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ABSTRACT 

Image based rendering using the plenoptic function is an 
efficient technique for re-rendering at different viewpoints.  
In this paper, we study the sampling and reconstruction 
problem of plenoptic function as a multidimensional 
sampling problem. The spectral support of plenoptic function 
is found to be an important quantity in the efficient sampling 
and reconstruction of such function.  A spectral analysis for 
the light field, a 4D plenoptic function, is performed.  Its 
spectrum, as a function of the depth function of the scene, is 
then derived.  This result enables us to estimate the spectral 
support of the light field given some prior estimate of the 
depth function.  Results using a piecewise constant depth 
model show significant improvement in rendering of the light 
field images.  The design of the reconstruction filter is also  
discussed. 

1. INTRODUCTION 

Images and videos are effective means to convey 
information of objects, environment or scenes.  To provide 
the users with better experience such as navigation through a 
virtual environment and to interact with virtual objects, 
virtual reality techniques are becoming more and more 
popular. Recently, image based techniques have attracted 
much attention as an excellent alternative to re-render images 
at a collection of viewpoints, due to their superior image 
quality and much lower computational requirement for 
rendering, compared with 3-D model building.  Central to 
image based rendering is the plenotpic function [1], which 
describes all of the radiance energy perceived by the observer 
at any point ),,( zyx VVV  in space and time t.  At any point 

),,( zyx VVV  in the free space, we can select any of the 

viewable rays by choosing an azimuth and elevation angle 
),( φθ  as well as a band of wavelengths, λ .  For a dynamic 

scene, there is an additional variable time t.  This gives rise to 
the following 7 dimensions plenotpic function, 

),,,,,,( tVVVPp zyxλφθ= .      (1) 

In principle, one can reconstruct the view at any point in 
space and time from the plenoptic function by substituting 
the appropriate values of ),,( zyx VVV , ),( φθ , and t into (1).  

In practice, only samples of the plenoptic function are 
available.  The reconstruction problem can be stated as 
follows [5]: Given a set of discrete samples (complete or 
incomplete) from the plenoptic function, the goal of image-
based rendering is to generate a continuous representation of 
that function. Due to difficulties in capturing and storing the 
plenoptic function, various simplifications have been 
advocated [2-7]. The simplest two-dimensional plenotpic 
function is the panorama (cylindrical [2] or spherical [6]). 
The lumigraph of Gortler et al [3] extends the work of 
Quicktime VR and plenoptic modeling [5] by further 
developing the idea of capturing the plenoptic function in a 
region of the environment.  By assuming that air is 
transparent, and using the ray space representation, the 5-

dimension plenoptic function (ignoring wavelength and time) 
can be reduced to 4 dimensions.   Independently, Levoy and 
Hanrahan proposed a similar 4D plenoptic function called the 
light field [4].  In light field and lumigraph, images are taken 
on certain points in a 2-D plane, such as the rectangular grid 
in the ),( vu -plane of Fig. 1.  At each grid point, an image of 
the object or scene is taken.  We shall call the image plane 
the ),( ts -plane.  Using this 2D array of images, it is possible 
to create different views of the object or scene at different 
viewing angles through a process called rendering.  
Lumigraph differs from light field in that approximate 
geometric model of the object is used to improve the quality 
of the reconstruction at lower sampling densities.   Apart 
from the reconstruction problem described above, a related 
but more interesting problem is the plenoptic sampling 
problem: “How many samples of the plenoptic function 
associated with a scene are required for its reconstruction?”  
This problem and in fact the reconstruction problem can be 
answered using the sampling theorem of multidimensional 
signal.  The rest of this paper is organized as follows: Section 
2 is devoted to the sampling and reconstruction problem of 
plenoptic function.  A spectral analysis for the light field is 
given in section 3.  The spectral support of the light field is 
then estimated in section 4.  The design of the reconstruction 
filter is briefly discussed in section 5. 

2. SAMPLING THE PLENOPTIC FUNCTION 

Let the Fourier transform (FT) of the plenoptic function 
),,,,,,()( tVVVpp zyxa λφθ=t  be )( jPa . Suppose )(tap  is 

sampled at the points {Vn : N∈n } to obtain the sequence 
)()( Vnn app = ,  V  is called the sampling matrix and the set 

of points {Vn : N∈n } is called the lattice generated by the 
matrix V , and is denoted by )(VLAT .  The lattices 

)( 1−VLAT  and )2( 1−VπLAT  are called respectively the 

reciprocal and scaled reciprocal lattices of )(VLAT . It can 

be shown that the discrete-time Fourier transform of )(np  is 

related to that of )( jPa  by the following 

∑
∈

− −=
Nk

T
a jPP ))2((

det

1
)( kV

V
π ,     (2) 

where N is the set of all 7-component integers. Denote 
12 −Vπ  by U . (2) tells us that )(P  is obtained by adding 

all the copies of )( jPa  shifted to the lattice points on 

)(ULAT  and perform the transformation V T−= . If any 
two copies in this sum overlap, aliasing is said to occur.  The 
sampling density ρ  of V , which is the number of lattice 

points per unit volume, is equal to Vdet/1 .  Suppose )(tap  

is bandlimited.  If the sampling density ρ  is sufficiently high, 
the terms on the RHS of (2) will not overlap.  In other words, 
we can recover )(tap  from its samples using a lowpass filter 

whose passband should include the region of support of 



)( jPa  and stopband should remove all the other aliasing 

copies in (2).  For a given spectral support of )( jPa  and 

sampling matrix V , the minimum ρ , Vρ , such that no 

aliasing occurs is called the minimum sampling density of 
)(tap  with V .  Obviously, Vρ  depends on the spectral 

support of )( jPa  as well as the sampling matrix V .  

Different sampling geometry will give rise to different 
minimum sampling density.  Therefore, if we know the 
spectral support of the plenoptic function )(tap  associated 

with a given scene, the minimum sampling density for a 
given sampling geometry or lattice can be determined.  
Moreover, an appropriate sampling lattice can be designed 
for )(tap  to reduce its sampling density.  It is a very useful 

result because the information associated with the plenoptic 
function is usually huge.  Oversampling means more 
intensive data acquisition and of course more storage.  It is 
clear that the reconstruction problem is equivalent to the 
reconstruction of )(tap  given its aliased spectrum )(P .  If 

)(tap  is bandlimited, the sampling theorem assures us that it 

is possible to recover )(tap  without any distortion after 

proper filtering.   The most important difference between 
sampling a plenoptic function, or simply plenoptic sampling, 
and that of an arbitrary 7-dimensional function is the 
differences in their spectral supports.  Due to the close 
relationship between the plenoptic function and the geometry 
associated with the scene, there is significant amount of 
redundancy in the plenoptic function.  This can be the 
correlation between adjacent pixels of an object in a picture, 
the correlation between successive image frames in a video, 
or the correlation between successive images in the light field 
or lumigraph.  All these go to the geometry of the 3D world 
and its variation with time captured by the plenoptic function.  
From the above discussion, it can be seen that the spectral 
support of )(tap  is of vital important for efficient sampling 

and reconstruction of plenoptic function.  In the following, a 
spectral analysis for the lightfield is performed and useful 
expressions for estimating its spectral support will be derived.  

3. SPECTRAL ANALYSIS OF LIGHT FIELD 

As mentioned earlier, light field is a 4D signal parameterized 
by the variables ),,,( tsvu .  Denote the light field under 

consideration by ),,,( tsvul . Suppose that we know the depth 

function of the scene and it is equal to ),( vuz . Further, if we 
assume that the BRDF model of the scene is Lambertian, 
then the radiance received at camera position ),( ts  is given 
by 

)0,0,
),(

,
),(

(),,,(
vuz

tf
v

vuz

sf
ultsvul

⋅−⋅−= ,   (3) 

where f is the focal length of the camera.  Here, for simplicity, 
we also assume that there is no occlusion in the scene.  With 
the help of the depth function, which is a kind of geometrical 
information of the scene, two out of the four variables in 

),,,( tsvul  becomes zero, while the other two become 

functions of )),(,,( vuzsu  and )),(,,( vuztv , respectively.  

The Fourier transform of ),,,( tsvul  is then given by 

),,,( tsvuL ΩΩΩΩ ∫ ∫ ∫
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where ],[ vuT =x  and ],[ vu
T ΩΩ= .  Changing the 

variables 
),(~ vuhsfuu ⋅⋅−=  ; ),(~ vuhtfvv ⋅⋅−= ,  (5) 

we have ∫ ∫ ∫
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)~,~(J  is the Jacobian matrix, 

],[ tsT =p , ),(),( 1 vuzvuh −= , and ]~,~[ vuT =x .  It can be 

shown that the partial derivatives in )~,~( vuJ  are given by 
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obtain the determinant of the Jacobian matrix as follows 
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Substituting  (8) into (6), we have 
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From the convolution theorem, (9) can also be written as 
),(),,,(),,,( 00 vutsvuhtsvu LFWL ΩΩ∗ΩΩΩΩ=ΩΩΩΩ . (10) 

where ),,,( tsvuhFW ΩΩΩΩ  is the 2D Fourier transform of  

),,~,~( tsh vuW ΩΩ  with respect to the variables )~,~( vu , and 

∫
∞

∞−

−⋅=ΩΩ xx devulL
Tj

vu00 )0,0,~,~(),(  is the 2D Fourier 

transform of the light field image at the origin )0,0,~,~( vul . 
For notational convenience, we have used ( vu, ) instead of 

( vu ~,~ ) inside the integral of ),,~,~( tsh vuW ΩΩ .  In fact, 

expressing ( vu, ) entirely in ( vu ~,~ ) requires us to solve the 

nonlinear equations (5).  Furthermore, ),( vuh , uvuh ∂∂ /),(  

and vvuh ∂∂ /),(  are now functions of ( vu ~,~ ) as well as 
( s , t ).  (9) is seen to be the Fourier transform of a windowed 
2D signal )0,0,~,~( vul .  The window ),,~,~( tsh vuW ΩΩ , 

however, is a 4-D function, which causes the 2D signal to 
spread in the frequency domain, requiring higher sampling 
rate. If ),( vuz  is equal to a constant, uvuh ∂∂ /),(  and 

vvuh ∂∂ /),(  will equal to zero, and ),,~,~( tsh vuW ΩΩ  will 

become an impulse function.   Similarly situation occurs 
when ),( vuz  is sufficiently large. In this case, 



),,,( tsvuL ΩΩΩΩ  will be a 2D slice in the 4D space of 

frequencies.  This allows us to sub-sample the light field in 
the s and t  directions, without aliasing [8]. From (8), it is 

seen that )~,~( vuJ  is singular when 
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vvuh ∂∂ /),(  are in general very small quantities, if s  and t  

are allowed to vary from ∞−  to ∞ , )~,~( vuJ  will 

eventually become singular.  This suggests that the analysis is 
a local one and we have to multiply )~,~( vuJ  by a window 

),( tsw  with finite support to prevent it from being singular. 

Here, the Gaussian window )2/(),( 2/2/ 22
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ts ts eetsg σσπσσ −−=  

is used because it has the smallest time-frequency product.  
Using the Taylor series expansions of ),( vuh , 
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and the geometric series expansion of )~,~( vuJ ,  we have 
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The FT of ),,~,~( tsh vuW ΩΩ  wrt to )~,~( vu is then given by 
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(12) is very difficult to evaluate analytically because 

uvuhhu ∂∂=′ /)~,~( , vvuhhv ∂∂=′ /)~,~(  and ),( vuh  are 

functions depending on the scene. Further insight into 
),,,( tsvuhFW ΩΩΩΩ  can, however, be obtained by 

digitizing it into an infinite sum. Replacing the variables u~  
and v~ by un ∆⋅ and vm ∆⋅ , (13) becomes 
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where ),(1),,,(, vmunhjfA utsvumn ∆⋅∆⋅′−=ΩΩΩΩ  

                  ))),((),(( 2mnmn sussus Ω′Ω−Ω′+Ω⋅ σσ  

                  2)),((),((),( mnmnvmunhjf tvttvtv Ω′Ω−Ω′+Ω∆⋅∆⋅′− σσ , 

    ),(),( umunhfmn uss ∆⋅∆⋅Ω+Ω=Ω′ , 

and     ),(),( umunhfmn vtt ∆⋅∆⋅Ω+Ω=Ω′ . 

It can be seen that ),,,( tsvuhFW ΩΩΩΩ  is the sum of an 

infinite set of amplitude modulated Gaussian functions.  The 
major axis of the projection of the Gaussian function with 
index (n,m) along the ),( su ΩΩ  plane is given by the line 

0),( =∆⋅∆⋅Ω+Ω umunhf us .  Thus each portion of the scene 

will contribute an amplitude modulated Gaussian functions to 
),,,( tsvuhFW ΩΩΩΩ .  Its orientation along the ),( su ΩΩ  and 

),( tv ΩΩ  planes are given by the lines 

0),( =∆⋅∆⋅Ω+Ω umunhf us  and 0),( =∆⋅∆⋅Ω+Ω umunhf vt , 

respectively.  It can be seen that the orientation depends on 
the depth value at that point, ),( umunh ∆⋅∆⋅ , while its 

amplitude depends on ),( umunh ∆⋅∆⋅  as well as its local 

derivatives ),( vmunhu ∆⋅∆⋅′  and ),( vmunhv ∆⋅∆⋅′ .  Given 

the bounds of )~,~( vuhu′  and )~,~( vuhv′  and that of ),( vuh , (13) 

allows us to estimate the spectral support of the light field 
),,,( tsvul .  In the following, we show that significant quality 

improvement in the quality of rendering of the light field can 
be obtained even with the use of a simple piecewise constant 
depth model.  Because the model is relatively simple, the 
spectral supports for the rectangular sampling lattices can be 
determined explicitly [8]. 

4. PIECEWISE CONSTANT DEPTH MODEL 

If the spread of ),,,(, tsvumnA ΩΩΩΩ  in (13) is small, the 

spectrum of the light field can be approximated by a number 
of 2D slices with different orientations governed by the depth 
of the scene.  Fig.2 shows the projection of the light field in 
the ),( tv ΩΩ  plane.  Therefore, the spectral support of the 

light field is approximately bounded by its maximum and 
minimum depth [8].  For the commonly used rectangular 
sampling lattice, the minimum sampling density is obtained 
when the sampled light field is packed as in Fig. 2b. The 
minimum sampling rate in the t direction is dt hfKf

v
⋅= Ω , 

where )/1,min( vvBK
v

δ=Ω , 2/)( 1
max

1
min

−− −= zzhd . vB  and vδ  are 

respectively the bandwidth and output resolution of the light 
field in the v direction.  Similar expression applies to the s 
direction.  It is also possible to determine the minimum 
sampling densities for the quincunx and hexagonal sampling 
lattices.  Example spectral support and rendering results are 
shown in Fig. 3 and 4.  From Fig. 2, it can seen that a 
reconstruction filter is required for downsampling the light 
field signal from a previously captured light field with 
oversampling, or upsampling the light field for rendering at a 
higher resolution.  This is discussed in the following section. 

5. DESIGN OF THE RECONSTRUCTION FILTER 

Suppose that the spectral support of the light field allows us 
to reduce its sampling rate in the s and t dimensions by a 
factor of say sd  and sd .  Alternately, the downsampled 

lightfield can be upsampled by a similar factor for rendering.  
Without loss of generality, we only consider the t dimension.  
In practice an integer decimation factor D equal to or just 
higher than td  is chosen. The corresponding decimation 

matrix M can be chosen as 







1

0

α
D

, where α  is chosen to 

cover the desired spectrum. The spectral support of the filter 



is }{ 10 παωωπ ≤+≤− D  ∩ }{ 1 πωπ ≤≤− .  Fig. 5 shows 

the spectral support of M with 4=D , and 2,1,0=α .  This 
filter can be efficiently designed and implemented using the 
transformation method in [9]. A 1-D lowpass filter )(ωP  

with cutoff frequency D/π  is first designed.  Form the 
multi-dimensional filter )()()( 10 npnphp =n , where )(np  is 

the impulse response of )(ωP  and Tnn ][ 10=n .  The 

impulse response of the desired filter )(ωtH , )(nth , is 

obtained by decimating )(nph  with the matrix 


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=
Dα
01

M̂ : )ˆ()( nMn pt hDh ⋅= .  Similar filter )(n′sh  

( Tnn ][ 32=′n ) can be designed for the s direction.  The 

resulting filter is the product of )(nth and )(n′sh .  Further 

properties of this method can be found in [9].   
CONCLUSION 

A spectral analysis for the light field rendering is 
presented. It enables us to estimate the spectral support of the 
light field given some prior estimate of the depth function.  
Results using a piecewise constant depth model show 
significant improvement in rendering of the light field images.  
The design of the reconstruction filter is also discussed. 
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Fig. 1: Light Field construction. 

 

 
 
 
 
 
 
 
 
 

 (a)         (b) 
Fig. 2. Projection of light field onto the ),( tv ΩΩ  plane: (a) spectral 

predicted by the constant depth model, (b) sampled spectrum and 
reconstruction using the reconstruction filter ( 0z  is the mean depth).  

(a)     (b)      (c) 
Fig. 3. Example spectral support of light field (a) raw image, (b) EPI, 

(c) spectral support in the ),( tv ΩΩ  plane. 

      
(a)         (b) 

Fig 4: Reconstructed images : (a) at the minimum depth,  z = 2326; 
(b) at the optimal plane, z = 3323; The focal plane is approximately 
on the forehead. 
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Fig. 5.  Spectral support of reconstruction filters with D=4 and  

different values of α . 
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