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Abstract

This paper presents a new framework for completion of missing information based on local struc-

tures. It poses the task of completion as a global optimization problem with a well-defined objective

function and derives a new algorithm to optimize it. Missing values are constrained to form coherent

structures with respect to reference examples.

We apply this method to space-time completion of large space-time “holes” in video sequences of

complex dynamic scenes. The missing portions are filled in by sampling spatio-temporal patches from

the available parts of the video, while enforcing global spatio-temporal consistency between all patches

in and around the hole. The consistent completion of static scene parts simultaneously with dynamic

behaviors leads to realistic looking video sequences and images.

Space-time video completion is useful for a variety of tasks, including, but not limited to: (i)

Sophisticated video removal (of undesired static or dynamic objects) by completing the appropriate

static or dynamic background information, (ii) Correction of missing/corrupted video frames in old

movies, (iii) Modifying a visual story by replacing unwanted elements, (iv) Creation of video textures

by extending smaller ones, (v) Creation of complete field-of-view stabilized video, and (vi) As images

are one-frame videos, we apply the method to this special case as well.

I. INTRODUCTION

We present a method for space-time completion of large space-time “holes” in video sequences

of complex dynamic scenes. We follow the spirit of [14] and use non-parametric sampling, while

extending it to handle static and dynamic information simultaneously. The missing video portions

are filled-in by sampling spatio-temporal patches from other video portions, while enforcing

global spatio-temporal consistency between all patches in and around the hole. Global consistency

is obtained by posing the problem of video completion/synthesis as a global optimization problem

with a well-defined objective function and solving it appropriately. The objective function states

that the resulting completion should satisfy the following two constraints: (i) Every local space-

time patch of the video sequence should be similar to some local space-time patch in the

remaining parts of the video sequence (the “input data-set”), while (ii) globally all these patches

must be consistent with each other, both spatially and temporally.

Solving the above optimization problem is not a simple task, especially due to the large dimen-

sionality of video data. However, we exploit the spatio-temporal relations and redundancies to

speed and constrain the optimization process in order to obtain realistic-looking video sequences
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with complex scene dynamics at reasonable computation times.

Figure 1 shows an example of the task at hand. Given the input video (Fig. 1.a), a space-time

hole is specified in the sequence (Fig. 1.b). The algorithm is requested to complete this hole

using information from the remainder of the sequence. We assume that the hole is provided to

the algorithm. While in all examples here it was marked manually, it can also be the outcome

of some segmentation algorithm. The resulting completion and the output sequence are shown

in Figs. 1(c).

The goal of this work is close to a few well studied domains. Texture Synthesis (e.g. [2], [14],

[28]) extends and fills regular fronto-parallel image textures. This is similar to Image Completion

(e.g., [9], [12]) which aims at filling in large missing image portions. While impressive results

have been achieved recently in some very challenging cases (e.g., see [12]), the goal and the

proposed algorithms have so far been defined only in a heuristic way. Global inconsistencies

often result from independent local decisions taken at independent image positions. For this

reason, these algorithms use large image patches in order increase the chances of correct output.

The two drawbacks of this approach are that elaborate methods for combining the large patches

are needed for hiding inconsistencies [12], [13], [21], and that the dataset needs to be artificially

enlarged by including various skewed and scaled replicas that might be needed for completion.

When compared to the pioneering work of [14] and its derivatives, the algorithm presented

here can be viewed as stating an objective function explicitly. From this angle, the algorithm

of [14] makes a greedy decision in each pixel based on the currently available pixels around

it. It only uses a directional neighborhood around each pixel. A greedy approach requires the

correct decision to be made at every step. Hence, the chances for errors increase rapidly as the

gap grows. The work of [9] showed that this may be alleviated by prioritizing the completion

order using local image structure. In challenging cases, containing complex scenes and large

gaps, the local neighborhood does not hold enough information for a globally correct solution.

This is more pronounced in video. Due to motion aliasing, there is little chance that an exact

match will be found.

The framework presented here requires that the whole neighborhood around each pixel is con-

sidered, not just a causal subset of it. Moreover, it considers all windows containing each pixel

simultaneously, thus effectively using an even larger neighborhood.

Image Inpainting (e.g., [5], [6], [22]) was defined in a principled way as an edge continuation
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1. Sample frames from the original sequence:

2. Zoomed in view around the space-time hole:
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(a) Input sequence (b) Occluder cut out manually (c) Spatio-temporal completion

Fig. 1

(1) FEW FRAMES OUT OF A VIDEO SEQUENCE SHOWING ONE PERSON STANDING AND WAVING HER HANDS WHILE THE

OTHER PERSON IS HOPPING BEHIND HER. THE VIDEO SIZE IS 100× 300× 240, WITH 97,520 MISSING PIXELS. (2) A

ZOOMED-IN VIEW ON A PORTION OF THE VIDEO AROUND THE SPACE-TIME HOLE BEFORE AND AFTER THE COMPLETION.

NOTE THAT THE RECOVERED ARMS OF THE HOPPING PERSON ARE AT SLIGHTLY DIFFERENT ORIENTATIONS THAN THE

REMOVED ONES. AS THIS PARTICULAR INSTANCE DOES NOT EXIST ANYWHERE ELSE IN THE SEQUENCE, A SIMILAR ONE

FROM A DIFFERENT TIME INSTANCE WAS CHOSEN TO PROVIDE AN EQUALLY LIKELY COMPLETION.

SEE VIDEO IN: www.wisdom.weizmann.ac.il/∼vision/VideoCompletion.html
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(a) output

(b) input (c) selected patches

Fig. 2

SOURCES OF INFORMATION. OUTPUT FRAME 114, SHOWN IN (A), IS A COMBINATION OF THE PATCHES MARKED HERE IN

RED OVER THE INPUT SEQUENCE (C). IT IS NOTICEABLE THAT LARGE CONTINUOUS REGIONS HAVE BEEN AUTOMATICALLY

PICKED WHENEVER POSSIBLE. NOTE THAT THE HAIR, HEAD AND BODY WERE TAKEN FROM DIFFERENT FRAMES. THE

ORIGINAL FRAME IS SHOWN IN (B).

(a) (b) (c)

Fig. 3

LOCAL AND GLOBAL SPACE-TIME CONSISTENCY. (A) ENFORCEMENT OF THE GLOBAL OBJECTIVE FUNCTION OF EQ. (1)

REQUIRES COHERENCE OF ALL SPACE-TIME PATCHES CONTAINING THE POINT p. SUCH COHERENCE LEADS TO A

GLOBALLY CORRECT SOLUTION (B). TRUE TRAJECTORY OF THE MOVING OBJECT IS MARKED IN RED AND IS CORRECTLY

RECOVERED. WHEN ONLY LOCAL CONSTRAINTS ARE USED AND NO GLOBAL CONSISTENCY ENFORCED, THE RESULTING

COMPLETION LEADS TO INCONSISTENCIES (C). BACKGROUND FIGURE IS WRONGLY RECOVERED TWICE WITH WRONG

MOTION TRAJECTORIES.
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process, but is restricted to small (narrow) missing image portions in highly structured image

data. These approaches have been restricted to completion of spatial information alone in images.

Even when applied to video sequences (as in [4]), the completion was still performed spatially.

The temporal component of video has mostly been ignored. The basic assumption of Image

Inpainting, that edges should be interpolated in some smooth way, does not naturally extend to

time. Temporal aliasing is typically much stronger than spatial aliasing in video sequences of

dynamic scenes. Often a pixel may contain background information in one frame and foreground

information in the next frame, resulting in very non-smooth temporal changes. These violate the

underlying assumptions of Inpainting.

In [19] a method has been proposed for employing spatio-temporal information to correct

scratches and noise in poor-quality video sequences. This approach relies on optical-flow esti-

mation and propagation into the missing parts followed by reconstruction of the color data. The

method was extended to removal of large objects in [20] under the assumption of planar rigid

layers and small camera motions.

View Synthesis deals with computing the appearance of a scene from a new view point,

given several images. A similar objective was already used in [15] for successfully resolving

ambiguities which are otherwise inherent to the geometric problem of new-view synthesis from

multiple camera views. The objective function of [15] was defined on 2D images. Their local

distance between 2D patches was based on SSD of color information and included geometric

constraints. The algorithm there did not take into account the dependencies between neighboring

pixels as only the central point was updated in each step.

Recently there have been a few notable approaches to video completion. From the algorithmic

perspective, the most similar work to ours is [7] which learns a mapping from the input video

into a smaller volume, aptly called “epitome”. These are then used for various tasks including

completion. While our work has a similar formulation, there are major differences. We seek

some cover of the missing data by the available information. Some regions may contribute more

than once while some may not contribute at all. In contrast, the epitome contains a proportional

representation of all the data. One implication of this is that the windows will be averaged

and so will lose some fidelity. The recent work of [24] uses estimated optical flow to separate

foreground and background layers. Each is then filled incrementally using the priority-based

ordering idea similar to [9].
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Lastly, the work of [18] takes an object-based approach where large portions of the video are

tracked, their cycles are analyzed and can then be inserted into the video. This allows warping

of the object so it fits better, but requires a complete appearance of the object to be identified

and so is not applicable to more complex dynamics, such as articulated motion or stochastic

textures.

A closely related area of research which regards temporal information explicitly is that of

dynamic texture synthesis in videos (e.g. [3], [11]). Dynamic textures are usually characterized by

an unstructured stochastic process. They model and synthesize smoke, water, fire, etc. but cannot

model nor synthesize structured dynamic objects, such as behaving people. We demonstrate the

use of our method for synthesizing large video textures from small ones in section VI. While [26]

has been able to synthesize/complete video frames of structured dynamic scenes, it assumes that

the “missing” frames already appear in their entirety elsewhere in the input video, and therefore

needed only to identify the correct permutation of frames. An extension of that paper [25]

manually composed smaller “video sprites” to a new sequence.

The approach presented here can automatically handle the completion and synthesis of both

structured dynamic objects as well as unstructured dynamic objects under a single framework.

It can complete frames (or portions of them) that never existed in the dataset. Such frames are

constructed from various space-time patches, which are automatically selected from different

parts of the video sequence, all put together consistently. The use of a global objective function

removes the pitfalls of local inconsistencies and the heuristics of using large patches. As can be

seen in the figures and in the attached videos, the method is capable of completing large space-

time areas of missing information containing complex structured dynamic scenes, just as it can

work on complex images. Moreover, this method provides a unified framework for various types

of image and video completion and synthesis tasks, with the appropriate choice of the spatial and

temporal extents of the space-time “hole” and of the space-time patches. A preliminary version

of this work appeared in CVPR 04’ [29].

The paper is organized as follows: Section II introduces the objective function and Section III

describes the algorithm used for optimizing it. Sections IV and V discuss tradeoffs between

space and time dimensions in video and how they are unified into one framework. Section VI

demonstrates the application of this method to various problems. Finally, Section VII concludes

this paper.
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II. COMPLETION AS A GLOBAL OPTIMIZATION

Given a video sequence, we wish to complete the missing portions in such a way that it looks

just like the available parts. For this we define a global objective function to rank the quality of

a completion. Such a function needs to take a completed video and rate its quality with respect

to a reference one. Its extremum should denote the best possible solution.

Our basic observation is that in order for a video to look good, it needs to be coherent

everywhere. That is, a good completion should resemble the given data locally everywhere.

The constraint on the color of each pixel depends on the joint color assignment of its neighbors.

This induces a structure where each pixel depends on the neighboring ones. The correctness of

a pixel value depends on whether its local neighborhood forms a coherent structure. Rather than

modeling this structure, we follow [14] and use the reference video as a library of video samples

that are considered to be coherent.

Given these guidelines, we are now ready to describe our framework in detail.

A. The global objective function

To allow for a uniform treatment of dynamic and static information, we treat video sequences

as space-time volumes. We use the following notations. A pixel (x, y) in a frame t will be

regarded as a space-time point p = (x, y, t) in the volume. Wp denotes a small, fixed-sized

window around the point p both in space and in time. The diameter of the window is given as

a parameter. We use indices i and j to denote locations relative to p. For example, Wp is the

window centered around p and W i
p is the ith window containing p and is centered around the

ith neighbor of p.

We say that a video sequence S has global visual coherence with some other sequence D

if every local space-time patch in S can be found somewhere within the sequence D. In other

words, we can cover S with small windows from D. Windows in the dataset D are denoted by

V and are indexed by a reference pixel (e.g. Vq and V i
q ).

Let S and H ⊆ S be an input sequence and a “hole” region within it. That is, H denotes

all the missing space-time points within S. For example, H can be an undesired object to be

erased, a scratch or noise in old corrupt footage, or entire missing frames, etc. We assume that

both S and H are given.
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We wish to complete the missing space-time region H with some new data H∗ such that the

resulting video sequence S∗ will have as much global visual coherence with some reference

sequence D (the dataset). Typically, D = S \H, namely - the remaining video portions outside

the hole are used to fill in the hole. Therefore, we seek a sequence S∗ which maximizes the

following objective function:

Coherence(S∗|D) =
∏

p∈S∗
max
q∈D

sim (Wp, Vq) (1)

where p,q run over all space-time points in their respective sequences. sim(·, ·) is a local

similarity measure between two space-time patches that will be defined shortly (section II-B).

The patches need not necessarily be isotropic and can have different sizes in the spatial and

temporal dimensions. We typically use 5×5×5 patches which are large enough to be statistically

meaningful but small enough so that effects, such as parallax or small rotations, will not affect

them. They are the basic building blocks of the algorithm. The use of windows with temporal

extent assumes that the patches are correlated in time, and not only in space. When the camera

is static or fully stabilized, this is trivially true. However it may also apply in other cases where

the same camera motion appears in the database (as shown in Fig.16).

Figure 3 explains why Eq.(1) induces global coherence. Each space-time point p belongs to

other space-time patches of other space-time points in its vicinity. For example, for a 5×5×5

window, 125 different patches involve p. The red and green boxes in Fig. 3(a) are examples of

two such patches. Eq. (1) requires that all 125 patches agree on the value of p and therefore

Eq. (1) leads to globally coherent completions such as the one in Fig.3(b). If the global coherence

of Eq. (1) is not enforced, and the value of p is determined locally by a single best-matching

patch (i.e. using a sequential greedy algorithm as in [9], [14], [24]), then global inconsistencies

will occur in a later stage of the recovery. An example of temporal incoherence is shown in

Fig. 3(c). A greedy approach requires the correct answer to be found at every step and this is

rarely the case as local image structure will often contain ambiguous information.

The above objective function seeks a cover of the missing data using the available one. That is,

among the exponentially large number of possible covers, we seek the one that will give us the

least amount of total error. The motivation here is to find a solution that is correct everywhere,

as any local inconsistency will push the solution away from the minimum.

DRAFT



TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

B. The local space-time similarity measure

At the heart of the algorithm is a well-suited similarity measure between space-time patches.

A good measure needs to agree perceptually with a human observer. The Sum of Squared

Differences (SSD) of color information, that is so widely used for image completion, does not

suffice for the desired results in video (regardless of the choice of color space). The main reason

for this is that the human eye is very sensitive to motion. Maintaining motion continuity is more

important than finding the exact spatial pattern match within an image of the video.

1
2
3 3

2
1

3
2
1

f(t) g1(t) g2(t)

Fig. 4

IMPORTANCE OF MATCHING DERIVATIVES (SEE TEXT).

Figure 4 illustrates (in 1D) that very different temporal behaviors can lead to the same SSD

score. The function f(t) has a noticeable temporal change. Yet, its SSD score relative to a

similar-looking function g1(t) is the same as the SSD score of f(t) with a flat function g2(t):∫
(f − g1)

2dt =
∫
(f − g2)

2dt. However, perceptually, f(t) and g1(t) are more similar as they

both encode a temporal change.

We would like to incorporate this into our algorithm so to create a similarity measure that

agrees with perceptual similarity. Therefore we add a measure that is similar to that of normal-

flow to obtain a quick and rough approximation of the motion information. Let Y be the sequence

containing the grayscale (intensity) information obtained from the color sequence. At each space-

time point we compute the spatial and temporal derivatives (Yx, Yy, Yt). If the motion were

only horizontal, then u = Yt/Yx would capture the instantaneous motion in the x direction.

If the motion were only vertical, then v = Yt/Yy would capture the instantaneous motion in

the y direction. The fractions factor out most of the dependence between the spatial and the

temporal changes (such as frame-rate) while capturing object velocities and directions. These

two components are scaled and added to the RGB measurements to obtain a 5-dimensional

representation for each space-time point: (R,G,B, αu, αv) where α = 5. Note that we do not
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compute optical flow. We apply an L2-norm (SSD) to this 5-D representation in order to capture

space-time similarities for static and dynamic parts simultaneously. Namely, for two space-time

windows Wp and Vq we have d(Wp, Vq) =
∑

(x,y,t) ||Wp(x, y, t) − Vq(x, y, t)||2 where for each

(x, y, t) within the patch Wp(x, y, t) denotes its 5D measurement vector. The distance is translated

to the similarity measure

sim(Wp, Vq) = e−
d(Wp,Vq)

2σ2 (2)

The choice of σ is important as it controls the smoothness of the induced error surface. Rather

than using a fixed value, it is chosen to be the 75-percentile of all distances in the current search

in all locations. In this way, the majority of locations are taken into account and hence, there is

a high probability that the overall error will reduce.

III. THE OPTIMIZATION

The inputs to the optimization are a sequence S and a “hole” H ⊂ S, marking the missing

space-time points to be corrected or filled-in. The algorithm seeks an assignment of color values

for all the space-time points (pixels) in the hole so to satisfy Eq. (1). While Eq. (1) does not imply

any optimization scheme, we note that it will be satisfied if the following two local conditions

are met at every space-time point p:

(i) All windows W 1
p . . . W k

p containing p appear in the dataset D:

∃V i ∈ D, W i
p = V i

(ii) All those V 1 . . . V k agree on the color value c at location p:

c = V i(p) = V j(p)

This is trivially true since the second condition is a particular case of the first. These conditions

imply an iterative algorithm. The iterative step will aim at satisfying these two conditions locally

at every point p. Any change in p will affect all the windows that contain it and so the update

rule must take all of them into account.

Note that Eq. (1) may have an almost trivial solution, in which the hole H contains an exact

copy of some part in the database. For such a solution, the error inside the hole will be zero

(as both conditions above are satisfied) and so the total coherence error will be proportional

to the surface area of the space-time boundary. This error might be much smaller than small

noise errors spread across the entire volume of the hole. Therefore, we associate an additional
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quantity αp to each point p ∈ S. Known points p ∈ S \ H have fixed high confidence, whereas

missing points p ∈ H will have lower confidence. This weight is chosen so to ensure that the

total error inside the hole is less than that on the hole boundary. This argument needs to hold

recursively in every layer in the hole. An approximation to such weighting is to compute the

distance transform for every hole pixel, and then use αp = γ−dist. When the hole is roughly

spherical choosing γ = 1.3 gives the desired weighting. This measure bears some similarity to

the priority used in [9] except that here it is fixed throughout the process. Another motivation for

using such weighting is to speed up convergence by directing the flow of information inwards

from the boundary.

A. The iterative step

Let p ∈ H be some hole point which we wish to improve. Let W 1
p . . . W k

p be all space-time

patches containing p. Let V 1 . . . V k denote the patches in D that are most similar to W 1
p . . . W k

p

per Eq. (2). According to condition (i) above, if W i
p is reliable then d(W i

p, V
i) ≈ 0. Therefore

sim(W i
p, V

i) measures the degree of reliability of the patch W i
p.

We need to pick a color c at location p so that the coherence at all windows containing it will

increase. Each window V i provides an evidence of possible solution for c and the confidence

in this evidence is given by Eq. (2) as si
p = sim(W i

p, V
i). According to condition (ii) above,

the most likely color c at p should minimize the variance of the colors c1 . . . ck proposed by

V 1 . . . V k at location p. As mentioned before, these values should be scaled according to the

fixed αi
p to avoid the trivial solution. Thus, the most likely color at p will minimize

∑
i ω

i
p(c−ci)2

where ωi
p = αi

p · si
p. Therefore:

c =

∑
i ω

i
pc

i∑
i ωi

p

(3)

This c is assigned to be the color of p at the end of the current iteration. Such an update rule

minimizes the local error around each space-time point p ∈ H while maintaining consistency in

all directions, leading to a global consistency.

One drawback of the update rule in Eq. (3) is its sensitivity to outliers. It is enough that a

few neighbors suggest the wrong color to bias the mean color c and thus prevent or delay the

convergence of the algorithm. In order to avoid such effects, we treat the k possible assignments

as evidence. These evidences give discrete samples in the continuous space of possible color
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1: Input: video S, hole H ⊂ S, database D.

2: Compute space-time pyramids Sl, Hl, Dl l = 1..L.

3: t← 0, St ← S

4: for pyramid level l, from top to bottom do

5: repeat

6: for all p ∈ Hl do

7: Let {W i
p}ki=1 be all windows s.t. p ∈W i

p

8: Find {V i} ⊆ Dl maximizing Eq. (2)

9: Let ci ∈ V i be the appropriate colors.

10: Set ωi
p = αi

p · sim(W i
p, V

i).

11: St+1(p)←ML(ci, ωi
p) using Eq. (4)

12: end for

13: t← t + 1

14: until convergence

15: Propagate solution to the next level

16: end for

17: Output: St

V 1
p , . . . V k

p
W 1

p , . . . W k
p

Fig. 5

VIDEO COMPLETION ALGORITHM

assignments. The reliability of each evidence is proportional to ωi
p and we seek the Maximum

Likelihood (ML) in this space. This is computed using the Mean-Shift algorithm [8] with a

variable bandwidth (window size). The Mean-Shift algorithm finds the density modes of the

distribution (which is related to Parzen windows density estimation). It is used here to extract

the dominant mode of the density. The bandwidth is defined with respect to the standard deviation

σ of the colors c1, . . . , ck at each point. It is typically set to be 3σ at the beginning and is reduced

gradually to 0.2σ. The highest mode M is picked and so the update rule in Table 5 is:

c =

∑
i∈M ωi

pc
i∑

i∈M ωi
p

(4)

This update rule produces a robust estimate for the pixel in the presence of noise. While making

the algorithm slightly more complex, this step has further advantages. The bandwidth parameter

controls the degree of smoothness of the error surface. When it is large, it reduces to simple
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weighted averaging (as in Eq. 3), hence allowing rapid convergence. When it is small, it induces

a weighted majority vote, avoiding blurring in the resulting output. The use of varying σ value

has significantly improved the convergence of the algorithm. When compared with the original

work in [29], the results shown here achieve better convergence. This can be seen from the

improved amount of details in areas which were previously smoothed unnecessarily. The ability

to rely on outlier rejection also allows us to use approximate nearest neighbors, as discussed in

Sec.III-C

B. Multi-scale solution

To further enforce global consistency and to speed up convergence, we perform the iterative

process in multiple scales using spatio-temporal pyramids. Each pyramid level contains half the

resolution in the spatial and in the temporal dimensions. The optimization starts at the coarsest

pyramid level and the solution is propagated to finer levels for further refinement. Figure 6 shows

a typical multiscale V-cycle performed by the algorithm. It is worth to mention that as each level

contains 1/8th of the pixels, both in the hole H and in the database D, the computational cost

of using a pyramid is almost negligible (8/7 of the work). In hard examples, it is sometimes

necessary to repeat several such cycles, gradually reducing the pyramid height. This is inspired

by multi-grid methods [27].

The propagation of the solution from a coarse level to the one above it is done as follows. Let

p↑ be a location in the finer level and let p↓ be its corresponding location in the coarser level.

As before, let Let W i
p↓

be the windows around p↓ and let V i
↓ be the matching windows in the

database. We propagate the locations of V i
↓ onto the finer level to get V i

↑ . Some of these (about
k
8
, half in each dimension) will overlap p↑ and these will be used for the maximum-likelihood

step, just as before (except that here there are less windows). This method is better than plain

interpolation as the initial guess for the next level will preserve high spatio-temporal frequencies

and will not be blurred unnecessarily.

C. Algorithm Complexity

We now discuss the computational complexity of the suggested method. Assume we have

N = |H| pixels in the hole and that there are K windows in the database. The algorithm has

the following structure.
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50x150x120

25x75x60

12x32x30

6x16x15

100x300x240

Fig. 6

MULTISCALE SOLUTION. THE ALGORITHM STARTS BY SHRINKING THE INPUT VIDEO (BOTH IN SPACE AND IN TIME). THE

COMPLETION STARTS AT THE COARSEST LEVEL, ITERATING EACH LEVEL SEVERAL TIMES AND PROPAGATING THE RESULT

UPWARDS.

First a spatio-temporal pyramid is constructed and the algorithm iterates a few times in each

level (typically five to ten iterations in each level). Level l contains roughly N/8l hole pixels,

and K/8l database windows.

Each iteration of the algorithm has two stages: Searching the database and per-pixel Maximum

Likelihood.

The first stage performs a nearest-neighbor search once for each window overlapping the

space-time hole H. This is the same computational cost as all the derivatives from Efros’ work

[14]. The search time depends on K and the nearest-neighbor search method. Since each patch

is searched independently, this step can be parallelized trivially. While brute-force would take

O(K/8l ·N/8l), we use the method of [1] so the search time is logarithmic in K. We typically

obtain a speedup of two orders of magnitude over brute force search. This approach is very

suitable for our method for three reasons. First, it is much faster. Second, we always search for

windows of the same size. Third, our robust maximum likelihood estimation allows us to deal

DRAFT



TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

with wrong results that may be returned by this approximate algorithm.

The second stage is the per pixel maximum likelihood computation. We do this using the

Mean-Shift algorithm [8]. The input is a set of 125 RGB triplets along with their weights. A

trivial implementation is quadratic in this small number and so is very fast.

The running time depends on the above factors. For small problems, such as image completion,

the running time is about a minute. For the “Umbrella” sequence in Fig. 7 of size 120×340×100,

with 422, 000 missing pixels each iteration in the top level takes roughly one hour on a 2.6Ghz

Pentium computer. Roughly 95% of this time is used for the nearest neighbor search. This

suggests that pruning the database (as in [24]) or simplifying the search (as in [2]) would give

a significant speedup.

D. Relation to statistical estimation

The above algorithm can be viewed in terms of a statistical estimation framework. The global

visual coherence in Eq.(1) can be derived as a Likelihood function via a graphical model, and

our iterative optimization process can be seen as an approximation of the EM method to find

the maximum likelihood estimate. According to this model the parameters are the colors of

the missing points in the space-time hole and pixels in the boundary around the hole are the

observed variables. The space-time patches are the hidden variables and are drawn from the

dataset (patches outside the hole in our case).

We show in the Appendix how the likelihood function is derived from this model, and that

the maximum likelihood solution is the best visually coherent completion, as defined in Eq. (1).

We also show that our optimization algorithm fits the EM method [10] for maximizing the

Likelihood function. Under some simplifying assumptions the E step is equivalent to the nearest

neighbor match of a patch from the dataset to the current estimated corresponding “hole” patch.

The M step is equivalent to the update rule of Eq. 3.

The above procedure also bears some similarity to the Belief Propagation (BP) approach to

completion such as in [22]. As BP communicates a PDF (probability density function), it is

practically limited to modeling no more than three neighboring connections at once. There, a

standard grid-based graphical model is used (as is for example in [16]), in which each pixel is

connected to its immediate neighbors. Our graphical model has a completely different structure.

Unlike BP our model does not have links between nodes (pixels). Rather, the patch structure
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induces an implicit connection between nodes. It takes into account not only a few immediate

neighbors but all of them (e.g. 125). This allows us to deal with more complex visual structures.

In addition, we assume that the point values are parameters and not random variables. Instead

of modeling the PDF, we use the local structure to estimate its likelihood and derive an update

step using the nearest neighbor in the dataset.

When seen as a variant of belief propagation, one can think of this method as propagating only

one evidence. In the context of this work, this is reasonable as the space of all patches is very

high dimensional and is sparsely populated. Typically, the dataset occupies “only” few million

samples out of (3 ∗ 255)125 possible combinations. The typical distance between the points is

very high and so only a few are relevant, so passing a full PDF is not advantageous.

IV. SPACE-TIME VISUAL TRADEOFFS

The spatial and temporal dimensions are very different in nature, yet are inter-related. This

introduces visual tradeoffs between space and time that are beneficial to our space-time com-

pletion process. On one hand, these relations are exploited to narrow down the search space and

to speed up the completion process. On the other hand, they often entail different treatments of

the spatial and temporal dimensions in the completion process. Some of these issues have been

mentioned in previous sections in different contexts, and are therefore only briefly mentioned

here. Other issues are discussed here in more length.

Temporal vs. spatial aliasing: Typically, there is more temporal aliasing than spatial aliasing in

video sequences of dynamic scenes. This is mainly due to the different nature of blur functions

that precede the sampling process (digitization) in the spatial and in the temporal dimensions:

The spatial blur induced by the video camera (a Gaussian whose extent is several pixels) is a

much better low-pass filter than the temporal blur induced by the exposure time of the camera

(a Rectangular blur function whose extent is less than a single frame-gap in time). This leads

to a number of observations:

1. Extending the family of Inpainting methods to include the temporal dimension may be able

to handle completion of (narrow) missing video portions that undergo slow motions, but there is

a high likelihood that it will not be able to handle fast motions or even simple everyday human

motions (such as walking, running, etc). This is because Inpainting relies on edge continuity,
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which will be hampered by strong temporal aliasing.

Space-time completion, on the other hand, does not rely on smoothness of information within

patches, and can therefore handle aliased data as well.

2. Because temporal aliasing is shorter than spatial aliasing, our multi-scale treatment is not

identical in space and in time. In particular, after applying the video completion algorithm of

Sec. III, residual spatial (appearance) errors may still appear in fast recovered moving objects.

To correct those effects, an additional refinement step of space-time completion is added, but this

time only the spatial scales vary (using a spatial pyramid), while the temporal scale is kept at the

original temporal resolution. The completion process, however, is still space-time. This allows

for completion using patches which have a large spatial extent, to correct the spatial information,

while maintaining a minimal temporal extent so that temporal coherence is preserved without

being affected too much by the temporal aliasing.

The local patch size: In our space-time completion process we typically use 5×5×5 patches.

Such a patch size provides 53 = 125 measurements per patch. This usually provides sufficient

statistical information to make reliable inferences based on this patch. To obtain a similar number

of measurements for reliable inference in the case of 2D image completion, we would need to

use patches of size 11×11. Such patches, however, are not small, and are therefore more sensitive

to geometric distortions (effects of 3D parallax, change in scale and orientation) due to different

viewing directions between the camera and the imaged objects. This restricts the applicability

of image-based completion, or else requires the use of patches at different sizes and orientations

[12], which increases the complexity of the search space combinatorially.

One may claim that due to the new added dimension (time) there is a need to select patches

with a larger number of samples, to reflect the increase in data complexity. This, however, is

not the case, due to the large degree of spatio-temporal redundancy in video data. The data

complexity indeed increases slightly, but this increase is in no way proportional to the increase

in the amounts of data.

The added temporal dimension therefore provides greater flexibility. The locality of the 5×5×5

patches both in space and in time makes them relatively insensitive to small variations in scaling,

orientation, or viewing direction, and therefore applicable to a richer set of scenes (richer both

in the spatial sense and in the temporal sense).
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Interplay between time and space: Often the lack of spatial information can be compensated for

by the existence of temporal information, and vice versa. To show the importance of combining

the two cues of information, we compare the results of spatial completion alone to those of

space-time completion. The top row of Fig. 9 displays the resulting completed frames of Fig. 1

using space-time completion. The bottom row of Fig. 9 shows the results obtained by filling-in

the same missing regions, but this time using only image (spatial) completion. In order to provide

the 2D image completion with the best possible conditions, the image completion process was

allowed to choose the spatial image patches from any of the frames in the input sequence. It

is clear from the comparison that image completion failed to recover the dynamic information.

Moreover, it failed to complete the hopping woman in any reasonable way, regardless of the

temporal coherence.

Furthermore, due to the large spatio-temporal redundancy in video data, the added temporal

component provides additional flexibility in the completion process. When the missing space-time

region (the “hole”) is spatially large and temporally small, then the temporal information will

provide most of the constraints in the completion process. In such cases image completion will not

work, especially if the missing information is dynamic. Similarly, if the hole is temporally large,

but spatially small, then spatial information will provide most of the constraints in the completion,

whereas pure temporal completion/synthesis will fail. Our approach provides a unified treatment

of all these cases, without the need to commit to a spatial or a temporal treatment in advance.

V. UNIFIED APPROACH TO COMPLETION

The approach presented in this paper provides a unified framework for various types of image

and video completion/synthesis tasks. With the appropriate choice of the spatial and temporal

extents of the space-time “hole” H and of the space-time patches Wp, our method reduces to

any of the following special cases:

1. When the space-time patches Wp of Eq. (1) have only a spatial extent (i.e., their temporal

extent is set to 1), then our method becomes the classical spatial image completion and synthesis.

However, because our completion process employs a global objective function (Eq. 1), global

consistency is obtained that is otherwise lacking when not enforced. A comparison of our method

to other image completion/synthesis methods is shown in Figs 12, 13 and 14. (We could not
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check the performance of [12] on these examples. We have, however, applied our method to the

examples shown in [12], and obtained comparably good results.)

2. When the spatial extent of the space-time patches Wp of Eq. (1) is set to be the entire image,

then our method reduces to temporal completion of missing frames or synthesis of new frames

using existing frames to fill in temporal gaps (similar to the problem posed by [26]).

3. If, on the other hand, the spatial extent of the space-time “hole” H is set to be the entire

frame (but the patches Wp of Eq. (1) remain small), then our method still reduces to temporal

completion of missing video frames (or synthesis of new frames), but this time, unlike [26], the

completed frames may have never appeared in their entirety anywhere in the input sequence.

Such an example is shown in Fig. 8, where three frames were dropped from the video sequence

of a man walking on the beach. The completed frames were synthesized from bits of information

gathered from different portions of the remaining video sequence. Waves, body, legs, arms, etc.,

were automatically selected from different space-time locations in the sequence so that they all

match coherently (both in space and in time) to each other as well as to the surrounding frames.

VI. APPLICATIONS

Space-time video completion is useful for a variety of tasks in video post production and

video restoration. A few example applications are listed below. In all the examples below we

crop the video so to contain only relevant portions. The size of the original videos for most of

them is half PAL video resolution (360× 288).

1. Sophisticated video removal: Video sequences often contain undesired objects (static or

dynamic), which were either not noticed or else were unavoidable at the time of recording.

When a moving object reveals all portions of the background at different time instances, then it

can be easily removed from the video data, while the background information can be correctly

recovered using simple techniques (e.g., [17]). Our approach can handle the more complicated

case, when portions of the background scene are never revealed, and these occluded portions

may further change dynamically. Such examples are shown in Figs. 1, 7, and 10. Note that both

in 7, and 10, all the completed information is dynamic and so reliance on background subtraction

or segmentation is not likely to succeed here.

2. Restoration of old movies: Old video footage is often very noisy and visually corrupted.

Entire frames or portions of frames may be missing, and severe noise may appear in other video
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portions. These kinds of problems can be handled by our method. Such an example is shown in

Fig 11.
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(a) Input sequence

(b) Umbrella removed

(c) Output

(d) Full-size frames (input and output):

Fig. 7

REMOVAL OF A BEACH UMBRELLA. THE VIDEO SIZE IS 120× 340× 100, WITH 422, 000 MISSING PIXELS. SEE VIDEO IN:

www.wisdom.weizmann.ac.il/∼vision/VideoCompletion.html
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Input video with seven missing frames:

Output video with completed frames:

Fig. 8

COMPLETION OF MISSING FRAMES. THE VIDEO SIZE IS 63× 131× 42 AND HAS 57, 771 MISSING PIXELS SEVEN FRAMES.

Video Completion:

Image Completion:

Fig. 9

IMAGE COMPLETION VERSUS VIDEO COMPLETION
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Input video:

One lady cut out:

Output video with completed frames:

Fig. 10

REMOVAL OF A RUNNING PERSON. THE VIDEO SIZE IS 80× 170× 88 WITH 74, 625 MISSING PIXELS.

Fig. 11

RESTORATION OF A CORRUPTED OLD CHARLIE CHAPLIN MOVIE. THE VIDEO IS OF SIZE 135× 180× 96 WITH 3, 522

MISSING PIXELS.
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(a) Original (b) Our result (c) Result from [9]

Fig. 12

IMAGE COMPLETION EXAMPLE.

(a) Original (b) Our result (c) Result from [14]

Fig. 13

TEXTURE SYNTHESIS EXAMPLE. THE ORIGINAL TEXTURE (A) WAS ROTATED 90o AND ITS CENTRAL REGION (MARKED BY

WHITE SQUARE) WAS FILLED USING THE ORIGINAL INPUT IMAGE. (B) OUR RESULT. (C) BEST RESULTS OF (OUR

IMPLEMENTATION OF) [14] WERE ACHIEVED WITH 9×9 WINDOWS (THE ONLY USER DEFINED PARAMETER). ALTHOUGH

THE WINDOW SIZE IS LARGE, THE GLOBAL STRUCTURE IS NOT MAINTAINED.
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(a) Input (b) Our result (c) Result from [9]

Fig. 14

THE KANITZSA TRIANGLE EXAMPLE IS TAKEN FROM [9] AND COMPARED WITH THE ALGORITHM HERE. THE PREFERENCE

OF [9] TO COMPLETE STRAIGHT LINES CREATES THE BLACK CORNERS IN (C) WHICH DO NOT APPEAR IN (B).
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3. Modify a visual story: Our method can be used to make people in a movie change their

behavior. For example, if an actor has absent-mindedly picked his nose during a film recording,

then the video parts containing the obscene behavior can be removed, to be coherently replaced

by information from data containing a range of “acceptable” behaviors. This is demonstrated in

Fig. 15 where an unwanted scratching of the ear is removed.

4. Complete field-of-view of a stabilized video: When a video sequence is stabilized, There

will be missing parts in the perimeter of each frame. Since the hole does not have to be bounded,

the method can be applied here as well. Figure 16 shows such an application.

5. Creation of video textures: The method is also capable in creating large video textures

from small ones. In Fig. 17, a small video sequence (32 frames) was extended to a larger one,

both spatially and temporally.

VII. SUMMARY AND CONCLUSIONS

We have presented an objective function for completion of missing data and an algorithm

to optimize it. The objective treats the data uniformly in all dimensions and the algorithm

was demonstrated on the completion of several challenging video sequences. In this realm, the

objective proved to be very suitable as it only relies on very small, local parts of information.

It successfully solved problems with hundreds of thousands of unknowns. The algorithm takes

advantage of the sparsity of the database within the huge space of all image patches to derive

an update step.

The method provides a principled approach with a clear objective function that extends those

used in other works. We have shown here that it can be seen as a variant of EM and we have

also shown its relation to BP.

There are several possible improvements to this method. First, we did not attempt to prune the

database in any way, even though this is clearly the bottleneck w.r.t. running time. Second, we

applied the measure to windows around every pixel, rather than a sparser set. Using a sparser

grid (say, every 3rd pixel) will give a significant speedup (33). Third, breaking the database

into meaningful portions can prevent the algorithm to from completing one class of data with

another, even if they are similar (e.g. complete a person with background), as was done in [18],

[24]. Fourth, the proposed method does not attempt to coalesce identical pixels that come from
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(a) Input video texture (b) Initial volume (c) Output video texture

(d) Initial and final resulting texture

Fig. 17

VIDEO TEXTURE SYNTHESIS. (a) A SMALL VIDEO (SIZED 128× 128× 32) IS EXPANDED TO A LARGER ONE, BOTH IN

SPACE AND IN TIME. (b) IS THE LARGER VOLUME OF 128× 270× 60 FRAMES WITH 1, 081, 584 MISSING PIXELS. SMALL

PIECES OF (a) WERE RANDOMLY PLACED IN THE VOLUME WITH GAPS BETWEEN THEM. IN (c) THE GAPS WERE FILLED

AUTOMATICALLY BY THE ALGORITHM. SEVERAL FRAMES FROM THE INITIAL AND RESULTING VIDEOS ARE SHOWN IN (d).

the same (static) part of the scene. These can be combined to form joint constraint rather than

being solved almost independently in each frame as was done here.
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APPENDIX

In this section we derive the optimization algorithm from section III using the statistical

estimation framework for the interested reader. In this framework, the global visual coherence

of Eq. (1) can be derived as a likelihood function via a graphical model, and our iterative

optimization process can be viewed as a variant of the EM algorithm to find the maximum

likelihood estimate.

Under this model the unknown parameters, denoted by Θ, are the color values of the missing

pixel locations p in the space-time hole: Θ = {cp|p ∈ H}. The known pixels around the hole are

the observed variables Y = {cp|p ∈ S \ H}. The windows {Wn}N1 are defined as small space-

time patches overlapping the hole where N is their total number. The set of patches X = {Xn}N1
are the hidden variables corresponding to Wn. The space of possible assignments for each Xn

are the dataset patches in D. We assume that each Xn can have any assignment with some

probability. For the completion examples here, the dataset is composed of all the patches from

the same sequence that are completely known, i.e. X = {Xn|Xn ⊂ S \H} but the dataset may

also contain patches from another source.

This setup can be described as a graphical model which is illustrated in Fig. 18 in one

dimension. Each patch Wn is associated with one hidden variable Xn. This in turn is connected

Fig. 18

OUR GRAPHICAL MODEL FOR THE COMPLETION PROBLEM
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to all the pixel locations it covers, p ∈ Wn. As each Wn denotes a patch overlapping the hole,

at least some of these pixel locations are unknowns, i.e. belong to Θ. Let cp = W p
n denote the

color of the pixel p in the appropriate location within the window Wn and let Xp
n denote the

color at the same location within the dataset windows. Note that while the color values Xp
n

corresponding to pixel p may vary for different window locations n, the actual pixel color cp

is the same for all overlapping windows W p
n . Using these notations, an edge in the graph that

connects an unknown pixel p with an overlapping window Xn has an edge potential of the form

φ(cp, Xn) = e−
1

2σ2 (cp−Xp
n)2 .

The graph in Fig18 with the definition of its edge potentials is equivalent to the following

joint probability density of the observed boundary variables and the hidden patches given the

parameters Θ:

f(Y,X; Θ) = β
N∏

n=1

∏
p∈Wn

φ(cp, Xn) = β
N∏

n=1

∏
p∈Wn

e−
(cp−X

p
n)2

2σ2

where p denotes here either missing or observed pixel and β is a constant normalizing the

product to 1. This product is exactly the similarity measure defined previously in Eq.(2):

f(Y,X; Θ) = β
N∏

n=1

e−d(Xn,Wn) = β
N∏

n=1

sim(Xn,Wn)

To obtain the likelihood function we need to marginalize over the hidden variables. Thus we

need to integrate over all possible assignments for the hidden variables X1 . . . XN :

L = f(Y; Θ) =
∑

(X1,...,XN )∈DN

f(Y,X; Θ) (5)

=
∑

(X1,...,XN )∈DN

β
N∏

n=1

sim(Xn,Wn) (6)

The maximum likelihood solution to the completion problem under the above model assump-

tions is the set of hole pixel values (Θ) that maximize this likelihood function. Note that since the

summation terms are products of all patch similarities, we will assume that this sum is dominated

by the maximal product value (deviation of one of the patches from its best match will cause

a significant decrease of the entire product term): max L ≈ max{X} β
∏N

n=1 sim(Xn,Wn). Given

the point values, seeking the best patch matches can be done independently for each Wn, hence

we can change the order of the max and product operators:

max L ≈ β
N∏

n=1

max
Xn

sim(Xn,Wn)

DRAFT



TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 35

meaning that the maximum likelihood solution is the same completion that attains best visual

coherence according to Eq. 1.

We will next show that our optimization algorithm fits the EM algorithm [10] for maximizing

the above likelihood function.

In the E step, at iteration t the posterior probability density π̂t is computed. Due to conditional

independence of the hidden patches, this posterior can be written as the following product:

π̂t = f(X|Y; Θt) =
N∏

n=1

f(Xn|Y; Θt) =
N∏

n=1

βnsim(Xn,Wn)

Thus we get a probability value π̂t for each possible assignment of the dataset patches. Given

the above considerations, these probabilities vanish in all but the best match assignments in each

pixel thus the resulting PDF is an indicator function. This common assumption, also known as

“Hard EM”, justifies the choice of one nearest neighbor.

In the M step, the current set of parameters Θ are estimated by maximizing the following

function:

Θ̂t+1 = arg max
Θ

 ∑
(X1,...,XN )∈DN

π̂t log f(X,Y; Θ)


Given the graphical model in Fig.18, each unknown p depends only on its overlapping patches

and the pixels are conditionally independent. Thus the global maximization may be separated to

local operations on each pixel:

ĉt+1
p = arg max

cp

− ∑
{n | p∈Wn}

(cp − X̂p
n)2


where the X̂n are the best patch assignments for the current iteration (denoted also by V in

Sec. III-A). This is an L2 distance between the point value and the corresponding color values

in all covering patches and it is maximized by the mean of these values similar to Eq.(3).

Similar to the classic EM, the likelihood in the “Hard EM” presented here is increased in each

E and M steps. Thus the algorithm converges to some local maxima. The use of a multi-scale

process (see Sec. III-B) and other adjustments (see Sec. III-A) leads to a quick convergence,

and to a realistic solution with high likelihood.
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