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Abstract —In this paper, we first describe the concept obdat results. We discuss related work in Section-6 and
overlay, which is a way to implement arbitrary dateucture conclude in Section-7.
in a structured P2P DHT. Built on top of that, wevdloped a
self-organized and robust infrastructure, called\BO®, to 2 Implement arbitrary data structures on top

perform resource management in an arbitrary DHTddes so :
by gathering and disseminating system metada@(liogN) of P2P DHT using data over!ay
time with a self-managed and self-survivable datariay. Our We observe that hash-table is only one of the

preliminary results of using SOMO to balance rogttraffic fundamental data structures. Sorted list, binapesr
with node capacities in a prefix-based overlay have gueues all have their significant utilities. Oneyweould
demonstrated the potential of both these two teghes be to investigate how to make each of them self-

. organized (i.e., P2P sorted list). Another is tdcban top
1 Introduction of a hash table that is already self-organizing. (R2P

For a large scale P2Bverlay to adapt and evolve, there DHT). This second approach is what we take in this
must be a parallel infrastructure to monitor thaltieof  paper.

the system (e.g, “top™like utility in UNIX). The
responsibility of such infrastructure is to gatfrem and
distribute to entities comprising the system whatev
system metadata of concern, and possibly servéeas
channel to communicate various scheduling instouasti
The challenge here is that this infrastructure maest , .
embedded in the hosting DHT but is otherwise agionis K€Y instéad. More formally, the following two atiee
to its specific protocols: it must grow along withe ~ N€cessary and sufficient conditions:

hosting DHT system; it must also be fault resiliant, « Each object must have a key, obtained at its Ifirh,
finally, the information it gather and/or dissentma new

should be as accurate as possible. . . . . o

) ) ]  If an attribute of an object.foq is a pointer, it is
In this paper, we describe tlgelf-Organized Metadata  expanded into a structure of two fieldsfoo.keyand
Overlay, or SOMO in short, which accomplishes the 3 foo.host The second field is a soft state containing

above goal. By using hierarchy as well as sofestat the last known hosting DHT node of the objadbo
SOMO is fault-resilienand can gather and disseminate points to. It is thus a routing shortcut.

information in O(logN) time. SOMO is simple and

Any object of a data structure can be considerec as
document. Therefore, as long as it has a key,abjtct
tcan be deposited into and retrieved from a P2P DHT.
Objects relate to each other via pointers, soaweetise to
the objectb pointed bya.fog a.foo must now stordy’s

It is possible to control the generation of objedtey to
&xplore data locality in a DHT. For instance, ié tkeys
attribute allows it to be programmable, invoking of a andb are close enough, it's likely that they will be
appropriate actions such as merge-sort and agipaget  "oSted on one machine in DHT.

data flows through. We call a data structure distributed in a hostingTDa

Through the development of SOMO, we have discovereat@ overlay It differs from traditional sense of overlay
that there is a consistent and simple mechanism t§! that traversing (or routing) from one entitydoother
implement arbitrary data structure on top of a Papr.  Uses the free service of the underlying P2P DHT.

We refer to a data structure that is distributetb @DHT =
a data overlay Data overlay is discussed in Section-2. g 3]
Following that, we describe the construction and . f :>
operations of SOMO in Section-3, and also its ajafilbn i
in Section-4. A case study of using SOMO to balance :ecamachine
routing traffic to node’s capacity in a prefix-bdse pop DHT 0%V
overlay is offered in Section-5, along with prelivary

node x

[a] key

DHT_lookup(a.foo.key)

a.foo key
afoohos fFfF= !

Figure 1. implement arbitrary data structurein DHT

Figure-1 contrasts a data structure in local mahin

¢ Microsoft Research Asia. zzhang@microsoft.com versus that on a P2P DHT. Important primitives that

# Tsinghua university. Work done as intern at MSRA manipulate a pointer in a data structure, includiatyef
{ssm99, zhujing00}@mails.tsinghua.edu.cn deref(dereferencing) andelete are outlined in Figure-2.



Here, we assume that both DHT_lookup and DHT_inser
will, as a side effect, always return the node HTDthat
currently hosts the target object. DHT direct bgeas
normal DHT_lookup routing and directly seeks to the
node that hosting an object given its key.

setrefa.foc, b) {  //initially a.foo=null
Bis the object to which.foo
// will point to
a.foo.key =h.key
a.foo.host =DHT _insertp.key b)
}
deref@.foo { /I return the object
/l pointed &yoo
if (a.foo=null) {
obj = DHT _direct@.foo.hosta.foo.key
if objisnull // the object has moved
obj = DHT_lookupg.foakey)
a.foo.host node returned

return obj
} elsereturn “non-existed”

}

deletef.foo) { // delete the object pointed layfoo
DHT_deleteg.foo.key
a.foo=null

}
Figure 2: pointer manipulate primitives

The interesting aspect is that it is now possibléhdst
any arbitrary data structure on a P2P DHT, and in
transparent way. What need to be modified areilbinary
routine that creates an object to insert a keysamémber,

and the few primitives that manipulate pointers as

outlined. Therefore, legacy applications can begabto
run on top of a P2P DHT, giving them the illusichan
infinite storage space (here storage can broadildie
memory heaps of machines comprising the DHT).

3 Sdf-Organized M etadata Overlay

We now describe the data overlay SOMGelf-
Organized Metadata Overlayan information gathering
and disseminating infrastructure on top of any BP2H.

To recap briefly, such an infrastructure must §atisfew
key properties: self-organizedat the same scale as the
hosting DHT, fullydistributed andfailure-resilient and
be asaccurateas possible of the metadata gathered.

SOMO is a tree ok degree and its leaves are planted in
each DHT node. Information is gathered from thedmot
and propagates towards the root, and disseminated |
trickling downwards. Thus, one can think of SOMO as
doing converge castrom the leaves to the root, and then
multicast back down to the leaves again. Both the
gathering and dissemination phases are (Nlogounded,
where N is total number of entities. Each operation in
SOMO involves no more thdar1 interactions, making it
fully distributed. We deal with robustness using t
principle of soft-state, so that data can be regged in
O(logN) time. The SOMO tree is both self-organized and
self-survivable and can automatically reconstrtseli in

h

the same time bound. We explain the details of SOMO
the following sub-sections.

3.1 Building SOMO

Since SOMO is a tree, we call its node 8@MO node
To avoid confusion, we denote the DHT nodes aslgimp
the DHT node A DHT node that hosts a SOMO nosgle
is referred to aBHT_hos(s).

struct SOMO_node
stringkey
struct SOMO_nodechild[1..K]
DHT_zone_typ&
SOMO_opop
Report_typeeport

Figure 3: SOMO node structure

The basic structure of the ty MO _nodéds described
in Figure-3. The membéet indicates the region of which
this node’sreport member covers. Here, the region is
simply a portion of the total logical space of tDelT.
The root SOMO node covers the entire logical spabe.
keyis the center of a SOMO node’s region. Therefare,
SOMO nodes will be hosted by a DHT node that covers
s.key(i.e. the center c§.2. A SOMO node’s responsible
region is further divided by a factor &f each taken by
one of itsk children, which are pointers in the SOMO
data structure. A SOMO nods i-th child will cover the

d-th fraction of regiors.Z.Since a DHT node will own a

piece of the logical space, it is therefore guaadtta
SOMO node will be planed in it.

Initially, when the system contains only one DHTdep
there is only the root SOMO node. As the DHT system
grows, SOMO builds its hierarchy along. This is eldny
letting each SOMO node periodically execute thdineu
SOMO_growshown in Figure-4.

SOMO_grow (SOMO_nods) {
/I check if any children is necessary
if (s.Z0 DHT_host§).Z) return
for i=1 tok
if (s.childi] is null &&
the-th sub-space of.Z0 host€).Z) {
t = new(type SOMO_node)
t.Z = thei-th sub-space of.Z
t.key= center ot.Z
setrefs.childi], t) // inject into DHT
}

Figure4: SOMO_grow procedure

We test first if the SOMO node’s responsible zogse i
smaller or equal to that of the hosting DHT noddé'#he
test comes out to be true, then this SOMO nodkdady
a leaf planted in the right DHT node and theredigaint
to grow any more child. Otherwise, we attempt towgr
Note that we initialize a SOMO node object and its
appropriate fields, and then call thetrefprimitive (See



Figure-2) to install the pointer; this last stepwhere
DHT operation is involved.

As this procedure is executed by all SOMO nodes, t
SOMO tree will grow as the hosting DHT grows, ahd t
SOMO tree is taller in logical space regions whekT
nodes are denser. This is illustrated in Figure-5.

SOMO nod

| DHT node

Total logical spac

Figure5: SOMO treeon top of P2P DHT
The procedure is done in a top down fashion, and

executed periodically. A bottom-up version can be

similarly derived. When system shrinks, SOMO trek w

prune itself accordingly. This can be done by simpl

deleting redundant children.

O(thop MogkN) is the absolute lower bound. For 2M nodes
and withk=8 and a typical latency of 200ms per DHT

h hop, the SOMO root will have a global view withag lof
1.6s.

Dissemination using SOMO is essentially the reverse
data trickles down through the SOMO hierarchy talsar
the leaves. Performance thus is similar as gateBy
some modification, dissemination can piggyback loa t
return message in the gathering phase.

Operations in either gathering or disseminatingspha
involve one interaction with the parent, and thathwk
children. Thus, the overhead in a SOMO operatioa is
constant. The entities involved are the DHT noded t
host the SOMO tree. SOMO nodes are scattered among
DHT nodes and therefore SOMO processing is
iglistributed and scales with the system.

It seems that towards the SOMO root the hosting DHT
nodes need to have increasingly higher bandwidth an
stability. As discussed earlier, stability is not@ancern

because the whole SOMO hierarchy can be recovered i

The crash of a DHT node will take away the SOMOO(logN) time. As for bandwidth, most of the time one

nodes it is hosting. However, the periodical chegkof
all children SOMO nodes ensures that the tree @n
completely reconstructed in O(l®d time. Because the

needs only to submit deltas between reports, aadnh
bbring down message size significantly (Figure-iakRy,
it is always possible to locate an appropriate node

SOMO root is always hosted by the DHT node thatown through SOMO. This node can swap with the one who i

the center of the total space, we ensure the existef

hosting the SOMO root currently. That is to say,M8D

the SOMO root by letting that DHT node invoke the can be completely self-optimizing as well.

SOMO_grow routine on the SOMO root.

3.2 Gathering and disseminate information with
SOMO

To gather system metadata, for instance loads an

3.3 Discussion

The SOMO procedures are just like any ordinary code
running on a local machine. This demonstrates titieyu

8f the data overlay concept.

capacities, a SOMO node periodically requests teporThe power of SOMO lies in its simplicity and fledity.

from its children. The leaf SOMO nodes simply det t
required info from their hosting DHT nodes. As desi
effect, it will also re-start a child SOMO nodeitfhas

As an infrastructure, SOMO does not specify what
information it should gather and/or disseminate.
Furthermore, various operations, such as aggregatid

disappeared because the hosting DHT node’s crdsh. T sorting, can be invoked when metadata flows byt Tha

following figure illustrates the procedure

get_report (SOMO_nocs) {
Report_typaep[1..K
for id[1..K]
if (s.childi] # null) /I retrieving via DHT
rep(i] = derefs.childi]).report
s.report=s.ofrefd])

Figure6: SOMO gathering procedure

The routine is periodically executed at an intervfll.
Thus, information is gathered from the SOMO leaared
flows to its root with a maximum delay of IdgT. This

bound is derived when flow between hierarchies gfcommonly known asupernodesTo do this, we wil

SOMO is completely unsynchronized. If upper SOM
nodes’ call for reports immediately triggers thenigar
actions of their children, then the latency carrdsiuced
to T+thop MOOKN, Wheret,, is average latency of a trip in

the hosting DHT. The unsynchronized flow has lagenc

bound of logN(T, whereas the synchronized version wil

be bounded by in practice (e.g., 5 minutes). Note that

3

to say, SOMO operations are programmable acti/e
For this reason, in the pseudo-code weagsas a generic
notation for operation used. Some of the exampléde
described in the next Section.

4  Application of SOMO

As a scalable, fault-tolerant metadata gathering an
dissemination infrastructure, the utilities of SOMfe
many. In a large scale system, the need to motfior
health of the system itself can not be understditae
advanced usages are chiefly decided by algorithmat t
built upon the metadata that gathered. The follgwiare
some examples.

One instance would be to find powerful nodes,
make a SOMO tree where the report type is sortd li
and theop is merge-sort. Thus, SOMO can mine out
multiple classes of supernodes, as reports availabl
various internal SOMO nodes, with the SOMO root
having the complete list. These supernodes candbus

| as indexing hobs, as proposed in [2]. Supernodes ca



form separate overlays to optimize routing. Given atake the bulk of the loads in the largest enclosipgce,

node’s own geographic coordinates, we may wistinib f
out the closest node in a given logical space regibis

is particularly useful for theroximity neighbor selection
optimization in prefix-based overlay such as P§slry
Tapestry[12] and eCAN[10]. To do this, the leaf SOM
node submits its coordinates (obtained perhapsavia
method like land-marking [4]) in the SOMO repomda
the SOMOop is aggregation, and any node geographica
distribution in a region can be found by query the
appropriate SOMO node that covers that region. 8§

More elaborate algorithms can be built upon load an
capacity info fed by a SOMO to perform various kivfd
load balancing. One such application is offeredtha
next section. There are proposals where routing
performance is the best but storage uniformity is
sacrificed [4], SOMO can discover the density mdp o
node capacities. Such information can guide doctimen
placement, or migrate nodes from dense regionsegkw
ones. In this way, uniformity will improve oventie.

It is also possible to build a SOMO on top of aibas 8§
mesh-based P2P DHT, and then build a OQ{)ogoft-
state prefix-based overlay because SOMO can have th
knowledge of what nodes exist in what portion of th
total logic space.

Finally, since SOMO is a self-organized hierarchy,
installing appropriate filters as itep member, it's
possible to use SOMO as a pub/sub infrastructurestis

5 Casestudy: balancing routing power with
routing trafficin prefix-based overlay

Prefix-based overlay includes Tapestry[12], PaSiry[
Chord[7], Kademlia[l] and eCAN[9] (CANJ[3] with

and the weaker ones will serve no more than those
designated to its immediate neighbor. Due to space
limitation, we refer readers to [10] for the fultgpocol.

Our basic idea is to classify routing loads thatcale
takes according to the sub-space in which the ngus
designated and divide a node’s
accordingly.

|Our optimization consists of four algorithms:

routing capacity

Statistic collection algorithm. Aggregate loads and
capacity statistics in a bottom-up sweep through
SOMO. The goal is to have a “view” of the
demographic distribution of both loads and capesiti
At this point, the load/capacity ratios of the wdnol
system as well as all enclosing spaces are availabl
L oad balance algorithm. Top-down sweep to
determine the amount of routing capacities to be
dedicated in each space, so that its load/capaatity
approaches to that of the whole system where
possible.

Capacity selection algorithm. Select the right portion
of capacities, as recommended by the previous step,
from candidate nodes. Also bottom-up sweep. At the
end of this algorithm, we have selected the right
capacity divide to take care of traffic loads of
different space.

Entries dissemination algorithm. Notify other nodes

to use these new “routers” so that load distribyutio
can take effect.

The core of our algorithm is in thé®2and the ¥ step. It
can be simplified if not for a subtle but importasgue.
The load and capacity distribution can be so skethatl
nodes in a sub-space are already overwhelmed by the
traffic designated to them, leaving them virtuaty

simple extension). Though some aspects of thesgurplus power to share routing duties in enclosipaces.

proposals differ, they share a few key attributesthe
total logical (or key) space is recursively dividaad 2)
routing greedily seeks out the biggest span insula
space and then zoom in towards target quickly. iRgQut
table of prefix-based overlay is an array, recaydipaces
of exponentially decreasing size and one or severdés
that serve as this node’s gateway, or “router” ittese
spaces. The flexibility of the prefix-based oveslay that,
any node in the target sub-space can be a roukes.
gives rise to many optimization opportunities. Baand
eCAN explore the possibilities of using the
geographically closest node as router candidates t
improve routing performance. In this paper, we repar

Our scheduling algorithm has taken this into fuké@unt
by pardoning heavily loaded sub-spaces (or the withs
meager power).

We modify an earlier e/CAN simulator by incorponafi
all the four algorithms described earlier. eCAN[9]a
prefix-based overlay capable of
performance, and this is achieved with simple esiten
T to CAN[2]. In eCAN, the recursion in resolving rog is
by zooming into topology sub-zones rather thantigigif
bits. However, our algorithm is immediately appliteato

ther

apestry[12] and Kademlia[1]

Qan

routing

prefix-based overlays such as Pastry[5],

investigation on another complementary axis: chapsi
the more powerful nodes to serve as routing enésifar
larger sub-spaces where traffics are exponentralbye
than sub-spaces enclosed. The ultimate solutiod (a
challenge) of selecting these “routers” is to cdesiall
the following three factors: geographic vicinityuting
capacity and load distribution. This remains toobe of
our future works.
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Our goal is to promote the most capable nodes dlba
traffics into larger space, relieving weaker nodtshese
responsibilities. Intuitively, the most powerfuldes will

Figure7: Capacity profile (N=2K)

Two capacity profiles are used to model heterodggnei



8§ Zipf-like. when sorted, the i-th node has capacityis agnostic to both semantics and performance ef th
10000i*, we choosé be 1.2 by default. hosting P2P DHT is new.

§ Gnutellalike: there are 5 levels of node, and the i-th g5\ pears the most similarity to Astrolabe [Sheger-
level has capacity 18 popularity in these levels are to-peer management and data mining system, faarinet
20%, 45%, 30%, 4.9% and 0.1%, going from level 1y,5" se of hierarchies and aggregation. SOMO ogseet

h to Ien\qlelfi(srie [fG]t)h owo distributions for a 2Kd the rudimentarylata structurdevel while Astrolabe is on
et con pah son o L e ? stributions for a 2K0@0 3 yjrtual, hierarchicatlatabase SOMO’s extensibility is
System IS shown In Figure 7. much like that of active network, whereas Astrolases

The eCAN configuration we use is equivalent t SQL queries. The marked difference is that SOMO is
gL quivalent 10 yesigned specifically on top of P2P DHT, for twagens:
Pastry/Tapestry ob=1. We tested other configurations 1y"\ye pelieve P2P DHTs have established a fourmatio
[10] and results are similar to those presente.teor  Go “\vhich many other systems can be built and thus
each configuration (capacity profileN and other ihore'is'a need for a scalable resource manageaneint
parameters), an experiment of 5 cycles is run. EgCfe o hiioring infrastructure and 2) by leveraging FRRT

starts with a complete reshuffling of the node citjes, : :
then route 10R times, during which load and capacity i(;l?r;?t:rtﬂcotlﬁﬁg ggﬁ rtl)%yr)nhr::eh (;Iienflpgigr.and protocolssch

information are gathered. We then run the four
algorithms to perform load balance. Finally anoth@iN :
routings are performed and various statistics alleated 7 _ Conclusion and future work o

again. This somewhat primitive setup allows us &ing This paper makes several novel contributions: we
sufficient insight of the algorithms; a more sopibated ~ describe how arbitrary data structures can be
one would include node join and leave events arnd miimplemented on P2P DHT using the concept of data
SOMO traffics with normal routing, which we plan to overlay; we designed and evaluated a self-orgagiaid

conduct in the future. robust metadata gathering and dissemination
. infrastructure, theself-organized metadata overlaye
: . have demonstrated how to balance routing traffith wi
- R T E /'/ node capacity in prefix-based overlay using botthete

Node Load
Node Load

two techniques. Our future work includes more esiten
study of these concepts.
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