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Abstract

We address the problems of sparse multiclass and multi-

label classifier design and devise new algorithms using mar-

gin based ideas. Many online applications such as image

classification or text categorization demand fast inference.

State-of-the-art classifiers such as Support Vector Machines

(SVM) are not preferred in such applications because of slow

inference, which is mainly due to the large number of sup-

port vectors required to form the SVM classifier. We propose

algorithms which solve primal problems directly by greedily

adding the required number of basis functions into the clas-

sifier model. Experiments on various real-world data sets

demonstrate that the proposed algorithms output signifi-

cantly smaller number of basis functions, while achieving

nearly the same generalization performance as that given by

SVM and other state-of-the-art sparse classifiers. This en-

ables the classifiers to perform faster inference, thereby mak-

ing the proposed algorithms powerful alternatives to existing

approaches.

1 Introduction

We consider multiclass and multi-label classification
problems. Given a training data set D = {(xi, yi)}li=1,
where xi ∈ X ⊂ Rn is the ith example and yi is
the corresponding class label (yi ∈ Y = {1, . . . , k}),
the multiclass classification problem is to construct a
decision function h : X → Y which generalizes well. In
many real-world applications such as object detection
in computer vision or medical diagnosis, more than one
class label can be correct for each data point. These
problems are formulated as multi-label classification
problems. The training data set is of the form, D =
{(xi,yi)}li=1, where yi ∈ {±1}k, yi,r = +1 if the ith

example belongs to the class r and yi,r = −1 otherwise.
The multi-label classification problem is to construct
a decision function h : X → {±1}k which gives good
generalization performance.

Many online applications such as real-time video
surveillance, network intrusion detection or credit card
fraud detection can be posed as multiclass or multi-label
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classification problems. Due to their real-time nature,
these applications require fast inference (finding class
label(s) of a test input). Powerful classification tools
such as Support Vector Machines (SVM), though they
yield accurate solutions, are not preferred in such ap-
plications due to high inference time, when the number
of support vectors is large (linear in the training set
size [16]). Therefore, for applications which require fast
inference, it is important to design classifiers which are
not computationally expensive.

For many classification problems, a classifier
designed using a smaller subset of basis functions1 of
the type K(x,xi) yields generalization performance
similar to that of the SVM classifier. In this work, we
refer to such classifiers as sparse classifiers. Although
sparse multiclass and multi-label classifiers can be
designed using sparse binary classification algorithms
like Sparse SVM (SpSVM) [8] or those presented in
[7, 11], the resulting classifiers still use a large number
of basis vectors. This is mainly because they do not
use any systematic way of finding a common set of
basis functions over all the classes. To the best of
our knowledge, there have been no attempts to design
sparse multi-label classifiers. Therefore, there is a
need to develop efficient algorithms to design sparse
classifiers for multiclass and multi-label classification
problems.

Contributions
• We propose new ‘all-together’ problem formula-

tions for sparse multiclass (Section 3) and multi-
label (Section 4) classification and present novel
and efficient primal methods to design sparse clas-
sifiers. The proposed algorithms systematically
search and output a common set of basis vectors
for all the classes. The number of basis vectors con-
trols the classifier sparsity, through a user-defined
parameter, dmax.

• The proposed algorithms are compared with other
sparse classifier design algorithms on various real-
world data sets. Numerical experiments on differ-

1In this work, we use the key phrases “basis functions” and
“basis vectors” interchangeably.



ent real-world datasets give clear evidence that the
proposed algorithms give sparser classifiers without
significant degradation in the generalization per-
formance and are, therefore, powerful alternatives
when fast inference is needed.

Since our focus is on the inference time, we demon-
strate the efficacy of the proposed approaches on data
sets having moderate number of training set examples,
but a large number of test set examples. On a typical
real-world multiclass data set with about 25, 000 train-
ing set examples and 106 test set examples, the clas-
sifier designed using the proposed algorithm used only
100 basis functions, and required about 30 seconds for
inference on all the test set examples. On the other
hand, the classifier designed by extending Sparse SVM
[8] to multiclass problems required an order of mag-
nitude larger number of basis functions and inference
time. A supplementary file including additional infor-
mation about related work and experiments is available
at http://drona.csa.iisc.ernet.in/~shirish/SDM2013/

supplement.pdf.
A word about our notations. All vectors will be

column vectors and the row vectors will be denoted by
a superscript, T . ∥v∥ denotes the 2-norm of the vector
v. The cardinality of the set J will be denoted by
|J |. For a n-dimensional vector v, let vJ denote the
|J | dimensional vector containing {vj : j ∈ J}. For a
matrix A ∈ Rm×n, Ai,j denotes the (i, j)th element of
A. Ai,· denotes the i

th row of A and A·,j denotes the j
th

column of A. AI,J refers to the submatrix of A made of
the rows indexed by I and the columns indexed by J . If
A is a square matrix Tr(A) denotes the trace of A. δ is
the Kronecker delta, δi,j = 1 if i = j and 0 otherwise.

2 Related Work

2.1 Multiclass classifiers A number of different
methods have been proposed in the literature to solve
the multiclass classification problem. Some methods
such as one-vs-all (OVA) or all-vs-all (AVA), decom-
pose a multiclass classification problem into multi-
ple independent binary classification problems. Other
approaches, called all-together approaches [6], de-
sign multiclass classifiers by formulating an optimiza-
tion problem which considers all the classes together.
Some prominent all-together multiclass classification
approaches include [2, 19, 1, 12]. Particularly relevant
to the proposed work is the formulation proposed in [19]
which we describe briefly.

Most of the all-together multiclass classifiers design
real-valued functions fr(·), r = 1, . . . , k, which assign
a set of similarity scores to every data sample. The

classifier function2 h uses the following form:
(2.1) h(x) = argmax

1≤r≤k
fr(x).

Weston and Watkins [19] proposed to use fr(x) =
wr · ϕ(x) and formulated the multiclass classification
problem as,

(2.2) min
w,ξ

λ

2

k∑
r=1

∥wr∥2 +
l∑

i=1

∑
r ̸=yi

ξi,r

where ξi,r = max(0,wr ·ϕ(xi)+2−wyi ·ϕ(xi)) denotes
the misclassification error for every example xi and class
r, r ̸= yi. Computations involving ϕ are handled
using the kernel function, K(xi,xj) = ϕ(xi) · ϕ(xj).
The bias term can be included in this formulation in
a straightforward way. For notational convenience,
we have not included it throughout this article. The
solution to the optimization problem (2.2) can be found
by solving the equivalent dual problem, as in the case of
the binary SVM optimization problem. Note that the
dual problem of (2.2) is a large dimensional optimization
problem, which may be difficult to solve using standard
quadratic programming techniques. This difficulty is
alleviated by the use of a single slack variable for every
example[2].

min
w,ξ

λ

2

k∑
r=1

∥wr∥2 +
l∑

i=1

ξi

s.t. (wyi · xi) + δyi,r − (wr · xi) ≥ 1− ξi ∀i, r.

(2.3)

In this formulation, ξi denotes the misclassification error
for every example xi. A simple and efficient algorithm
was proposed to solve the dual problem of (2.3) [2]. In
either case, the resulting classifiers are often not sparse,
though their generalization performance is good.

2.2 Multi-label classifiers incorporating label
correlations In the multi-label classification problem,
given a set Y containing k class labels, an example can
be tagged with any of the 2k possible subsets of Y .
The main challenge is to search over the exponentially
large label space. This problem can also be treated as
a simpler version of multi-task learning problem, where
the same input data are used for all the tasks, but the
output labels differ for each task and depend upon the
task correlation information [4] Some approaches solve
the multi-label classification problem by converting to
other canonical forms like binary classification, multi-
class classification, regression or ranking (see [18] and
the references therein). Often, these algorithms do not
consider the inherent label correlation information in

2The one-vs-all (OVA) approach to solve a multiclass classifi-
cation problem also uses the same decision function in (2.1).



solving a multi-label classification problem. The multi-
label classifier design problem becomes more difficult if
the label correlations are also taken into account. The
max-margin multi-label classifier design approach pro-
posed by Hariharan et al. [5], uses the prior knowledge
about the co-occurrences of labels in the test categories.
This approach, relevant to our work, is discussed below.

Assuming that the matrix P encodes the label
correlations and the matrix W contains the weight
vectors associated with all the labels, by defining a real-
valued score function f(x,y) = yTPTWTϕ(x), the
multi-label learning problem was formulated [5] as:
(2.4)

min
f

1

2
∥f∥2 + C

l∑
i=1

ξi

s.t. f(xi,yi) ≥ f(xi,y) + ∆(yi,y)− ξi ∀y ∈ {±1}k \ {yi}
ξi ≥ 0 ∀i

where ∆(·) is the multi-label loss function. The decision
function h for a new point x is given by
(2.5) h(x) = argmax

y∈{±1}k

f(x,y).

Note that there are l2k constraints in the formulation
in (2.4). This exponentially large number of constraints
makes the optimization very slow. This problem was
alleviated by reformulating (2.4) as the minimization
of k correlated sub-problems, each having only l con-
straints [5]. The resulting multi-label classifier is, how-
ever, not sparse. Our goal is to provide an efficient
algorithm to design a sparse multi-label classifier in this
setting.

2.3 Sparse Classifier Design Several methods
have been proposed in the literature to design sparse
multiclass classifiers. These include k-class linear
programming machines [19], Import Vector Machine
(ImVM) [20], Multiclass Relevance Vector Machines [15]
and Informative Vector Machine [10]. The design of a
k-class linear programming machine requires sophisti-
cated linear program solvers which are computationally
expensive. Our work uses basis function selection ideas
similar to those proposed in Sparse SVM (SpSVM) [8]
and ImVM [20] for sparse model design and differs
from probabilistic approaches [15, 10] by the way sparse
model is constructed.

A sparse classifier design algorithm involves efficient
selection of the set J of basis functions, as well as the the
corresponding model parameters. SpSVM minimizes
regularized quadratic hinge loss function while ImVM is
built on optimizing regularized kernel logistic regression
loss function to get the basis functions and the model
parameters. Starting with an empty model, both the

algorithms use a greedy approach to add a desired
number (dmax) of basis vectors to the model, by making
use of the respective objective function decrease, for
basis vector selection. Our experiments using ImVM
for sparse multiclass classifier design on large data sets
confirm that ImVM is not scalable. Also, compared to
the proposed approach, an ImVM or a sparse multiclass
classifier designed using SpSVM in one-vs-all (OVA)
mode typically require an order of magnitude larger
number of basis vectors, thereby resulting in slower
inference.

3 Multiclass Classification - Problem
Formulation and Algorithm

Our proposed problem formulation for multiclass clas-
sification problem uses L2 penalization of the training
errors and the proposed algorithm directly minimizes
the primal problem over the set of vectors wr of the
form
(3.6) wr =

∑
j∈J

αj,rϕ(xj)

where J is an index set of basis functions that form a
subset of the training set input. Finding an appropriate
set J and the corresponding parameters α is done by
optimizing the primal objective function. We consider
k classifier functions, fr(x), r = 1, . . . , k, of the form

(3.7) fr(x) = wr · ϕ(x) =
∑
j∈J

αj,rK(xj ,x).

Note that the set J is common for all the classes. The
learning algorithm finds this set J as well as the matrix
of model parameters, αJ,· ∈ R|J|×k. The multiclass
decision function in (2.1) can then be used, where fr(xi)
is represented in a compact form as,
(3.8) fr(xi) = αJ,r

TKJ,i.

3.1 Method Our formulation uses quadratic penal-
ization of errors in the formulation (2.2) proposed in
[19]. We consider the following problem formulation:

(3.9) min
w,µ

λ

2

k∑
r=1

∥wr∥2 +
1

2

l∑
i=1

k∑
r=1

(max(0 , µi,r))
2

where µi,r = wr ·ϕ(xi)+1−wyi ·ϕ(xi)− δyi,r ∀ i, r and
the misclassification error, ξi,r = max(0 , µi,r). The
quadratic penalization of the errors in (3.9) makes the
objective function differentiable. Using wr in (3.6), the
problem in (3.9) can be written as:
(3.10)

min
α

eJ ≡ λ

2

k∑
r=1

αJ,r
TKJ,JαJ,r +

1

2

l∑
i=1

k∑
r=1

ξ2i,r

s.t. ξi,r = max
(
0, αJ,r

TKJ,i + 1− αJ,yi
TKJ,i − δyi,r

)
∀i, r



Note that the objective function in the above problem
is piecewise quadratic. Although it is not twice differen-
tiable, one can define the generalized Hessian [13] and
use Newton method with line-search to solve this prob-
lem. Our aim is to obtain an approximate solution that
uses a common set of basis functions for all the classes
and to find αJ,· such that the resulting classifier has
the desired level of complexity. For this purpose, the
choice of the basis vector set J becomes crucial. Given
that |J | ≤ dmax, searching through all possible combi-
nations of dmax basis vectors to get an optimal set J is
computationally expensive. Therefore, one has to resort
to approaches like those suggested in [20, 8]. A typical
sparse classifier design algorithm is given below. This

Algorithm 1 : Sparse Classifier Design Algorithm

Input: D = {xi, yi}li=1, dmax

Output: J , αJ,·
1: J = ϕ
2: while |J | < dmax do
3: Select a new basis function j∗ which gives a maximum

decrease in the objective function
4: J := J ∪ {j∗}
5: Optimize the objective function w.r.t αJ,·

6: end while

approach of sparse classifier design is not fundamentally
new. For multiclass classification problems, the algo-
rithm involves efficient selection of the basis vector set
J , common for all the classes. As we describe later, this
procedure is crucial as the selection of J affects αJ,·. We
now give details related to step 3 (basis function selec-
tion) and step 5 (optimization w.r.t. αJ,·).

3.2 Basis Function Selection We now discuss a
systematic and efficient way of selecting basis functions
iteratively. Given the basis function set J and the
coefficients αJ,r, our aim is to select a training set
example j∗ ∈ {1, ..., l}\J , as a new basis function, such
that its inclusion in the set J would give a maximum
decrease in the objective function in (3.10). The
training set examples which incur the misclassification
error (ξi,r > 0) are distributed over the two sets of
training examples Ir and Irm,

Ir =
{
i : i ∈ {1, ..., l}, ξi,r > 0, r ̸= yi

}
Irm =

{
i : yi = r, ξi,p > 0 for some p ̸= yi

}
.

(3.11)

Clearly, Ir ∩ Irm = ϕ. Note that Ir and Irm are functions
of J and αJ,·. For notational convenience, we do not
indicate this dependence explicitly. Suppose we add a
new basis vector j to the existing set J . Let Ĵ = (J ; j).
To find the effect of this basis function addition on
the objective function, it becomes necessary to solve

the problem (3.10) with respect to αĴ,r. Note that
this problem needs to be solved for all the candidate
basis vectors from the set {1, . . . , l} \ J and the basis
vector j∗ is selected which gives a maximum decrease
in the objective function in (3.10). This procedure is
computationally expensive, especially when the training
set is large. So in our implementation, we solved k
one-dimensional optimization problems (with respect to
αj,r, r = 1, . . . , k, keeping αJ,·, fixed).

min
αj,r

λ

2
αT
Ĵ,r
KĴ,ĴαĴ,r +

1

2

∑
i∈Ir

(Ki,ĴαĴ,r + 1−Ki,ĴαĴ,yi
)2

+
1

2

∑
i∈Ir

m

∑
p∈r̄i

(Ki,ĴαĴ,p + 1−Ki,ĴαĴ,r)
2

(3.12)

Let eJ be the value of the objective function in (3.10)
corresponding to the current set of basis vectors J and
coefficients αJ and eĴ be the objective function value
after adding j to the current set of basis vectors along
with its optimized coefficients αj . Defining Ĵ = (J ; j),
the new basis vector j⋆ is then selected as:
(3.13) j⋆ = arg max

j∈{1,...,l}\J
(eJ − eĴ).

During the optimization of (3.12), if Ir and/or Irm
change, the objective function value in (3.10) might
increase. In such a case, the associated basis function
j is not considered for inclusion into the basis vector
set. It was observed in our experiments that the sets Ir

and Irm get stabilized as iterations progress. Therefore,
after a few initial iterations, the phenomenon of the
change in Ir or Irm is rare. Moreover, if the objective
function value in (3.10) does not decrease for any of
the candidate basis vectors, then we terminate the
algorithm. But, we did not encounter such a situation
during our experiments. Algorithm 2 gives the details
of this procedure.

Algorithm 2 : Basis Function Selection

Input: J , αJ,·
Output: The new basis function j⋆, optimized coefficients

αj⋆,·
1: Q = {1, . . . , l} \ J
2: for every j ∈ Q do
3: for r = 1, . . . , k do
4: Solve the problem (3.12) w.r.t. αj,·
5: end for

6: Compute eĴ

[
αJ

αj

]
7: end for

8: Select j∗ using (3.13), αJ,· = (αJ,·;αj⋆,·)

The computational complexity of the algorithm to select
one basis function is O(l2k2), so the complexity of



selecting dmax number of basis vectors is O(l2k2dmax).
After selecting j⋆ in step 3 of Algorithm 1 and updating
J and αJ,· the problem (3.10) is solved w.r.t αJ,·. We
discuss this procedure next.

3.3 Optimization of Basis Vector Coefficients
αJ,· Given the set J , the solution of (3.10) gives optimal
αJ,·. The structure of this objective function can be
effectively used to solve (3.10) in an iterative fashion by
optimizing with respect to the variables αJ,r associated
with the class r, repeating this procedure till some
stopping condition is satisfied. Thus, the following
problem is solved:

min
αJ,r

λ

2
αT
J,rKJ,JαJ,r +

1

2

∑
i∈Ir

(Ki,JαJ,r + 1−Ki,jαJ,yi)
2

+
1

2

∑
i∈Ir

m

∑
p∈r̄i

(Ki,JαJ,p + 1−Ki,JαJ,r)
2

(3.14)

where
(3.15)
r̄i = {s ∈ Y : s ̸= yi and ξi,s > 0}, ∀ i ∈ {1, . . . , l}.

Algorithm 3 gives the details of αJ,· optimization.

Algorithm 3 : αJ,· Optimization

Input: J , current αJ,·
Output: Optimized αJ,·
1: Initialize α0

J,· = αJ,· , set t := 0
2: while αt

J,· is not optimal for (3.14) do
3: for r = 1, . . . , k do
4: Find Ir and Irm
5: Find the generalized Hessian H [13] and gradient

g of the objective function in (3.14)
6: Solve the problem in (3.14) w.r.t. αJ,r to get ᾱJ,r

as the result of a Newton step in the direction
dN = −H−1g

7: Find αt+1
J,r to be the minimizer of (3.10) on the line

segment joining αt
J,r and ᾱJ,r.

8: end for
9: t := t+ 1

10: end while

Since the loss function in (3.14) is piecewise quadratic,
Newton method converges in a finite number of itera-
tions [17]. We observed that the number of iterations
required to reach the exact solution of (3.14) was less
than 4. Given a set of basis vectors J , the computational
complexity of Algorithm 3 is O

(
k(lk+ |J |3)

)
, where the

complexity of finding the Newton direction (computing
the generalized Hessian inverse) in step 3 of Newton
method is O(|J |3).
The complete details to design a sparse multiclass clas-
sifier (SMSVM), using the formulation in (3.10) are

Algorithm 4 : Algorithm SMSVM

Input: D = {(xi, yi)}li=1, dmax

Output: J , αJ,·
1: Initialize J to a randomly chosen example from D.
2: Solve optimization problem (3.14) to find optimal αJ,·

by Newton method using Algorithm 3.
3: while |J | < dmax do
4: Find j⋆ and αj∗,· using Algorithm 2.
5: J := J ∪ {j∗}
6: Find the optimal αJ,· using Algorithm 3.

7: end while

presented in Algorithm 4. The algorithm requires the
user defined parameter dmax as its input. In our ex-
periments, the algorithm was terminated if the rela-
tive decrease in the objective function was sufficiently
small (less than 10−3) or |J | exceeded dmax. The
computational complexity of the complete algorithm is
O
(
kdmax(l

2k + d3max)
)
.

Speed-up Heuristics: To speed up the basis function
selection step (Algorithm 2), the set Q can be selected
as a random subset of size κ from the set {1, . . . , l} \ J
(Step 1). This reduces the complexity of adding a new
basis function to O(κlk2). After some experiments, we
found that κ = 25 was a good choice. The basis func-
tion selection also requires efficient solution of (3.12)
(Step 4). This can be done by caching the similarity
scores fr(·) of all the training set examples, useful in
calculating ξi,r and determining Ir and Irm. This cache
can be easily modified as fr(xi) := fr(xi) + αj,rKj,i

when a new basis function j is added to the set J . These
computations can further be speeded up by maintain-
ing kernel cache, kernel matrix rows corresponding to
the set J . We also maintain the Cholesky decompo-
sition of the Hessian matrix H (Algorithm 3, step 5),
which can be easily updated using rank-one updates if
a basis vector gets added to the set J .

The ideas mentioned in this section can also be used
to solve the primal problem for multiclass classification
given in [2] directly, by making use of the quadratic pe-
nalization of the error. Relevant details are provided
in the supplementary material (Section 4). However,
in our experiments, we observed that the correspond-
ing classifier was sparser than ImVM and Sparse OVA;
but it required more basis vectors than that obtained
by solving (3.10). Therefore, the corresponding experi-
mental results are not provided.

4 Multi-label Classification - Problem
Formulation and Algorithm

In this section, we present the details of our proposed
algorithm for sparse multi-label classifier design. We



continue to use the same representation for wr as in
(3.6). Hariharan et al. [5] assumed that f(x,y) =
wT (ϕ(x) ⊗ ψ(y)), where ϕ and ψ are the feature and
label space mappings respectively, w is the weight
vector, and ⊗ is the Kronecker product. Further, it
was assumed that the labels have linear correlations.
Prior knowledge about the labels was incorporated by
choosing ψ(y) = Py where an invertible matrix P
encodes the prior knowledge. The loss function ∆ was
chosen as the Hamming loss, ∆(yi,y) =

∑
r 1 − yryi,r.

The advantage of using the Hamming loss function
is that it can be decomposed over the labels. By
introducing two new variables Z and R where Z =WP
(W is the n × k dimensional matrix form of vector w)
and R = PTP , the multi-label classification problem
was formulated as,

(4.16)

P =

k∑
r=1

Sr

Sr =min
z,ξ

1

2
zTr

k∑
m=1

R−1
r,mzm + C

l∑
i=1

ξi,r

s.t. 2yi,rz
T
r ϕ(xi) ≥ ∆r(yi, yi,r)− ξi,r ∀i, r

ξi,r ≥ ∆r(yi, yi,r) ∀i, r.

where zr is the rth column of Z. This formulation
presents many attractive advantages. It has k correlated
problems, each having only l constraints and is easier to
solve. Second, the labels of a test point x can be found
using sign(ZTϕ(x)) unlike the exponential number of
evaluations required in the previous case. But, often the
multi-label classifiers designed by solving this problem
formulation are not sparse and not suitable for the
applications which demand fast inference.
We now present our proposed formulation for multi-
label classification problem. Similar to the work in [5]
we assume that the labels have at most linear correlation
and incorporate prior knowledge about the labels using
a positive definite matrix P ∈ Rk×k. Given an input x,
the score associated with label y is given by
(4.17) f(x,y) = yTPTαTKJ,·

where α ∈ R|J|×k and its rth column, αJ,r, stores lin-
ear expansion coefficients associated with rth class label
and J denotes the basis function set (common for all
the labels). Given the matrix P , the multi-label classifi-
cation problem amounts to finding an appropriate basis
function set J and the linear expansion coefficients αJ,·.
This problem can be written as,

(4.18)

min
α

λ

2
Tr(αTKJ,Jα)

+

l∑
i=1

max
y

(
∆(yi,y) + (y − yi)

TPTαTKJ,i

)

where ∆(·, ·) is a multi-label loss function, e.g. the
Hamming loss function,

∆(yi,yj) =

k∑
r=1

∆r(yi,yj) =

k∑
r=1

(1− yi,ryj,r).

Defining β = αP and R = PTP , the problem (4.18)
is,

(4.19)

min
β

λ

2
Tr(P−TβTKJ,JβP

−1)

+

l∑
i=1

max
y

(
∆(yi,y) + (y − yi)

TβTKJ,i

)
Using Tr(ABC) = Tr(CAB) and noting that the
Hamming loss can be decomposed over the labels, we
get the following equivalent problem:
(4.20)

min
β

λ

2

k∑
r=1

k∑
m=1

R−1
rmβT

J,rKJ,JβJ,m

+
l∑

i=1

max
y

(
k∑

r=1

∆r(yi,r, yr) + (yr − yi,r)βJ,r
TKJ,i

)

Note that the terms inside the maximization are inde-
pendent over the k components of y. Therefore, inter-
changing the maximization and summation, the above
problem formulation becomes,
(4.21)

min
β

λ

2

k∑
r=1

k∑
m=1

R−1
rmβT

J,rKJ,JβJ,m

+

l∑
i=1

k∑
r=1

( max
yr∈±1

∆r(yi,r, yr) + (yr − yi,r)βJ,r
TKJ,i)

For the basis function set J , let us define the misclas-
sification error, ξi,r = max

(
0, 1− yi,rβ

T
J,rKJ,i

)
. Using

quadratic penalization of this misclassification error, we
define the new multi-label classification problem as

(4.22)

min
β

λ

2

k∑
r=1

βT
J,r

k∑
m=1

R−1
r,mKJ,JβJ,m

+

l∑
i=1

k∑
r=1

(
max(0, 1− yi,rβJ,r

TKJ,i)
)2

This primal problem is a summation of k correlated
problems and can be solved directly to design a sparse
multi-label classifier. The solution to the above problem
is used to find the labels of a novel example x as the
sign of βTKJ,·. Algorithm 1 can be used to get the
basis function set J and linear expansion coefficients β
using the formulation (4.22). The steps involved are
similar to those discussed in the previous section (See
Algorithm 4). Hariharan et al. [5] proposed to solve
the dual of the problem (4.16) using the optimization
techniques for solving the standard SVM dual. Their



Dataset l ltest n k
Iris 150 ∗ 4 3
Wine 178 ∗ 13 4
Glass 214 ∗ 9 7
Vowel 528 462 10 11
Vehicle 846 ∗ 18 4
Segment 2310 ∗ 19 7
DNA 2000 1186 180 3

Satimage 4435 2000 36 6
Shuttle 10000 14500 9 7
Letter 15000 5000 16 26
USPS 7291 2007 256 10

Table 1: Summary of Datasets (l, ltest, n and k denote
the number of training examples, test examples, features
and classes respectively. ∗ indicates that test data were not
available for these data sets. 3-fold cross validation error is
reported for these data sets.)

algorithm, however, required some book-keeping to
handle the dense structure of the matrix R. Further,
the resulting algorithm did not result in a sparse multi-
label classifier.

5 Experimental Evaluations

In this section, we discuss the experimental evaluations
of proposed sparse multiclass and multi-label classifiers.
Experimental Setup: We used Gaussian kernel func-
tion, K(xi,xj) ≡ e−γ||xi−xj ||2 where γ > 0, for all the
experiments. The kernel parameter γ and regulariza-
tion hyper-parameter λ (in (3.10)) for multiclass clas-
sification and (in (4.22)) for multi-label classification
were tuned using cross-validation. All the experiments
were performed using MATLAB implementations on a
1.7GHz dual quad core machine with 10GB of main
memory under Linux.

5.1 Multiclass Classification We compare our pro-
posed method, SMSVM, against other sparse and
full-model multiclass classifiers on various real-world
datasets. Eleven benchmark datasets, summarized in
Table 1, were used for this purpose.3 We report the
average cross-validation accuracy for the datasets iris,
wine, glass, vehicle and segment as test data are not
available for these datasets. For the dataset shuttle, the
training set used consisted of 10000 randomly chosen
examples from the original training set, keeping the dis-
tribution of classes the same as the one in the original
training set. We compare the following methods: (1)
SMSVM: our proposed sparse multiclass SVM classi-
fiers discussed in Sections 3.1, (2) ImVM: sparse mul-
ticlass classifier, Import Vector Machine (ImVM) pro-
posed in [20], (3) Sparse-OVA: Sparse binary classifier

3These datasets are available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html

in [8], applied to a multiclass problem in OVA form4, (4)
WW: Multiclass SVM proposed by [19] (corresponding
to the problem formulation in (2.2)), and (5) CS: Mul-
ticlass SVM proposed by [2]. For the full-model classi-
fiers, WW and CS, all the results are reported from [6].
For fair comparison of sparse classifiers, we modified
the original ImVM by applying the speed up heuristic
of sampling κ random examples for import vector selec-
tion as discussed in Section 3.

5.1.1 Synthetic Dataset - Decision boundary

comparison: To compare the decision boundaries and
the number of basis vectors used by different sparse
classifiers, a synthetic dataset was generated. The
training set for two classes (◃ and ♢ ) was generated
using two different Gaussian distributions while the
examples for the third class (∗) were generated using
a mixture of Gaussians. The classification boundaries
formed by three sparse classifiers, SMSVM, ImVM and
Sparse-OVA, are shown in Fig. 1. The points on the
boundaries have equal similarity scores (given in (??))
for the multiple (two or three) neighboring classes.
From Fig. 1, it is clear that SMSVM requires the least
number of basis functions to achieve the desired test
set accuracy (94.66%). Due to the one-vs-rest nature
of Sparse-OVA, the decision boundaries formed by
Sparse-OVA are not natural, as compared with those
formed by SMSVM and ImVM. Note that in Fig. 1(c),
the test points generated (not shown) in the shaded
region are classified as belonging to the class of ‘∗’.

5.1.2 Comparison with respect to sparsity, training

and inference time: Different multiclass classifiers can
be compared with respect to the number of basis vectors
and test set performance using the details reported in
Table 2. The performance of non-sparse classifiers (WW
and CS), given in the last two columns, is reported from
[6]. Note that the results for the USPS dataset were not
available in [6]. For the sparse classifiers, the number
of basis vectors required to achieve the same generaliza-
tion performance as that given by SMSVM, is reported.
If a classifier is not able to achieve the generalization
performance achieved by the other classifiers, its best
generalization performance along with the number of
required basis vectors is reported. For fair comparison,
we have reported the number of unique basis vectors
across multiple independent binary classifiers in case of
Sparse-OVA algorithm. It is clear from this table that
the test set performance of the proposed methods is

4The program for binary classification, available at
http://olivier.chapelle.cc/primal/, was used to design Sparse-

OVA classifier.



(a) SMSVM (b) ImVM (c) Sparse-OVA

Figure 1: Decision functions obtained by different sparse classifiers on a synthetic dataset: l = 300, k = 3, Test Accuracy-94.66%. The
number of basis vectors are (a) 7, (b) 16 and (c) 37. In (c), the test points generated (not shown) in the shaded region are classified as
belonging to the class denoted by ‘∗’.

Dataset SMSVM ImVM Sparse-OVA WW CS
bv acc bv acc bv acc sv acc sv acc

Iris 7 97.33 20 97.33 12 97.33 16 97.33 28 97.33
Wine 14 98.15 15 98.15 19 98.15 55 98.88 42 98.88
Glass 19 73.83 80 73.83 103 73.83 124 71.03 143 71.96
Vowel 11 98.92 35 98.92 55 98.92 279 98.49 391 98.67
Vehicle 54 86.64 171 86.64 225 86.64 264 86.0 265 87.76
Segment 18 96.25 103 96.08 316 96.25 358 97.58 970 97.32
DNA 98 95.03 860 94.01 308 95.03 951 95.61 945 95.87

Satimage 68 90.10 353 90.10 390 90.10 1426 91.25 2670 92.35
Shuttle 13 99.74 57 99.74 84 99.74 * 99.91 * 99.94
Letter 180 94.18 1023 94.18 4327 94.18 7627 97.76 6374 97.68
USPS 83 94.32 5213 94.32 767 94.32 N.A. N.A.

Table 2: Comparison of Multiclass Classifiers. The columns bv and sv represent the number of the basis vectors and
support vectors respectively. The column acc represents the test set accuracy. In the case of Sparse-OVA, we report the
number of unique basis vectors across multiple independent binary classifiers. The results of WW and CS classifiers are
reported from [6] and are not available for the USPS dataset. * : sv are not mentioned for Shuttle dataset, because WW
and CS classifiers use the complete training dataset (43500 training examples) whereas the sparse classifiers use the subset
of training dataset (10000 training examples).

Dataset SMSVM ImVM Sparse-OVA
Training Inference Training Inference Training Inference

time time time time time time
Iris 0.65 0.01 41.33 0.01 0.23 0.01
Wine 0.89 0.01 37.08 0.01 0.58 0.01
Glass 3.99 0.01 272.51 0.03 2.48 0.03
Vowel 5.60 0.01 355.36 0.02 2.34 0.03
Vehicle 15.55 0.01 1491.73 0.04 9.84 0.07
Segment 9.60 0.01 3231.43 0.06 14.82 0.16
DNA 50.27 0.15 24566.84 1.32 46.17 0.78

Satimage 88.90 0.07 119926.57 0.37 72.35 0.68
Shuttle 15.40 0.09 4572.15 0.38 17.11 0.78
Letter 8437.66 0.57 1576352.76 3.13 608.02 15.90
USPS 422.71 0.16 753789.53 0.97 255.72 1.78

Table 3: Time Comparisons of Sparse Multiclass Classifiers (time in seconds)

comparable with that of full model (non-sparse) meth-
ods. Further, it is achieved using significantly smaller
number of basis vectors. From the table, it is also clear
that SMSVM requires smaller number of basis vectors
to achieve the same test set performance compared to
other sparse classifiers like ImVM and Sparse-OVA. The
number of basis vectors needed by SMSVM is about
an order of magnitude smaller than those needed by
Sparse-OVA on the datasets such as Segment, Letter
and USPS. On the DNA dataset, ImVM required sig-

nificantly more number of basis vectors than any of the
other sparse classifiers. Thus, SMSVM requires lesser
memory compared to other sparse classification meth-
ods as smaller number of basis vectors need to be stored.
Use of common basis vector set J reduces kernel com-
putations, thereby reducing the inference time.
The training and inference time comparison of the
sparse classifiers is reported in Table 3. For every classi-
fier, the training time required to achieve the same test
set performance (given in Table 2) is mentioned. From



Figure 2: Distribution of basis vectors over classes- (a)DNA (b)USPS datasets. (The numbers in parentheses, on top of
the bars, indicate the number of training points belonging to that particular class.)

the results, it is clear that the training of ImVM is very
slow. This is mainly due to its non-quadratic (multi-
logit regression) formulation. Although, Sparse-OVA is
faster than the proposed methods in terms of training,
the inference time required by the proposed methods is
significantly lesser than that required by Sparse-OVA.
This is due to the sparser classification model designed
by the proposed methods. Therefore, SMSVM is suit-
able in applications where sparser classifiers are needed
for fast inference, as inference time is directly propor-
tional to the number of unique basis vectors. These
methods may require more training time; but this extra
training time is worth the effort as training is often a
one time process and inference needs to be done multi-
ple times. Thus, SMSVM is a powerful alternative for
sparse multiclass classifier design for faster inference.

To compare the inference time of SMSVM and
Sparse-OVA on data sets with large test set size, we
conducted an experiment on poker5 data set, with
10 classes and 10 features, where training and test
set sizes are 25, 010 and 1, 000, 000 respectively. The
classifier, designed using the proposed SMSVM method,
used only 100 basis functions and required 29.6 seconds
for inference on all the test set examples. On the
other hand, the classifier designed using Sparse-OVA
used 1000 basis vectors (907 unique basis vectors) and
required 655.2 seconds for the same inference. Although
kernel evaluations are to be done only for unique basis
vectors, computing the score involves multiplications of
coefficients with kernel values for all the basis vectors.
The additional kernel evaluations result in significantly
slower inference for OVA methods.

5.1.3 Distribution of basis vectors across different

classes: To get an idea about the distribution of basis
vectors over different classes, we compared SMSVM-I
and Sparse-OVA on two datasets and the results are

5Poker dataset is available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/multiclass.html

shown in Fig. 2. The values in the parentheses on
the top of the bars indicate the number of training set
examples belonging to the respective classes. In Sparse-
OVA, the binary classifiers designed are independent
of each other and hence, often use different sets of
basis vectors for design of different classifiers. On the
other hand, both the proposed methods use a common
set of basis vectors for different classifiers. Therefore,
the number of unique basis vectors needed by Sparse-
OVA is higher than those needed by SMSVM-I or
SMSVM-II. This is also evident from Fig. 2. In
all the cases, Sparse-OVA required significantly larger
number of basis vectors from every class than SMSVM-
I. Further, for the USPS dataset, the number of basis
vectors required by Sparse-OVA for all the classes is
an order of magnitude higher than those required by
SMSVM-I.

5.1.4 Statistical comparisons of sparse multi-

class classifiers: In the experiments discussed above,
we compared different sparse multiclass classifiers
(SMSVM, ImVM and Sparse-OVA) on multiple bench-
mark datasets, using various criteria such as sparsity,
training time and inference time. We now evaluate
ranks of these classifiers using the statistical comparison
test (Friedman test) discussed in [3] to compare multiple
classifiers over multiple datasets. Table 4 presents the
results of Friedman test on sparse classifiers. From these
results, it is clear that the p-value in all the cases is less
than or equal to 0.0002. Hence, according to Friedman
test, the null hypothesis (that the classifiers are com-
parable with each other) is rejected. Further, SMSVM
is ranked first according to the sparsity and the infer-
ence time criteria and is ranked second according to
the training time criterion. Though, Sparse-OVA ranks
first as per the training time criterion, it does not use
any systematic approach to select common basis vectors
across multiple classes and often does not provide natu-
ral multiclass classification boundary (details available
in the supplementary material). Thus, considering var-



Criterion Average Ranks p-value
SMSVM ImVM Sparse-OVA

Sparsity 1 2.27 2.73 < 0.0001
Training time 1.82 3 1.36 < 0.0001
Inference time 1.18 1.95 2.77 0.0002

Table 4: Results of Friedman test on sparse multiclass
classifiers

Name ltraining ltest n k
Yeast 1500 917 103 14
Scene 1211 1196 294 6

Mediamill 5000 12914 120 101
Animal 5000 6180 256 85

fMRI-Word 2592 648 28244 25

Table 5: Summary of Multi-label Benchmark Datasets
: ltraining, ltest, n and k denote the number of training
examples, test examples, attributes and classes respectively.

ious evaluation criteria, SMSVM is preferred for sparse
multiclass classifier design.

5.2 Multi-label Classification: We now compare
the proposed sparse max-margin multi-label method
(described in Section 4) against the full model max-
margin multi-label classifier [5] on various real-world
benchmark datasets. The datasets are summarized in
Table 5. We compared the following methods: (1)
SM3L: our proposed sparse multi-label classifier with-
out using the prior knowledge about label correlations,
(2) M3L: Max-margin multi-label classifier in [5] (cor-
responding to the problem formulation in (4.16)) with-
out using the prior knowledge about label correlations,
(3) SM3L-P: our proposed sparse multi-label classifier
which incorporates the prior knowledge about label cor-
relations P , and (4) M3L-P: Max-margin multi-label
classifier in [5] (corresponding to the problem formula-
tion in (4.16)) which incorporates the prior knowledge
about label correlations, P .

5.2.1 Usefulness of Common Basis Vectors: To
demonstrate the usefulness of common basis vectors in
a multi-label problem setting where the training and
test set label correlations are similar or different, we
conducted an experiment. Subsets of three datasets
containing only two labels with different training and
test set label correlations were obtained. Characteristics
of these datasets are given in Table 6. We compared the
performance of SM3L, M3L, SM3L-P and M3L-P over
these datasets, on the basis of test set Hamming loss and
the number of basis vectors, as shown in Table 6. As the
experimental results suggest, the sparse classifiers SM3L
and SM3L-P are comparable with their full-model (non-
sparse) counterparts, M3L and M3L-P, with respect
to the generalization performance. Further, SM3L
and SM3L-P use lesser number of basis vectors than
M3L and M3L-P, to achieve the same generalization

performance. This demonstrates that, as in the case
of sparse multiclass classifier design, the common basis
vectors in SM3L and SM3L-P are sufficient to model
the multi-label classifiers under the widely varying label
correlation conditions.

5.2.2 Sparsity and test set performance: We com-
pared the performance of sparse classifiers, SM3L and
SM3L-P, and full model classifiers, M3L and M3L-P, on
five multi-label benchmark datasets (Table 7). It is evi-
dent from this table that the Hamming loss performance
improves if the label correlations are used, as observed
in [5]. Further, it is observed that the test set perfor-
mance (Hamming loss) of the SM3L and SM3L-P meth-
ods are comparable with their full model counterparts.
Also, SM3L and SM3L-P result in sparser classifiers.
The number of basis vectors needed by the proposed
sparse classifiers to achieve the same generalization per-
formance is an order of magnitude smaller than those
needed by their full model counterparts on many data
sets.

5.2.3 Zero-shot Learning: There are practical prob-
lems in the field of computer vision or image search,
where the classifier is required to recognize example in-
stances from previously unseen test categories. These
problems are referred to as zero-shot learning prob-
lems. A zero-shot learning problem can be solved by
using knowledge about common attributes among dif-
ferent example categories [5]. The classifiers can be
built based on common attributes in the training set
categories. These learnt classifiers can then be used to
identify the same attributes for the instances in unseen
test categories. The learning problem can be posed as a
multi-label classification problem where the attributes
are treated as labels. But, in this framework, the train-
ing and test set label correlations are often very differ-
ent.

We compared the performance of four multi-label
classifiers discussed earlier on two real-world zero-shot
learning datasets, Animal and fMRI-Words data de-
scribed in Table 8. In Animal dataset [9], 50 different
animals like polar bear, zebra, horse etc. are described
using 85 common attributes like ‘is black’, ‘have stripes’
etc. The examples (images) of 40 animal categories were
used for training and the examples of remaining 10 ani-
mal categories were used for testing. We used only 200
examples for training in this experiment. Similarly, in
fMRI-Words dataset [14], 60 different words like ‘cel-
ery’, ‘airplane’, ‘hammer’ etc., are described using 25
common verbs like ‘eat’, ‘taste’ or ‘fill’. The fMRI ex-
amples from 48 words were used for training and the
examples from the remaining 12 words were used for



Name Label Pair Rtraining Rtest SM3L-P M3L-P SM3L M3L
bv H.L. bv H.L. bv H.L. bv H.L.

Animal 1 : 43 0.2000 -0.7660 23 20.87 179 20.87 27 30.01 183 30.01
Mediamill 45 : 68 0.9188 -0.5293 13 1.41 811 1.41 13 1.69 798 1.67
Mediamill 48 : 49 0.9356 1 8 0.98 1011 0.98 9 1.01 989 1.01

Scene 2 : 3 0.4021 0.3328 39 19.11 1197 19.11 37 19.11 1201 19.11
Scene 4 : 6 0.3079 0.2742 43 18.75 1206 18.73 47 18.76 1197 18.73

Table 6: Results of multi-label datasets with label pairs : Rtraining and Rtest, bv and H.L. denote the number of training
correlation, test correlation, number of basis vectors and test set Hamming loss respectively. Note the improvement in the
Hamming loss when the training and test set correlations are significantly different.

Figure 3: Results of SM3L-P on Animal Dataset: Important class labels for four test set animal categories are
listed, as provided by SM3L-P classifier.

Name SM3L-P M3L-P SM3L M3L
bv H.L. bv H.L. bv H.L. bv H.L.

Yeast 183 18.78 1474 18.65 198 18.71 1468 18.67
Scene 41 17.61 1211 17.61 44 17.63 1215 17.62

Mediamill 98 3.16 4991 3.16 95 3.16 4997 3.17
Animal 36 26.31 5000 26.11 24 29.02 4713 29.02

fMRI-Word 18 49.37 2137 49.37 21 55.31 2587 55.31

Table 7: Results of Multi-label Benchmark Datasets : bv and H.L. denote the number of basis vectors and test set
Hamming loss respectively.

Name ltraining ctraining ltest ctest n k
Animal 200 40 6180 10 256 85

fMRI-Words 400 48 648 12 28244 25

Table 8: Summary of Zero-shot Learning Datasets: ltraining, ctraining, ltest, ctest n and k denote the number of training
examples, training categories, test examples, test categories, features and classes respectively.

Name SM3L-P M3L-P SM3L M3L
bv H.L. bv H.L. bv H.L. bv H.L.

Animal 24 26.62 200 26.62 24 29.31 193 29.31
fMRI-Words 15 51.05 400 51.05 18 56.87 400 56.87

Table 9: Results on Zero-shot Learning Datasets : bv represents the number of basis vectors and H.L. represents the test
set Hamming Loss.

testing.
Table 9 presents the results of different multi-

label classifiers on these datasets with respect to the
number of basis vectors and test set Hamming loss.
It is observed that the sparse classifiers, SM3L-P and
SM3L achieve the same Hamming loss as compared
to the corresponding full model classifiers, M3L-P and

M3L respectively, using a smaller number of basis
vectors. Further, the test set Hamming loss decreases
significantly in SM3L-P and M3L-P methods, due to
the incorporation of prior knowledge about the test
set label correlations. It is clear from Table 9 that
the proposed sparse multi-label classification algorithm
results in sparser classifiers compared to those designed



using M3L or M3L-P methods. The number of basis
vectors required is observed to be an order of magnitude
smaller than those required by M3L or M3L-P.

6 Conclusion

There has been an increasing interest in the machine
learning community to design multiclass and multi-label
classifiers for online applications where real-time infer-
ence is needed. In this work, we suggested new prob-
lem formulations and efficient algorithms to build sparse
multiclass and multi-label classifiers. The proposed al-
gorithms are fast and scalable. Further, we demon-
strated that the resulting classifiers achieved nearly the
same generalization performance as that achieved by
full model or other sparse classifiers. On many data
sets it is observed that the proposed algorithms result
in using significantly smaller number of basis vectors
compared to other sparse classifiers. Thus, the pro-
posed algorithms are recommended for sparse multiclass
and multi-label classifier design when fast inference is
needed. We are currently investigating the extension
of these ideas to other problems like structured output
prediction problems. Sparse classifier design using other
measures like F-measure will also be investigated in fu-
ture.
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