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Abstract

This paper describes Splice, a system for writing aspects that perform static program analyses to direct program
modifications. The power of an inter-procedural data-flow analysis enables an aspect to examine the flow of data
around a program execution point when it determines what code to add or change at that point. For example, an
aspect can change the target set of an iteration based on how elements are skipped during the iteration. Splice aspects
are written in a rule-based logic programming language with features that help aspect programmers express analyses.
We show how a prototype of Splice is used to write two useful aspects in the areas of domain-specific optimization
and synchronization.

1 Introduction

Aspect-oriented programming (AOP) systems, such as AspectJ [10], provide mechanisms for organizing code that go
beyond conventional objects and functions. An aspect can modify the execution of a program at well-defined points
in its execution, which are known §ain points The description of join points in AOP systems has generally been
limited to their syntactic structure. For example, a set of join points can be described as calls to a particular set of
methods. However, current aspect systems cannot describe a join point that depends on what can happen before or
after the join point. This paper shows why such join points are useful and how they are supported in Splice, a system
for writing aspects that can use static program analysis to identify join points. As a simple example, consider Java
code that raises salaries of employees who are programmers:

-Iterator i = employees/*jp-1*/ .iterator();/* original code */
+lterator i = programmers Jiterator();/* transformed code */
while (i.hasNext())
{ Employee e = (Employee) i.next();

if (e.isProgrammer()) e .raiseSalary(+20)/*jp-2*/ .

The efficiency of this loop can be improved by maintaining and iterating over an extent set of programmers rather
than employees. Although this transformation can be performed by hand, implementing it as an aspect could improve
modularity by separating a performance concern from base functionality. The aspect would @ddrtremers set
to the program and manipulates the program’s code at multiple join points. Two of these join points, jlaiheladd
jp-2 , can only be identified with the help of a program analysis. Join pgeint is associated with themployees
field access used to create an iterator. Identifyay requires a data-flow analysis because the aspect must discover
that each element of the iterator is only updated wheisRtmgrammer method call on the element is true. When
jp-1 is identified, an aspect can replace tmployees field access with arogrammers field access. Join point
jp-2 is used to identifyjp-1 by determining when an iterator element is updated, which occurs when a method
call can update the field of émployee object. In this example, a call to thaiseSalary(int) method can call
another method, that setssalary field. Identifyingjp-2 requires an inter-procedural analysis because an aspect
must discover that the method being called can either update an instance field or call a method that can update an
instance field.

The need for AOP systems with both data-flow and inter-procedural join point identification mechanisms has been
mentioned before by Kiczales [9]. Reasoning about inter-procedural data-flow information requires the use of a static



program analysis based on abstract interpretation [2], which are commonly used for compilation. Our approach in
Splice is to enable an aspect to encode an analysis that determines how a program’s execution is transformed by the
aspect.

An aspect in Splice is expressed as a collection of rules in a logic programming language with temporal and
negation operators. Aspect rules control the propagation of flow information during an analysis; i.e., they can concisely
describe flow functions. Aspect rules also operate over a program representation that helps programmers deal with
the complexity of variable re-assignment, branches, and loops. The analysis specified by an aspect is automatically
divided into multiple passes and stages, which transparently ensures the sound and complete evaluation of rules in the
presence of negation. With these features, Splice aspects that perform useful tasks can be expressed with a manageable
amount of code; e.g., a Splice aspect that implements the transformation in this section consists of nine rules and 35
logic terms.

The program analysis defined by an aspect is performed over a finite domain of facts that is computed by applying
an aspect’s rules to a program. A standard gen-kill iterative data-flow analysis algorithm is used to traverse all points
in a program repeatedly until fix-points are reached. The analysis supports both forward and backward flows, and is
also inter-procedural. Propagation of facts between procedures is flow-insensitive and context-insensitive to enhance
scalability. Although flow-insensitive inter-procedural fact propagation sacrifices precision, an aspect can often use
static type information to compensate for the precision loss.

We have used a prototype of Splice to write and test complete aspects in the areas of domain-specific optimizations
and synchronization. The rest of this paper is organized as follows. Section 2 provides an overview of Splice. Section 3
demonstrates how the transformation in this Section can be implemented in Splice. Section 4 describes Splice’s design
and implementation. Section 5 presents an informal evaluation of Splice. Related work and our conclusions are
presented in Sections 6 and 7.

2 Splice Overview

We introduce Splice by showing how it can be used to write an aspect that implements a synchronization policy.
However, before we describe this synchronization policy and show how it is implemented in Splice, we present Splice’s
basic features.

2.1 Basics
Facts are used in Splice to represent knowledge about a program being processed by an aspect. For example, the fact
Locked([getBalance()],[Accnt.lock]) specifies that the lockcent.lock  must be acquired aroungkt-

Balance() method calls. Aspects are expressed as a collection of rules that manipulate a program by proving and
guerying facts about the program. A rule is composed out of rule variables, consequents, and antecedents in a form
like rule RO [x] P(x): Q(x); , Which reads as “for any binding of rule variable consequenP(x) is a fact
whenever antecede@(x) is a fact.” Splice supports bottom-up logic programming, so unlike Prolog the consequents
of a rule become facts as soon as the rule’s antecedents are facts. BQ,rR(8) is a fact wheneve®(5) is a fact,
whereunificationbindsx to 5 so that the structure of anteced@tk) is equivalent to the structure of fa@(5) .

Predicates generalize facts like classes generalize objectst.axked is the predicate of fadtocked([get-
Balance()],[Accnt.lock]) . Built-in predicates have names that begin w@h The built-in predicate@nowis
used to inspect the expressions of the Java program being processed. Consider the definition of a rule from an aspect
that implements a synchronization policy:

rule SO [var,Ick,obj,args,mthd] Track(var,Ick), Needs(var,lck):
@now(var = obj.mthd(|args)), Locked(mthd,Ick);

The anteceder@now(var = obj.mthd(jargs)) in rule SO identifies a call to a methodnthd ) on an objectdbj )

with argumentsdrgs ) and a resultyar ). The body of a@nowantecedent is expressed in a Java-like expression syntax

that can refer to rule variables or Java identifiers. An exception to standard Java syntax is the use of the tail operator
(1), which is used injargs)  to specify thatargs is the list of the call’s arguments. For unification purposes, the
expressions in a Java program are treated as facts, where Java constructs and variables are listed in brackets. When
rule SO is applied to the Java expression= accntA.getBalance() , rule variablevar is bound to Java variable

[X] ,obj isbound tgaccntA] , mthd is bound to methoghetBalance()] , andargs is bound to the empty list.



global Locked(method,variable); backward WillUse(variable);

forward Needs(variable,lock), Track(variable,lock;)

rule SOa [Ick,var,mthd] Needs(var,Ick), Track(var,Ick):
@now(var = *.mthd(]*)), Locked(mthd,lck);

rule SOb [varO,varl,Ick,args] Needs(varl,ck), Track(varl,lck):
@nowi(varl,args), @contains(args,var0), Track(var0,Ick);

Figure 1:Predicates and rules that are used to défieeds facts.

Although we refer to source code variablegs and[accntA] in facts for example purposes, aspects do not
directly process source code. Instead, aspects process a control-flow graph (CFG) of a procedure’s expressions, where
all expression results are assigned to unique temporary variables. The Java syntax batiesasftecedents are
“compiled” to unify with expressions in this representation. A discussion of the program representation aspects process
is presented in Section 4.1.

2.2 Temporal Reasoning

The synchronization policy implemented in this section specifies that a certain lock must be acquired before a method
call whose result is derived from some protected state. To ensure that a call result remains consistent with the protected
state, which could be updated in another thread, the lock must be held as long as the call result can be used. To
implement this synchronization policy, an aspect must reason about how and when variables are used. Consider the
following three lines of code that withdrafs] amount of money from an accousncntA :

A: x = accntA.getBalance();
B:y =x - z
C: accntA.setBalance(y);

If lock Accnt.lock  protectgyetBalance() = method callsAccnt.lock  must be acquired before lieand released
after lineC because variablgx] is assigned at lin@ and variabldy] , which requires the same lock because it is
derived from the value of variable] , is used at lineC. Implementing this reasoning in Splice begins by identifying
three kinds of facts from the problem description.

First, aLocked(method,lock) fact identifies amethod whose call results must be protected bpek . For

the example code, we assume the famtked([getBalance()],[Accnt.lock]) is true. Second, &leeds-
(variable,lock) fact identifies program execution points whertoek must be held to ensurevariable is
consistent with some protected state. For the example code, theeed([x],[Accnt.lock]) should be true

from after lineA until just after lineB to ensure that the lock is held when variapde can be used. To implement
this behaviorNeeds facts shouldflow forward i.e., they should be propagated forward to following CFG points.
Third, awilluse(variable) fact identifies program execution points whereagiable  can possibly be used at
future execution points. For the example code, theVéttse([y]) should be true before linebecause variable
[y] will be used at lineC. To implement this behaviokvilluse facts shouldlow backward i.e., they should be
propagated backward to preceding CFG points.

Predicate declarations involved in the definitiongNekds andWilluse facts are shown at the top of Figure 1.
When a predicate is declared by an aspect, its flow and arguments are specified. The deglabatiarvcked-
(method,variable) specifies that facts of theocked predicate have two arguments and a global flow, meaning
they are true at any point in a program’s executiafilluse facts are declared with backward flows, atekds and
Track facts are declared with forward flows.

RulesS0a andSo0b in Figure 1 define howNeeds facts are proven. Rulg0a specifies that a variable is tracked
(Track(var,lck) ) and a lock needs to be held for the variatedds(var,ick) ) when the variable is assigned
from a call @now(var = *.mthd(]*)) ) and the called method is associated with the lagcKed(mthd,lck) ).
Wild card values¥() are placeholders for “any value.” RuB®b specifies that a variablearl is tracked and locked
when a variablear0 is tracked and locked, an@r0 is in the argument list of variable@contains(args,var0) )
used by the expression that assigad. (@nowi(varl,args) ). The@contains antecedent in rul80b queries the
membership of a variabledrl ) in a list of variablesd4rgs ). The@nowiantecedent in rulg0b unifies with all kinds



rule S1 [var,args] WillUse(var):
Track(var,*), @nowi(*,args), @contains(args,var);

rule S2 [var,lck] 'Needs(var,lck): 'WillUse(var), Needs(var,Ick);

Figure 2:Rules that define and us¥illuse facts.

of expressions in the same format; e.g., the expressionx - z in the example code bindarl to[y] andargs
to ([x].[z])
Rule S1 in Figure 2 defines howvilluse facts are proven. It specifies that a variable will be usgidlse-
(var) ) when it is tracked Track(var,*) ) and the current expressio@fowi(*,args) ) uses the variable in its
arguments @contains(args,var) ). Track facts proven by ruleS0a andSOb and queried by rul&1 address an
inefficiency in bottom-up logic programming where all facts are proven as long as they can be derived by the aspect’s
rules, even if those facts are not useful to the aspettattk facts were not used, ru&l would propagatavilluse
facts anytime a variable was used in the program even though most of these facts would never be queried by other rules.
Track facts also get around a restriction on how negation can be used in Splice, as will be discussed in Section 2.3.
A rule executes, ofires when all of its antecedents are unified with facts or Java code. When a rule fires, it is
associated with dfiring pointin a procedure’s CFG. For any rule with@nowor @nowi antecedent, such as rules
S0a, SOb, andS1, the firing point is the location of the expression that is unified with the antecedent. When applied
to the example code, rulg0a fires at lineA, Sob fires at lineB, andS1 fires at linesB andC. When a rule fires, the
forward and backward-flow facts it proves becomes true after and a backward-flow fact becomes true before the firing
point of the rule. When ruleS0a, SOb, andS1 are applied to the example code, faeteds([x],[Accnt.lock])
becomes true after link factNeeds([y],[Accnt.lock]) becomes true after ling factwillUse([x]) becomes
true before lineB, and factwillUse([y]) becomes true before ling

2.3 Negation

Rule S2 in Figure 2 specifies that a lock no longer needs to be held for a varigdeds(var,|ck) ) when the
variable will no longer be usedwillUse(var) ) and the lock currently needs to be held for the variallkee(ls-
(var,Ick) ). The negation of an antecedent or consequent occurs usinhgdperator. A negated antecedent is true
when it does not exist as a fact. FagtlUse([y]) does not exist at and after lingin the example code at the
beginning of Section 2.2, which restricts where rgkecan fire. A negated consequent stops a fact from being true
immediately after or before the firing point if the fact respectively has a forward or backward flow.

Because rul&s2 does not have @nowor @nowi antecedent and itseeds consequent has a forward flow, it fires
at the earliest point where its antecedents are true. The firing point of a rule depends on the flow of its consequents;
e.g., the firing point of a rule with a backward-flow consequent is the latest point where its antecedents are true. In the

example code, lin@® is the earliest point wherevilluse([x]) is false andNeeds([x],[Accnt.lock]) is true,
and lineC is the earliest point whergiillUse([y]) is false and\eeds([y],[Accnt.lock]) is true. Therefore,
rule S2 fires twice in the example code: at liBeto negate the fadtleeds([x],[Accnt.lock]) , and at lineC to

negate the fadtieeds([y],[Accnt.lock])

The rules in Figures 1 and 2 collectively describe an analysis whose execution must occur in two stages to ensure
soundness. The first stage consists of a forward analysis pass that fireSOalasd SOb followed by a backward
analysis pass that fires rufa. The second stage consists of a forward analysis pass that firesrulehe analysis
must execute in two stages because the$aleegates avilluse antecedent, so cannot fire unilluse facts have
been completely proven. Rulésb andS1 in Figure 1 also refer tdrack antecedents rather thadleeds antecedents
to prevent an invalid cyclic dependency betwéeds andWilluse facts that would be rejected as invalid in Splice.

As we will describe in Section 4.2, Splice automatically detects invalid dependencies and divides an analysis into
multiple stages.

2.4 Advice

Using facts defined by rules in Figures 1 and 2, additional rules can insert code into a program to acquire and release
locks. First, we need some way of keeping track of whether or not a lock is held. Forwarddkglock) facts
can describe when a lock is held. Rules that insert lock acquisition and release calls are shown in Figure 3. Rule



forward Has(lock);
rule S3 [Ilck,mthd] Has(Ick), @before(Ick.[acquire]()):
IHas(Ick), Locked(mthd,lck), @now(*.mthd(|*));
rule S4 [Ick] 'Has(Ick), @after(Ick.[release]()):
Has(Ick), Needs(*,Ick);

Figure 3:Two rules and a predicate that are used to insert synchronization code into a program.

S3 adds code to acquire a loc@pefore(Ick.[acquire]()) ) and keeps track of the held locK4s(ick) ) when

the lock is not already heldHas(lck) ) and a method associated with the lotlodked(mthd,ick) ) is called

(@now(*.mthd(]*)) ). A @before consequent performs the before advice of AspectJ: it inserts code specified using

a Java-like syntax at a new point that occurs immediately before the rule’s firing pointSRakids code to release

a lock (@after(Ick.[release()]) ) and keeps track of the releaseids(Ick) ) when the lock is currently held

(Has(Ick) ) and the lock no longer needs to be held for any variatNeeds(*,Ick) ). An @after consequent

performs the after advice of AspectJ: it inserts code at a new point that immediately occurs after the rule’s firing point.
When the rules in Figures 1, 2, and 3 are applied to the example code at the beginning of Section 2.2, the following

code results:

+ Accnt.lock.acquire();

A: x = accntA.getBalance();
B:y =x- 1z

C: accntA.setBalance(y);

+ Accnt.lock.release();

Rules3 will fire at line Abecause lockcent.lock  is not held. Rules4 fires after lineC because neither fakeeds-
([x],[Accnt.lock]) , hegated by rul&2 at line B, nor factNeeds([y],[Accnt.lock]) , hegated at lin€, are
true.

2.5 Assignments, Branches, and Loops

The example code described at the beginning of Section 2.2 does not contain branches, loops, or variable re-assignments.
At first, these constructs appear to be very problematic because re-assignments create aliases, branches split and merge,
and loops create an infinite number of values. However, an aspect programmer can often ignore these constructs be-
cause of the way a program is represented to the aspect (described in Section 4.1). Aspects can also specify how facts
are propagated through splits and merges and inspect conditional branch tests (demonstrated in Section 3.1).

2.6 Inter-procedural Reasoning

In Section 2.2, we assumed the existence of thelfacted([getBalance()],[Accnt.lock]) . Although this

fact can be manually asserted in an aspect, using rules to pooked facts is appealing because an aspect is more
reusable when it hard-codes less informatiostked facts have a global flow so whenacked factis a consequent

of a rule processing the code of one method, that siasnked fact can be used as an antecedent by another rule
processing the code of another method. Proving a global-flow fact in one method and querying it in another method is
how inter-procedural analysis occurs in Splice.

To proveLocked facts in this example, a programmer manually specifies fields they want protected by a specific
lock. Any method that returns the value of these fields directly or indirectly will also be protected by the lock. Also,
any method that returns a locked method'’s call result is transitively protected by the lock. Consider the following code
for classAccount :

class Account  {

int balance;

int getBalance() { return this.balance; }
void setBalance(int x) { this.balance = x; }
int debit(int z) { int y = this.getBalance() - z;

this.setBalance(y); return vy; 1)



rule S5 [Ick,var,fld] Track(var), Needs(var,Ick):
@now(var=*.fld), Locked(fld,Ick);

rule S6 [Ick,mthd,var] Locked(mthd,Ick):

Needs(var,Ick), @current(mthd,*), @now(return var);

rule S3 [lck,mthd0,mthdl] Has(lck), @before(lck.[acquire]()):

IHas(Ick), Locked(mthd0,Ick), @now(*.mthdO(|*)),

@current(mthdl,*), !'Locked(mthdl,lck);

rule S7 [Ick,fld] Has(Ick), @before(lck.[acquire]()):

IHas(Ick), Locked(fld,Ick), @now(*.fld=*);

Figure 4:RulesS5 andS6 that provelocked facts and ruleS3 modified from Figure 3 to not acquire locks in locked methods.

We assume that the programmer specifies that account balance state is to be protected by manually asserting the
fact Locked([Account.balance],[Accnt.lock]) in an aspect (using thiact keyword). Since the method
getBalance()  returns the value of thealance field, a rule should prove the fatbcked([getBalance()],-

[Accnt.lock]) . Since the methodebit(int) returns a result derived fromgetBalance()  call, a rule should

also prove the factocked([debit(int)],[Accnt.lock]) . RulesSs5 and S6 that implement this behavior are

shown in Figure 4. Rulss is like rule SO in Figure 1 except it identifies field access results, rather than method

call results, that are protected by locks. Ra&identifies the current method as being protected by a Ibekkéd-

(mthd,Ick) ) whenever a variable that needs the logkdds(var,Ick) ) is returned by the method@now(return

var) ). Antecedents of the built-in predicag@current describe the method currently being processed by the aspect

and its arguments; a wild card in ru® ignores the current method’s arguments.

Without the modifications to rul€3 in Figure 4, a lock would be acquired inside methgd®Balance()  and
debit(int) because they access fields and call methods protected by the locks&Rual€igure 4 is modified with
two new antecedents that ensures the rule only fires in a methogrent(mthd1,*) ) that is not already protected
by the lock (Locked(mthd1,Ick) ). RuleS7 in Figure 4 ensures that a lock is acquired whenever a protected field
is assigned. Unlike the case of reading state, the lock does not need to be held for any duration longer than the point
where the field is assigned. When rde is applied to the above code, lock acquisition and release calls are made
around the field store in methegtBalance(int) , but calls to methodetBalance(int) are not protected since
they do not return protected state.

The synchronization aspect described in this section is ready to do useful work with only nine rules composed
of about forty consequents and antecedents. However, many possible program behaviors are not addressed by this
aspect. For example, this aspect does not address the storing of data protected by a lock into an unprotected field
because the implemented synchronization policy does not mention this behavior. This aspect can serve as a starting
point to implement synchronization policies with more advanced features.

3 Loop Compression

The example described in Section 1 is a transformation that we refeddomsompressionA loop compression is
enabled by a facCompress(original,compressedfilter) , Which adds and maintainscampressed set that
contains those elements of atiginal ~ set for which the result of éiter ~ method call on the element is true. Loop
compression replaces any iteration overdhiginal ~ set with an iteration over theompressed set if elements are
updated only when the result ofiker =~ method call on the element is true. Loop compression can be divided into
three subtasks: identify contexts where iteration replacement should occur (Section 3.1), identify operations that can
update state (Section 3.2), and add and maintain the compressed set (Section 3.3).

3.1 Replacement

To understand the organization of the replacement task, consider an elaboration of the example code in Section 1.:

-L1: Iterator i = this.employees .iterator();
+L2: Iterator i = this.programmers.iterator();
while (i.hasNext())



global Updating(method), Compress(original,compressed,filter);

universal forward Filter(objectfilter);

rule CT [obj,fltr] Filter(obj,fltr):

@true(obj.fitr()), Compress(*,* fltr);

backward NonUpdated(iterator filter);

rule NU [elm,it,fltr] NonUpdated(it,fltr):

Compress(*,* fltr), !Filter(elm,fltr),

@past(elm=(*) it.[next]()), Updating(mthd), @now(elm.mthd(|*));

rule RP [it,obj,orig,cmps,fltr]

@replace(it = obj.cmps.[iterator]()): 'NonUpdated(it,fltr),

@now(it = obj.orig.[iterator]()), Compress(orig,cmps,fitr);

Figure 5:Splice code that implements field replacement in a loop compression aspect.

L3: { Employee e = (Employee) i.next();
L4: if (e.isProgrammer())
L5: e.raiseSalary(+20); }

Loop compression rules should be able to replace Uihevith L2 by realizing that an elemeif¢] of the iterator
[l is only updated when asProgrammer()  method call on it is true. Before being implemented in Splice,
this description must be re-worded so that it is directly expressible in the temporal logic that Splice supports, where
negation must be used to translate terms like “must,” “only,” and “unless.” To do this, we can invert the problem
description: if there is any situation where therogrammer()  method is not called or its result is not conservatively
known as true when an element of the iterator is updated, then replacement does not occur.

We first identify the kinds of facts involved in replacemeompress and Updating(method) facts will be
defined by rules in Section 3.2 and Section 3.3, but are needed to express rule antecedents in thisigection.
(objectfilter) facts can describe the case wheffidtar method has been called onalsject and the result
of this method call is definitely truesilter ~ facts should have a forward flow because they indicate that the true path
of a conditional has been takerilter ~ facts should also be merged universally, so they do not remain true when
the false path and true path of the conditional merge. Universal facts implement “meet over all paths” propagation
semantics, meaning they are true at a point in a procedure’s CFG only if they are true on all paths through the point. By
default, facts implement “meet over any path” propagation semantics, meaning they are true at a point in a procedure’s
CFG as long as they are true on one path through the pRimtUpdated(iterator,filter) facts can describe
the case where an element of ismator ~ can be updated whenfitter method is not known to be true on that
element.NonUpdated facts should have a backward flow because they convey what can happen in the future. Rules
CTandNuin Figure 5 respectively proviéilter andNonUpdated facts. RuleRPin Figure 5 then uses these facts to
implement field replacement.

Rule CT identifies a filter method whose result is true for an obj€dtef(obj,fltr) ) when the true path of
a conditional branch is taken that tests the result of a filter method call on the oBjece(obj.fitr()) ). To
prevent unneedekilter  facts from being proven, the filter method must also be involved in a compreszion (
press(*,* fltr) ). The@true antecedent used in rulgd unifies with the first point of a true path for a conditional
branch that tests its enclosed expressigitter ~ facts have a forward flow and are declared universal, so they are
true at points along the true path of the conditional but becomes false as soon as the conditional’s true and false paths
merge.

Rule NUidentifies an iterator whose elements are not updated when a filter method isldrugpdated(it,-
fitry ). This occurs when the next element of the iterat@pést(elm = (*) it.[next]()) ) is updated p-
dating(mthd) ), and the call result of a filter method on the iterator element is not known to be!Milier<
(elm;fitr) ). TheCompress(*,* fltr) antecedent is also needed in rtilebecause unification cannot bind rule
variablefitr ~ through the negatefilter  antecedent. Antecedents of t@gpast predicate inspect expressions like
@nowantecedents, except @past antecedent unifies with a statement located at a point that always executes before
the rule’s firing point.

Rule RPimplements the field access replacement portion of the loop compression aspe@replage conse-
quent in rulerRP performs AspectJ-style arouhddvice by replacing code that occurs at the rule’s firing point. Re-

1“Proceed” is subsumed in Splice by unification.



rule VO [mthd,fld] Updating(mthd):
@current(mthd,*), @now(this.fld = *);

rule V1 [mthO,mthl] Updating(mthl):
@current(mth1,*),Updating(mth0), @now(this.mthO(|*));

Figure 6:Rules that generically provgpdating facts.

placement occurs at a field access used to create an iterator when a compression of the fieloexistss(orig,-

cmps,fitr) ) and the iterator’s elements is not updated when the filter method is notNneJpdated(it,fitr) ).
Assuming the existence of factipdating([raiseSalary(int)]) and Compress([employees],[program-
mers],[isProgrammer()]) , rule RPwill replace lineL1 with line L2 in the example code because rtlldcannot

fire at any point in this code.

3.2 Detecting Updates

To understand the organization of the update identification task, consider the following code that implements a part of
classEmployee :

class Employee
{ private int salary; ...

void setSalary(int n) { salary = n;

void raiseSalary(int n) { setSalary((salary*(100+n))/100); H
Loop compression rules should be able identify metbs8alary(int) as an updating method because it sets the
salary field of classEmployee . The methodaiseSalary(int) should also be identified as an updating method

because it indirectly sets talary field by calling thesetSalary(int) method. The task of identifying updating
methods is similar to the task of identifying methods protected by a lock in Figure 4 of Section 2.6 VRaledV1

in Figure 6 identify updating methods simply by identifying methods whose code can update instance field3) (rule
or identifying methods whose code can call updating methods YtUle Applying rulesvo andV1 to the code for
classEmployee will prove the factaUpdating([setSalary(int)]) andUpdating([raiseSalary(int)])

3.3 Activation

To understand the organization of the task that adds and maintains a compressed set, consider the following code that
implements a part of clas®mpany:

class Company

{ Set employees = new HashSet();

+ LO: Set programmers = new HashSet();
void add(Employee e)
{ employees.add(e);

+ L3: if (e.isProgrammer()) programmers.add(e); }
void doit() { .. 1}

The rules of a loop compression aspect add a pmgrammers field to classCompany, initialize it to a set
(line LO), and maintain it as a filtered subset of the set referred to bgrtipoyees field (line L3). Programmers
activate loop compression by assertibgCompress facts. When a programmer manually asser®o&ompress-

(original filter) fact, the loop compression will compressaiginal  field according to dilter method,;

e.g., the facDoCompress([employees],[isProgrammer()]) directs the loop compression aspect to compress
employees into a programmers set. Whebo@ompress fact is asserted, the loop compression aspect must add the
compressed field, initialize it, and maintain it. Rules that implement this behavior are shown in Figure 7.

Rule Co introduces a new compressed field into a class with the same attributes of an original field when a pro-
grammer assertsoCompress fact. The@field antecedentin rul€0 queries the attributes of the original field. The
@field consequent in rul€o introduces a new compressed field into the same class and with the same attributes as
the original field. For our example, the compressed field will not actually be namghmmers , but some unique



global DoCompress(original,filter);
rule CO [orig,cmps,fltr,T,name0,namel,flags] @uniqueid(namel),
@field(cls,flags,T,namel,cmps), Compress(orig,cmps,fltr):
@field(cls,flags,T,name0,orig), @isa(T, [Set]),
DoCompress(orig,fltr);
rule C1 [orig,cmps,fltr,T,obj] @after(obj.cmps = new T()):
Compress(orig,cmps,fltr), @now(obj.orig = new T());
rule C2 [orig,cmps,fltr,elm]
@after( { if (elm.fitr()) this.cmps.[add](elm); 1:
Compress(orig,cmps,fltr), @now(this.orig.[add](elm));
rule C3 [orig,cmps,fltr,elm] @after(this.cmps.[remove](elm)):
Compress(orig,cmps,fltr), @now(this.orig.[remove](elm));

Figure 7:Rules that prove and set@pmpress facts.

name @uniqueid(name) ). The @isa antecedent in rul€0 ensures that the field type is compatible wjiha-

.util.Set . RuleC1 initializes the new field to an object in the same way an original object is initialized. Rales
andC3 ensure the compressed field is a subset of the original field that only contains elements that are true according
to a specified filter method.

With nine rules composed of 35 consequents and antecedents, the loop compression aspect described in this section
can be used in many situations. However, many details have not been addressed by the aspect’s rules that might be
significant in specific contexts. For example, this version of the loop compression aspect does not deal with removal
through an iterator, alternative set add and remove mechanisms, pointer aliasing, and so on. Therefore, this loop
compression aspect is not universally applicable and it is not meant to be a general compiler optimization. Instead,
when to use the aspect is under programmer control, and the aspect’s rules can be enhanced to handle special cases
that may arise. The loop compression aspect can also be modified to accommodate more advanced kinds of filtering;
e.g., arithmetic expressions or mapping relationships.

4 Technology

Splice can be described as a bottom-up (forward chaining) logic programming system with Java program manipulation
capabilities. In bottom-up logic programming, a rule fires as soon as facts can unify with its antecedents, and facts
proven by the firing rule are immediately used to fire other rules. With the addition of temporal logic and negation
operators, bottom-up logic programming can express program analyses. Each point in the program’s execution is
associated with some code, which can be inspected by a rule to determine what facts about the program should
propagate to future or past points, or even to points in other methods. Negation allows these rules to reason about what
is not true at a point, and also to explicitly prevent the propagation of some facts.

The rest of this section describes Splice’s major design and implementation issues. Section 4.1 describes how pro-
grams are represented to aspects, which influences how an aspect reasons about assignment, branching, and looping.
Section 4.2 describes the role of negation in Splice’s design, which is complicated by Splice’s support for data-flow
analysis. Section 4.3 describes the analysis performed by an aspect. Finally, Section 4.4 discusses the implementation
of our Splice prototype.

4.1 Program Representation

Splice aspects analyze programs in a “flat” non-syntax tree representation where the result of every expression is
assigned to a unique temporary variable. Because of ambiguity relating to multiple variable assignments, Splice trans-
forms a program into single static assignment (SSA) form, where an SSA variable identifies the result of evaluating
a single Java expression [3]. Instead of source code variables, SSA variables are bound to rule variables during unifi-
cation with@now @nowi, and@past antecedents. There are two issues with SSA that are addressed in Splice. First,
SSA variables assigned in loops are actually reassigned dynamically, so the same SSA variable can refer to different
values during an analysis. Second, SSA variables that merge multiple SSA variable together, kpovaniasles

create aliases, so the set of facts true forghariable and the variable it merges together are related.



i = accounts.iterator(); int a;
while (true) {

+A: Accnt.lock.acquire() ;
B: a = i.next () .getBalance();
C: if (a > 0) break;

+D: Accnt.lock.release() ; }

E: accntB.setBalance(a);
+F: Accnt.lock.release();

Figure 8:Code that iterates through a list of accounts (left), and an illustration (right) of when th&ilildse([a]) is true in
the code’s CFG (right).

The first issue is dealt with by automatically “expiring” (negating) a forward or backward-flow fact at a point
where an SSA variable it refers to is assigned. Expiration of a forward-flow fact occurs immediately at the point of
assignment, and expiration of a backward-flow fact occurs by not propagating it to points that precede the assignment.
As an example of how expiration works, consider how the synchronization aspect in Section 2 is applied to the code
in Figure 8. Variablda] is assigned at lin& in a loop and used at line outside of the loop. By rul&1 in Figure 2,
fact Willuse([a]) will become true before ling, which is then propagated backwards so it is true at I®ardB
(illustrated in Figure 8). However, since variali@é is assigned at lin®, thewilluse fact will not be true before
line B. This results in facwillUse([a]) not being true along the false path from li@eso the lock can correctly be
released in the loop at line Because facts can expire when they refer to values created in loops, aspect programmers
must carefully ensure that forward and backward-flow facts are still true when needed by only associating them with
values known to still be in use.

The second issue is dealt with by “transferring” forward or backward-flow facts betwgearéable and variables
it merges together. To explain how fact transferring works, considevariablem1 that merges variablds 0 and
i _2 together. When the forward or backward-flow f&gt _0) is proven in a scope wheral exists, factP(m_1)
is automatically proven iP is not universal. Iff is universal, then fad®(m_1) is proven true if facP(i _2) is also
proven true. When fagt(m_1) is proven true, factB(i 0) andP(i _2) are automatically proven true onlyRfis not
universal. The explicit negation of a forward or backward-flow fact is handled in an analogous way. Fact expiration
and transferring have an important interaction: fact transferring betweéeradable and one of its merged variables
only occurs as long as both variables are not reassigned.

The way forward and backward-flow facts expire and are transferefl vaaiable relationships enables inductive
reasoning about loop behavior. Consider the following loop in SSA form that sets elements of an array to O:

i .0 = 0; while (true)

{ml = ¢@i 0, _2);
if (m _1 >= alength) break;
ami1] =0;i 2=ml+1; }

At the point where the above loop breaks, an aspect can recognize that every element of the array has been set to zero
using the following three rules:

universal forward Zeroed(array,index), Zeroed(array);
rule Z0 [i] Zeroed(*,i): @now(i=0);
rule Z1 [a,i,j] Zeroed(a,)):
Zeroed(a,i), @past(a[[i]]=0), @now(j=i+1);
rule Z2 [a,i] Zeroed(a): @false(i>=a.length), Zeroed(a,i);

Rule z0 proves the zeroed base case, where the array index is zero, aril miteves the zeroed inductive case,
where the index is incremented by one. Rzgedetects the end of the above loop where the array has been completely
zeroed out. When variablal is assigned, the facteroed(*,[i  _0]) andZeroed([a],[i 2])) are true, so fact
Zeroed([a],[m  _1]) istrue. Rulezl associates zeroed information with the next index of the loop because any fact
that refers to the current index stored in variatle will expire at the beginning of the next loop iteration wheté

is reassigned.



4.2 Negation

Support for negation is necessary in Splice because it enables reasoning about negative information; i.e., events that
cannot occur in a program. Without negation, the aspects described in Sections 2 and 3 and many other useful aspects
could not be expressed in Splice. Negation is implemented in Splice with the following constraint: the proof of a fact
must not depend on its negation, which is referred to asttiatified negatiorfl] in a logic program. Because forward

and backward-flow facts become true after or before, but not at, rule firing points, the proof of these facts can depend
on their negation in certain circumstances. However, temporal paradoxes must not occur. Consider the following two
rules:

backward WillRise(stock); forward Buy(stock);
rule GO [stck] Buy(stck): WillRise(stck);
rule G1 [stck] 'WillRise(stck): Buy(stck);

Rules G0 and G1 form a temporal paradox that has no well-defined meaning in Splice. Splice will reject aspect
executions when a fact depends on its negation. If the fact is a forward or backward-flow fact, then it can depend on
its negation if the negation only occurs through facts of the same flow. These criteria are checked conservatively, and
its possible for Splice to reject an aspect execution that actually has a well-defined meaning. However, stratification in
Splice is local [13], where facts are stratified dynamically rather than statically, which accepts more aspect executions
than more restrictive syntactic stratification.

When no contradictions exist, an aspect’s execution has a unique perfect model that ensures soundness [1]: i.e.,
no facts are proven that are not true. The perfect model ensures that a rule does not fire until it is definitely known
where or not that a fact can unify with a non-negated antecedent or no fact can unify with a negated antecedent.
For an executing aspect, contradictions are detected and the perfect model is found through a dependency graph that
associates facts with the proven and negated facts their proofs or negations can depend on. When the proof or negation
of factf depends on the proof or negation of factthe “stage” where the proof or negation of fécts definitely
known is computed according the two following constraints:

1. The proof or negation of fadtis not known at least until proof or negation of fgcis known;

2. If fact f andg are not both forward-flow or are not both backward-flow, then the proof or negation df fact
not known until after the proof or negation of fagt

As an example, consider the synchronization aspect in Section 2. When the aspect is applied to a program, the
negation of its forward-floNeeds andHas facts are not known until the second stage of the analysis because their
proofs depend on negated backward-fldilluse facts. A rule with negated antecedents cannot fire until the latest
stage where the negation of all facts that can unify with its negated antecedents are known. Therefggeinrule
Figure 2 and rul&s4 in Figure 3 will not fire until the second stage of the aspect’s execution.

The fact dependency graph is computed in a pre-processing step of the implementation that applies the rules of
an aspect to a program in a flow-insensitive way that ignores negated antecedents. Computing the fact dependency
graph is only a secondary by-product of pre-processing, which is essential in simplifying the analysis described in
Section 4.3 by narrowing the set of rules that can fire at each point and computing a finite domain of facts that can be
true during analysis.

4.3 Analysis

As just described, an analysis in Splice is divided into multiple stages to support the sound execution of any negation
used in an aspect, which ensures that analysis execution is monotonic. Each stage is itself divided into multiple
forward, backward, and flow-insensitive passes. Rules with forward and backward-flow consequents are only fired
respectively during forward and backward analysis passes. Rules with global-flow consequents are fired during a
flow-insensitive pass. The direction of an analysis pass determines the order that CFG points are traversed, which will
determine the firing point of a rule that can otherwise fire at multiple adjacent points. For a forward analysis pass, a
rule will fire at a point closest to the entrance of a procedure. For a backward analysis pass, a rule will fire at a point
closest to the exits of a procedure.

For each stage of an analysis, analysis passes are continually performed until no new facts can be proven; i.e.,
the stage reaches a fix-point. The execution of individual forward and backward analysis passes are very standard



finite-domain iterative data-flow analyses. A set of dirty CFG nodes, initially the entry node (forward) or exit nodes
(backward) of a method, tracks what CFG nodes need to be traversed. Traversal of a node manages fact expiration
and transferring and fires rules according to the code at the node and facts that are true at the node. A set of resulting
facts is propagated to the nodes that follow (forward) or precede (backward) the node, adding any node to the dirty set
whose set of true facts changes. A fix-point for a forward or backward analysis pass is reached when the dirty set is
empty.

4.4 Implementation

Aspect execution in our current prototype of Splice consists of five steps:

1. The Java bytecode of the program is transformed into a CFG-based SSA form.

2. As described in Section 4.2, the rules of an aspect are applied to the program in a flow-insensitive way. Pre-
processing computes a fact dependency graph and for each program point, a set of pre-unified rules that can fire
at the point. This simplifies the firing of rules in Step four.

3. A fact-dependency analysis described in Section 4.2 detects invalid proof dependencies and computes analysis
stages where facts are known.

4. Analysis is performed as described in Section 4.3.

5. Proven code advice facts (e.@after ) are type checked, and compiled into the resulting Java bytecode of the
program. Any detected type errors or conflicts will result in an aspect execution error.

5 Discussion

In this section we informally evaluate Splice’s design, implementation, and usefulness.

5.1 Usability

Splice is designed to provide aspects with accessible analysis capabilities. As a result, many of Splice’s features reduce
the amount of effort needed to express an analysis. Splice’s internal use of an SSA representation eases reasoning about
variable re-assignment, branches, and loops. Stratified negation eliminates concerns about the sound use of negation
and the repetition of analysis passes ensures completeness. Soundness and completeness, however, only apply to the
execution of an aspect’s rules. Splice itself cannot guarantee that the programmer’s rules are correct!

Even with its usability features, the task of expressing an analysis in Splice is non-trivial. An aspect programmer
must design an analysis using temporal logic, which is not a core programming skill and can be very tricky to use
correctly. In the course of developing the two aspects in Section 2 and Section 3, we found that most of our bugs were
related to mistakes in understanding the temporal properties of the aspects. Part of this problem arises from the use of
negation and multiple rules to encode natural English terms such as “only,” “must,” and “unless” (Section 3.1), where
the encoding often introduces bugs into the aspect.

It is easy to make mistakes in the encoding of an aspect. Therefore, the ability to debug a Splice aspect is very
important. The most straightforward way for a programmer to debug an aspect is to view how it transforms a program,
and then debug the aspect along with the program. Debugging will also require an inspection of the aspect’s reasoning
of why it transforms a program in some way. Unfortunately, our current Splice prototype does not provide any
debugging support.

5.2 Precision

Aspect programmers can only expect so much precision from an analysis in Splice. Although analysis precision is not
significantly limited by branching, looping, and variable re-assignments, an analysis cannot correlate when multiple
conditional branches are resolved the same way; e.g., according to whether or not a debug flag is set. The most
significant source of imprecision occurs in analyzing how methods interact with each other. By making global facts
visible between method implementations in a flow-insensitive way, analysis sacrifices precision so its execution time



can scale linearly with the size of a program. Among other things, an inter-procedural analysis is not accurate enough
to reason about dynamic dispatch and the effects of execution on memory, including pointer aliasing. Sometimes, this
imprecision is acceptable because static information about the program, such as static types, can be used by an aspect
to fill in the gaps. However, commonly used programming styles that avoid the use of static information can defeat
these assumptions. Examples of these styles in Java include the use of reflection or calling auggnercethod in
theRunnable interface.

One solution to the precision problem is to make analysis in Splice more powerful; e.g., flow-sensitive inter-
procedural, context-sensitive, path-sensitive, and capable of performing shape analysis. However, these mechanisms
will not scale to analyzing large programs. The other solution relies on the aspect programmer to make up for the
lost precision through the encoding of additional rules and manually asserted facts. For example, alias annotations
could be encoded in an aspect and verified by its rules in a scalable way. However, this requires more effort from
programmers to encode what otherwise could be automatically derived.

5.3 Performance

Automatically ensuring the soundness (Section 4.2) and completeness (Section 4.3) of an aspect requires that a Splice
aspect execute about half as fast as a comparable traditional analysis. For example, the analysis expressed by the
synchronization aspect in Section 2 requires at least six passes to execute when only three passes are really needed
to execute the analysis correctly. The extra passes in our approach are only used to recognize that completeness has
occurred.

We believe that the performance of our prototype implementation is adequate. When using our prototype imple-
mentation to apply the loop compression aspect in Section 3 to a Java program of 1000 lines, execution takes about 40
secondg. Though not very fast, execution time rises linearly as the size of the program grows, which is not surprising
since the inter-procedural analysis used in Splice is flow-insensitive. The bottleneck in our current prototype is not
analysis, rather, it is the pre-processing step used to perform the rule unification that simplifies the analysis step. The
pre-processing step can become very slow as the number of possibly true global-flow facts increases because they
require re-processing of the whole program.

5.4 Applicability

This paper has shown how Splice can be used to write fairly complete synchronization and loop compression aspects.
Whereas AspectJ effectively enables the separation of simple concerns related to tracing, logging, security, and instru-
mentation, Splice expands this domain to include concerns that require data-flow information. Unfortunately, Splice is
not dramatically better than AspectJ in addressing complex functionality concerns in real programs where join points
must be identified manually. This restriction may negate any advantages Splice has over AspectJ in implementing
these concerns.

The synchronization and loop compression aspects shown in this paper provide some evidence that using Splice is
worthwhile for implementing concerns that are related to characteristics of a program execution like performance and
robustness. Similar to loop compression, Splice can be used to automate domain-specific optimizations that currently
need to be performed by hand. Similar to synchronization, Splice can be used to automate the addition of “policy”
code into a program, although the programmer will probably need to manually accept these code additions because of
constraints on analysis precision. Although not explored in this paper, Splice could also be used to implement better
“static-advice aspects” that only check program properties, such as enforcing Law of Demeter rules that ensure loose
object coupling [11].

6 Related Work

Aspect-oriented programming based on code transformations at join points is enabled by AspectJ [10]. AspectJ point-
cut designators can identify execution events such as a method call and field accesses as they occur in isolation. The
cflow pointcut designator provides some inter-procedural reasoning capabilities by allowing an aspect to dynami-
cally inspect program control-flow through the call stack. Splice does not currently prefidde -like inspection
capabilities.

2\We ran on a Powerbook G4 @ 867 MHz.



Currently, AspectJ provides no support for static data-flow or inter-procedural analysis. However, proposals have
been made to enhance AspectJ with a data-flow pointcut desigfflator and a prediction-based pointcut designator
pcflow [9]. Thedflow designator is proposed to reason about how a Java value is computed in the data-flow of a
method. Thepcflow designator is proposed to reason about what join points can occur in the future of a program'’s
control-flow, including what join points can occur when a method is called. Althougicfieey  designator has only
been mentioned, a version of thtow designator has actually been prototyped and shown to be useful in security
applications [12]. Unlike Splice, thidflow designator is not implemented using static analysis; instead, special
data-flow tags are propagated and inspected at run-time.

Using logic programming features in a meta-programming language is referred to as logic meta-programming
(LMP). TyRuBa is a LMP system for manipulating Java code [5]. The Smalltalk Open Unification Language (SOUL) [15]
enables Prolog programs to manipulate the execution of Smalltalk programs. Neither system provides meta-programs
with data-flow analysis capabilities. The case for expressing program analysis problems in a general logic program-
ming system is made in [4]. Splice does not rely on a general logic programming system—it is designed specifically to
support static analysis. Path logic programming extends Prolog with program transformation and static analysis capa-
bilities [6, 14]. Splice differs from path logic programming by concentrating on higher-level transformations needed
to do AOP.

Splice can be viewed as an extensible compilation system; e.g., the loop compression aspect in Section 3 is an
example of how an aspect can implement domain-specific optimizations. Magik [7] allows programmers to incorporate
application-specific extensions into the compilation process. The Broadway compiler [8] can utilize programmer-
supplied annotations to optimize library operations. In contrast to these systems, Splice aspects performs anayses and
transformations through higher-level LMP abstractions.

7 Conclusions and Future Work

Splice is the first AOP system that provides aspects with static analysis mechanisms to identify join points. Splice
aspects are written in a rule-based language with logic programming features that provide convenient access to static
analysis mechanisms. Although Splice aspects are not omnipotent, e.g., they cannot reason about pointer aliasing,
they can still be useful in improving programmer productivity.

Looking forward, we are currently exploring how join points can be used more expressively once they have been
identified. Current mechanisms for expressing advice in Splice and AspectJ are not very declarative and could benefit
from more powerful reasoning facilities like those used to identify join points in Splice. Solving this problem of “join
point specification” will make AOP systems better platforms for generative programming.

Splice has been implemented and used to write the loop compression and synchronization aspects presented in this
paper. We expect to make the prototype publicly available in the near future on our welwsite @.utah.edu/plt/splice
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