to the standard, rather than the abstract, semantics.

emma 5.6 (Basic Lemma) If s{* € G then for any " we have t"[s{* /2] € Q_au

lote that to prove the basic lemma we also have to prove that each constant .mm in
se appropriate G°. This is not completely trivial. Finally, we can put all the pieces

sgether to get: Further work needs to be done on implementing this kind of inference system. In

practice, we probably do not want to use a ‘principal types’ algorithm, since that would
rrespond to computing the whole of the abstract function, which can be extremely
expensive. Our logical approach separates out the individual properties, which get a
bit lost in abstract interpretation. There is some reason to hope that this may lead
analysis algorithms which have better complexity, at least on average. One idea is
to investigate the use of equational or order-sorted unification to obtain an inference

gorithm. We also need to consider how best to make practical use of the results of
ction 5.

roposition 5.7 (Polymorphic invariance) If ST F 5(s%) : €5,50(¢s) then T F 57 _u

vQ..

)ne might suspect that the above is all unnecessary: maybe the only properties éEor
ve can ever show a complicated instance of a polymorphic function to have are ones
vhich make sense at the simplest instance. More formally, we might imagine that the
ollowing holds: ,) . .

, he kind of polymorphism which we have described is very simple. It would be also be
THS(t):¢se = 3,4, st. T < ST, E50(¢,) < ¢so and I'Ht7: ¢, nteresting to study polymorphic invariance of program properties in the framework of

more powerful system, such as the Girard/Reynolds polymorphic lambda calculus.

't is shown in [6] that this is indeed the case for first-order functions. For Emrwu.oann

unctions, however, it is unfortunately false. See [3] for a counterexample.

, . ¢ Acknowledgements
Jo to get the best information we do have to analyse some non-basic instances o)

solymorphic functions. Even if we were only directly interested in simple strictness,
;nd we have shown that we can get this by analysing at the simplest instance, to do
;hat analysis for a function f, we may have to analyse a higher order instance of some
function g, which is called by f. What our result tells us is that we only have to muw_%mo
the simplest instance of g for which the property we are looking for makes sense, not
the instance at which g is actually called. This is a considerable improvement over the
approach of [1], which suggests reand]ysing each instance of g.

rwﬁw benefitted greatly from discussing this material with several people. I would
pecially like to thank Gavin Bierman, Sebastian Hunt, Thomas Jensen, Alan Mycroft,
. Wesley Phoa and Andy Pitts.

i

1] Samson Abramsky. Strictness analysis and polymorphic invariance (extended abstract).
In H. Ganzinger and N. Jones, editors, Proceedings of the Workshop on Programs as
Data Objects, Copenhagen, volume 217 of Lecture Notes in Computer Science, pages
1-23. Springer-Verlag, October 1985.

-

[2] Samson Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,
51(1-2):1-78, 1991.

[3] Samson Abramsky and Thomas P. Jensen. A relational approach to strictness analysis
of higher order polymorphic functions. In Proceedings of ACM Symposium on Principles
of Programming Languages, 1991, v .

.[4] P. N. Benton. Static Analyses and Optimising Transformations for Lazy Functional
Programs. PhD thesis, University of Cambridge, 1992. in preparation. :

[5] Geoffrey L. Burn, Chris L. Hankin, and Samson Abramsky. The theory of strictness
analysis for higher order functions. In H. Ganzinger and N. Jones, editors, Proceedings
of the Workshop on Programs.as Data Objects, Copenhagen, volume 217 of Lecture Notes
in Computer Science. Springer-Verlag, October 1985.

R.J.M. Hughes. Abstract interpretation of first-order polymorphic functions. In Glasgow

[6
Workshop on Functional Programming, August 1988.

—

[7] Thomas P. Jensen. Strictness analysis in logical form. In Proceedings of the 1991 Con-
ference on Functional Programming Languages and Computer Architecture, 1991.

[8] P. T. Johnstone. Sione Spaces. Cambridge studies in advanced mathematics. OPB,E.Emm ;
University Press, 1982.

[9] T.-M. Kuo and P. Mishra. Strictness analysis: A new perspective based on type infer-"
ence. In Proceedings of the 4th International Conference on Functional Programming
Languages and Computer Architecture. ACM, 1989.

[10] John C. Mitchell. Type systems for programming languages. In J. van Leeuwen, editor
Handbook of Theoretical Computer Science, chapter 8, pages 365-458. Elsevier Science
Publishers, 1990. :

[11] Alan Mycroft. Abstract Interpretation and Optimising Transformations for Applicativ
Programs. PhD thesis, Department of Computer Science, University of Edinburgh, De-
cember 1981.

- [12] Alan Myecroft and Neil D. Jones. A relational framework for abstract interpretation. In
H. Ganzinger and N. Jones, editors, Proceedings of the Workshop on Programs as Data
Objects, Copenhagen, volume 917 of Lecture Notes in Computer Science. Springer-Verlag,
October 1985.

