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Problem Statement

• Given any graph G, count the number of perfect matchings it contains,
M(G).

• Equivalent to computing the permanent in the case of bipartite graphs,
and therefore #P-complete [Valiant 1979].

• Goal is a fully polynomial randomized approximation scheme (fpras);
i.e., an algorithm that produces an ε-approximation to M(G) in time
polynomial in n and 1

ε .
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Some Related Work

• Markov Chain Monte Carlo: Fully polynomial randomized approxima-
tion scheme (fpras) for bipartite case [JSV 2001].

– Requires time polynomial in N(G)/M(G) for general graphs, where
N(G) is the number of near-perfect matchings in G.

• Determinants: Achieves a good approximation in time O((3/2)n/2)

[GG 1981; KKLLL 1993; Barvinok 1999,2000; CRS 2002].
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The Godsil-Gutman Estimator

Given a bipartite graph G = (U = [n], V = [n], E), construct its adja-
cency matrix A:

A =











1 0 1 0
1 0 1 0
0 1 0 1
0 0 1 1











G =
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The Godsil-Gutman Estimator

From A, create a random matrix B by replacing each 1-entry of A with a
uniform random element of {±1}.

A =











1 0 1 0
1 0 1 0
0 1 0 1
0 0 1 1











B =











1 0 −1 0
−1 0 −1 0
0 −1 0 1
0 0 1 −1











Output XA = |det(B)|2.
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Analysis of the GG Estimator

• [GG 1981] XA is unbiased; i.e., E[XA] = perA.

• [KKLLL 1993] The worst-case critical ratio of XA is bounded by

2n/2 ≤
E[X2

A]

E[XA]2
≤ 3n/2.

By choosing elements of B from {±1,±i}, the bounds improve to

(3/2)n/2 ≤
E[X2

A]

E[XA]2
≤ 2n/2.

• [FJ 1995] For almost every graph, the critical ratio of XA is bounded
by a polynomial.
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Analysis of the GG Estimator

• [Barvinok 1999,2000] A variation of the Godsil-Gutman estimator us-
ing quaternions results in a O(1.31n)-approximation w.h.p. in polyno-
mial time.

• [CRS 2002] By choosing elements of B from {±1,±i,±j,±k}, the
bounds improve again to

(5/4)n/2 ≤
E[X2

A]

E[XA]2
≤ (3/2)n/2.

The critical ratio can be reduced to a constant by using elements from
high-dimensional Clifford algebras, though the resulting estimator is
not known to be efficiently computable.
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Our Results

We define a new determinant-based estimator XG for the number of per-
fect matchings M(G) in a general graph G = (V = [2n], E) with the
following properties:

Theorem 1: The estimator is unbiased; i.e., E[XG] = M(G).

Theorem 2: The worst-case critical ratio of XG is bounded by

(7/3)n/2 ≤
E[X2

G]

E[XG]2
≤ 3n/2.

Theorem 3: Let ω(n) be any function tending to infinity. Then almost every

graph G ∈ G2n,1/2 satisfies
E[X2

G]

E[XG]2
≤ αnω(n) for a fixed constant α.
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The Tutte Matrix

Given a graph G = (V = [2n], E), its Tutte matrix T is a 2n × 2n matrix
defined as

tij =











xij if {i, j} ∈ E and i < j
−xij if {i, j} ∈ E and i > j
0 otherwise

The polynomial det(T) is not identically zero if and only if G contains a
perfect matching.
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An Estimator for General Graphs

Given graph G, construct its Tutte matrix T .

1 2

3

45

6G =

T =





















0 x12 x13 x14 0 x16
−x12 0 x23 0 0 0
−x13 −x23 0 0 x35 0
−x14 0 0 0 x45 x46

0 0 −x35 −x45 0 x56
−x16 0 0 −x46 −x56 0




















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An Estimator for General Graphs

From T , create a random matrix B by replacing each variable xij in T with
a uniform random element of {±1}.

T =





















0 x12 x13 x14 0 x16
−x12 0 x23 0 0 0
−x13 −x23 0 0 x35 0
−x14 0 0 0 x45 x46

0 0 −x35 −x45 0 x56
−x16 0 0 −x46 −x56 0





















B =





















0 1 1 −1 0 1
−1 0 −1 0 0 0
−1 1 0 0 −1 0
1 0 0 0 −1 1
0 0 1 1 0 −1
−1 0 0 −1 1 0





















Output XG = det(B).
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Proof of Unbiasedness

Proof:

XG = det(B) =
∑

σ∈S2n

sgn(σ)
2n
∏

i=1

bi,σi

Use equivalence between permutations in B and directed cycle covers in
G:

1 2

3

45

6

1 2

3

45

6

b45, b54

b23

b64

b31

b56

b12

b45

b12b23b31b45b56b64

b23, b32b16, b61

b16b23b32b45b54b61
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Proof of Unbiasedness

Let C(G) be the set of cycle covers in G. Now we can write

XG =
∑

κ∈C(G)

sgn(κ)
∏

(i,j)∈κ

bij

and therefore

E[XG] =
∑

κ∈C(G)

sgn(κ)E[
∏

(i,j)∈κ

bij].

Claim:

• Cycle covers corresponding to perfect matchings contribute 1 to the
sum.

• The expected contribution of all other cycle covers is 0.
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The Critical Ratio

We now need to show that the critical ratio is bounded, or
E[X2

G]

E[XG]2
≤ 3n/2.

First,

E[XG]2 =
∑

H∈E(G)

2c(H).
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The Critical Ratio

Lemma:

XG =
∑

κ∈E(G)

sgn(κ)
∏

(i,j)∈κ

bij,

where E(G) ⊆ C(G) consists of only those cycle covers in which every
cycle is of even length.

Therefore,

E[X2
G] =

∑

(κ,κ′)∈E(G)×E(G)

sgn(κ, κ′)E[
∏

(i,j)∈κ

bij

∏

(i,j)∈κ′

bij]

=
∑

H∈E(G)

6c(H)
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The Critical Ratio

Hence,

E[X2
G]

E[XG]2
=

∑

H∈E(G) 6
c(H)

∑

H∈E(G) 2
c(H)

≤ max
H∈E(G)

6c(G)

2c(G)
≤ 3n/2.
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Comparison with GG Estimator

Consider the behavior of XG on a bipartite graph G = (U, V, E), where
the vertices in U precede those in V :

B =

(

0 B0

−B′
0 0

)

G = T =

(

0 T0

−T ′
0 0

)

Hence XG = det(B) = |det(B0)|
2, and is equivalent to the Godsil-

Gutman estimator XA on bipartite graphs.
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Lower Bounds on the Critical Ratio

(7/3)n/22n/2
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Open Problems

• Extend the new estimator to complex numbers as in [KKLLL 1993] and
possibly beyond.

• Close the gap between the upper and lower bounds on the worst-case
critical ratio.
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