

A determinant-based algorithm for counting perfect matchings in general graphs

Steve Chien
Microsoft Research
Work performed while at UC Berkeley

Problem Statement

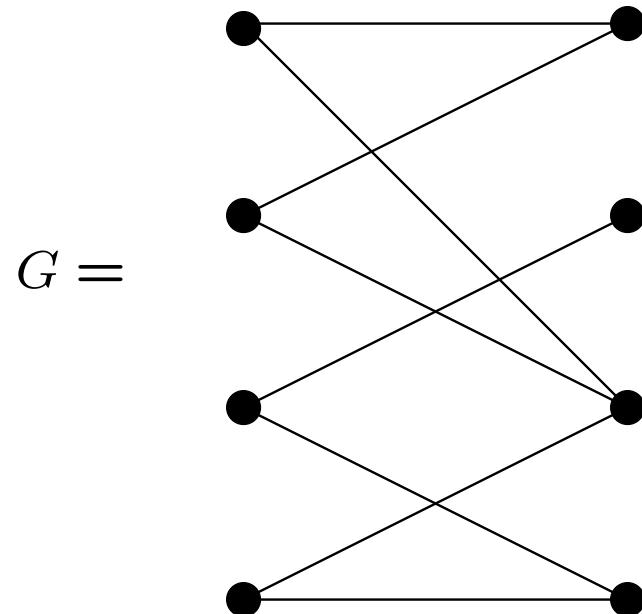
- Given any graph G , count the number of perfect matchings it contains, $M(G)$.
- Equivalent to computing the permanent in the case of bipartite graphs, and therefore **#P-complete** [Valiant 1979].
- Goal is a **fully polynomial randomized approximation scheme** (fpras); i.e., an algorithm that produces an ε -approximation to $M(G)$ in time polynomial in n and $\frac{1}{\varepsilon}$.

Some Related Work

- **Markov Chain Monte Carlo:** Fully polynomial randomized approximation scheme (fpras) for bipartite case [JSV 2001].
 - Requires time polynomial in $N(G)/M(G)$ for general graphs, where $N(G)$ is the number of near-perfect matchings in G .
- **Determinants:** Achieves a good approximation in time $O((3/2)^{n/2})$ [GG 1981; KKLLL 1993; Barvinok 1999,2000; CRS 2002].

The Godsil-Gutman Estimator

Given a bipartite graph $G = (U = [n], V = [n], E)$, construct its adjacency matrix A :



$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

The Godsil-Gutman Estimator

From A , create a random matrix B by replacing each 1-entry of A with a uniform random element of $\{\pm 1\}$.

$$A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

Output $X_A = |\det(B)|^2$.

Analysis of the GG Estimator

- [GG 1981] X_A is unbiased; i.e., $\mathbb{E}[X_A] = \text{per}A$.
- [KKLLL 1993] The worst-case critical ratio of X_A is bounded by

$$2^{n/2} \leq \frac{\mathbb{E}[X_A^2]}{\mathbb{E}[X_A]^2} \leq 3^{n/2}.$$

By choosing elements of B from $\{\pm 1, \pm i\}$, the bounds improve to

$$(3/2)^{n/2} \leq \frac{\mathbb{E}[X_A^2]}{\mathbb{E}[X_A]^2} \leq 2^{n/2}.$$

- [FJ 1995] For almost every graph, the critical ratio of X_A is bounded by a polynomial.

Analysis of the GG Estimator

- [Barvinok 1999,2000] A variation of the Godsil-Gutman estimator using quaternions results in a $O(1.31^n)$ -approximation w.h.p. in polynomial time.
- [CRS 2002] By choosing elements of B from $\{\pm 1, \pm i, \pm j, \pm k\}$, the bounds improve again to

$$(5/4)^{n/2} \leq \frac{\mathbb{E}[X_A^2]}{\mathbb{E}[X_A]^2} \leq (3/2)^{n/2}.$$

The critical ratio can be reduced to a constant by using elements from high-dimensional *Clifford algebras*, though the resulting estimator is not known to be efficiently computable.

Our Results

We define a new determinant-based estimator X_G for the number of perfect matchings $M(G)$ in a general graph $G = (V = [2n], E)$ with the following properties:

Theorem 1: The estimator is unbiased; i.e., $\mathbb{E}[X_G] = M(G)$.

Theorem 2: The worst-case critical ratio of X_G is bounded by

$$(7/3)^{n/2} \leq \frac{\mathbb{E}[X_G^2]}{\mathbb{E}[X_G]^2} \leq 3^{n/2}.$$

Theorem 3: Let $\omega(n)$ be any function tending to infinity. Then almost every graph $G \in \mathcal{G}_{2n, 1/2}$ satisfies $\frac{\mathbb{E}[X_G^2]}{\mathbb{E}[X_G]^2} \leq \alpha n \omega(n)$ for a fixed constant α .

The Tutte Matrix

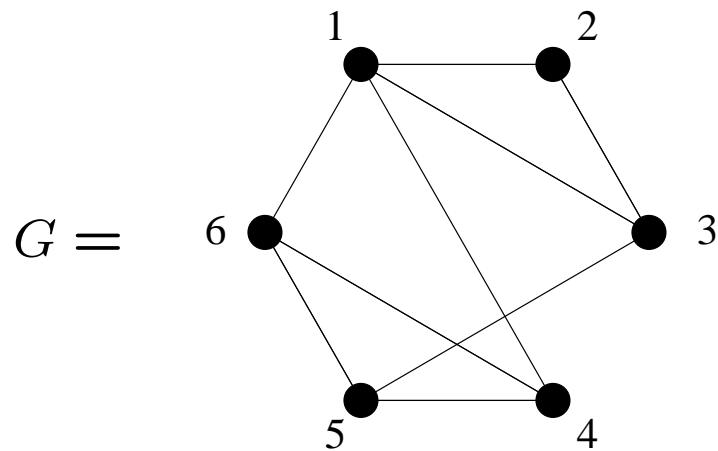
Given a graph $G = (V = [2n], E)$, its Tutte matrix T is a $2n \times 2n$ matrix defined as

$$t_{ij} = \begin{cases} x_{ij} & \text{if } \{i, j\} \in E \text{ and } i < j \\ -x_{ij} & \text{if } \{i, j\} \in E \text{ and } i > j \\ 0 & \text{otherwise} \end{cases}$$

The polynomial $\det(T)$ is not identically zero if and only if G contains a perfect matching.

An Estimator for General Graphs

Given graph G , construct its Tutte matrix T .



$$T = \begin{pmatrix} 0 & x_{12} & x_{13} & x_{14} & 0 & x_{16} \\ -x_{12} & 0 & x_{23} & 0 & 0 & 0 \\ -x_{13} & -x_{23} & 0 & 0 & x_{35} & 0 \\ -x_{14} & 0 & 0 & 0 & x_{45} & x_{46} \\ 0 & 0 & -x_{35} & -x_{45} & 0 & x_{56} \\ -x_{16} & 0 & 0 & -x_{46} & -x_{56} & 0 \end{pmatrix}$$

An Estimator for General Graphs

From T , create a random matrix B by replacing each variable x_{ij} in T with a uniform random element of $\{\pm 1\}$.

$$T = \begin{pmatrix} 0 & x_{12} & x_{13} & x_{14} & 0 & x_{16} \\ -x_{12} & 0 & x_{23} & 0 & 0 & 0 \\ -x_{13} & -x_{23} & 0 & 0 & x_{35} & 0 \\ -x_{14} & 0 & 0 & 0 & x_{45} & x_{46} \\ 0 & 0 & -x_{35} & -x_{45} & 0 & x_{56} \\ -x_{16} & 0 & 0 & -x_{46} & -x_{56} & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 1 & 1 & -1 & 0 & 1 \\ -1 & 0 & -1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 0 & -1 \\ -1 & 0 & 0 & -1 & 1 & 0 \end{pmatrix}$$

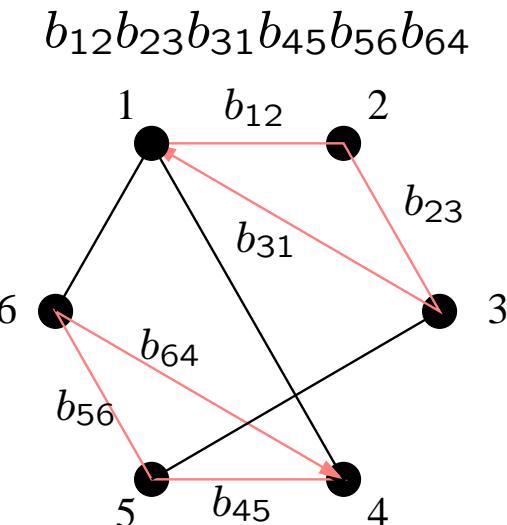
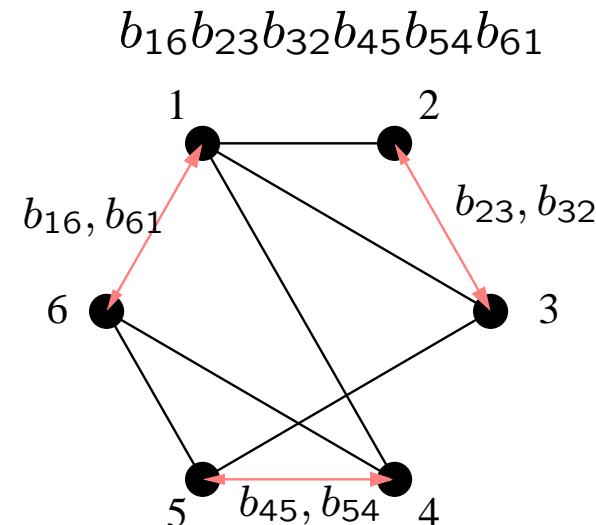
Output $X_G = \det(B)$.

Proof of Unbiasedness

Proof:

$$X_G = \det(B) = \sum_{\sigma \in S_{2n}} \text{sgn}(\sigma) \prod_{i=1}^{2n} b_{i,\sigma_i}$$

Use equivalence between permutations in B and directed cycle covers in G :



Proof of Unbiasedness

Let $\mathcal{C}(G)$ be the set of cycle covers in G . Now we can write

$$X_G = \sum_{\kappa \in \mathcal{C}(G)} \text{sgn}(\kappa) \prod_{(i,j) \in \kappa} b_{ij}$$

and therefore

$$\mathbb{E}[X_G] = \sum_{\kappa \in \mathcal{C}(G)} \text{sgn}(\kappa) \mathbb{E}\left[\prod_{(i,j) \in \kappa} b_{ij}\right].$$

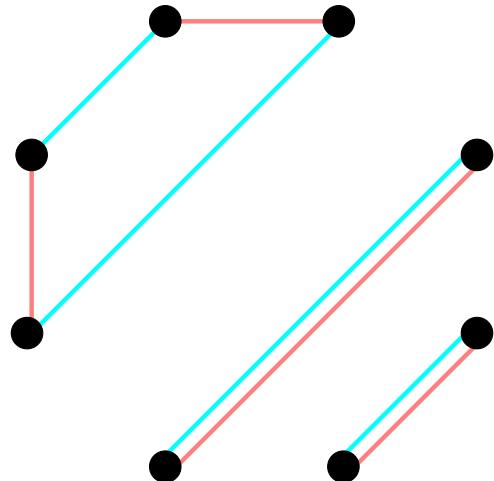
Claim:

- Cycle covers corresponding to perfect matchings contribute 1 to the sum.
- The expected contribution of all other cycle covers is 0 .

The Critical Ratio

We now need to show that the critical ratio is bounded, or $\frac{\mathbb{E}[X_G^2]}{\mathbb{E}[X_G]^2} \leq 3^{n/2}$.
First,

$$\mathbb{E}[X_G]^2 = \sum_{H \in E(G)} 2^{c(H)}.$$



The Critical Ratio

Lemma:

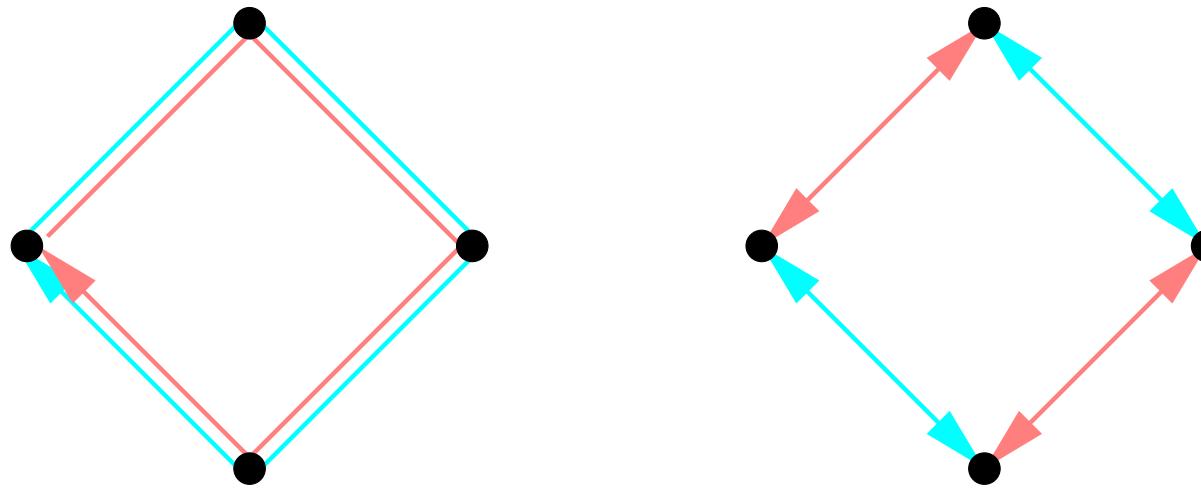
$$X_G = \sum_{\kappa \in \mathcal{E}(G)} \text{sgn}(\kappa) \prod_{(i,j) \in \kappa} b_{ij},$$

where $\mathcal{E}(G) \subseteq \mathcal{C}(G)$ consists of only those cycle covers in which every cycle is of **even** length.

Therefore,

$$\begin{aligned} \mathbb{E}[X_G^2] &= \sum_{(\kappa, \kappa') \in \mathcal{E}(G) \times \mathcal{E}(G)} \text{sgn}(\kappa, \kappa') \mathbb{E}\left[\prod_{(i,j) \in \kappa} b_{ij} \prod_{(i,j) \in \kappa'} b_{ij}\right] \\ &= \sum_{H \in E(G)} 6^{c(H)} \end{aligned}$$

The Critical Ratio

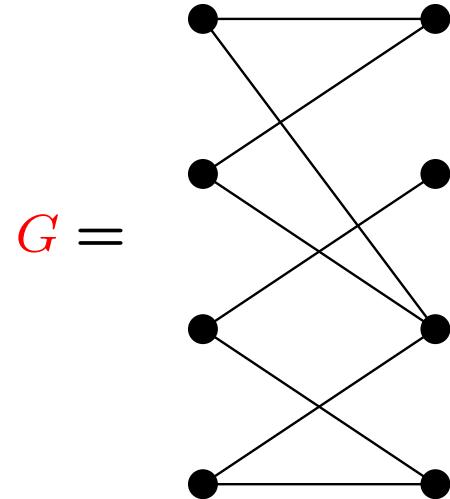


Hence,

$$\frac{\mathbb{E}[X_G^2]}{\mathbb{E}[X_G]^2} = \frac{\sum_{H \in E(G)} 6^{c(H)}}{\sum_{H \in E(G)} 2^{c(H)}} \leq \max_{H \in E(G)} \frac{6^{c(G)}}{2^{c(G)}} \leq 3^{n/2}.$$

Comparison with GG Estimator

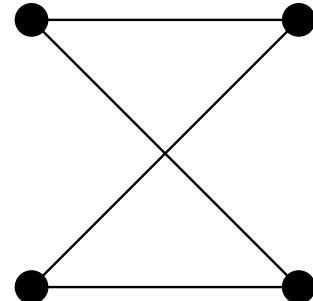
Consider the behavior of X_G on a bipartite graph $G = (U, V, E)$, where the vertices in U precede those in V :



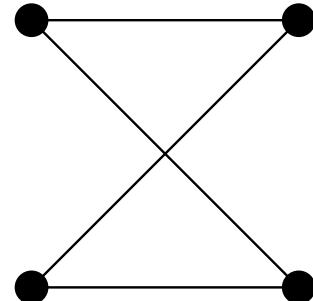
$$T = \begin{pmatrix} 0 & T_0 \\ -T'_0 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 & B_0 \\ -B'_0 & 0 \end{pmatrix}$$

Hence $X_G = \det(B) = |\det(B_0)|^2$, and is equivalent to the Godsil-Gutman estimator X_A on bipartite graphs.

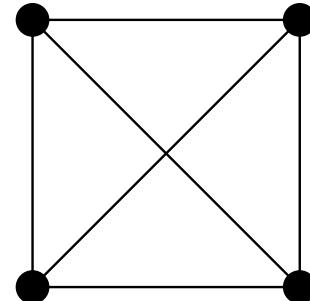
Lower Bounds on the Critical Ratio



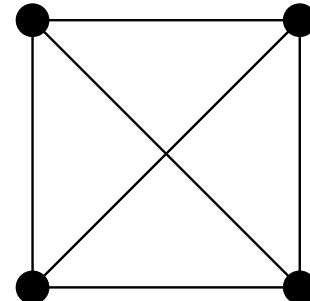
⋮



$2^{n/2}$



⋮



$(7/3)^{n/2}$

Open Problems

- Extend the new estimator to complex numbers as in [KKLLL 1993] and possibly beyond.
- Close the gap between the upper and lower bounds on the worst-case critical ratio.