
 1

SOMO: Self-Organized Metadata Overlay
for Resource Management in P2P DHT

Abstract – In this paper, we first describe the concept of data
overlay, which is a way to implement arbitrary data structure
in a structured P2P DHT. Built on top of that, we developed a
self-organized and robust infrastructure, called SOMO, to
perform resource management in an arbitrary DHT. It does so
by gathering and disseminating system metadata in O(logN)
time with a self-managed and self-survivable data overlay. Our
preliminary results of using SOMO to balance routing traffic
with node capacities in a prefix-based overlay have
demonstrated the potential of both these two techniques.

1 Introduction
For a large scale P2P overlay to adapt and evolve, there
must be a parallel infrastructure to monitor the health of
the system (e.g, “top”-like utility in UNIX). The
responsibility of such infrastructure is to gather from and
distribute to entities comprising the system whatever
system metadata of concern, and possibly serve as the
channel to communicate various scheduling instructions.
The challenge here is that this infrastructure must be
embedded in the hosting DHT but is otherwise agonistic
to its specific protocols; it must grow along with the
hosting DHT system; it must also be fault resilient and,
finally, the information it gather and/or disseminate
should be as accurate as possible.

In this paper, we describe the Self-Organized Metadata
Overlay, or SOMO in short, which accomplishes the
above goal. By using hierarchy as well as soft-state,
SOMO is fault-resilient and can gather and disseminate
information in O(logN) time. SOMO is simple and
flexible, and is agnostic to both the hosting P2P DHT and
the data being gathered and disseminated. The later
attribute allows it to be programmable, invoking
appropriate actions such as merge-sort and aggregation as
data flows through.

Through the development of SOMO, we have discovered
that there is a consistent and simple mechanism to
implement arbitrary data structure on top of a P2P DHT.
We refer to a data structure that is distributed onto a DHT
a data overlay. Data overlay is discussed in Section-2.
Following that, we describe the construction and
operations of SOMO in Section-3, and also its application
in Section-4. A case study of using SOMO to balance
routing traffic to node’s capacity in a prefix-based
overlay is offered in Section-5, along with preliminary

 ♦ Microsoft Research Asia. zzhang@microsoft.com
 ♣ Tsinghua university. Work done as intern at MSRA
 {ssm99, zhujing00}@mails.tsinghua.edu.cn

results. We discuss related work in Section-6 and
conclude in Section-7.

2 Implement arbitrary data structures on top
of P2P DHT using data overlay

We observe that hash-table is only one of the
fundamental data structures. Sorted list, binary trees,
queues all have their significant utilities. One way would
be to investigate how to make each of them self-
organized (i.e., P2P sorted list). Another is to build on top
of a hash table that is already self-organizing (i.e. P2P
DHT). This second approach is what we take in this
paper.

Any object of a data structure can be considered as a
document. Therefore, as long as it has a key, that object
can be deposited into and retrieved from a P2P DHT.
Objects relate to each other via pointers, so to traverse to
the object b pointed by a.foo, a.foo must now store b’s
key instead. More formally, the following two are the
necessary and sufficient conditions:

• Each object must have a key, obtained at its birth (i.e.,
new)

• If an attribute of an object, a.foo, is a pointer, it is
expanded into a structure of two fields: a.foo.key and
a.foo.host. The second field is a soft state containing
the last known hosting DHT node of the object a.foo
points to. It is thus a routing shortcut.

It is possible to control the generation of object’s key to
explore data locality in a DHT. For instance, if the keys
of a and b are close enough, it’s likely that they will be
hosted on one machine in DHT.

We call a data structure distributed in a hosting DHT a
data overlay. It differs from traditional sense of overlay
in that traversing (or routing) from one entity to another
uses the free service of the underlying P2P DHT.

Figure 1: implement arbitrary data structure in DHT

Figure-1 contrasts a data structure in local machine
versus that on a P2P DHT. Important primitives that
manipulate a pointer in a data structure, including setref,
deref (dereferencing) and delete, are outlined in Figure-2.

Zheng Zhang♦ Shu-Ming Shi♣ and Jing Zhu♣

P N

 2

Here, we assume that both DHT_lookup and DHT_insert
will, as a side effect, always return the node in DHT that
currently hosts the target object. DHT_direct bypasses
normal DHT_lookup routing and directly seeks to the
node that hosting an object given its key.

The interesting aspect is that it is now possible to host
any arbitrary data structure on a P2P DHT, and in a
transparent way. What need to be modified are the library
routine that creates an object to insert a key as its member,
and the few primitives that manipulate pointers as
outlined. Therefore, legacy applications can be ported to
run on top of a P2P DHT, giving them the illusion of an
infinite storage space (here storage can broadly include
memory heaps of machines comprising the DHT).

3 Self-Organized Metadata Overlay
We now describe the data overlay SOMO (Self-
Organized Metadata Overlay), an information gathering
and disseminating infrastructure on top of any P2P DHT.
To recap briefly, such an infrastructure must satisfy a few
key properties: self-organized at the same scale as the
hosting DHT, fully distributed and failure-resilient, and
be as accurate as possible of the metadata gathered.

SOMO is a tree of k degree and its leaves are planted in
each DHT node. Information is gathered from the bottom
and propagates towards the root, and disseminated by
trickling downwards. Thus, one can think of SOMO as
doing converge cast from the leaves to the root, and then
multicast back down to the leaves again. Both the
gathering and dissemination phases are O(logkN) bounded,
where N is total number of entities. Each operation in
SOMO involves no more than k+1 interactions, making it
fully distributed. We deal with robustness using the
principle of soft-state, so that data can be regenerated in
O(logkN) time. The SOMO tree is both self-organized and
self-survivable and can automatically reconstruct itself in

the same time bound. We explain the details of SOMO in
the following sub-sections.

3.1 Building SOMO
Since SOMO is a tree, we call its node the SOMO node.
To avoid confusion, we denote the DHT nodes as simply
the DHT node. A DHT node that hosts a SOMO node s,
is referred to as DHT_host(s).

The basic structure of the type SOMO_node is described
in Figure-3. The member Z indicates the region of which
this node’s report member covers. Here, the region is
simply a portion of the total logical space of the DHT.
The root SOMO node covers the entire logical space. The
key is the center of a SOMO node’s region. Therefore, a
SOMO node s will be hosted by a DHT node that covers
s.key (i.e. the center of s.Z). A SOMO node’s responsible
region is further divided by a factor of k, each taken by
one of its k children, which are pointers in the SOMO
data structure. A SOMO node s’s i-th child will cover the
i-th fraction of region s.Z. Since a DHT node will own a
piece of the logical space, it is therefore guaranteed a
SOMO node will be planed in it.

Initially, when the system contains only one DHT node,
there is only the root SOMO node. As the DHT system
grows, SOMO builds its hierarchy along. This is done by
letting each SOMO node periodically execute the routine
SOMO_grow, shown in Figure-4. .

We test first if the SOMO node’s responsible zone is
smaller or equal to that of the hosting DHT node’s, if the
test comes out to be true, then this SOMO node is already
a leaf planted in the right DHT node and there is no point
to grow any more child. Otherwise, we attempt to grow.
Note that we initialize a SOMO node object and its
appropriate fields, and then call the setref primitive (See

setref(a.foo, b) { // initially a.foo=null
 // b is the object to which a.foo
 // will point to
 a.foo.key = b.key
 a.foo.host = DHT_insert(b.key, b)
}
deref(a.foo) { // return the object
 // pointed by a.foo
 if (a.foo ≠ null) {
 obj = DHT_direct(a.foo.host, a.foo.key)
 if obj is null // the object has moved
 obj = DHT_lookup(a.foo.key)
 a.foo.host = node returned
 }
 return obj
 } else return “non-existed”
}
delete(a.foo) { // delete the object pointed by a.foo
 DHT_delete(a.foo.key)
 a.foo=null
}

Figure 2: pointer manipulate primitives

struct SOMO_node {
 string key
 struct SOMO_node *child[1..k]
 DHT_zone_type Z
 SOMO_op op
 Report_type report
}

Figure 3: SOMO node structure

SOMO_grow (SOMO_node s) {
 // check if any children is necessary
 if (s.Z ⊆ DHT_host(s).Z) return
 for i=1 to k
 if (s.child[i] is null &&
 the i-th sub-space of s.Z ⊄ host(s).Z) {
 t = new(type SOMO_node)
 t.Z = the i-th sub-space of s.Z
 t.key = center of t.Z
 setref(s.child[i], t) // inject into DHT
 }
}

Figure 4: SOMO_grow procedure

 3

Figure-2) to install the pointer; this last step is where
DHT operation is involved.

As this procedure is executed by all SOMO nodes, the
SOMO tree will grow as the hosting DHT grows, and the
SOMO tree is taller in logical space regions where DHT
nodes are denser. This is illustrated in Figure-5.

Figure 5: SOMO tree on top of P2P DHT

The procedure is done in a top down fashion, and is
executed periodically. A bottom-up version can be
similarly derived. When system shrinks, SOMO tree will
prune itself accordingly. This can be done by simply
deleting redundant children.

The crash of a DHT node will take away the SOMO
nodes it is hosting. However, the periodical checking of
all children SOMO nodes ensures that the tree can be
completely reconstructed in O(logkN) time. Because the
SOMO root is always hosted by the DHT node that owns
the center of the total space, we ensure the existence of
the SOMO root by letting that DHT node invoke the
SOMO_grow routine on the SOMO root.

3.2 Gathering and disseminate information with
SOMO

To gather system metadata, for instance loads and
capacities, a SOMO node periodically requests report
from its children. The leaf SOMO nodes simply get the
required info from their hosting DHT nodes. As a side-
effect, it will also re-start a child SOMO node if it has
disappeared because the hosting DHT node’s crash. The
following figure illustrates the procedure.

The routine is periodically executed at an interval of T.
Thus, information is gathered from the SOMO leaves and
flows to its root with a maximum delay of logkN⋅T. This
bound is derived when flow between hierarchies of
SOMO is completely unsynchronized. If upper SOMO
nodes’ call for reports immediately triggers the similar
actions of their children, then the latency can be reduced
to T+thop ⋅logkN, where thop is average latency of a trip in
the hosting DHT. The unsynchronized flow has latency
bound of logkN⋅T, whereas the synchronized version will
be bounded by T in practice (e.g., 5 minutes). Note that

O(thop ⋅logkN) is the absolute lower bound. For 2M nodes
and with k=8 and a typical latency of 200ms per DHT
hop, the SOMO root will have a global view with a lag of
1.6s.

Dissemination using SOMO is essentially the reverse:
data trickles down through the SOMO hierarchy towards
the leaves. Performance thus is similar as gathering. By
some modification, dissemination can piggyback on the
return message in the gathering phase.

Operations in either gathering or disseminating phases
involve one interaction with the parent, and then with k
children. Thus, the overhead in a SOMO operation is a
constant. The entities involved are the DHT nodes that
host the SOMO tree. SOMO nodes are scattered among
DHT nodes and therefore SOMO processing is
distributed and scales with the system.

It seems that towards the SOMO root the hosting DHT
nodes need to have increasingly higher bandwidth and
stability. As discussed earlier, stability is not a concern
because the whole SOMO hierarchy can be recovered in
O(logkN) time. As for bandwidth, most of the time one
needs only to submit deltas between reports, and this will
bring down message size significantly (Figure-5). Finally,
it is always possible to locate an appropriate node
through SOMO. This node can swap with the one who is
hosting the SOMO root currently. That is to say, SOMO
can be completely self-optimizing as well.

3.3 Discussion
The SOMO procedures are just like any ordinary code
running on a local machine. This demonstrates the utility
of the data overlay concept.

The power of SOMO lies in its simplicity and flexibility.
As an infrastructure, SOMO does not specify what
information it should gather and/or disseminate.
Furthermore, various operations, such as aggregation and
sorting, can be invoked when metadata flows by. That is
to say, SOMO operations are programmable and active.
For this reason, in the pseudo-code we use op as a generic
notation for operation used. Some of the examples will be
described in the next Section.

4 Application of SOMO
As a scalable, fault-tolerant metadata gathering and
dissemination infrastructure, the utilities of SOMO are
many. In a large scale system, the need to monitor the
health of the system itself can not be understated. More
advanced usages are chiefly decided by algorithms that
built upon the metadata that gathered. The followings are
some examples.

One instance would be to find powerful nodes,
commonly known as supernodes. To do this, we will
make a SOMO tree where the report type is sorted list,
and the op is merge-sort. Thus, SOMO can mine out
multiple classes of supernodes, as reports available at
various internal SOMO nodes, with the SOMO root
having the complete list. These supernodes can thus act
as indexing hobs, as proposed in [2]. Supernodes can

Total logical space

SOMO node

DHT node

reportlastreportthis __ ∩=∆

get_report (SOMO_node s) {
 Report_type rep[1..k]
 for i∈[1..k]
 if (s.child[i] ≠ null) // retrieving via DHT
 rep[i] = deref(s.child[i]).report
 s.report = s.op(rep[])
}

Figure 6: SOMO gathering procedure

 4

form separate overlays to optimize routing. Given a
node’s own geographic coordinates, we may wish to find
out the closest node in a given logical space region. This
is particularly useful for the proximity neighbor selection
optimization in prefix-based overlay such as Pastry[5],
Tapestry[12] and eCAN[10]. To do this, the leaf SOMO
node submits its coordinates (obtained perhaps via a
method like land-marking [4]) in the SOMO report, and
the SOMO op is aggregation, and any node geographical
distribution in a region can be found by query the
appropriate SOMO node that covers that region.

More elaborate algorithms can be built upon load and
capacity info fed by a SOMO to perform various kind of
load balancing. One such application is offered in the
next section. There are proposals where routing
performance is the best but storage uniformity is
sacrificed [4], SOMO can discover the density map of
node capacities. Such information can guide document
placement, or migrate nodes from dense regions to weak
ones. In this way, uniformity will improve over time.

It is also possible to build a SOMO on top of a basic,
mesh-based P2P DHT, and then build a O(logN) soft-
state prefix-based overlay because SOMO can have the
knowledge of what nodes exist in what portion of the
total logic space.

Finally, since SOMO is a self-organized hierarchy, by
installing appropriate filters as its op member, it’s
possible to use SOMO as a pub/sub infrastructure as well.

5 Case study: balancing routing power with
routing traffic in prefix-based overlay
Prefix-based overlay includes Tapestry[12], Pastry[5],
Chord[7], Kademlia[1] and eCAN[9] (CAN[3] with
simple extension). Though some aspects of these
proposals differ, they share a few key attributes: 1) the
total logical (or key) space is recursively divided and 2)
routing greedily seeks out the biggest span into a sub-
space and then zoom in towards target quickly. Routing
table of prefix-based overlay is an array, recording spaces
of exponentially decreasing size and one or several nodes
that serve as this node’s gateway, or “router” into these
spaces. The flexibility of the prefix-based overlays is that,
any node in the target sub-space can be a router. This
gives rise to many optimization opportunities. Pastry and
eCAN explore the possibilities of using the
geographically closest node as router candidates to
improve routing performance. In this paper, we report our
investigation on another complementary axis: choosing
the more powerful nodes to serve as routing entrances for
larger sub-spaces where traffics are exponentially more
than sub-spaces enclosed. The ultimate solution (and
challenge) of selecting these “routers” is to consider all
the following three factors: geographic vicinity, routing
capacity and load distribution. This remains to be one of
our future works.

Our goal is to promote the most capable nodes to handle
traffics into larger space, relieving weaker nodes off these
responsibilities. Intuitively, the most powerful nodes will

take the bulk of the loads in the largest enclosing space,
and the weaker ones will serve no more than those
designated to its immediate neighbor. Due to space
limitation, we refer readers to [10] for the full protocol.
Our basic idea is to classify routing loads that a node
takes according to the sub-space in which the routing is
designated and divide a node’s routing capacity
accordingly.

Our optimization consists of four algorithms:

§ Statistic collection algorithm. Aggregate loads and
capacity statistics in a bottom-up sweep through
SOMO. The goal is to have a “view” of the
demographic distribution of both loads and capacities.
At this point, the load/capacity ratios of the whole
system as well as all enclosing spaces are available.

§ Load balance algorithm. Top-down sweep to
determine the amount of routing capacities to be
dedicated in each space, so that its load/capacity ratio
approaches to that of the whole system where
possible.

§ Capacity selection algorithm. Select the right portion
of capacities, as recommended by the previous step,
from candidate nodes. Also bottom-up sweep. At the
end of this algorithm, we have selected the right
capacity divide to take care of traffic loads of
different space.

§ Entries dissemination algorithm. Notify other nodes
to use these new “routers” so that load distribution
can take effect.

The core of our algorithm is in the 2nd and the 3rd step. It
can be simplified if not for a subtle but important issue.
The load and capacity distribution can be so skewed that
nodes in a sub-space are already overwhelmed by the
traffic designated to them, leaving them virtually no
surplus power to share routing duties in enclosing spaces.
Our scheduling algorithm has taken this into full account
by pardoning heavily loaded sub-spaces (or the ones with
meager power).

We modify an earlier e/CAN simulator by incorporating
all the four algorithms described earlier. eCAN[9] is a
prefix-based overlay capable of O(lnN) routing
performance, and this is achieved with simple extension
to CAN[2]. In eCAN, the recursion in resolving routing is
by zooming into topology sub-zones rather than shifting
bits. However, our algorithm is immediately applicable to
other prefix-based overlays such as Pastry[5],
Tapestry[12] and Kademlia[1]

 (a) Gnutella-like

(b) Zipf-like

Figure 7: Capacity profile (N=2K)

Two capacity profiles are used to model heterogeneity:

 5

§ Zipf-like: when sorted, the i-th node has capacity
10000�i-�, we choose � be 1.2 by default.

§ Gnutella-like: there are 5 levels of node, and the i-th
level has capacity 10i-1, popularity in these levels are
20%, 45%, 30%, 4.9% and 0.1%, going from level 1
to level 5 (see [6]).

The comparison of the two distributions for a 2K node
system is shown in Figure 7.

The eCAN configuration we use is equivalent to
Pastry/Tapestry of b=1. We tested other configurations
[10] and results are similar to those presented here. For
each configuration (capacity profile, N and other
parameters), an experiment of 5 cycles is run. Each cycle
starts with a complete reshuffling of the node capacities,
then route 100N times, during which load and capacity
information are gathered. We then run the four
algorithms to perform load balance. Finally another 100N
routings are performed and various statistics are collected
again. This somewhat primitive setup allows us to gain
sufficient insight of the algorithms; a more sophisticated
one would include node join and leave events and mix
SOMO traffics with normal routing, which we plan to
conduct in the future.

 (a) Before

(b) After

Figure 8: Results of N=2K, Gnutella-like (the line
corresponds to average load of a capacity level)

 (a) Before

(b) After

Figure 9: Results of N=2K, Zipf-like

We found that, in all configurations, load balance
converges quickly in O(log N) time, and that after the full
set of the algorithms are run, higher capacity nodes are
taking more loads. Figure 8 and Figure 9 show a typical
pair of results of the Gnutella-like and Zipf-like capacity
distributions, respectively. Note the sharp difference
before and after the load redistribution.

6 Related work
Data overlay relies on the key property of the P2P DHT
([5] [12] [7] [3] [1] [9]) that an item with unique key can
be reliably created and retrieved. To our knowledge,
extending the principle of self-organizing to arbitrary
data structure other than hash table and do it in a way that

is agnostic to both semantics and performance of the
hosting P2P DHT is new.

SOMO bears the most similarity to Astrolabe [8], a peer-
to-peer management and data mining system, for instance
the use of hierarchies and aggregation. SOMO operates at
the rudimentary data structure level while Astrolabe is on
a virtual, hierarchical database. SOMO’s extensibility is
much like that of active network, whereas Astrolabe uses
SQL queries. The marked difference is that SOMO is
designed specifically on top of P2P DHT, for two reasons:
1) we believe P2P DHTs have established a foundation
over which many other systems can be built and thus
there is a need for a scalable resource management and
monitoring infrastructure and 2) by leveraging P2P DHT
(in fact, data overlay) the design and protocols of such
infrastructure can be much simpler.

7 Conclusion and future work
This paper makes several novel contributions: we
describe how arbitrary data structures can be
implemented on P2P DHT using the concept of data
overlay; we designed and evaluated a self-organizing and
robust metadata gathering and dissemination
infrastructure, the self-organized metadata overlay. We
have demonstrated how to balance routing traffic with
node capacity in prefix-based overlay using both of these
two techniques. Our future work includes more extensive
study of these concepts.

8 Acknowledgement
The authors would like to thank Yu Chen and Qiao Lian
for their useful comments of this work. Dan Zhao helped
to prepare this report as well.

References
[1] Maymounkov, P. and Mazieres D. Kademlia: a Peer-to-Peer Information

System Based on the XOR Metric. In 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), (Cambridge, MA March 2002)

[2] Qin Lv and Sylvia Ratnasamy, Can Heterogeneity Make Gnutella
Scalable? Proceedings of IPTPS 2002

[3] Ratnasamy, S., et al. A Scalable Content-Addressable Network. In ACM
SIGCOMM. 2001. San Diego, CA, USA.

[4] Ratnasamy, S., et al. Location-Aware Overlay Construction and Server
Selection. In Infocom. 2002.

[5] Rowstron, A. and P. Druschel. Pastry: Scalable, distributed object
location and routing for largescale peer-to-peer systems. in IFIP/ACM
Middleware. 2001. Heidelberg, Germany.

[6] Saroiu, S., Gummadi, K., and Gribble, S. A measurement study of peer-
to-peer file sharing systems. In Proceedings of Multimedia Conferencing
and Networking (San Jose, Jan. 2002)

[7] Stoica, I., et al. Chord: A scalable peer-to-peer lookup service for
Internet applications. In ACM SIGCOMM. 2001. San Diego, CA, USA.

[8] Van Renesse, Robert and Birman Kenneth. Scalable Management and
Data Mining using Astrolabe. Proceedings of IPTPS 2002.

[9] Xu, Zhichen and Zhang, Zheng, Building Low-maintenance
Expressways for P2P Systems, available at
http://www.hpl.hp.com/techreports/2002/HPL-2002-41.html, March
2002

[10] Zhang, Zheng, Shi, Shu-ming and Zhu, Jing. Self-balanced P2P
expressway: when Marxism meets Confucian. MSR-TR-2002-72

[11] Zhang, Zheng, Shi, Shu-ming and Zhu, Jing. SOMO: Self-Organized
Metadata Overlay and its Application. MSR-TR-2002-105

[12] Zhao, B., Kubiatowicz, J.D., and Josep, A.D. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Tech.
Rep. UCB/CSD-01-1141, UC Berkeley, EECS, 2001.

