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SOMO: Self-Organized Metadata Overlay  
for Resource Management in P2P DHT 

Abstract – In this paper, we first describe the concept of data 
overlay, which is a way to implement arbitrary data structure 
in a structured P2P DHT. Built on top of that, we developed a 
self-organized and robust infrastructure, called SOMO, to 
perform resource management in an arbitrary DHT. It does so 
by gathering and disseminating system metadata in O(logN) 
time with a self-managed and self-survivable data overlay. Our 
preliminary results of using SOMO to balance routing traffic 
with node capacities in a prefix-based overlay have 
demonstrated the potential of both these two techniques. 

1 Introduction 
For  a large scale P2P  overlay to adapt and evolve, there 
must be a parallel infrastructure to monitor the health of 
the system (e.g, “top”-like utility in UNIX). The 
responsibility of such infrastructure is to gather from and 
distribute to entities comprising the system whatever 
system metadata of concern, and possibly serve as the 
channel to communicate various scheduling instructions. 
The challenge here is that this infrastructure must be 
embedded in the hosting DHT but is otherwise agonistic 
to its specific protocols; it must grow along with the 
hosting DHT system; it must also be fault resilient and, 
finally, the information it gather and/or disseminate 
should be as accurate as possible. 

In this paper, we describe the Self-Organized Metadata 
Overlay, or SOMO in short, which accomplishes the 
above goal. By using hierarchy as well as soft-state, 
SOMO is fault-resilient and can gather and disseminate 
information in O(logN) time. SOMO is simple and 
flexible, and is agnostic to both the hosting P2P DHT and 
the data being gathered and disseminated. The later 
attribute allows it to be programmable, invoking 
appropriate actions such as merge-sort and aggregation as 
data flows through. 

Through the development of SOMO, we have discovered 
that there is a consistent and simple mechanism to 
implement arbitrary data structure on top of a P2P DHT. 
We refer to a data structure that is distributed onto a DHT 
a data overlay. Data overlay is discussed in Section-2. 
Following that, we describe the construction and 
operations of SOMO in Section-3, and also its application 
in Section-4. A case study of using SOMO to balance 
routing traffic to node’s capacity in a prefix-based 
overlay is offered in Section-5, along with preliminary 
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results. We discuss related work in Section-6 and 
conclude in Section-7.  

2 Implement arbitrary data structures on top 
of P2P DHT using data overlay 

We observe that hash-table is only one of the 
fundamental data structures. Sorted list, binary trees, 
queues all have their significant utilities. One way would 
be to investigate how to make each of them self-
organized (i.e., P2P sorted list). Another is to build on top 
of a hash table that is already self-organizing (i.e. P2P 
DHT). This second approach is what we take in this 
paper. 

Any object of a data structure can be considered as a 
document. Therefore, as long as it has a key, that object 
can be deposited into and retrieved from a P2P DHT. 
Objects relate to each other via pointers, so to traverse to 
the object b pointed by a.foo, a.foo must now store b’s 
key instead.  More formally, the following two are the 
necessary and sufficient conditions: 

• Each object must have a key, obtained at its birth (i.e., 
new) 

• If an attribute of an object, a.foo, is a pointer, it is 
expanded into a structure of two fields: a.foo.key and 
a.foo.host. The second field is a soft state containing 
the last known hosting DHT node of the object a.foo 
points to. It is thus a routing shortcut. 

It is possible to control the generation of object’s key to 
explore data locality in a DHT. For instance, if the keys 
of a and b are close enough, it’s likely that they will be 
hosted on one machine in DHT.  

We call a data structure distributed in a hosting DHT a 
data overlay. It differs from traditional sense of overlay 
in that traversing (or routing) from one entity to another 
uses the free service of the underlying P2P DHT.  

 

Figure 1: implement arbitrary data structure in DHT 

Figure-1 contrasts a data structure in local machine 
versus that on a P2P DHT. Important primitives that 
manipulate a pointer in a data structure, including setref, 
deref (dereferencing) and delete, are outlined in Figure-2. 
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Here, we assume that both DHT_lookup and DHT_insert 
will, as a side effect, always return the node in DHT that 
currently hosts the target object. DHT_direct bypasses 
normal DHT_lookup routing and directly seeks to the 
node that hosting an object given its key.  

 
The interesting aspect is that it is now possible to host 
any arbitrary data structure on a P2P DHT, and in a 
transparent way. What need to be modified are the library 
routine that creates an object to insert a key as its member, 
and the few primitives that manipulate pointers as 
outlined. Therefore, legacy applications can be ported to 
run on top of a P2P DHT, giving them the illusion of an 
infinite storage space (here storage can broadly include 
memory heaps of machines comprising the DHT).   

3 Self-Organized Metadata Overlay 
We now describe the data overlay SOMO (Self-
Organized Metadata Overlay), an information gathering 
and disseminating infrastructure on top of any P2P DHT. 
To recap briefly, such an infrastructure must satisfy a few 
key properties:  self-organized at the same scale as the 
hosting DHT, fully distributed and failure-resilient, and 
be as accurate as possible of the metadata gathered.  

SOMO is a tree of k degree and its leaves are planted in 
each DHT node. Information is gathered from the bottom 
and propagates towards the root, and disseminated by 
trickling downwards. Thus, one can think of SOMO as 
doing converge cast from the leaves to the root, and then 
multicast back down to the leaves again. Both the 
gathering and dissemination phases are O(logkN) bounded, 
where N is total number of entities. Each operation in 
SOMO involves no more than k+1 interactions, making it 
fully distributed. We deal with robustness using the 
principle of soft-state, so that data can be regenerated in 
O(logkN) time. The SOMO tree is both self-organized and 
self-survivable and can automatically reconstruct itself in 

the same time bound. We explain the details of SOMO in 
the following sub-sections.  

3.1 Building SOMO 
Since SOMO is a tree, we call its node the SOMO node. 
To avoid confusion, we denote the DHT nodes as simply 
the DHT node. A DHT node that hosts a SOMO node s, 
is referred to as DHT_host(s).  

 
The basic structure of the type SOMO_node is described 
in Figure-3. The member Z indicates the region of which 
this node’s report member covers. Here, the region is 
simply a portion of the total logical space of the DHT. 
The root SOMO node covers the entire logical space. The 
key is the center of a SOMO node’s region. Therefore, a 
SOMO node s will be hosted by a DHT node that covers 
s.key (i.e. the center of s.Z). A SOMO node’s responsible 
region is further divided by a factor of k, each taken by 
one of its k children, which are pointers in the SOMO 
data structure. A SOMO node s’s i-th child will cover the 
i-th fraction of region s.Z. Since a DHT node will own a 
piece of the logical space, it is therefore guaranteed a 
SOMO node will be planed in it. 

Initially, when the system contains only one DHT node, 
there is only the root SOMO node. As the DHT system 
grows, SOMO builds its hierarchy along. This is done by 
letting each SOMO node periodically execute the routine 
SOMO_grow, shown in Figure-4. .  

 
We test first if the SOMO node’s responsible zone is 
smaller or equal to that of the hosting DHT node’s, if the 
test comes out to be true, then this SOMO node is already 
a leaf planted in the right DHT node and there is no point 
to grow any more child. Otherwise, we attempt to grow. 
Note that we initialize a SOMO node object and its 
appropriate fields, and then call the setref primitive (See 

setref(a.foo, b) {      // initially a.foo=null 
                                // b is the object to which a.foo 
                                // will point to 
  a.foo.key = b.key  
  a.foo.host = DHT_insert(b.key, b) 
} 
deref(a.foo) {              // return the object 
                                    // pointed by a.foo 
  if (a.foo ≠ null) {  
    obj = DHT_direct(a.foo.host, a.foo.key) 
    if obj is null  // the object has moved 
      obj = DHT_lookup(a.foo.key) 
      a.foo.host = node returned 
    } 
     return obj 
  }  else return “non-existed” 
} 
delete(a.foo) {    // delete the object pointed by a.foo 
  DHT_delete(a.foo.key) 
  a.foo=null 
} 

Figure 2: pointer manipulate primitives 

struct SOMO_node { 
  string key 
  struct SOMO_node *child[1..k] 
  DHT_zone_type Z 
  SOMO_op  op 
  Report_type report 
} 

Figure 3: SOMO node structure 

SOMO_grow (SOMO_node s) {  
             // check if any children is necessary 
  if (s.Z ⊆ DHT_host(s).Z)  return  
  for i=1 to k 
    if (s.child[i] is null && 
         the i-th sub-space of s.Z ⊄ host(s).Z ) { 
      t = new(type SOMO_node) 
      t.Z = the i-th sub-space of s.Z 
      t.key = center of t.Z 
      setref(s.child[i], t)    // inject into DHT 
    }            
} 

Figure 4: SOMO_grow procedure 
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Figure-2) to install the pointer; this last step is where 
DHT operation is involved. 

As this procedure is executed by all SOMO nodes, the 
SOMO tree will grow as the hosting DHT grows, and the 
SOMO tree is taller in logical space regions where DHT 
nodes are denser. This is illustrated in Figure-5. 

 

Figure 5: SOMO tree on top of P2P DHT 

The procedure is done in a top down fashion, and is 
executed periodically. A bottom-up version can be 
similarly derived. When system shrinks, SOMO tree will 
prune itself accordingly. This can be done by simply 
deleting redundant children. 

The crash of a DHT node will take away the SOMO 
nodes it is hosting. However, the periodical checking of 
all children SOMO nodes ensures that the tree can be 
completely reconstructed in O(logkN) time. Because the 
SOMO root is always hosted by the DHT node that owns 
the center of the total space, we ensure the existence of 
the SOMO root by letting that DHT node invoke the 
SOMO_grow routine on the SOMO root.  

3.2 Gathering and disseminate information with 
SOMO 

To gather system metadata, for instance loads and 
capacities, a SOMO node periodically requests report 
from its children. The leaf SOMO nodes simply get the 
required info from their hosting DHT nodes. As a side-
effect, it will also re-start a child SOMO node if it has 
disappeared because the hosting DHT node’s crash. The 
following figure illustrates the procedure.  

 
The routine is periodically executed at an interval of T. 
Thus, information is gathered from the SOMO leaves and 
flows to its root with a maximum delay of logkN⋅T. This 
bound is derived when flow between hierarchies of 
SOMO is completely unsynchronized. If upper SOMO 
nodes’ call for reports immediately triggers the similar 
actions of their children, then the latency can be reduced 
to T+thop ⋅logkN, where thop is average latency of a trip in 
the hosting DHT. The unsynchronized flow has latency 
bound of logkN⋅T, whereas the synchronized version will 
be bounded by T in practice (e.g., 5 minutes). Note that 

O(thop ⋅logkN) is the absolute lower bound. For 2M nodes 
and with k=8 and a typical latency of 200ms per DHT 
hop, the SOMO root will have a global view with a lag of 
1.6s. 

Dissemination using SOMO is essentially the reverse: 
data trickles down through the SOMO hierarchy towards 
the leaves. Performance thus is similar as gathering. By 
some modification, dissemination can piggyback on the 
return message in the gathering phase. 

Operations in either gathering or disseminating phases 
involve one interaction with the parent, and then with k 
children. Thus, the overhead in a SOMO operation is a 
constant. The entities involved are the DHT nodes that 
host the SOMO tree. SOMO nodes are scattered among 
DHT nodes and therefore SOMO processing is 
distributed and scales with the system.  

It seems that towards the SOMO root the hosting DHT 
nodes need to have increasingly higher bandwidth and 
stability. As discussed earlier, stability is not a concern 
because the whole SOMO hierarchy can be recovered in 
O(logkN) time. As for bandwidth, most of the time one 
needs only to submit deltas between reports, and this will 
bring down message size significantly (Figure-5). Finally, 
it is always possible to locate an appropriate node 
through SOMO. This node can swap with the one who is 
hosting the SOMO root currently. That is to say, SOMO 
can be completely self-optimizing as well. 

3.3 Discussion  
The SOMO procedures are just like any ordinary code 
running on a local machine. This demonstrates the utility 
of the data overlay concept. 

The power of SOMO lies in its simplicity and flexibility. 
As an infrastructure, SOMO does not specify what 
information it should gather and/or disseminate. 
Furthermore, various operations, such as aggregation and 
sorting, can be invoked when metadata flows by. That is 
to say, SOMO operations are programmable and active. 
For this reason, in the pseudo-code we use op as a generic 
notation for operation used. Some of the examples will be 
described in the next Section. 

4 Application of SOMO 
As a scalable, fault-tolerant metadata gathering and 
dissemination infrastructure, the utilities of SOMO are 
many. In a large scale system, the need to monitor the 
health of the system itself can not be understated. More 
advanced usages are chiefly decided by algorithms that 
built upon the metadata that gathered. The followings are 
some examples. 

One instance would be to find powerful nodes, 
commonly known as supernodes. To do this, we will 
make a SOMO tree where the report type is sorted list, 
and the op is merge-sort. Thus, SOMO can mine out 
multiple classes of supernodes, as reports available at 
various internal SOMO nodes, with the SOMO root 
having the complete list. These supernodes can thus act 
as indexing hobs, as proposed in [2]. Supernodes can 

Total logical space 

SOMO node 

DHT node 

reportlastreportthis __ ∩=∆

get_report (SOMO_node s) {  
  Report_type rep[1..k] 
  for i∈[1..k] 
    if (s.child[ i] ≠ null)           // retrieving via DHT 
      rep[i] = deref(s.child[ i]).report 
  s.report = s.op(rep[]) 
} 

Figure 6: SOMO gathering procedure 
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form separate overlays to optimize routing. Given a 
node’s own geographic coordinates, we may wish to find 
out the closest node in a given logical space region. This 
is particularly useful for the proximity neighbor selection 
optimization in prefix-based overlay such as Pastry[5], 
Tapestry[12] and eCAN[10]. To do this, the leaf SOMO 
node submits its coordinates (obtained perhaps via a 
method like land-marking [4]) in the SOMO report, and 
the SOMO op is aggregation, and any node geographical 
distribution in a region can be found by query the 
appropriate SOMO node that covers that region. 

More elaborate algorithms can be built upon load and 
capacity info fed by a SOMO to perform various kind of 
load balancing. One such application is offered in the 
next section. There are proposals where routing 
performance is the best but storage uniformity is 
sacrificed [4], SOMO can discover the density map of 
node capacities. Such information can guide document 
placement, or migrate nodes from dense regions to weak 
ones.  In this way, uniformity will improve over time. 

It is also possible to build a SOMO on top of a basic, 
mesh-based P2P DHT, and then build a O(logN) soft-
state prefix-based overlay because SOMO can have the 
knowledge of what nodes exist in what portion of the 
total logic space. 

Finally, since SOMO is a self-organized hierarchy, by 
installing appropriate filters as its op member, it’s 
possible to use SOMO as a pub/sub infrastructure as well. 

5 Case study: balancing routing power with 
routing traffic in prefix-based overlay 
Prefix-based overlay includes Tapestry[12], Pastry[5], 
Chord[7], Kademlia[1] and eCAN[9] (CAN[3] with 
simple extension). Though some aspects of these 
proposals differ, they share a few key attributes: 1) the 
total logical (or key) space is recursively divided and 2) 
routing greedily seeks out the biggest span into a sub-
space and then zoom in towards target quickly. Routing 
table of prefix-based overlay is an array, recording spaces 
of exponentially decreasing size and one or several nodes 
that serve as this node’s gateway, or “router” into these 
spaces. The flexibility of the prefix-based overlays is that, 
any node in the target sub-space can be a router. This 
gives rise to many optimization opportunities. Pastry and 
eCAN explore the possibilities of using the 
geographically closest node as router candidates to 
improve routing performance. In this paper, we report our 
investigation on another complementary axis: choosing 
the more powerful nodes to serve as routing entrances for 
larger sub-spaces where traffics are exponentially more 
than sub-spaces enclosed. The ultimate solution (and 
challenge) of selecting these “routers” is to consider all 
the following three factors: geographic vicinity, routing 
capacity and load distribution. This remains to be one of 
our future works. 

Our goal is to promote the most capable nodes to handle 
traffics into larger space, relieving weaker nodes off these 
responsibilities. Intuitively, the most powerful nodes will 

take the bulk of the loads in the largest enclosing space, 
and the weaker ones will serve no more than those 
designated to its immediate neighbor. Due to space 
limitation, we refer readers to [10] for the full protocol. 
Our basic idea is to classify routing loads that a node 
takes according to the sub-space in which the routing is 
designated and divide a node’s routing capacity 
accordingly.  

Our optimization consists of four algorithms:  

§ Statistic collection algorithm. Aggregate loads and 
capacity statistics in a bottom-up sweep through 
SOMO. The goal is to have a “view” of the 
demographic distribution of both loads and capacities. 
At this point, the load/capacity ratios of the whole 
system as well as all enclosing spaces are available. 

§ Load balance algorithm. Top-down sweep to 
determine the amount of routing capacities to be 
dedicated in each space, so that its load/capacity ratio 
approaches to that of the whole system where 
possible. 

§ Capacity selection algorithm. Select the right portion 
of capacities, as recommended by the previous step, 
from candidate nodes. Also bottom-up sweep. At the 
end of this algorithm, we have selected the right 
capacity divide to take care of traffic loads of 
different space. 

§ Entries dissemination algorithm. Notify other nodes 
to use these new “routers” so that load distribution 
can take effect.  

The core of our algorithm is in the 2nd and the 3rd step. It 
can be simplified if not for a subtle but important issue. 
The load and capacity distribution can be so skewed that 
nodes in a sub-space are already overwhelmed by the 
traffic designated to them, leaving them virtually no 
surplus power to share routing duties in enclosing spaces. 
Our scheduling algorithm has taken this into full account 
by pardoning heavily loaded sub-spaces (or the ones with 
meager power).  

We modify an earlier e/CAN simulator by incorporating 
all the four algorithms described earlier. eCAN[9] is a 
prefix-based overlay capable of O(lnN) routing 
performance, and this is achieved with simple extension 
to CAN[2]. In eCAN, the recursion in resolving routing is 
by zooming into topology sub-zones rather than shifting 
bits. However, our algorithm is immediately applicable to 
other prefix-based overlays such as Pastry[5], 
Tapestry[12] and Kademlia[1] 

            (a) Gnutella-like 
 

(b) Zipf-like 

Figure 7: Capacity profile (N=2K) 

Two capacity profiles are used to model heterogeneity:  
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§ Zipf-like:  when sorted, the i-th node has capacity 
10000�i-�, we choose � be 1.2 by default. 

§ Gnutella-like:  there are 5 levels of node, and the i-th 
level has capacity 10i-1, popularity in these levels are 
20%, 45%, 30%, 4.9% and 0.1%, going from level 1 
to level 5 (see [6]). 

The comparison of the two distributions for a 2K node 
system is shown in Figure 7. 
 
The eCAN configuration we use is equivalent to 
Pastry/Tapestry of b=1. We tested other configurations 
[10] and results are similar to those presented here. For 
each configuration (capacity profile, N and other 
parameters), an experiment of 5 cycles is run. Each cycle 
starts with a complete reshuffling of the node capacities, 
then route 100N times, during which load and capacity 
information are gathered. We then run the four 
algorithms to perform load balance. Finally another 100N 
routings are performed and various statistics are collected 
again. This somewhat primitive setup allows us to gain 
sufficient insight of the algorithms; a more sophisticated 
one would include node join and leave events and mix 
SOMO traffics with normal routing, which we plan to 
conduct in the future. 

              (a) Before 
 

(b) After 

Figure 8: Results of N=2K, Gnutella-like (the line 
corresponds to average load of a capacity level) 

             (a) Before 
 

(b) After 

Figure 9: Results of N=2K, Zipf-like 

We found that, in all configurations, load balance 
converges quickly in O(log N) time, and that after the full 
set of the algorithms are run, higher capacity nodes are 
taking more loads. Figure 8 and Figure 9 show a typical 
pair of results of the Gnutella-like and Zipf-like capacity 
distributions, respectively. Note the sharp difference 
before and after the load redistribution. 

6 Related work 
Data overlay relies on the key property of the P2P DHT 
([5] [12] [7] [3] [1] [9]) that an item with unique key can 
be reliably created and retrieved. To our knowledge, 
extending the principle of self-organizing to arbitrary 
data structure other than hash table and do it in a way that 

is agnostic to both semantics and performance of the 
hosting P2P DHT is new.  

SOMO bears the most similarity to Astrolabe [8], a peer-
to-peer management and data mining system, for instance 
the use of hierarchies and aggregation. SOMO operates at 
the rudimentary data structure level while Astrolabe is on 
a virtual, hierarchical database. SOMO’s extensibility is 
much like that of active network, whereas Astrolabe uses 
SQL queries. The marked difference is that SOMO is 
designed specifically on top of P2P DHT, for two reasons: 
1) we believe P2P DHTs have established a foundation 
over which many other systems can be built and thus 
there is a need for a scalable resource management and 
monitoring infrastructure and 2) by leveraging P2P DHT 
(in fact, data overlay) the design and protocols of such 
infrastructure can be much simpler. 

7 Conclusion and future work 
This paper makes several novel contributions: we 
describe how arbitrary data structures can be 
implemented on P2P DHT using the concept of data 
overlay; we designed and evaluated a self-organizing and 
robust metadata gathering and dissemination 
infrastructure, the self-organized metadata overlay. We 
have demonstrated how to balance routing traffic with 
node capacity in prefix-based overlay using both of these 
two techniques. Our future work includes more extensive 
study of these concepts. 
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