
Proceedings of:

Supporting the Social
Side of Large Scale

Software Development

a
CSCW Workshop

Banff, AB
November 2006

Organizers:
Li-Te Cheng, IBM Research
Anthony Cox, Dalhousie University
Rob DeLine, Microsoft Research
Cleidson de Souza, Universidade Federal do Para
Kevin Schneider, University of Saskatchewan
Janice Singer, National Research Council of Canada
Margaret-Anne Storey, University of Victoria
Gina Venolia, Microsoft Research

Table of Contents1

Attendee List

4

The role of science in supporting software development - Andrew J. Ko

5

Connecting people in social networks using requirement explore – Irwin
Kwan, Daniela Damian

7

Supporting cooperation awareness in common information spaces –
Wolfgang Gräther, Wolfgang Prinz

11

Managing complexity in collaborative software development: On the limits
of modularity – Marcelo Cataldo, Matthew Bass, James D. Herbsleb, Len Bass

15

WYSISYN: Using task focus to ease collaboration - Mik Kersten, Rob Elves,
Gail C. Murphy

19

Visualizing roles and design interactions in an open source software
community - Flore Barcellini, Françoise Détienne, Jean-Marie Burkhardt,
Warren Sack

23

Supporting harmonious cooperation in global software development
projects - Anders Sigfridsson, Henrik Dahlgren

27

Supporting Software Development as Knowledge Community Evolution -
Kumiyo Nakakoji, Yasuhiro Yamamoto, Yunwen Ye

31

Distributed cognition in software engineering research: Can it be made to
work? - Jorge Aranda, Steve Easterbrook

35

D-SNS: A knowledge exchange mechanism using social network density
among Mega-community users - Masao Ohira, Kumiyo Nakakoji, Ken-ichi
Matsumoto

39

Collaborating over project schedules - Suzanne Soroczak, David W.
McDonald

43

Social dependencies and contrasts in software engineering practice -
Jonathan Sillito, Eleanor Wynn

47

Architecture to support team awareness in large-scale software 51

1 Papers are listed in the order in which they were received.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

2

development - Andrew Sutherland, Tadeusz Stach, Kevin Schneider, Carl
Gutwin

Together apart: An ethnographic study of industry-academia
collaboration - N. Sadat Shami

55

Help, I Need Somebody! - Andrew Begel

59

Exploring the relationship between software dependencies and the
coordination of software development work - Cleidson R. B. de Souza

63

Knowledge-sharing in open-source software development using a social
bookmarking system – Davor Cubranic

66

Continuous Coordination (CC): A New Collaboration Paradigm - Ban Al-
Ani, Anita Sarma, Gerald Bortis, Isabella Almeida da Silva, Erik Trainer, André
van der Hoek, David Redmiles

69

The Potential of Instant Messaging for Informal Collaboration in Large-
Scale Software Development - Birgit R. Krogstie

73

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

3

Attendees:
Name Organization Email
Ban Al-Ani UC Irvine balani@uci.edu
Jorge Aranda University of Toronto jaranda@cs.toronto.edu
Flore Barcellini INRIA Eiffel Team flore.barcellini@inria.fr
Andrew Begel Microsoft Research abegel@microsoft.com
Marcelo Cataldo Carnegie Mellon University mcataldo@andrew.cmu.edu
Li-Te Cheng IBM Research li-te_cheng@us.ibm.com
Davor Cubranic cubranic@acm.org
Daniela Damian University of Victoria danielad@cs.uvic.ca
Rob DeLine Microsoft Research rob.deline@microsoft.com
Cleidson de Souza Universidade Federal do

Para
cdesouza@ufpa.br

Françoise Détienne INRIA francoise.detienne@inria.fr
Steve Easterbrook University of Toronto sme@cs.toronto.edu
Robert Elves University of British

Columbia
relves@cs.ubc.ca

Shannon Goodman Smart Technologies shannong@smarttech.com
Wolfgang Graether Fraunhofer FIT wolfgang.graether@fit.fraunho

fer.de
Jim Herbsleb Carnegie Mellon University jdh@cs.cmu.edu
Bryan Kirschner Microsoft Research bryankir @microsoft.com
Andrew Ko Carnegie Mellon University ajko@cs.cmu.edu
Birgit Krogstie Norwegian University of

Science and Technology
birgitkr@idi.ntnu.no

Kumiyo Nakakoji RCAST, Univ. of Tokyo kumiyo@kid.rcast.utokyo.ac.jp
Masao Ohira NAIST masao@is.naist.jp
David Redmiles UC Irvine redmiles@ics.uci.edu
Kevin Schneider University of

Saskatchewan
kas@cs.usask.ca

Sadat Shami Cornell University ns293@cornell.edu
Anders Sigfridsson University of Limerick anders.sigfridsson@ul.ie
Jonathan Sillto University of Calgary sillto@cpsc.ucalgary.ca
Janice Singer National Research Council

Canada
janice.singer@nrc cnrc.gc.ca

Suzanne Soroczak University of Washington suzka@u.washington.edu
Margaret- Anne
Storey

University of Victoria mastorey@uvic.ca

Andrew Sutherland University of
Saskatchewan

als153@mail.usask.ca

Gina Venolia Microsoft Research gina.venolia@microsoft.com
Yasuhiro
Yamamoto

University of Tokyo yxy@kid.rcast.u-tokyo.ac.jp

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

4

The Role of Science in Supporting Software Development
Andrew J. Ko

5000 Forbes Avenue, Pittsburgh PA, 15213
Human-Computer Interaction Institute

Carnegie Mellon University
ajko@cs.cmu.edu

ABSTRACT
Discusses the importance of scientific explanations in tool design,
and various ways of forming such explanations.

Categories and Subject Descriptors
H.5.3 [Group and Organization Interfaces]: Computer-
supported cooperative work;

General Terms
Design, Human Factors, Experimentation.

Keywords
Empiricism, science, design, tools, evaluation, notation, theory,
measurement, prototyping, experts, ethnography, collaboration.

1. INTRODUCTION
The primary focus of this workshop is to reflect on how tools can
support the social side of software development. In service of this
goal, rather than using this space to espouse my own ideas about
how this might be done, I would instead like to reflect on the
methods by which we invent such tools.
It is difficult to invent useful tools without some understanding of
how people develop software. Even the most biased of tool
designers have some model in their minds of what is important to
software developers. Of course, these models are largely based on
personal experience. While experience can be a valuable form of
inspiration, what differentiates research from experience is
science—and scientists seek to explain.

Therefore, while descriptions of the social side of software
development have captured many of its modern practices,
descriptions are insufficient for design. We need to know why
software development is social. Is it because developers prefer to
be social or because they need to be? What do developers gain by
communicating with their peers? We know that some of this is to
maintain awareness [2] and some is to learn from experts [3]—but
awareness and knowledge of what? Are coworkers the only
source for such information, or just the preferred source?

These questions are more than scholarly: the explanations we
derive by investigating these questions are fodder for design. The
more we understand why developers are social, the better that
tools can match developers’ needs. The better we can explain why
developers seek awareness and expert knowledge, the better we
can evaluate tools and articulate their tradeoffs.

But how can we explain these phenomena? Empiricism and
observation are essential tools, but I would argue insufficient. One
of their limitations is that the forms of explanations that they
generate—models, theories, diagrams, etc.—rarely do justice to
reality. We need to proceed one step further and “create”
explanations by prototyping new tools and notations. Then, when
we describe our explanations of why developers maintain

awareness of each others’ work, we need not refer to a paragraph
or a picture; we instead point to an interactive tool or a new
language that explicitly represents our theory of what is important
to software development and what is not. Just as mathematics is
the language for theories in basic sciences, tools and notations can
embody our theoretical explanations of reality. Unlike other fields
of science, however, tools have the unique ability to change
reality—they are Turing’s mechanized thought [8] realized.

2. EXPLAINING THROUGH EMPIRICISM
I practice these ideas to the extent that I can. I began my doctoral
work by studying software development in a collaborative
context, with four groups of students prototyping interactive 3D
worlds in the Building Virtual Worlds course at CMU [4]. In this
context, the reason for communication was clear: each contributor
had a different skill. The programmer wrote code, the audio
engineer create sounds, the writer scripted scenes, and the artists
modeled characters. Communication in these groups occurred
along technical dependencies: the programmers needed character
models before they could write code to make characters behave;
this meant that they needed to track the modeler’s work.

When observing students trying to learn Visual Basic.NET to
prototype user interfaces [5], communication was less about
dependencies and more about expertise. When less experienced
students reached an impasse, they would immediately seek out
more experienced students for advice: where should I put my
breakpoint? How do you use a timer? What can store a date?

Even in a lab study of lone developers’ repairing bugs and adding
features [5], I observed a great reliance on other people, through
developers’ use of documentation and example code. Moreover,
the artificiality of the study emphasized the importance of
collaboration: each time a developer sought some information
about the code, rather than using information from other people,
they were forced to resort to their own mind. Had I simply
provided some documentation or some comments from the
program’s designer, their task would have been greatly simplified.

Most recently, I did a field study of 17 Microsoft product groups,
documenting the information that developers sought, where they
found it, and what prevented them from acquiring it. Coworkers
were a central source of knowledge and bug reports were a hub
for hints, discoveries, and decisions in the form of conversations.
Of course, the surprising thing was not that developers relied on
each other, but for what they relied on each other. One of the most
important and difficult to find types of information was design
knowledge. Why did you write this code this way? What is the
program supposed to do in this scenario? For what purpose is this
data structure intended? These questions refer not to technical
aspects of code, but to the rationale and decisions of the code’s
authors. Therefore, code was a social and cognitive construct,
only partially represented by the text in a source file.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

5

3. EXPLAINING THROUGH DESIGN
Prototyping new technologies has played an equally important
role in my studies. As with any design, my inventions did not
follow directly from the understanding I have gained through
observation. Rather, they are a culmination of the understanding I
have gained about software development, both from my own
investigation and from the decades of research that came before.

Consider the Whyline [7], the first tool that I worked on in my
doctoral work. The idea behind this debugging tool was to help
developers ask questions about their program’s output and reveal
their implicit assumptions about what had occurred at runtime.
While I used my observation of the Building Virtual Worlds class
discussed earlier for inspiration, the idea ultimately originated
from several months of reflection and reasoning about the work
that I observed. and a careful study of other debugging tools
described in the literature The understanding and theories I had
gained from observations helped me to evaluate and test the
merits of my ideas, but not to form them.

Furthermore, because the theories behind the tool’s design were
incomplete, people used the Whyline in surprising ways. For
example, one of the participants in my evaluation study had used
the Whyline a few times and it had pointed out some of the
assumptions she had made about what happened while her
program was executing. The next time she began to ask the tool a
question, she hovered over the “Why” button, but said, “I don’t
even need to ask. I think I made the same assumption that I did
last time.” The tool was introducing participants to the very same
notion of assumptions that had inspired the Whyline’s design—in
this sense it embodied, validated and even elaborated the theories
that motivated it.

Another tool I was involved in designing, Jasper [1], followed a
similar trajectory. The original idea was inspired by a finding that
developers gathered many little pieces of a program for a
particular task, but had no way to gather them together in a single
place [5]. This led to navigational overhead, as they navigated
back and forth between code snippets that were distributed
amongst several files. While my colleague designed and
implemented the tool, I was busy at Microsoft, watching
developers do work. As I watched them consult each other for
knowledge about what code was relevant to a bug report or
feature, I realized that being able to gather together snippets was
not only helpful in reducing navigational overhead, but a
fundamentally important way to share the context of one’s task
with coworkers. This new understanding changed the purpose of
the tool in my mind: rather than just a navigational aid, it was a
medium for externalizing and sharing task context. Had I noted
invented the idea, this realization would not have been possible.

4. EXPLAINING THROUGH EVALUATION
Understanding and invention are vital ingredients in improving
software engineering, but they are little without a notion of
success to guide our research efforts. Is my tool helpful? Is it
effective? Does it improve productivity? Will people adopt it?
These are the criteria by which we separate successful and
unsuccessful design. Unfortunately, unlike success measures in
other engineering disciplines, these are difficult to measure and
not necessarily the same as those which users of our tools employ
to evaluate tools.
One view on this issue is that “good” and “productive” should be
defined by what a developer thinks is good and productive. Who

better to evaluate the utility and fit of a tool than the people most
familiar with a job’s complexities? The challenge of this approach
is that as researchers, we must often settle for creating prototypes
rather than fully functional and usable products. This makes it
difficult to know whether problems observed in evaluations are
due to the tool’s incompleteness or some underlying inadequacy.
Of course, a measure based on developers’ reactions also suffers
from bias, subjectivity, and considerable variation. There may be
absolute measures of success that avoid these problems. For
example, to what degree did a team create what it intended to
create? Did the rates of information acquisition and decision
making increase? Did the right quality attributes improve with the
intervention? Although such measures are extremely difficult to
compute, they may be necessary to pursue if we wish to clearly
articulate the merits of our ideas to ourselves and to the world.

Whatever the merits of our measurements or the results of our
evaluations, the key result of these studies is the elaboration of our
explanations. By completing this loop between design and
understanding, we inevitably improve the designs in our minds.

5. CONCLUSIONS
To support the social side of software development—or more
appropriately, to decide whether to do so and why—researchers
must explain why developers rely on each other in the ways that
they do. As we rise to this challenge, let us remember that the
diversity of our ideas, methods, skills and experiences are our
greatest strength.

6. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation
under NSF grant IIS-0329090 and as part of the EUSES
consortium under NSF grant ITR CCR-0324770. The first author
was supported by an NDSEG fellowship.

7. REFERENCES
[1] Coblenz, M., Ko, A. J., Myers, B. A. (2006). Carnegie

Mellon University, CMU-HCII-06-107.

[2] Gutwin, C., Penner, R. and Schneider, K. (2004). Group
Awareness in Distributed Software Development. CSCW,
Chicago, IL, 72-81.

[3] Hertzum, M. (2002). The Importance of Trust in Software
Engineers’ Assessment of Choice of Information Sources.
Information and Organization, 12(1), 1-18.

[4] Ko, A. J. (2003). A Contextual Inquiry of Expert
Programmers in an Event-Based Programming Environment.
CHI, Fort Lauderdale, FL, 1036-1037.

[5] Ko. A. J., Myers, B.A., Coblenz, M. and Aung, H. H. An
Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance
Tasks. Transactions on Software Engineering, to appear.

[6] Ko, A. J. Myers, B. A., and Aung, H. (2004). Six Learning
Barriers in End-User Programming Systems. VL/HCC,
Rome, Italy, 199-206.

[7] Ko, A. J. and Myers, B. A. (2004). Designing the Whyline: A
Debugging Interface for Asking Questions About Program
Failures. CHI, Vienna, Austria, 151-158.

[8] Sevenster, A. (1992). Collected Works of A.M. Turing:
Mechanical Intelligence, Volume 1. Elsevier, New York:NY

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

6

Connecting People in Social Networks using Requirement
Explorer

Irwin Kwan Daniela Damian
University of Victoria
3800 Finnery Road

Victoria, British Columbia, Canada
{irwink,danielad}@cs.uvic.ca

ABSTRACT
To help support communication among co-located and dis-
tributed teams, we present Requirement Explorer, which sup-
ports the collaboration of contributors working on a set of
inter-dependent requirements. The Requirement Explorer
uses social networks to display information about who a
contributor should be communicating with when develop-
ing a requirement. The Requirement Explorer also displays
the quantity of communication that has actually happened
regarding a contributors requirements. Currently, we ac-
quire task data from Bugzilla repositories, but we plan to
develop the tool to use more forms of communication, such
as E-mail, project documents, and source code to build more
complete and more accurate social networks. Applications
of this tool include making a contributor aware of who he
should be communicating with when working on his require-
ments, making a contributor aware of who has contributed
to the development of his requirements, and identifying gaps
in communication between contributors that should be co-
ordinating with each other.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
tools

General Terms
Management, Human Factors

Keywords
Communication, collaboration, awareness, collaborative tools,
large-scale distributed software development, visualization,
social network analysis, change management

1. INTRODUCTION
No matter what process a software project follows, a large

amount of collaboration must occur among the project team

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Supporting the Social Side of Large-Scale Software Develop-
ment 2006 Banff, Alberta Canada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

members, or contributors, to ensure that the artifacts are
built properly. However, collaboration in software devel-
opment can be difficult because of constant changes in re-
quirements as well as project artifacts such as source code.
When changes occur, every contributor working on the ar-
tifact and related artifacts should be notified in a timely
manner so that each one can respond accordingly. When a
contributor is constantly notified in a timely manner about
change that affect him, he is said to be aware. Because a
software contributor needs to coordinate with many contrib-
utors about various requirements, awareness can be very dif-
ficult to maintain. For instance, a manager, when scheduling
a meeting about a requirement, may forget to call a contrib-
utor who has contributed heavily to testing it. Maintain-
ing an up-to-date awareness with respect to requirements
changes and resulting impact is particularly difficult in ge-
ographically distributed development environments where
collaborative development activities do not benefit from the
low-cost interactions specific to traditional co-located set-
tings [5, 3].

To promote better awareness, we present Requirement Ex-
plorer, a prototype of an awareness system that supports
more effective coordination in co-located or distributed soft-
ware development. The Requirement Explorer tracks a per-
sons current requirements and displays a list of people that
he should be contacting regarding each one.

Drawing on our own prior research results [6, 7] as well
as theories of coordination in software development [1], our
approach to the design of this awareness system consists of
developing and leveraging a social network that identifies
the stakeholders who should be communicating with each
other regarding a particular requirement. The requirements-
based awareness system monitors the development environ-
ment and dynamically builds two types of social networks:
1) a person-based social network, which we call the ideal-
coordination social network (ICSN), that indicates those who
should be communicating because they are working on the
same or inter-dependent requirements, and 2) a social net-
work indicating those who are actually communicating with
each other regarding the same or inter-dependent require-
ments, which we call the actual-coordination social network
(ACSN). The ACSN is used for 1) providing up-to-date in-
formation on who is working on the same or inter-related
requirements, particularly useful for expertise seeking and
automated propagation of change information to the related
project members, and 2) identifying gaps in the ACSN ver-
sus the ICSN so that corrective actions for more effective
team coordination can be taken during the development of

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

7

a requirement rather than later in the project.
The paper is organized as follows. We discuss further

motivation for the tool and related work in Section 2. We
then present the tool, Requirement Explorer, in Section 3.
We discuss challenges and future work in Section 4, and
conclude the paper in Section 5.

2. MOTIVATION AND BACKGROUND RE-
SEARCH

2.1 Maintaining Awareness in Teams
It has been shown that a lack of awareness can cause

breakdowns in communication, which consequently lead to
rework in software artifacts [2, 5, 6]. In situations where
there is a lack of awareness, communication is unnecessarily
repeated, and changes require more time to coordinate [5].
As development proceeds over time, more contributors are
involved in the development of a requirement than initially
planned [6, 1, 4]. A contributor external to the team may
contribute valuable expertise to development and therefore
become involved with that requirement, but the project plan
may neglect to include every member of the team who ends
up working on that requirement. In this paper, we refer
to contributors who are added to development after a plan
has been laid out adds. The fact that there are changes
in the number of contributors who work on a requirement
can cause problems when trying to maintain awareness. A
notification system or a person in charge of sending notifica-
tions may neglect to include an add, therefore delaying that
persons awareness of the project.

2.2 Social Network Analysis in Software En-
gineering

The use of social network analysis is gaining recognition
as a method to study software engineering organizations.
Izquierdo uses social network analysis to study the partici-
pation of contributors within a particular feature that was
to be implemented in the software system [6]. The case
study tracked communication among team members regard-
ing the feature and found that over time, a large number
of contributors who were not assigned to work on the fea-
ture were participating in the development of the feature.
Erhlich, et al. [4] studied three independent development
teams and used social network analysis to analyze how team
members in these teams communicated with each other,
and why. Using social networks based on communication
among contributors, the authors discovered a number of fac-
tors that influenced strong communication ties. They found
that that accessibility, which means that a contributor is
near by and easily contacted, as well as peripheral aware-
ness, which means that a contributor is aware of this persons
skill set, were the strongest influencing factors on commu-
nication. These two case studies reveal that social network
analysis can reveal interesting coordination patterns within
software engineering organizations.

3. REQUIREMENT EXPLORER: A TOOL
SUPPORTING COLLABORATION

Requirement Explorer is a tool that displays social net-
works of contributors in an organization who work on inter-
dependent requirements. This tool provides a visual rep-
resentation of coordination congruence first presented by

Figure 1: An ideal-coordination social network di-
agram from Requirement Explorer. florian, the
user, should be collaborating with irwink, lucas, and
christopher. The two connections between florian and
Cchristopher indicates that they have two sets of
inter-related requirements to discuss.

Cataldo [1]. In this respect, our development is theory-
driven. We incorporate two theories into this tool to show
their viability. First, we draw an ICSN that displays the re-
quirements that a person is currently working on. This net-
work is useful for not only a contributor in an organization
working on many requirements, but also for a manager who
wishes to view who should be communicating with whom.
Second, we use the idea of congruence presented by Cataldo
to highlight differences between the ICSN and the ACSN.

Although the concept of congruence in Requirement Ex-
plorer and in Cataldos work is similar, our intention differs
significantly from Cataldos. The analysis that Cataldo does
with congruence is an attempt to identify the factors of com-
munication on the cost of a software project. In contrast,
we use congruence and present it visually to a contributor
so that the contributor is more aware of whom he should be
communicating with. We display, visually, where we may
have potential gaps in communication that must be filled.
By looking at a visual representation of a social network, we
can easily see who needs to communicate with whom, and
identify where breakdowns in communication are occurring.
Using visualization techniques, we make identifying gaps in
communication accessible to every contributor in a project.
We also use the diagram to identify where we may have
adds in a requirements team, and compensate by ensuring
this person is involved appropriately in coordination and
synchronization.

3.1 Requirement Explorer Implementation
The current implementation of Requirement Explorer uses

Bugzilla as its source of data. Although we draw on bug
data, Bugzilla does not actually require that a Bugzilla bug
be a bug, and in many open-source projects, Bugzilla bugs
are actually feature requests or requirements. In the fu-
ture, we plan to expand the system to work with require-
ments databases. In the meantime, we have used the Eclipse
Bugzilla repository as a source for our data.

To assign the ICSN, we use the assigned-to field on the
We identify interdependencies among requirements using the
depends-on field in a requirement. In a project setting, we
would use information from identified dependencies among

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

8

Figure 2: A popup from the ideal-coordination net-
work showing the relationship among the require-
ments that link the two contributors. The solid line
is a dependency arrow. The dashed line indicates
that the contributor is assigned to the bug. The
popup appears when you hover the mouse cursor
over an edge on the diagram.

requirements in a project plan.
By default, we load up the ICSN for a persons list of

assigned requirements, shown in Figure 1. This network
displays the user in the centre, and shows the connection
to each person that the contributor should maintain contact
with when working on his requirements. The ICSN connects
a person to a requirement using the Assigned To relation-
ship in, and connects a requirement to another requirement
using the Depends On relationship. If the centre contributor
and another contributor are connected because of more than
one requirement, then one link for each unique set of depen-
dencies is displayed. To acquire more information about the
requirement, the user can hover over the communication link
to see a popup graph that displays the bugs that connect the
contributor with the other person, as seen in Figure 2. The
pop-up graph displays the dependency path of the bugs that
connect the two contributors.

The actual-coordination network displays the user as the
central contributor in addition to every person that he has
communicated with about the requirement, similar to the
social network in [7]. We identify connections by analyzing
the Reported relationship, which identifies who first posted
the requirement, the Commented On relationship, which is
created when a person posts a comment on a requirement,
and the Carbon Copy (CC) relationship, which means that
a person receives a copy of every comment posted about this
requirement. We see an example of a communication match
between florian and christopher in the popup displayed in
Figure 3 because they were identified as being connected
in the ICSN. Note that in the main diagram, sminto is a
new person in the network; we identify sminto as an add to
florians requirements-related contacts.

Figure 4 shows another popup graph from the actual-
coordination social network, highlighting a communication
mismatch between irwink and florian about Bug 19. In this
situation, irwink reported a requirement, and florian is receiv-
ing comments on this requirement, which is an interaction
that was not predicted from the ICSN. The presence of these

Figure 3: An actual-coordination social network di-
agram from Requirement Explorer with a popup. In
the popup, we see that florian, the user, should be
collaborating with irwink, lucas, and christopher. The
two edges between florian and christopher indicates
that they have two sets of inter-related requirements
to discuss.

dynamic interactions may indicate that irwink knows some-
thing that florian does not, or could suggest that one of the
contributors is seeking expertise from another.

By providing visual feedback, we make analyzing coordi-
nation patterns easy for every member of the development
team. Although not shown in the diagrams, we intend to
implement visual notifications to highlight communication
matches, communication mismatches, and adds. We can
easily identify where communication breakdown may be oc-
curring, and we can also help contributors maintain commu-
nication among those who have contributed to the develop-
ment of a requirement.

4. CHALLENGES AND FUTURE DEVEL-
OPMENT

The development of Requirement Explorer is in its in-
fancy, but a number of features draw from coordination the-
ory and awareness notification theory.

We intend to support better social network overlapping
features in the visualization to better highlight the differ-
ences between the ideal-coordination social network and the
actual-coordination social network. For instance, we plan
to use glowing edges to highlight where the coordination re-
quirements match up, and red edges to identify where com-
munication may be missing.

Another feature we wish to incorporate is to save changes
over time to both social networks, and view a timeline of
changes in the networks. We can view the changes to the
ideal-coordination social network through additional assign-
ments, or through requirement interdependencies. Viewing
changes in the actual-coordination social network reveals
how people communicate over time, and can also highlight
adds to the requirement team.

By using more sources of data, we can further improve the
quality of both the ideal-coordination social network and the
actual-coordination social network. The ideal-coordination
social network information can come not only from a problem-
reporting system, but also from a project-management tool.
The actual-coordination social network can be generated
from additional sources of information, including E-mail mes-

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

9

Figure 4: An actual-coordination social network di-
agram from Requirement Explorer with a popup.
The popup shows an example of a communication
mismatch, where communication occurred between
irwink and florian despite the fact that this was not
predicted in the ideal network.

sages and source code check-ins. A significant challenge will
be how we can relate these sources of communication and ar-
tifacts to a requirement. We may explore keyword analysis
or information retrieval techniques as

Finally, by using the data gathered by the tool, we can
employ automated mechanisms for awareness notification.
The Requirement Explorers usefulness does not need to stop
at the visualization level. For example, we may want to send
customized notifications depending on what a contributor
has contributed to the requirement. We may include helper
tools for a contributor who wishes to announce a change
about the requirement.

With feedback from the community, we hope to improve
the existing functionality of Requirement Explorer and add
additional, useful features to fulfill its purpose of informing
each contributor about the people they should be commu-
nicating with.

5. CONCLUSIONS
The Requirement Explorer is a tool used to promote aware-

ness among contributors working on the same requirement.
The Requirement Explorer features two primary character-
istics. One, it displays an ideal-coordination social network
to display who should be coordinating with whom in an ideal
situation. Two, it displays an actual-coordination social net-
work, similar to the requirements-centred social network [7],
to identify who has actually communicated with whom. By
comparing the two networks, a user can easily identify gaps
in communication. Using these networks, a user is also aware
of whom he should maintain contact with when working on
a particular requirement.

Although the prototype uses data from the Bugzilla prob-
lem reporting system, we plan to extend it to include addi-
tional sources of information, such as source code reposito-
ries, requirements documents, and project plans. We believe
that this tool helps promote awareness among contributors
in a project. A contributor, using the ideal-coordination so-

cial network can easily identify who he needs to notify when
working on a requirement, and can send the appropriate
message to those who are dependent on a requirement he
is working on. Once a contributor has sent these notifica-
tions, he can monitor the actual-coordination social network
in order to ensure that each member of the network is re-
ceiving the latest information about each requirement. By
improving coordination, we prevent expensive rework and
help contributors do their work more efficiently.

6. ACKNOWLEDGMENTS
Funding for this project is being provided by IBM Inno-

vation Grant and Technology Fellowship Award, as well as
NSERC.

7. REFERENCES
[1] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.

Carley. Identification of coordination requirements:
Implications for the design of collaboration and
awareness tools. In CSCW ’06: Proceedings of the 2006
conference on Computer-supported cooperative work,
November 4–8, 2006.

[2] B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems. Commun.
ACM, 31(11):1268–1287, 1988.

[3] D. E. Damian and D. Zowghi. Requirements
engineering challenges in multi-site software
development organizations. Requirements Engineering
Journal, (8):149–160, 2003.

[4] K. Ehrlich and K. Chang. Leveraging expertise in
global software teams: Going outside boundaries. In
International Conference on Global Software
Engineering, 2006. (To appear).

[5] J. D. Herbsleb and R. E. Grinter. Architectures,
coordination, and distance: Conway’s law and beyond.
IEEE Softw., 16(5):63–70, 1999.

[6] L. G. Izquierdo. A case study of feature-based
awareness in a commercial software team and
implications for design of collaborative tools. Master’s
thesis, University of Victoria, 2006.

[7] I. Kwan, D. Damian, and M.-A. Storey. Visualizing a
requirements-centred social network to maintain
awareness within development teams. In International
Workshop on Requirements Engineering Visualization
2006 (REV’06), Minneapolis/St. Paul, Minnesota,
USA, September 11–15, 2006.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

10

Supporting Cooperation Awareness in Common
Information Spaces

Wolfgang Gräther
Fraunhofer FIT

Schloss Birlinghoven
53754 Sankt Augustin
+49 (0) 2241/14-2093

wolfgang.graether@fit.fraunhofer.de

Wolfgang Prinz
Fraunhofer FIT

Schloss Birlinghoven
53754 Sankt Augustin
+49 (0) 2241/14-2730

wolfgang.prinz@fit.fraunhofer.de

ABSTRACT
This position paper describes three different approaches to
support cooperation awareness in common information spaces
like shared file systems, Web sites, or shared workspaces.
Smartmaps, activity map, and history map are graphical space-
oriented visualizations. We present these visualizations and
discuss their effect to collaboration.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: GUI; H.5.3 [Group and Organization
Interfaces]: Computer-supported cooperative work, Web-based
interaction.

Keywords
Awareness, visualization, cooperation, common information
spaces.

1. MOTIVATION
The importance of “awareness” for successful team work has
been identified in many studies of workplaces [4]. Several models
and applications have been developed and the requirement to
provide awareness about activities and actions of others in a
cooperative environment is part of CSCW engineering. Like in
real world settings, situated action [7] requires awareness
information about the working space in which the action takes
place. This paper investigates the use of graphical space-oriented
2D visualizations to support awareness of presence and activities
in common information spaces.

Smartmaps focuses on the provision of task-oriented awareness
[6], i.e. they yield information about the state of artifacts and they
peripherally inform cooperation partners about presence and
ongoing activities of co-workers. Smartmaps show and enable
access to all artifacts of a common information space and can
therefore be used as alternative user interface even for large
common information spaces with thousands of artifacts and tenths
of co-workers.

The activity map focuses on the presentation of the level of
activity for co-workers over a specified period of time. Co-
workers become aware of ongoing activity and can access details
about artifacts. The activity map enables self-control. The history
map visualizes the complete event history for artifacts in BSCW
shared workspaces. Co-workers can easily identify ‘interesting’

documents, i.e. accessed by all members of the workspace or
read/written by certain co-workers.

In the following we will briefly describe each approach, illustrate
how they can be integrated in a shared information space, and
finally we will discuss their specific properties.

2. SMARTMAPS
Smartmaps are based on the treemap visualization technique [5]
and represent the body of common artifacts in 2D graphic. Links
from the 2D graphic to the artifacts are established allowing direct
interaction with artifacts. The visualization eases traversing
hierarchical structures. User actions on artifacts result in color-
coding of the respective part of the Smartmap and therefore
enables activity-based navigation. The presentation of user data
helps in becoming aware of potential collaborators and advice
giving experts.

2.1 Visualization
The Smartmap shown in Figure 1 presents activity information of
a small common information space consisting of 42 artifacts. The
3 top-level folders have thick borders and contain 22, 9, and 11
artifacts, respectively. Folders on other levels in the hierarchy of
the information space are not directly visible. All artifacts are
represented as small rectangles with the same area; artifacts in the
same folder are close to each other and ordered lexicographically.

Figure 1. Small Smartmap: tooltips display location of

artifacts and name of co-workers.
Highlighted rectangles, here in black, indicate user activity. The
default presentation mode conveys the overall activity and their
distribution in the information space. Tool tips, which are
activated, when the user moves the mouse over the corresponding
region, indicate location and name of the artifact. When the
mouse is moved over a highlighted rectangle, then the tool tip
presents the names, actions, and passed times of the last 3 users

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

11

who have worked with the artifact. There are several parameters
influencing the visualization.

For the duration of highlighting, we prefer 10 minutes for
Smartmaps visualizing activities on Web sites and we favor
duration of one day for BSCW shared workspaces and shared file
systems. The latter duration enables users to see at a glance an
overview of what has happened in the common information space
during the last 24 hours.

2.2 Interaction
Smartmaps support not only the visualization of activity
information in common information spaces, but they also ease the
navigation in structured information spaces and provide access to
the artifacts. There are a lot of interaction possibilities on
Smartmaps:

• Moving the mouse over the Smartmaps presents either
the location and the name of the artifact or information
about recent user activities,

• a mouse click presents the pathname of the artifact in
the status bar of the browser window,

• a shift-mouse click opens the artifact itself,

• a control-mouse click opens the enclosing folder,

• a control-right-mouse click presents a popup menu to
open the artifact, the enclosing folder, and further
enclosing folders up to the top-level folder (see Figure
2),

• a right-mouse click shows a popup menu to set
visualization parameters and to access further functions
like help and about.

Figure 2. Popup menu to access directly different parts of the

common information space.

3. ACTIVITY MAP
The activity map is inspired from the work on Babble [2]. It
visualizes user activity in BSCW shared workspaces according to
passed time of the last action and to a participation measure. The
user is placed according to his/her activeness in ‘the circle’ of the
other co-workers. This presentation of activity enables self-
control and shows a detailed overview of workspace participation
to workspace managers.

The activity map shown in Figure 3 presents for user ‘prinz’ his
activity and the activity of 18 co-workers. The user ‘prinz’ is
represented as a square; co-workers are visualized as circles in
different colors. The size of the user representation is linear to the
number of actions on the artifacts (documents) in the BSCW
shared workspace, i.e. larger circles indicate more actions.

Figure 3. Activity map: tooltip displays detailed info about co-
worker, action and artifact.
The main part of the visualization is 3 concentric circles drawn in
different colors representing different time periods. These periods
can be chosen in a settings dialog. In the example above these are
three consecutive days: 6th of May (inner circle), 5th of May
(middle circle) and 4th of May (outer circle) in 2004. The users
circle is placed according to the date of her/his last action. For
example, the circle of ‘cloroff’, directly above the tool tip,
indicates that this user was active 1 p.m. at the 5th of May 2004.

For the presentation of user activity we developed a simple
participation measure. All events were classified either into the
class active or passive. Read events fall into the class passive, all
other events like write, delete, or move fall into the class active.
The ratio, i.e. the size of the class active divided by the number of
all events, indicates the activeness of a user.

The users are placed according to their activeness in the
visualization of the activity map. The level of activeness is
highest at 12 o’clock and gets lower anticlockwise. For example,
the user ‘cloroff’ and ‘prinz’ both have a medium activeness.
Lurkers, i.e. really passive users, can be found in the activity map
directly to the right of 12 o’clock. Figure 3 shows, of course, a
less number of active than passive users.

Tool tips are activated, when users move the mouse over a circle
(represented user). The name of the co-worker, the name and date
of the last action, the name of the artifact and the name of the
enclosing folder is shown in the tool tip. The activity map offers a
search function for users, a replay function and a few more
settings.

Crucial for the usefulness of the visualization is the setting of the
time periods for the three concentric circles. For busy BSCW
shared workspaces we recommend three consecutive days or as
inner circle the current day, as middle circle the last two days and
as outer circle the other five days, so that a complete week is
covered.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

12

4. HISTORY MAP
The history map visualizes in a slice-and-dice manner all user
actions on artifacts in BSCW shared workspaces. This
visualization enlarges artifacts, which have been often accessed.
For every artifact the share of actions for each user is displayed.
This presentation of activity enables co-workers, for example, to
access only often accessed (interesting) artifacts. Social
navigation is a second characteristic of the history map.

The history flow visualization [8] is related to the history map but
focuses on the presentation of changes in common documents
over time.

Figure 4. History map: tooltips display name of artifacts or

name of co-workers.
The history map shown in Figure 4 presents the actions of a
BSCW shared workspace. The workspace contains 12 documents
and 1 subfolder (2004-M&C) with 5 more documents (invisible).
Note that only actions on artifacts and on artifacts in direct
subfolders are presented. This subfolder-constraint keeps the
visualization and interpretation simple.

The artifacts and subfolders are presented in the history map as
slices. The thickness of the slices depends on the number of
actions, which have been taken place on the artifact. Very often
accessed artifacts are represented as broad slice, less often
artifacts are represented as small slice. The ordering of the
artifacts is lexicographically.

The slice for the artifacts is further divided into dices (horizontal
rectangles) according to the share of actions the respective co-
worker has. These areas have specific colors dependant on the co-
workers. The size (height) of the area is proportional to the
activity of the user. Of course, color-code for users and ordering
of the user names remain the same within a BSCW shared
workspace.

Tool tips are activated, when users move the mouse over the
history map. Usually the names of the co-workers are displayed.
If the mouse is moved over the partly visible name of the artifact,
then the complete name is shown in a tool tip.

The history map is useful for small common information spaces
with less than 50 artifacts and less than 20 co-workers accessing
these.

5. SMARTMAPS AS PART OF BSCW
SHARED WORKSPACES
In this chapter we explain only the application of Smartmaps
integrated into BSCW shared workspaces. The activity map as
well as the history map is also designed for being integrated into
common information spaces, which makes them applicable both
for visualization of common information spaces and interaction
with common artifacts.

The BSCW shared workspace system [1] is a Web-based
groupware tool based on the notion of shared workspaces, which

may contain various kinds of objects such as documents, tables,
graphics, spreadsheets or links to other Web pages. Folders are
used to group the artifacts and the hierarchy of folders constitutes
the shared workspace. Workspaces can be set up, members can be
invited and objects can be stored, managed, edited or downloaded
with any Web browser. There are many other services available,
for example, discussion forums. Asynchronous as well as
synchronous collaboration is supported by BSCW.

The BSCW system offers a user customizable area, the banner
described in HTML, which partly changes the display of
workspace and folders. Typical banners are: images or headlines
according to workspace content, project logos, Web cam images,
and even applets. The banner is inherited through the hierarchy of
folders in the shared workspace.

Smartmaps are realized as Java-Applets and in contrast to the
activity map suitable for the integration into BSCW shared
workspaces. Figure 5 shows a Smartmap integrated into a BSCW
shared workspace with more than 1000 artifacts. At every place in
the workspace the Smartmaps is shown and augments the usual
list mode presentation of the shared objects. The actual position of
the user in the hierarchy of the shared workspace is indicated by
an orange rectangle.

Figure 5. Smartmaps in a BSCW shared workspace.

We have integrated Smartmaps into several large project
workspaces and we could observe that users quickly apply the
Smartmap. For example, they first check the places for which
activity of other co-workers is indicated. They move the mouse to
the corresponding highlighted rectangle to see who acted on the
artifact, what kind of action took place, and when the action
happened. Then, often that link is followed and the corresponding
folder or the object is opened.

Smartmaps in shared workspaces complement awareness
information which is already available at the shared artifacts, but
visible only in the current work situation, with awareness
information from other parts of the overall working context of the
user. An even larger context could be built, when several
Smartmaps, representing different workspaces, are put together.

6. DISCUSSION

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

13

Table 1 compares the three approaches, which will be applied
and further evaluated in different software development projects
in the context of the SAGE project. SAGE [3] aims at the

development of new solutions for self-organized cooperative
task management and group awareness for the coordination of
distributed software development processes.

Table 1. Comparison of Smartmap, activity map, and history map

Aspect Smartmap Activity Map History Map

Purpose Visualization of large common
information spaces combined
with object-based activity
information.

Visualization of user-based
activity information to provide
an overview of the group
activity.

Visualization of small to
medium sized common
information spaces combined
with details about object and
user specific activities.

Application Activity-based navigation of
large common information
spaces.
Fast overview and indication of
activity hot spots: “In which
areas of the common information
space did something happen?”

Overview on group activity.
“Who was active and when was
the last action?”, “Have users
been more actively or passively
involved?”

Overview on object specific
activities. “What are the
objects with most activities?”,
“Which objects have been
used by most users?”

Represented artifact Objects (documents) Users Objects (documents)

Mouse over action Object information and user
activity

Detailed event information User information

User interaction Browsing the common
information space.

Access to further event details
and direct access to objects.

Access to further event details
and direct access to objects.

Use of space … to provide an overview of the
common information space.

to show the relation between
active and passive users as well
as the time since last activity.

to show the relation between
the number of events on
different objects.

Use of color … to indicate activity on objects. to indicate the type of the last
activity.

to distinguish between users.

Supported type of awareness Task-oriented Social Task-oriented and social

7. ACKNOWLEDGEMENT
We would like to thank Christian Stein, who implemented the
activity map and the history map. We would also like to thank our
colleagues of the TOWER and SAGE project teams. The TOWER
project was partly funded through the IST program IST-10846 of
the European Commission. The SAGE project is partly funded
through the German Federal Ministry of Education and Research.

8. REFERENCES
[1] Appelt, W. WWW Based Collaboration with the BSCW

System. In Proceedings of 26th Annual Conference on
Current Trends in Theory and Practice of Informatics
(SOFSEM’99) (Milovy, Czech Republic, 1999). Springer
Verlag, 1999, 66-78.

[2] Bradner, E. The Adoption and Use of ‘BABBLE’: A Field
Study of Chat in the Workplace. In Proceedings of the Sixth
European Conference on Computer Supported Cooperative
Work (ECSCW’99) (Copenhagen, The Netherlands,
September 12-16, 1999). Kluwer A.P., 1999, 139-158.

[3] Gräther, W., Koch, T., Lemburg, C., Manhart, P. (2006,
forthcoming) SAGE: Self-organized cooperative task

management and group awareness for the coordination of
distributed software development processes.

[4] Grinter, R. (1997). From Workplace to Development: What
Have We Learned So Far and Where Do We Go? In
Proceedings of GROUP'97. ACM Press, 1997, 231-240.

[5] Johnson, B., Shneiderman, B. Treemaps: a space-filling
approach to the visualization of hierarchical information
structures. In Proceedings of IEEE Visualization’91, San
Diego 1991. IEEE Computer Society Press, 1991.

[6] Prinz, W. An Awareness Environment for Cooperative
Settings. In Proceedings of the Sixth European Conference
on Computer Supported Cooperative Work (ECSCW’99)
(Copenhagen, The Netherlands, September 12-16, 1999).
Kluwer Academic Publishers, 1999, 391-410.

[7] Suchmann, L. A. Plans and situated actions: The problem of
human-machine communication. Cambridge University
Press, 1987.

[8] Viégas, F.B., Wattenberg, M. Dave, K. Studying
Cooperation and Conflict between Authors with history flow
Visualization. In Proceedings of CHI 2004. ACM Press New
York, NY, USA 1999, 575-582.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

14

Managing Complexity in Collaborative
Software Development: On the Limits of Modularity

Marcelo Cataldo1 Matthew Bass1 James D. Herbsleb1 Len Bass2

1 Institute for Software Research International
2 Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

 mcataldo@cs.cmu.edu mbt@sei.cmu.edu jdh@cs.cmu.edu ljb@sei.cmu.edu

ABSTRACT
The identification and management of dynamic dependencies
between components of software systems is a constant challenge
for software development organizations. In this paper, we discuss
4 case studies that exemplify the complexity of identifying and
managing dependencies in a global software development project.
The uncertainty of the interfaces and the nature of the dependency
are key factors in determining the need for communication and
coordination. Interestingly, we encountered cases where even
simple interfaces between modules developed by remote teams
create coordination breakdown and development problems, rais-
ing questions regarding the effectiveness of traditional mecha-
nisms to divide work, such as modularization.

1. INTRODUCTION
In the system design literature, it has long been speculated that the
structure of a product inevitably resembles the structure of the
organization that designs it [2]. In Conway’s original formula-
tion, which has come to be known informally as Conway’s Law,
he reasoned that coordinating product design decisions requires
communication among the engineers making those decisions. If
everyone needs to talk to everyone, the communication overhead
does not scale well for projects of any size. Therefore, products
must be split into components, with limited technical dependen-
cies among them, and each component assigned to a single team.
Conway proposed that the component structure and organizational
structure stand in a homomorphic relation, in that more than one
component can be assigned to a team, but a component must be
assigned to a single team. Parnas took a similar view talking spe-
cifically about software, in his classic paper on modular design, in
which he considered modules to be work items instead of a col-
lection of subprograms [9].
A similar argument has been proposed in the strategic manage-
ment literature. Baldwin and Clark [1] argued that modularization

makes complexity manageable, enables parallel work and toler-
ates uncertainty. The design decisions are hidden within the mod-
ules which communicate through standard interfaces, then, modu-
larization adds value by allowing independent experimentation of
modules and substitution [1]. Although Baldwin and Clark’s
analysis is at the industry level, it is clear that their view aligns
with Conway’s idea that one or more modules can be assigned to
one organizational unit and work can be conducted almost inde-
pendently of others.
Both theoretical arguments rely on the assumptions that the inter-
faces between modules are stable and well defined, consequently,
minimal communication between the organizational units in-
volved is necessary. However, in large and complex software
systems dependencies range from simple syntactic relationships
(e.g. a function call) to more complex and difficult to identify
dependencies such as a semantic dependency. Moreover, modifi-
cations to the software introduce constraints that might establish
new dependencies among the various parts of the system, modify
existing ones or even eliminate dependencies. Failure to discover
the changes in coordination needs might have a profound impact
on the quality of the product and productivity [3, 6, 7]. This dy-
namic nature of task dependencies in software development is a
key problem overlooked by the modularization perspective.
The identification and management of dynamic dependencies
between components of software systems is a constant challenge
for software development organizations. As geographically dis-
tributed software development projects become pervasive, under-
standing the processes, tools and organizational factors that matter
the most for identification and management of dynamic depend-
encies is an important research endeavor. In this paper, we present
a preliminary analysis of critical incidents in a global software
development project. The Global Studio Project [8], sponsored by
Siemens Research, is a test-bed where groups of graduate students
from several universities work on project that simulates a real-life
software development effort. We discuss 4 case studies that ex-
emplify the complexity of identifying and managing dependen-
cies. We also present cases where even simple interfaces between
modules developed by remote teams create coordination break-
down and development problems. Finally, we argue that the un-
certainty of the interface as well as the nature of the dependency
calls for different collection of processes, tools and organizational
structure to provide the necessary means to identify and manage
dependencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
Computer Supported Cooperative Work ’06, November 4–8, 2006,
Banff, Alberta, Canada.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

15

2. STUDIO PROJECT
The Global Studio Project (GSP) [8] was established by Siemens
Corporate Research (SCR) as a test bed to gain better understand-
ing of the issues associated with global software development.
The project simulates a real world geographically distributed
project by using student teams to develop software. The students
participate in the GSP as part of their academic curriculum and
they operate in academic environments at universities in Ireland,
Brazil, Germany, India and the United States. These students are
pursuing their masters or diplomas (equivalent to masters) in
software engineering or associated fields. The student groups had
no previous experience of working together.

The system developed in the GSP, called MSLite system, is to be
a unified management station for building automation systems
such as heating ventilation and air conditioning (HVAC), access
control, and lighting that will allow a facility manager to operate
such systems.

The GSP is organized in a two-level hierarchical structure with a
central team located at SCR that is responsible for specifying
requirements, software architecture and some aspects of design,
system test, integration, project management and defining proc-
esses for code submission, testing, and communication. The re-
mote teams are responsible for design, development and unit tests
for particular code modules or sub-systems defined by the central
team. The central team has a Supplier Manager (SM) for each
remote team, whose responsibility is to mange the interactions
between the central team and the remote team which also has its
local Supplier Manager.

The central team used the architecture documentation to identify
dependencies among components and then generate a design
structure matrix (DSM). Following an analysis similar to Baldwin
& Clark’s [1], the DSM was used to identify the set of tasks to be
assigned to each remote team that would minimize the dependen-
cies and consequently, minimize the coordination requirements
between remote teams.

Figure 1: GSP main Wiki page

Following best practices from the open source community [5], the
GSP provided a wiki web portal (figure 1) which gave users ac-
cess to a host of tools and information about the project such as
architectural documentation, information about the teams in-

volved in the project, processes, version control system, discus-
sion forums, defect tracking system and a daily build system. The
central team established processes for communications and meet-
ing, design and development, configuration and change manage-
ment and integration of the code.

Communication processes emphasize the usage of email to inter-
act with the SM. Also developers were encouraged to use the
discussion forums for technical discussions with other teams. All
remote teams had weekly status meetings with the central team’s
SM and all developers were expected to post their weekly pro-
gress on the web portal. The development tasks were divided in 6
iterations of 8 weeks each. At the end of an iteration, each remote
team had deliverables that include specifications, functioning
code and unit tests. In some cases, deliverables were due at the
half point in the iteration.

Modifications to the software code were managed by a central
version control system. All teams were encouraged to submit their
changes regularly to the central repository. A daily build system
would make sure that the code compiled correctly and that the
appropriate set of unit tests ran successfully. If a problem was
encountered, the build system would send email to the central
team and to the team that made the last submission to the version
control system, who became responsible for resolving the prob-
lem. If the issue persisted overnight, the central team would revert
the changes the following morning.

3. PROBLEMS MANAGING DEPENDEN-
CIES
The initial data collection was done using an approach similar to
the critical incidents technique [4]. We met with the members of
the central team and we asked them to identify events during the
life of the project that were representative of important problems
in coordination. The central teams members were also asked to
provide background information regarding the events they re-
called. We then compiled data associated with the incidents from
numerous sources such as technical documentation, version con-
trol system, project plan, meetings minutes, weekly status reports
of the developers, discussion forum, defects database, email ar-
chive and social network survey. The following sections describe
these events in detail.

3.1 Event I: Change in a design specification.
The team in Ireland was responsible for task A in iteration 2. The
team in India was responsible for task B in iteration 3. Task A
consisted of designing several object classes and specifying the
properties and methods of those classes. Task B implemented a
property editor that used the object classes defined in Task A. The
developers involved in both tasks participated in three different
discussion forums focused on the technical details on the imple-
mentation for task A. All the technical details of task A were not
captured correctly in the design specification document. This
mistake led to a serious mismatch between the contents of the
documentation and the actual implementation, a perennial prob-
lem in software development.
The Indian team worked on task B guided primarily by the con-
tents of the design specification which led to integration problems
when they submitted their changes into the version control sys-
tem. Our analysis suggests that some members of the Indian team
were reluctant to make full use to the version control system. The

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

16

time zone difference between India and the US EST (the location
of the central team), meant that around the time the Indian team
was leaving for the night, the central team would be starting their
workday. If any submissions to the code repository resulted in a
broken build, the Indian team would not have the opportunity to
fix the problem before the central team would revert the changes.
Hence, the Indian team tended to rely a lot more on documenta-
tion and also tended to make less frequent but much larger
changes to the code.
This incident highlights several interesting issues. First, despite
the availability of numerous communication tools (e.g. email,
discussion forums, and defect reports), our analysis indicated that
very little lateral communication between the teams took place.
Exchange of information between the teams was limited to dis-
cussion forums early in the life of task A. We think an important
factor is the central management approach tended to emphasize
information flow through the central team. Secondly, incomplete
or incorrect documentation can have a major negative in produc-
tivity and quality in the context of geographically distributed
software development. Finally, the case exemplifies the role that
processes play in shaping the behavior of certain developers and,
ultimately, the coordination of activities. Although nightly builds
are considered an effective practice, the consequences that re-
sulted from breaking the build diminished the value of this proc-
ess.

3.2 Event II: Modification of a major inter-
face.
A team in a US university was responsible for implementing a
data access interface that all other components of the system de-
pended on it. One of the requirements of the data access module
was to uniquely identify instantiated objects. The developer re-
sponsible for the task evaluated the original design specification
done by the central team and determined that the interface needed
to be modified in order to satisfy the requirement to generate
unique object identifiers. As required by the design and develop-
ment processes, the developer sent a proposal for the design
change to the central team. However, that took place two days
before the deliverables were due. Since there was no reply from
the central team, the developer submitted the modifications pro-
posed in his design to the version control system two days later.
These actions resulted in some major modifications in various
parts of the system causing delays and frustration on the other
remote teams. The following email trace shows all the informa-
tion exchanged between the developer team (named Team X) and
the central team regarding this issue:

To: ALL TEAMS
Sent: 3/27/2006 3:28 PM
Subject: Access Control Modifications
All,
 As you may already have noticed the Access Control component
underwent some changes to incorporate the inclusion of an Ac-
cessControlResultSet. Information on the Result Set may be
found at . . . In order to integrate the changes, some teams’ code
may have required slight modifications which were carried out by
the team X. These changes were authorized by the central team
and were essential for successful server-side integration. Please
review your code to ensure all changes were satisfactory.
Thanks and best regards,
Central Team SM

-----Original Message-----
From: Team X
Sent: Friday, March 24, 2006 11:18 AM
To: Central team SM
Subject: AccessControlResultSet design
All,
Attached is the detailed design of the AccessControlResultSet and
the updated detailed design of the AccessControl component.
Please review and have comments to me before Mondays telecon-
ference meeting. best regards,
Developer
-----Original Message-----
From: Central Team SM
To: Team X
Sent: 3/23/2006 11:31 AM
Subject: FSS .NET Remoting Failing test
Thanks. Can you update me on your progress?

This incident is a good example of several related problems. First,
we have a change to an interface, a syntactic dependency, that
becomes a major problem because the interface in used many
times in all the components of the system. Furthermore, the se-
mantic of the functionality also changed (generate and return a
unique identifier), augmenting the scope of the change. Syntactic
dependencies tend to be misleading because they are typically
considered simple issues. This example shows that certain types
of dependencies (e.g. numerous modules depend on the same
interface that returns a critical data type) require a lot more atten-
tion than other, particularly, during the design phase. Early identi-
fication of such types of dependencies can also help focus the
efforts of management in the most critical aspects of the project.
Another interesting issue highlighted by this incident is the impact
of lack of contextual information and conflict. After the central
team announced that major changes would take place in the code,
several teams expressed frustration with development team X
because the changes to be made would delay their current work.
However, none of the remote teams had a complete view and
understanding of why the changes were necessary.

3.3 Event III: Circular dependency between
components.
One US university team was responsible for task A due at the
midpoint of iteration 3. Another team from a different US univer-
sity was responsible for task B due at the end of iteration 3 of the
project. The information in discussion forums and email indicated
that the teams had extensive exchange of technical information
associated with interfaces developed as part of task A and that the
component developed as part of task B would depend on. These
interfaces represented a case of syntactic dependencies between
two components (A B). Upon completion of task A, the central
team and the development team did a detailed code review and
the modifications were approved.
Unfortunately, the architectural documentation also revealed a
more complex semantic dependency through a pub-
lisher/subscriber mechanism that would need to be resolved as
part of task B (B A). This dependency went undetected during
the code review and this mistake resulted in major modifications
to the component developed in task A during the execution of task
B. Code reviews are well known practices in software engineer-
ing. Although code reviews are commonplace, they do not typi-

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

17

cally involve an analysis of dependencies to determine appropri-
ate set of developers to participate in the review [10]. This inci-
dent shows how important it is to identify all the dependencies
among components in order to have the code reviewed by the
relevant developers. Distance and the central management ap-
proach tend to augment the impact of this type of mistake because
impromptu and lateral communication are limited.

3.4 Event IV: Significant delays in the imple-
mentation of a complex module.
The development of a low priority but complex component was
originally scheduled for iteration 3 to be done by the Irish team.
Modules developed in iteration 5 were dependent on this compo-
nent. The Irish team was not able to finish the design of the com-
ponent so the design and development was re-scheduled for itera-
tion 4 to be done by the group in Brazil. Shortly after the Brazil-
ian team did the preliminary analysis and estimated the effort to
complete the component, the Supplier Manager for the Brazilian
team got sick and communications with the central team dropped
almost to a halt. Ultimately, the task had to be re-scheduled again
for iteration 5 and this time one of the US universities teams
would be responsible.

The delay in the implementation of this particular component
changed the dynamics of the coordination required between the
teams. A fairly loose coupling (Team A implements the module,
then during a subsequent iteration, Team B uses it) became a very
tight coupling (implementation and use are concurrent). The de-
velopment teams involved are located one in the US and one in
Germany. The need for fluid exchange of information and tight
coordination are critical as the design decisions made by one team
could have implications in the other team’s development efforts.
Our qualitative analysis revealed that little lateral communication
is taking place between the remote teams. Moreover, numerous
modifications to the code had to be reverted because the changes
broke the build. This situation escalated to a clear point of frustra-
tion as the following message in a modification to the code indi-
cates:

r1901 | Central team SM | 2006-08-10 14:04:44 -0400
Changed paths:
 M /MSLite/MSLite.Rules/ConditionEvaluation/Evaluator.cs
 ….
 D /MSLite/MSLite.Tests.Rules/RuleEngineTests.cs
Reverting repository revisions 1898 and 1897 by “Developer A”
in attempt to successfully build integration server – AGAIN

4. DISCUSSION
The cases highlight the importance of certain properties of the
software product to be developed. First, nature of the dependency
matters. Complex semantic relationships cause coordination prob-
lems (event III) even after well established quality assurance
processes took place. However, and possibly more important, is
the fact that coordination problems also arise with simple syntac-
tic interfaces as it is illustrated by event I.

Uncertainty of the interfaces is another important factor to con-
sider because uncertainty opens the door for potentially serious
coordination problems. Although the event didn’t explicitly pro-

vide an example of such a situation, the perception of simplicity
could lead to similar problematic conditions. In event II, a major
re-development effort took place because of a design that did not
contemplate all the requirements. An interface that was originally
considered “straightforward” needed to be re-architected and
consequently numerous parts of the system had to be modified.

In sum, the collection of events presented here suggests that the
coordination problems encountered in geographically distributed
software development project depend on an intricate relationship
of several factors. First, elements that influence how closely-
coupled the work is, such as complexity and uncertainty of the
interfaces, as well as whether the work is carried out sequentially
or concurrently. Secondly, factors that influence the ability to
communicate and coordinate, such as geographic separation,
whether communication is direct or through an intermediary, and
the quality of documentation play a significant role. Finally, other
organizational factors such as processes, structure and goal align-
ment are important mediators as well.

5. ACKNOWLEDGMENTS
The authors gratefully acknowledge support by NSF grant IIS-
0534656, as well as support from the Software Industry Center
and its sponsors, particularly the Alfred P. Sloan Foundation. The
authors would also like to thank the support of the Software Engi-
neering Institute and the US Department of Defense. Part of this
work was also supported by the National Science Foundation
IGERT program 9972762 and the center for Computational
Analysis of Social and Organizational Systems at Carnegie Mel-
lon University.

6. REFERENCES
[1] Baldwin, C.Y. and Clark, K.B. Design Rules: The Power of

Modularity. MIT Press, 2000.
[2] Conway, M.E. How do committees invent? Datamation, 14,

5 (1968), 28-31.
[3] Curtis, B., Kransner, H. and Iscoe, N. A field study of soft-

ware design process for large systems. Comm. ACM, 31, 11
(Nov. 1988), 1268-1287.

[4] Flanagan, J.C. The Critical Incident Technique. Psychologi-
cal Bulletin, 51, 4 (July 1954).

[5] Halloran, T. and Scherlis, W. High quality and open source
practices. In Proceedings of the 2nd Workshop on Open
Source Software Engineering, Orlando, Florida, May 2002.

[6] Herbsleb, J.D. and Mockus, A. An Empirical Study of Speed
and Communication in Globally Distributed Software De-
velopment. IEEE Trans. on Soft. Eng., 29, 6 (2003), 481-
494. [7] Kraut, R.E. and Streeter, L.A. Coordination in Software
Development. Comm. ACM, 38, 3 (Mar. 1995), 69-81.

[8] Mullick, N. et al. Siemens Global Studio Project: Experi-
ences Adopting a GSD Infrastructure. In Proceedings of the
International Conference on Global Software Engineering,
Florianopolis, Brazil, September 2006.

[9] Parnas, D.L. On the criteria to be used in decomposing sys-
tems into modules. Comm. ACM, 15, 12 (1972), 1053-1058.

[10] Wiegers, K.E. Peer Reviews in Software: A Practical Guide.
Addison-Wesley, 2001.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

18

WYSIWYN: Using Task Focus to Ease Collaboration
Mik Kersten, Rob Elves and Gail C. Murphy

Department of Computer Science
University of British Columbia

{beatmik, relves, murphy}@cs.ubc.ca

ABSTRACT
WYSIWYG (What You See Is What You Get) tools changed how
knowledge workers and others produce and collaborate on
documents. Our Mylar project is showing how
WYSIWYN1(What You See Is What You Need) tools can change
how programmers work and interact. As a programmer works on
a task, Mylar builds a context for the task that captures which
resources are interesting to complete the task. These task contexts
can be used to focus the user interface with which a programmer
works, reducing the overload of information the programmer
usually experiences. Sharing task contexts can also focus
collaborative programming activities, making it easy to show a
team member how a bug was solved. We have shown that Mylar
makes programmers more productive in a field study of 16
programmers using Mylar for several weeks. In this position
paper, we provide an overview of Mylar and discuss some further
ways in which WYSIWYN may improve programmers’ use of
integrated development environments.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments —
integrated environments, programmer workbench.

General Terms
Design, Human Factors

Keywords
Task-based interaction, Degree-of-interest, Focused user
interfaces

1. INTRODUCTION
WYSIWYG (What You See Is What You Get) had a fundamental
impact on the productivity of knowledge workers. For example,
these tools made it possible for organizations to create
professional quality newsletters that keep current and past
members of an organization aware of events happening at the
organization. As another example, these tools changed the work
performed by administrative staff as individuals within an
organization became responsible for formatting letters and
documents they wrote.

In our Mylar project2, we are investigating how WYSIWYN
(What You See Is What You Need) tooling can change how
individual programmers work and how those programmers work
together. WYSIWYN tooling focuses the information presented

1 www.usabilityfirst.com/glossary/term_1070.txl, verified on

06/10/06
2 www.eclipse.org/mylar, verified on 12/09/06.

to programmers on just the information that he or she needs to
complete individual tasks and to collaborate with others on the
tasks associated with a project.

In this position paper, we provide a brief overview of Mylar,
describing how it provides WYSIWYN support to both an
individual programmer and to teams of programmers. We also
briefly discuss further ways in which WYSIWYN support could
be added to Integrated Development Environments (IDEs) to
facilitate collaboration.

2. MYLAR
Many programmers spend much of their time working in an IDE.
The trend in IDEs has been to add more and more features that are
able to quickly display more and more information about the
system to the programmers. Figure 1 shows a screenshot of the
typical views facing a Java programmer working in the Eclipse
IDE3: each view is populated with numerous program elements,
requiring the developer to scroll and search to find the elements
needed for the task-at-hand. The result of making it possible to
easily display a large subset of a system’s artifacts is that
programmers spend more time looking for elements they need to
complete a task than they spend actually working with those
elements. Unless they are systematic in looking for the elements
of interest, they can suffer from inattention blindness, missing
relevant items that may appear on the screen accidentally [6].
This problem is exacerbated by two aspects of a programmer’s
work: 1) a programmer switches between tasks frequently [2] and
2) a programmer often collaborates with other team members.

Figure 1 An Overloaded IDE Workspace

3 www.eclipse.org, verified on 12/09/06.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

19

Our Mylar tool addresses the overload problem by focusing the
information presented in the IDE around tasks. For instance, a
programmer can see just the information needed to work on a
particular task. One team member can see the status of tasks
(issues) being worked on within the team. When one programmer
collaborates with another, the first can easily share just the
information that he or she considered and changed while working
on the task with the team member.

2.1 Mylar for an individual programmer
A programmer working with Mylar indicates the current task by
indicating the issue on which they are working from an issue
repository.4 Mylar’s Task List supports queries over an issue
repository. The Task List in the upper right view of Figure 2
shows tasks resulting from a query over a Bugzilla repository5. To
indicate a particular issue is the current task, the programmer
activates the issue by pressing the small round button at the left of
a particular issue’s name. In this case, the programmer has
activated the issue #155044.

Once a task is activated, Mylar begins to monitor the resources
(program elements and other information) a programmer accesses
to perform the task. With this information, Mylar builds a model
of which resources are important for the task. This model assigns
a degree-of-interest to each resource based on the number of edits
and selections of the resource [3,4]. We refer to the degree-of-
interest model for a task as a task context. A task’s context can be
used as input to several operations. For instance, the context can

4 Mylar also supports individual tasks known only to the

programmer. In this paper, we will note significant features that
we do not have room to discuss; for more details on any of these
features and others, see the Mylar website
(www.eclipse.org/mylar).

5 www.bugzilla.org, verified 15/09/06

be used to highlight the information presented or it can be used to
filter uninteresting information. The left side of Figure 2 shows
the Package Explorer (a view displaying the hierarchical
containment hierarchy of the software) filtered to show only
resources interesting for the current task. Comparing this to the
workspace shown in Figure 1, we see that activation of the task
focuses the views in the IDE to just what the programmer needs at
present. Mylar retains the context for a task between activations
of the task. When a programmer returns to work on a task, the
programmer simply needs to reactivate the task and Mylar reloads
the context displaying only the information needed for the task.

To investigate whether Mylar does enable programmers to spend
more time working with resources than looking for them, we
performed a field study in which 16 programmers used Mylar for
their daily work for a period of several weeks. We benchmarked
the activity of these programmers in Eclipse prior to providing
them with Mylar. With statistical significance, we found that
these programmers spent more time editing code than navigating
it when using Mylar [4].

2.2 Mylar for collaborating programmers
Two or more programmers often end up working on the same
task. This work may occur by the programmers huddling around
the same workspace, it may occur by the programmers
sequentially passing the task back and forth with one programmer
making some progress and then passing it to another who has
expertise in a different area, or it may occur separated in time
with one programmer revisiting a previously completed task
because of a newly reported bug or a desired enhancement.

Mylar provides assistance to programmers in each of these
scenarios. When multiple programmers work on a task
simultaneously at one computer, the focus provided by the task
context can make it easier for the multiple programmers to discuss
the software and for the non-driving programmers to follow the
actions of the driving programmer on the screen.

Figure 2: A Task-Focused Workspace with Mylar

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

20

Figure 3 Context Sharing Initiated from the Task List

Mylar provides assistance for the other two scenarios by
facilitating the sharing of task contexts. We have experimented
with two means of sharing such contexts. First, most commonly,
we attach the context used in solving a problem to the report
describing the problem in a shared issue repository. Second, a
context for a task can be exchanged in email. As Mylar is an
open-source project, we prefer the first approach to provide
transparency in the development process.

A programmer who wishes to work on a task left off by another
programmer or who wishes to see how an issue was resolved can
import the context for that task into their workspace (Figure 3).
Similar to how one programmer can switch between tasks, a
programmer importing a task context can switch to that context
thereby accessing just that subset of the software system the
original programmer had considered in completing the task. When
contexts for tasks are stored in a shared repository, such as the
Bugzilla repository used for the Mylar development itself, the
repository becomes a richer source of knowledge about how to
complete problems. Currently, the Mylar repository has contexts
attached for 253 tasks (as of September 14, 2006). These shared
contexts have made it much easier for Mylar’s developers to work
on reopened bug reports and to delegate partially completed tasks.
The Mylar project also has a policy of attaching task contexts
with submitted patches. This policy has made it much easier to
apply dozens of contributed patches each month.
Mylar also helps focus communication between multiple
programmers by providing a rich, focused interaction with a
shared issue repository. In particular, Mylar supports the use of
queries to watch for changes in particular categories of issues. For
example, a query may be used to watch all updates made to an
issue by a particular colleague. When the colleague adds a
comment to an issue, the programmer will see the issue appear
under the query in the Mylar Task List and will see an incoming
arrow to represent changes have been made in the repository to
the issue. When the programmer opens the issue, the view of the
issue reflects the latest changes; for instance, except for the latest
unseen comments, conversations are folded.

3. DISCUSSION
Another way to add more WYSIWYN support to IDEs is to
provide recommendations. Mylar provides an experimental form
of recommendation called Context Search, which for particularly
interesting resources automatically runs and displays reference-
based searches. For example, the Context Search may display the
callers of a particular method that has a high-degree of interest.
By knowing the context of a task, in a similar way, when a
programmer begins work on a new problem report, it is possible
to recommend previous problems completed in the past and to
provide rich support in suggesting which parts of the system may
be relevant to solving the problem [5]. These recommendations
provide focus when they are sufficiently accurate; inaccurate
recommendations would reduce the focus of the programmer.
At times, it would also be useful for collaboration to know which
parts of the system are concurrently being worked on by other
team members. One way of presenting this information is through
decorations to resources in the IDE [1]. This decoration can be
overwhelming when applied to all resources in the system. By
knowing which resources programmers are working on and what
they are doing with those resources, it may be possible to use task
context to scope the collaboration information presented to
provide more focus. For example, dynamically determining who
the current team is working on a task and focusing collaboration
affordances in the UI around that team.

4. SUMMARY
Most programmers’ work is structured by the tasks that they
perform. Mylar uses information gathered about how
programmers work on tasks to focus the display of system
information to the programmer and to focus the interaction of the
programmer with the development environment. In this position
paper, we have provided a brief overview of some of the facilities
provided by Mylar to focus individual and team programming
efforts. A full description of Mylar’s features can be found at the
project’s website. Mylar ensures that what the programmer needs
is what the programmer gets.

5. ACKNOWLEDGEMENTS
This work has been funded by NSERC and IBM. We are grateful
to the many users of Mylar that have greatly enhanced its
functionality.

6. REFERENCES
[1] Cheng, L., Hupfer, Susanne, Ross, Steven and Patterson,

John. Jazzing up Eclipse with Collaborative Tools. Proc. of
the 2003 OOPSLA Workshop on Eclipse Technology
Exchange, pp. 45-49.

[2] Gonzales, V.M. and Mark G. Constant, constant, multi-
tasking craziness: managing multiple working spheres. Proc.
of the Conf. on Human Factors in Computing Systems, 2004,
pp. 113-120.

[3] Kersten, M. and Murphy, G.C. Mylar: a degree-of-interest
model for IDEs. Proc. of the Conf. on Aspect-oriented
Software Development, 2005, pp. 159-168.

[4] Kersten, M. and Murphy, G.C. Using task context to improve
programmer productivity. To appear, Proc. of Conf. on
Foundations of Software Engineering, 2006.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

21

[5] Murphy, G.C., Kersten, M., Robillard, M.P. and Čubranić. D.
The emergent structure of development tasks. Proc. of
European Conf. on Object-oriented Programming, 2005, pp.
33-48.

[6] Robillard, M.P., Murphy, G.C., and Coelho, W. How
effective developers investigate source code: an exploratory
study. IEEE Transactions on Software Engineering, Vol 30,
No 12, 2004, pp. 889-903.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

22

Visualizing Roles and Design Interactions in an Open
Source Software Community

Flore Barcellini, Françoise Détienne
INRIA –CNAM Eiffel team

Domaine de Voluceau BP105
78153 Le Chesnay Cedex France

003313963{5255,5522}

{Flore.Barcellini,
Francoise.Detienne}@inria.fr

 Jean-Marie Burkhardt
Université Paris 5 ECI
45 rue des Saint-Pères

75270 Paris France
0033142862135

Jean-Marie.Burkhardt@univ-
paris5.fr

Warren Sack
University of California Santa Cruz

Film and Digital Media Dept
1156 High Street

Santa Cruz, CA 95064, USA
0011831459-3204

wsack@ucsc.edu

ABSTRACT
We propose a means to visualize design-related, online
discussions based on an analysis of the quotations shared
between messages. We present an analysis of online discussions
in an Open Source Software (OSS) design community. The
objective of this research in cognitive ergonomics is to
understand and to model the dynamics of social interactions that
take place in OSS design mailing lists. We hope this research
also informs the architecture of new tools for supporting
organisational memory archives and the recording of design
rationales. We show how an analysis of the quotation relations
between messages can be used to locate design-relevant data in
discussion archives and to retrace the thematic coherence of
online discussions. Our analysis also reveals how the social
structure of a design project influences the design process.
Implications for the architecture of design visualization and
design rationale tools for OSS development are outlined.

Categories and Subject Descriptors
H.4.3 [Communications Applications] Electronic mail, H.5.3
[Group and Organization Interfaces] Asynchronous
interaction, Theory and models.

General Terms
Design, Human Factors

Keywords
Distributed asynchronous design, quoting practices, Open
Source Software projects

1. INTRODUCTION
In this communication, we propose several new ways to
visualize online interactions between participants in Open
Source Software (OSS) design-oriented online discussions. Our
proposals are based on our research in cognitive ergonomics

investigating both the dynamics of the OSS design process and
some methodological principles to study activities in distant and
asynchronous, mediated, design situations ([1], [2], [3]).

OSS design is a particular case of asynchronous, distributed,
collaborative design. As analysed previously by Sack et al. [2],
the OSS design activity occurs in three activity spaces: the
discussion space, the documentation space and the
implementation space. A large part of the OSS design process
takes place in the discussion space and is archived in the
documentation space. These traces of the design activity are thus
important resources for users and developers of OSS.
Considering the large quantity of data generated and archived,
proposing methods and tools to extract relevant data for
organizational memory [4] is a crucial issue for OSS
researchers, OSS community building, and the efficacy of social
interaction between participants in OSS projects, especially new
comers in a project community [5].

This research is focused on a major OSS project devoted to the
development of a programming language called Python. The
designers of Python engage in a specific design process called
Python Enhancement Proposals (PEPs). PEPs are the main
means for proposing new features, for collecting community
input on an issue, and for documenting chosen design decisions.
Our message corpus was drawn from the python-dev mailing list
that hosts PEP related discussions pertinent to design process.

Our approach is based on quotation as a relevant link between
messages to reconstruct the thematic coherence and to locate
design relevant data in online discussion archives. Until now the
dominant model used to represent conversation, the threading
model, has been based on reply-to links between messages. We
have shown that quotation-based representations are more
relevant than threading-based representations to reconstruct
thematic coherence of design-oriented online discussions [3].
The quotation-based methodology developed in this study is also
a powerful tool for studying online discussions and for
highlighting the social interactions between participants during
the design process; e.g., the roles played by project participants;
the differences of influence between participants; and, the
sequences of activities enacted during the design and
implementation processes ([1], [3]).

Our research strategy is based on two complementary
approaches: (i) analysis “by hand”; and, (ii) “automated”
analysis of the online discussion corpora (i.e., the messages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW’06, November 4-9, 2005, Banff, Ca. Copyright 2006 ACM.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

23

exchanged by the designers). The analysis “by hand” has been
conducted to preliminarily test the validity of the quotation
model to reconstruct the thematic coherence of design-oriented
discussions and to analyse the design process. Based on these
results, we automate parts of the structure and content
processing. Currently under development is software to
automatically identify quotation links between messages. We
also hope to construct software to automatically analyse themes
of discussion (cf., [6]).

In this communication we present the “by hand” analysis,
discuss the validity of the quotation model for online
discussions, and outline potential implications for architecture of
future design tools.

2. QUOTING-BASED VISUALIZATION
OF ONLINE DISCUSSIONS
2.1 Thematic coherence in online discussions
A large part of OSS design takes place in a discussion space
where messages are exchanged between participants. A central
aspect of thematic coherence concerns how any given message
connects to previous messages. In face-to-face conversation,
coherence relations are based on connections between
conversational “turns” in a dialogue. For example, a question
can constitute one turn and an answer another; a question-
answer pair constitutes a coherent link within a conversation.
Coherence in face-to-face conversation can be seen as actively
constructed by participants across turn-taking. In contrast to
face-to-face situations, in online conversations a message can be
separated both in time and place from the message it responds
to. Processes of turn-taking and topic (theme) maintenance are
subject to disruption and breakdown [7]. In online discussions,
messages are posted by geographically-distributed participants
in an asynchronous manner. When examined chronologically –
i.e., in the order received by the system -- there are indeed
disrupted turn adjacencies: turns that are intended as responses
or follow-ups to previous turns, do not occur temporally
adjacent to initiating turns [7]. This sort of disruption is a
violation of sequential coherence one normally expects in face-
to-face conversation (pragmatic principles of adjacency and
relevance). This can create potential confusion that users seek to
minimize by adopting compensatory strategies for
conversational linking. Quotation is one such strategy.

2.2 An alternative approach to the
threading-based representation of online
discussions
Quotation is a widely used technique in emails dialogues and
forum discussions [8]. Quotation creates the illusion of
adjacency: it incorporates portions of two turns within a single
message. It maintains context (i.e., portions of previous
messages) and so can be used to retrace the history of a
conversation [7].

As far as we know, there have been only two attempts to
develop tools to automatically identify quotations and to
represent online conversations based on quotation links between
messages: CONVERSATION MAP [9] and a prototype inspired by
CONVERSATION MAP called ZEST [10]. The thread-based
approach is still the main basis of tools for organizing online
discussions. Mixed models of visualization combine this

approach with the sequential model (e.g. [11]). These
representations are useful for analyzing interactional roles in
conversations. They provide a picture of the centrality (versus
periphery) of participants in the community of posters (e.g.,
[12]). Central participants may be considered as those who tend
to get more replies to their posted messages (see [13]). However
their relevance for identifying and visualizing the thematic
coherence of online discussions may be questioned on the basis
of computer-mediated communication studies presented above.

In a previous paper we argued that our quotation-based
representation appears to be more relevant than a threading
model for reconstructing the thematic coherence of design-
related online discussions. Our analysis of quotation practices
allows us to compare a representation of PEP-related online
discussions (Figure 1) with a representation based on threading
or “reply-to” links between messages (Figure 2). In the figures,
the circles or squares represent email messages (labeled with an
arbitrary number). Arrows joining the circles symbolize either a
“is-a-reply-to” or a “is-quoted-by” link between two messages.
The circles or squares are displayed differently to represent the
theme (i.e., the different design problems) addressed by the
messages. Using the reply-to links to partition the messages
(Figure 1), it appears to be the case that the conversation is
fragmented into several threads. This analysis by threads also
corresponds to the way in which the discussion is archived on
the web (at the URLs cited above). The quotation-based
visualization (Figure 2) reveals a distinctly different
organization of the messages. The thematic coherence of the
discussion, especially regarding Theme 1 (T1), is better
represented by the quotation-based links (Figure 2) than by the
reply-to links (Figure 1). In this quotation-based representation
of discussions (Figure 2) all of the messages are connected
together. Closer examination of the message contents reveals
that the messages that are unlinked in Figure 1 are pivotal to the
overall discussion. The longevity of discussion themes is
dependent on its relevance to the PEP. In general, in design
discussions, discussion themes do not dissipate over time. This
is one way in which design discussions differ from open online
discussions where discussion themes general do disappear over
the course of an online exchange [7].

 Figure 1: Threading based representation
of the links between messages PEP 279

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

24

Figure 2: Quotation-based representation of the links

between messages PEP 279

3. SOCIAL INTERACTIONS,
TEMPORALITY AND ACTIVITIES IN
DESIGN ORIENTED ONLINE
DISCUSSIONS
We used this quotation-based visualization to investigate the
social interactions, the temporality, and the design-related
activities of the online, design discussions.

The social interactions are represented using a quotation-based
visualization of discussions in which participants’ roles are
highlighted (Figure 3). Messages are labelled with the project
roles of the posters. Three important, project roles -- related to
the PEP process -- in the Python community have been
identified [14]: (1) the project leader; (2) the administrators,
whose role is to maintain the code base, the documentation, and
the PEP process; and, (3) the developers. To distinguish levels
of participation (high or low participation, HP or LP) in the
online discussion, we have divided the population into two
groups according to the median number of messages posted.
Figure 3 shows that the patterns of quotation -- sequential versus
branch structure -- tend to correspond with the social position of
the poster in the Python project: (1) a branching structure (when
multiple messages quote from a single message) is generally
initiated by a message posted by either the project leader or the
PEP’s champion (the one who proposed the new idea and wrote
the PEP); (2) High-participant Administrators are usually the
ones to post messages that close a line of discussion; (3)
sequential structures tend to alternate between messages posted
by administrators and messages posted by developers. Thus a
participant’s assigned role in the project organization affects
who responses to the participant in the online discussion and,
therefore, influences the unfolding of the design process within
the discussion space.

Figure 3: Status and position in the discussion PEP 279

We have examined the temporality of the discussions by
ordering the messages chronologically (according to the time
their were received by the server). We note that several clusters
of messages can be discerned in which all of the messages of a
cluster arrive within an hour of one another. These “quasi-
synchronous” exchanges are usually focussed on a single theme
of discussion. Examining the sequencing of these quasi-
synchronous exchanges reveals a specific ordering of design
steps taken by the community.

Finally, using a methodology of content analysis [15], we have
analyzed the sequences of quotations and comments of the
discussion to understand the “work flow” or design-related
activities of the community’s design process [1].

4. IMPLICATIONS FOR TOOLS AND
FURTHER WORKS
Our results may have some implications for the design of tools
for CSCW, especially for notification tools [18]; design-
rationale tools [16]; and, organizational memory tools [4]; and
for tools supporting large scale research on OSS development.

Our representation of online discussions highlights quotations
between messages rather than simply their “reply-to” links. The
quotation-based representation provides a means to visualize and
analyze both the thematic coherence and the social dynamics of
online discussions. Until now, most tools for organizing and
visualizing online discussions have been threading-based. We
believe that a quotation-based representation could provide a
promising new approach for the design of CSCW tools.

Our quotation-based representation might be enriched by several
user-adaptable functionalities inspired by our three levels of
analysis (social, temporal and design-related). By automating
some of our analysis methods, one might build a tool to display,
for instance, quoted messages, messages that have been quoted
multiple times, or beginning, branching messages that might be
pivotal; e.g., those posted by the project leader, the champion, or
the administrators; messages containing multiple quotations;
messages that have been deeply quoted in discussions; etc. A
tool designed to perform our temporal analysis might display
only messages that have been quoted in the past day; or
messages that have led to major synchronous activity. All these
characteristics can be find automatically in discussions. We

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

25

believe that tools based on our analysis methods could be
helpful for developers, new comers or lurkers to find relevant
information and facilitate organizational memory.

We imagine a design rationale tool that could display sequences
of quotations and comments that are linked to argumentation.
Such a tool might make explicit the design rationale, i.e., the
reasoning behind the design of a software artifact. By making
their rationales explicit, designers will be able to keep track of
past decisions and communicate these rationales to others
outside the design team. Two approaches could be used to
develop this kind of tool. The first approach would require users
to tag messages to categorize the content and design rationale
expressed in the messages [17]. The main shortcoming of this
approach is that it creates an added task for the users. The
second approach would be to construct an automatic discourse
tagger to analyze automatically the themes of discussion and
patterns of argumentation, an admittedly difficult task akin to
rhetorical structure parsing [6].

5. REFERENCES
[1] Barcellini, F, Détienne, F., Burkhardt, J.M., et Sack, W.

(2005). Thematic coherence and quotation practices in OSS
design-oriented online discussions. In K. Schmidt, M.
Pendergast, M. Ackerman, et G. Mark (Eds.) Proceedings
of the 2005 International ACM SIGGROUP (pp 177-186).
New York, USA: ACM Press.

[2] Sack, W, Détienne F, Burkhardt, J.M., Barcellini F,
Ducheneaut, N, and Mahendran D. (in press). A
Methodological Framework for Socio-Cognitive Analyses
of Collaborative Design of Open Source Software.
International Journal of Computer Supported
Collaborative Work, special issue on Distributed Collective
Practices.

[3] Barcellini, F, Détienne, F., Burkhardt, JM., Sack, W.
(2005). A study of online discussions in an Open-Source
community : reconstructing thematic coherence and
argumentation from quotation practices. In Van Den
Besselaar, P., De Michelis, G., Preece, J., Simone, C. (Eds)
Communities and Technologies2005 (pp 301-320),
Dortmund, The Netherlands, Springer.

[4] Sauvagnac C., and Falzon, P. (2003). Organizational
memory: the product of a reflexive activity. The
International Journal of Cognitive Technology, 8(1), 54-60.

[5] Ripoche, G., and Sansonnet, J-P. (in press). Experiences in
automating the analysis of linguistic interactions for the
study of distributed collective. Journal of Computer
Supported Collaborative Work, special issue in Distributed
Collective Practices.

[6] Marcu, Daniel (1997) The Rhetorical Parsing,
Summarization, and Generation of Natural Language

Texts. Ph.D. Dissertation, Department of Computer
Science, University of Toronto, Toronto, Canada,
December 1997

[7] Herring, S. (1999) Interactional Coherence in CMC. In
Proceedings of the 32nd Hawaii Conference on system
sciences, 1999.

[8] Eklundh, K.S, and Macdonald, C. (1994) The use of
quoting to preserve context in electronic mail dialogues.
IEEE Transactions on Professional communication, vol.37,
n°4, (pp197-202).

[9] Sack, W. (2000) Conversation Map: A content-based
Usenet newsgroup browser. In Proc IUI 2000, ACM Press,
233-240.

[10] Yee, K-P. (2002) Zest: discussion mapping for mailing
lists. CSCW 2002 (demo).

[11] Venolia, G., and Neustaedter, C. (2003) Understanding
sequence and reply relationships within email
conversations : a mixed-model visualization. In
Proceedings of CHI 2003, April 5-10, Florida, USA.

[12] de Souza, C. R. B., Froehlich, J., & Dourish, P. (2005)
Seeking the Source: Software Source Code as a Social and
Technical Artifact. ACM International Conference on
Supporting Group Work (GROUP 2005), pp: 197-206.

[13] Viégas, Fernanda B., Marc Smith. (2004). Newsgroup
Crowds and AuthorLines: Visualizing the Activity of
Individuals in Conversational Cyberspaces. In Proceedings
of the 37th Hawaii Conference on system sciences.

[14] Mahendran, D. (2002) Serpents and Primitives: An
ethnographic excursion into an Open Source community.
Master’s Thesis, School of Information Management and
Systems, UC Berkeley, May 2002.

[15] d’Astous, P., Détienne, F., Visser, W., and Robillard, P. N.
(2004). Changing our view on design evaluation meetings
methodology: a study of software technical evaluation
meetings. Design Studies, 25, 625-655.

[16] Moran, T. P., Caroll, J. M. (1996) Design rationale:
concepts, techniques, and use. Mahwah, NJ, USA:
Laurence Erlbaum Publisher.

[17] Kirschner, P.A, Buckingham Shum, S.J., and Carr C. S.
(2003) Visualizing Argumentation: Software Tools for
Collaborative and Educational Sense-Making. Springer-
Verlag: London.

[18] Carroll, J., M., Neale, D., C., Isenhour, Philip; L., Rosson,
M.B., McCrickard, D.S. (2003). Notification and
awareness: synchronizing task-oriented collaborative
activity. IJHCS, 58,605-632

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

26

Supporting harmonious cooperation in global software
development projects

Anders Sigfridsson
Interaction Design Center

Engineering Research Building
University of Limerick, Ireland

+353 86 23 33 625
anders.sigfridsson@ul.ie

 Henrik Dahlgren
BassetLabs

Allén 6C P.O. Box 1156
SE-172 23 Sundbyberg, Sweden

+46 70 420 7657
henrik.dahlgren@bassetlabs.com

ABSTRACT
In this paper we present the results from a field study at one site
that is part of a large, multinational organization. The site is
devoted to software development in cooperation with other,
geographically distant sites in the same organization. Our focus is
the cooperation between the different sites on a developer level
and what prerequisites and tools are essential for this
cooperation’s potential of being harmonious. The purpose is to
evaluate what tools, methods, and strategies are most promising to
apply for managers assigned to organize distributed software
development projects. The results indicate that the necessary
support needed for harmonious cooperation includes telephone-
and video conference tools and text-based communication tools
such as e-mail, instant messaging, and chats. Supplementary face-
to-face meetings such as kick-off meetings, recurring co-located
meetings, and inviting experts from remote sites are also needed.
As are complementary tools and strategies such as file sharing and
version tracking tools, iterative development methods, project
status tracking and communication of progress, and common
spoken language in all sites. But in the end it is the individuals
themselves, with their social competence, preferences, and
relationships, who determine whether there will be cooperation or
not. They have to actively choose to use the available supportive
tools and assistance. Our conclusion is that harmonious
cooperation depends on individual developers being conscious of
the known challenges of cooperating across distance and actively
adapting their personal work practices to that knowledge.

Categories and Subject Descriptors
K.6.3 [Management of Computing and Information Systems]:
Software Management – software development, software process.

General Terms
Management, Human Factors.

Keywords

Global software development, cooperation, support, tools,
strategies, field study.

1. INTRODUCTION
The process of developing a large software system is a
cumbersome and complex one, in view of the fact that it includes
the combined work of many people of different professions - from
system designers and programmers to domain experts and
managers - in a field that is uncertain and intricate. Certain
characteristics of software development, such as large scale,
uncertainty, and complex interdependencies, make control and
management crucial if a workforce is to be engaged in an efficient
way [6]. The trend today is that software development to an
increasing extent is being distributed among geographically
dispersed sites, evolving into a phenomenon that is often referred
to as “global software development”. When two or more remote
sites are to cooperate across a distance in the development of
software the strain on the cooperation and the need for
coordination is even more significant [5, 7].

According to Lanubile et. al. [7], the three main challenges in
global software development are the lack of informal
communication, the cultural differences between distant sites, and
the difficulty of building trust among remote developers. In
current practice, these and many other issues are often visible, and
together they amplify the difficulties of successfully organizing
distributed software development projects. There is also a large
plethora of tools, strategies, and methods that are often used in
global software development projects in an effort to overcome
these issues. For example, communication tools such as e-mail,
instant messaging, and various chat tools are often mentioned, as
are kick-off meetings and initial cultural training, and managerial
efforts like de-centralization of decision-making and
standardization of development environments [4, 7, 10].

The aim with this study was to examine the cooperation in actual,
day-to-day practice for individual developers who work in
distributed projects and to get an understanding of how the
distribution – i.e. issues such as those mentioned above - affects
this aspect, as well as what can be done to dampen the effects by
deploying diverse strategies, methods, and tools. We have
investigated what prerequisites and tools are essential for this
cooperation’s potential of being harmonious through a field study
at one software development office which cooperates with other,
distant sites on a daily basis. It is cooperation from the
developer’s point of view and what they perceive to be
harmonious cooperation that we have looked at, i.e. when we say

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CSCW’06, November 4-10, 2006, Banff, Alberta, Canada.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

27

“harmonious” cooperation we simply refer to situations where the
developers themselves do not view the necessary interactions with
remote sites as disturbing for their work. The objective of the
study was that the insights and conclusions regarding what makes
cooperation harmonious and what tools, methods, and strategies
are most promising to support this could be used as an approach to
organizing distributed software development projects.

2. THE STUDY
The study that is presented in this paper was conducted at a local
software development office in Umeå, Sweden, housing around
17 developers plus managers. The site is part of a large,
multinational organization mainly devoted to investment banking.
Part of the activities in the organization is development,
adaptation, and analysis of electronic access to markets and
trading desks around the world. It is these activities that the Umeå
site is participating in, which means that they must interact daily
with other sites within the organization around the world –
primarily in New York, London, and Tokyo – on both
development and management levels.

For this study, we interviewed a small number of experienced
developers, both individually and in one group interview. The
interviewees were carefully chosen in collaboration with the
Umeå site manager to reflect the different types of work that is
conducted at the site. The reason that we choose a small number
of experienced developers was that we wanted to avoid getting
caught up with issues that come from inexperience and also to
steer clear of project specific issues and be able to get a more
general idea of the work. The interactions with the participants
were mainly directed at gaining an understanding of their daily
work and their perceptions of the cooperation with other sites.

A comprehensive literature study in the field of global software
development was performed before the field study started. The
result from this were lists of known issues of cooperating in
distributed software development and common supportive tools
methods, and strategies that are available to overcome, counter, or
avoid those issues. At the site, the group interview was conducted
first, in an attempt to get an initial impression of the developers
work practice and what their view of issues and supportive tools,
methods, and strategies was. The lists deducted from the literature
study were not revealed during this event. Instead they were re-
designed afterwards to incorporate the insights that surfaced
during the group interview, so that, for example, some issues were
added while others were removed. During the individual
interviews we introduced our findings from the literature study
and the group interview. This then served as a ground for further
discussions with each of the individuals, which allowed us to
develop our understanding even more in detail.

3. VITAL SUPPORTIVE TOOLS,
METHODS, AND STRATEGIES
3.1 Communication and social possibilities
The individual issues that were deemed the most significant all
mainly affect communication and social opportunities and
abilities, albeit representing different approaches to these aspects.
There are several supportive tools, methods, and strategies aimed
at these aspects that are seen as effective and thus considered
vital. Above all, the techniques in the category communication
tools are rated as effective and do aim to provide communication

opportunities, both formal and informal. Therefore, telephone-
and videoconference possibilities as well as tools that support
text-based informal communication – e.g. instant messaging, e-
mail, and chats – are the most vital tools indicated in the study.
These also provide the possibilities of building social relationships
with participants in other sites. Taken as a whole, providing good
communication channels and hence the possibilities of mimicking
the casual interactions that face-to-face cooperation offers and of
building a coherent social network within and between projects,
has been expressed as the most vital supportive strategy in our
study.

Although none of the members in the face-to-face opportunities
category are among the ones considered most effective, the things
that were said about them during the interviews combined with
the fact that lack of formal face-to-face meetings is one of the
most significant issues makes them essential as well. Taking into
account what has been said during the interviews, it is not just the
coordination potential that kick-off meetings, co-located meetings,
or inviting experts from remote sites to participate in local work
offers that makes them vital – the social potential is a major
contributor to their importance.

3.2 Coordination and technical support
File sharing and version tracking tools, project status tracking and
communication of progress, and iterative development methods
were believed to be effective tools and strategies to support
cooperation. They all mainly target coordination and technical
aspects of the work in distributed projects. However, the findings
regarding issues do not highlight challenges in these areas as
particularly significant. Especially technical issues like version
conflicts and incompatibility problems are not deemed influential.
But it also has to be taken into consideration that all of these tools
and strategies are said to be very frequent in projects.

These and a few others – notably common spoken language in all
sites - are considered such an integrated part of the work
environment in distributed projects that they are taken for granted
by the developers. The communication tools belong to this group
too, and are also seen as very important. However, the fact that
these other tools and strategies are not explicitly considered vital
does not mean they are dispensable – they are such an integrated
part of the work environment that they influence what issues are
considered significant simply because no one pictured how things
would work without them. Although the respondents do not as
clearly request those aids as the communication tools or face-to-
face possibilities mentioned above, they are nonetheless important
for the work simply because they enable the daily cooperation
activities.

During the interviews, one of the respondents pointed out that it is
the combination of communication possibilities like instant
messaging, e-mail, and telephone conferences that are vital, not
the individual techniques by themselves. This point is a general
one and must be taken into account when considering what tools
and strategies are vital and not – focusing on providing the most
essential ones do not mean discarding all the other, but rather to
try reaching the emergent function of a combination. As a
consequence of this insight, the study shows that communication
tools and face-to-face opportunities are considered most vital,
while cooperative work tools such as file sharing and version
tracking tools, methodological efforts like iterative development,
efforts to enhance project awareness like project status tracking

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

28

and communication of progress, and strategic efforts like ensuring
common spoken language in all sites are obligatory present as a
transparent supportive scaffolding.

4. HARMONIOUS COOPERATION
4.1 Experience and consciousness
During the interviews, the respondents have repeatedly stated how
people learn to adapt their work practice to certain issues like
cultural differences and cooperating without a great deal of face-
to-face meetings. This has been exposed throughout the study as
well. For example, as to why cultural differences were not
considered a very significant issue people gave the reason that
they learned to adapt to the differences, and the same reason is
given for different time zones not being very influential.

Time, it seems, puts everything in perspective – individual
participants learn to adjust their efforts to overcome challenges
like cultural differences and counter the lack of informal
communication and formal face-to-face meetings; as projects
evolve the coordinators learn to navigate and structure them
around challenges like different time zones and achieving
appropriate levels of centralized or de-centralized decision
making; the organization as a whole grows more mature and
learns how to manage the interdependencies, knowledge, and
responsibilities so that known issues like unclear task distribution
and diverse market influence on different sites are avoided or at
least minimized.

The key in this chain of events is gaining and utilizing experience
on individual, project, and organizational levels. Gaining
experience is essentially becoming more and more aware of ones
surroundings and consciously acting in response to that
knowledge. When individual developers become more
experienced in working in distributed software development
projects they begin to work more and more consciously with
respect to what is needed for good cooperation. We use the word
“conscious” because what we mean is that they both become
aware of issues and how to overcome them, and begin to take
personal responsibility to adapting their work practice to this
awareness.

4.2 Achieving harmonious cooperation in
global software development
Working together harmoniously implies being aware of the
interdependencies with other activities and acting with respect to
that [8, 9]. In global software development, working together
harmoniously seems to include not only being conscious of and
acting in response to the interdependencies between remote sites,
but also being conscious of and acting in response to challenges
like cultural differences, lack of formal face-to-face meetings, and
impeded informal communication.

The necessary elements for achieving harmonious cooperation in
distributed projects therefore include not only providing the vital
communication tools together with supplementary face-to-face
opportunities and the obligatory environmental interior – i.e.
version tracking tools, common spoken language at all sites,
iterative development methods, etcetera – but also building and
retaining attentiveness of challenges and interdependencies on a
individual level. On a strategic and tactical level it is a matter of
providing the specific aids identified as vital and obligatory as
well as coordinating the projects according to the

interdependencies between sites and projects. On an operational
level it is about adapting the daily work practices to knowledge
about issues of cooperating across a distance. This means that, in
the end, it is the individual developers themselves who determine
whether or not there will be cooperation and they must actively
choose to make use of the available support for this.

4.3 Applying a corporate culture
The natural reaction for many to the points we make above is that
training is the solution. To a certain extent we agree with this; it is
certainly possible to build some awareness of known issues and
how to avoid them by educating people formally. However, we
believe that the results of this approach are very limited. Based on
what the participants of this study have expressed, formal training
in, for example, cultural differences, is not something that is vital
in achieving harmonious cooperation. Instead, the general opinion
has explicitly been that you need to experience the actual
situations to learn how to deal with them and that it is only then
that you can build the necessary consciousness. We can also find
theoretical support for this view. For example, Brown et al. [2]
metaphorically refers to knowledge as a tool in the sense that one
can only fully understand it through use and that using it means
adopting the belief system of the culture in which it is spawned
and used. From this point of view, learning is about enculturation
of the learners into authentic practices through activity and social
interaction. In other words, learning is best done through actual
experience and apprenticeships.

The organization that the Umea site is a part of has a strong
corporate culture and it has been stressed during the interviews
how important this is for good cooperation because it dampens the
impact of local differences and other issues discussed in this
paper. For example, the organization is actively spreading its
corporate culture to all offices within the company by transferring
experienced employees to new offices in an effort to make good
use of the collective experience and to help a new office to work
more consciously. Another aspect of the particular setting of the
Umea site also has to be noted. There is a relatively high degree of
stability regarding the sites and people the developers in Umea
have to cooperate with. The situation is such that after working for
a while in the organization the developers are able to form
personal relationships with people in other sites which continue
after the projects come to an end.

Our opinion about this situation is that what we in fact are seeing
is in essence the spreading of experience and consciousness
throughout the organization. Since the spreading of experience is
a by-product of building a corporate culture in the way we have
seen in this study, this creates the necessary experience, while the
stability gives individuals the chance to actually adapt to what
they experience. Instead of aiming solely for training as a way to
achieve what we have identified as vital for harmonious
cooperation, we suggest that strategies like those mentioned above
– i.e. pushing a strong corporate culture and creating as much
stability as possible in and between projects – are good examples
of ways to enable developers to work more consciously.

5. FURTHER WORK
Some findings that are similar to those of this study can be found
in the literature focused on the coordination and collaboration
mechanisms of open source software communities. For example,
Gutwin et al. [3] demonstrates how simple text based tools such as

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

29

email lists and chats are surprisingly effective coordination
mechanisms in open source projects. It is believed that the media
themselves have several characteristics that make them
appropriate for this – e.g. Gutwin et al. highlights the value of
public access and overhearing in implicitly building general
awareness and the idea of an active mailing list as a proxy for
identifying the appropriate people. However, it is only in
combination with the fact that the participants both voluntarily
and frequently use and rely on these tools that this is made
possible and successful. Further research into the open source
communities and the ways they collaborate might provide useful
insights regarding cooperation in software development which can
be transferred to corporate settings. We consider this area worthy
attention to continue the work that has been initiated here.

Also, there are some interesting theoretical concepts that might
provide useful extensions of the approach we suggest here. One
possible theoretical pillar might be found in Bannon [1]. He
argues that a user is not to be seen as a passive ‘factor’, but as an
active ‘actor’, a person who is part of a context and work
community and has motives and preferences, as well as expertise
and skill. One could make a similar argument here: we should not
view the software developers as passive and dim-witted by
thinking that so long as they have advanced tools to help them in
their social interactions they will be able to cooperate and will do
so harmoniously. Instead, the role of the tools is to readily provide
a framework for them to use – the crucial thing is consciousness
and, above all, motivation in the development team so that they
will use the framework and willingly cooperate.

6. CONCLUSIONS
The necessary support needed for harmonious cooperation
includes telephone- and video conference tools and text-based
communication tools such as e-mail, instant messaging, and chats.
Supplementary face-to-face opportunities such as kick-off
meetings, recurring co-located meetings, and inviting experts
from remote sites are also needed. As are complementary tools
and strategies such as file sharing and version tracking tools,
iterative development methods, project status tracking and
communication of progress, and common spoken language in all
sites.

The conclusion of this study is that harmonious cooperation
depends on individual developers being conscious of the known
challenges of cooperating with someone across distance and
actively adapting to that knowledge. In the end, it is the individual
developers themselves who determine whether or not there will be
cooperation and they are the ones who actively choose to make
use of the available support for this.

Our study has shown that experience is an essential part in this
process since it leads to consciousness and adjustment of personal
work practice. We have also seen that a stable environment during
and between projects and a strong corporate culture are good
examples of how this kind of experience can be spread throughout
the organization. Instead of applying the tools and strategies
identified as vital for supporting harmonious cooperation and to
then rely solely on training to achieve the necessary
consciousness, we suggest that strategies like pushing a strong

corporate culture and creating as much stability as possible in and
between projects are a good way to enable developers to work
more consciously.

7. ACKNOWLEDGEMENTS
The authors would like to thank the participants of the study and
the coordinators at the site who helped us in our work, as well as
all the people who read drafts of this paper and gave us
constructive critique and guidance. This applies especially to
Mikael Wiberg at Umea University, Sweden, for his supervision
of the study.

8. REFERENCES
[1] Bannon L. J. (1991) From Human Factors to Human Actors

– The Role of Psychology and Human-Computer Interaction
Studies in Systems Design. Chapter in Greenbaum J. & Kyng
M. (Eds.) (1991) Design at work: Cooperative design of
computer systems. Hillsdale: Lawrence Erlbaum Associates,
pp. 25-44.

[2] Brown J. S., Collins A. & Duguid P. (1989) Situated
Cognition and the Culture of Learning. Education
researcher, vol. 18, no. 1, pp. 32-42.

[3] Gutwin C., Penner R. & Schneider K. (2004) Group
awareness in distributed software development. In
Proceedings of the 2004 ACM conference on Computer
supported cooperative work, pp. 72 – 81, 2004.

[4] Hargreaves E., Damian D., Lanubile F. & Chisan J. (2004)
Global Software Development: Building a Research
Community. In ACM SIGSOFT Software Engineering Notes,
vol. 29, no. 5, September 2004, pp. 1-5.

[5] Herbsleb J. D., Mockus A., Finholt T. A. & Grinter R. E.
(2000) Distance, Dependencies, and Delay in a Global
Collaboration. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work, December 2000,
pp. 319-328.

[6] Kraut R. E. & Streeter L. A. (1995) Coordination in Software
Development. In Communications of the ACM, vol. 38, no. 3,
March 1995, pp. 69-81.

[7] Lanubile F., Damian D. & Oppenheimer H. L. (2003) Global
Software Development: Technical, Organizational, and
Social Challenges. In ACM SIGSOFT Software Engineering
Notes, vol. 28, no. 6, November 2003, pp. 1-4.

[8] Malone W. T. & Crowston K. (1990) What is Coordination
Theory and How Can It Help Design Cooperative Work
Systems? In Proceedings of the 1990 ACM conference on
Computer-supported cooperative work, October 1990, pp.
357-370.

[9] Malone W. T. & Crowston K. (1994) The Interdisciplinary
Study of Coordination. In ACM Computing Surveys, vol. 26,
no. 1, March 1994, pp. 87-119.

[10] Sarma A. (2005) A Survey of Collaborative Tools in Software
Development. ISR technical Report # UCI-ISR-05-3.
Institute for Software Research, University of California,
Irvine, March 2005.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

30

Supporting Software Development as
 Knowledge Community Evolution

Kumiyo Nakakoji1,2

1RCAST, University of Tokyo
4-6-1 Komaba

Meguro, Tokyo, 153-8904, Japan

kumiyo@kid.rcast.u-tokyo.ac.jp

Yasuhiro Yamamoto1
2SRA-KTL Inc.
3-12 Yotsuya

Shinjyuku, Tokyo, 160-0004, Japan

yxy@kid.rcast.u-tokyo.ac.jp

Yunwen Ye2,3

3Dept. of Computer Science
University of Colorado, Boulder

CB430 Boulder, CO. 80303

yunwen@cs.colorado.edu

ABSTRACT
We view software project as a knowledge ecology consisting of
three interrelated elements: (1) artifacts, (2) individual developers,
and (3) a community of developers. How developers relate with
each other in the community affects how they share knowledge
during the development and therefore impacts the overall quality
of the software system that have to be built through continuous
knowledge collaboration. This paper analyzes this social relation
and its impacts on software development, and presents an
approach to help developers make use of peer expertise by asking
and helping other developers. It then describes the STeP_IN
(Socio-Technical Platform for In situ Networking) framework to
illustrate the approach.

Keywords
Knowledge collaboration, knowledge community, software
development, reuse, community, socially aware communication,
socio-technical approach

1. SOFTWARE DEVELOPMENT AS
KNOWLEDGE COLLABORATION
The development of large-scale software systems is a social
activity, carried out through the collaboration by a group of
software developers. The social aspects of software development
have been studied mostly in the context of how developers and
users work together in designing systems [22], in the
organizational context of a software project [17], or in distributed
software development teams [8]. This position paper in contrast
focuses on the knowledge collaboration of software developers:
how developers can make use of peer expertise in collectively
creating the software system.
Software development is essentially a knowledge construction
process that needs knowledge in a variety of fields, which is
constantly changing. For example, application domains are
subject to rapid change; component libraries are continually
updated; new features and functionalities continue to be
introduced in programming tools and environments. Software
development can therefore be viewed as a learning process and
software developers have to constantly acquire new knowledge.
It may come as a surprise that software developers also need to
learn about the system that they are developing. One may argue
that since the software developer participates in the creation of the
system, he/she should know the system inside out. However,
because large scale software systems are created collaboratively
by many developers, not all developers, if any, would have
complete knowledge about the whole system. At the same time,

With the increasingly widely accepted view of software systems
as evolving entities, the percentage of incremental, continuous
development tasks in software development has risen quickly.
Such software systems need to be continuously developed with
iterative processes to adapt to the ever-changing user
requirements and execution environments. Coupled with the high
turnover rate in software industry, many software developers find
themselves working to make incremental changes to systems that
have been partially developed, or even are operating on a daily
base (such as those web-based systems) .
For software developers, software code is the ultimate knowledge
resource about the system. During the development process, they
intensively engage in recovering “implicit knowledge” embedded
within the code [11]. Due to the essential invisibility of software
code, however, the needs of creating documents that provide high
level descriptions of the code and the design rationale have been
recognized.
Code and documents, however, are often still not enough.
Documents often do not exist or are not in sync with the code.
Moreover, a culture exists in software development that prevents
developers from sharing knowledge over the entire source code.
As LaToza et al. observed, “implicit knowledge retention is made
possible by a strong, yet often implicit, sense of code ownership,
the practice of a developer or a team being responsible for fixing
bugs and writing new features in a well defined section of code”
[11]. Much of the knowledge about the code and the design
decisions remain in the head of developers. This “symmetry of
ignorance” [4] within a development team is neither a problem
nor an accident; it is a matter of fact in software development,
Supporting knowledge collaboration among software developers
thus becomes an important research topic in supporting software
development. This paper first conceptualizes software project as a
knowledge ecology that has intertwined and dynamically
changing relationships among software artifacts (code and
documents), software developers, and developer community,
followed by the analysis of social factors in supporting knowledge
collaboration in software development based on this
conceptualization. Finally, the paper describes the STeP_IN
(Socio-Technical Platform for In situ Networking) framework that
supports knowledge collaboration in software development by
taking into full consideration those identified social factors.

2. THREE ELEMENTS IN SOFTWARE
DEVELOPMENT
We view software project as a knowledge ecology that consists of
three interrelated elements: (1) artifacts, (2) individual developers,
and (3) a community of developers (Figure 1). A group of

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

31

developers engaging in software development can be viewed as a
knowledge community, defined as a group of people who
collaborate with one another for the construction of artifacts of
lasting value [2]. In a knowledge community, people are bonded
through the construction of common artifacts.

Figure 1: Software Project as a Knowledge Ecology Consisted of
Three Interrelated Elements
The community element is essential when viewing software
development as collective creative knowledge work. The roles of
individual developers, both formally assigned ones and informally
perceived ones, change over time during a project. The social
relationships among the developers grow through their
engagement in the project, affecting how they collaborate,
communicate, and coordinate with one another, which results in
different ways of sharing knowledge.
Because knowledge sharing is indispensable in software
development, the quality of the resulting software depends not
only on the skills and knowledge of individual developers, but
also on the roles and social relationships among the developers. In
other words, the quality of the software to be developed is
determined not only by the sum of each developer’s knowledge,
but also on the social relationships of software developers that
impacts the sharing of knowledge during the development process.
All three elements constantly evolve during the process of
software development. Artifacts change over time throughout the
development. Individual developers—or, more precisely, what
individual developers know—grow by gaining experience through
the engagement with artifacts and peer developers. The
community of developers changes when new developers join, old
developers leave, and both the assigned and perceived roles of
members change.
Existing studies on understanding and supporting software
evolution have primarily focused on the evolution of artifacts.
More recent work has started to look at how individuals change
through learning about the system. People learn by reading source
code and documents, and they learn by asking peers questions.
They also learn by solving new problems and experiencing
unfamiliar situations. Their old knowledge is replaced with new
knowledge and is restructured during the development process.
In contrast, not much has been studied on the aspects of the
evolution of the developer community in the context of software
development [15]. A community evolves through individual
activities in software development that result in either the change
of software artifacts or the individual growth of knowledge about
the system. This paper views the evoluationary process of a
community from the following three relationships (Figure 2).
(1) The relationship of an individual with artifacts. How one
relates with artifacts is concerned with what knowledge, expertise,
and experience the individual has on what artifacts. This

information is useful in identifying a set of people who are likely
to have expertise with a certain artifact.
(2) The relationship of an individual with other developers. How
one relates with other individuals impacts social relationships
among developers. This information helps a developer determine
whom to ask for help about a certain artifact as well as decide
whether and how to respond to a question being posed by an asker
(Figure 3).
(3) The relationship of an individual with the community as a
whole. How one relates to the community is concerned with that
individual’s role within the community: whether he/she is a
peripheral member, a core member, or a member in between. This
relationship helps a developer decide how much he/she should
contribute to the community by gaining trust and social reputation
within the community. One’s role evolves within a community
through legitimate peripheral participation [21]. By looking at
how and what a developer’s peers who are closer to the core of
the community do within the community, the developer gradually
acquires skills through learning, and develops his/her identity
within the community.

Figure 2: Three Aspects of the Community's Evolutionary Process

3. SOCIAL FACTORS IN SOFTWARE
DEVELOPMENT
To support software project as a knowledge ecology that consists
of the interrelationship among software artifacts, individual
developers, and developer community, we have focused on the
following aspect: how to help developers make use of peer
expertise in development activities.
A number of researchers have already recognized the needs of
using the expertise of other software developers. Berlin has found
that expert developers are experts not only because they have
more expertise but are able to use other experts more [1]. Several
systems, notably Expertise Recommender [12] and Expertise
Browser [13] that help software developers to find experts, have
been proposed in the past years.
Finding experts, however, does not necessarily lead to the
acquisition of their expertise [23]. As knowledge resources,
experts are different from other resources that are things. “A thing
is available at the bidding of the user—or could be—whereas a
person formally becomes a skill resource only when he consents
to do so, and he can also restrict time, place, and method as he
chooses” [9].
Thus, when peers’ expertise becomes critical resources for a
programming task, simply knowing who has the expertise is not
enough. The expertise seeker (i.e., asker) needs to establish a
communication channel with the potential expertise providers
(i.e., helpers) and asks the question. The expertise providers have
to consent to engage in the communication with the asker to share
their expertise. The communication channels used, the contents of
the question and answer, the ways the questions is asked and the

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

32

answers provided, as well as the timings of questioning and
asking depend on a set of perceived social variables.
Awareness. Because asking a question implies that the asker is
missing some knowledge, the asker needs to take a risk of looking
ignorant. Studies show that askers demonstrate different asking
behaviors when they are in public or in private or communicating
with a stranger or with a friend due to the different levels of
feeling psychological safety of admitting the lack of knowledge
[3]. Research has also shown that previous social interactions
between an asker and a helper leads to easier quality judgment,
and helps the interpretation of answers [10].
Access. Social factors in accessing expertise from peers include
how and when an asker asks for help from a potential helper. A
study has concluded that collocated developers feel socially
comfortable to initiate contact because they know each other,
know how to approach them, and have a good sense of how
important their question is related to what the experts seem to be
doing at the moment [8]. Such social cues are heavily used in
face-to-face communication through informal interruptions
among software development project team members [11].
Rhetorical strategies, linguistic complexity and word choice of the
question all influence the likelihood of others responding to a
question [10]. Making a personal appeal (e.g. “I need help”) in the
question results in better and faster responses than making non-
personal appeals (e.g. “I have a problem that might be of interest
to you”) [3]. The expectation of how soon a help would come has
been found to be shaped by the history of interactions with the
other party [20].
Interruption. Answering, or providing help, consumes the time
and attention of the helpers and interrupts their primary task. An
interruption is regarded as an unexpected encounter initiated by
another person, that disturbs “the flow and continuity of an
individual’s work and brings that work to a temporary halt to the
one who is interrupted” [19].
Collective attention cost. In addition to the cost of the helpers,
considerable collective cost could also be incurred. Mailing lists
have been heavily used as a means for mediating peer-to-peer
knowledge sharing in software development. All the people who
have received the question through a mailing list would at least
spend some attention about the question before they decide not to
answer. When the number of people who receives the question
becomes large, the collective attention consumed also becomes
considerably large. Attention is quickly becoming the scarcest
resource in our society [7].
Social capital. Upon receiving a question, the expert developers
need to decide whether and how to engage in collaboration with
the asker by expending their precious time and contributing their
expertise. This decision is primarily based on their perceived
social relationship both with the asker and with the social
environment at large. The theory of social capital provides an
analytic framework to understand this decision-making process
[5]. Social capital is the “sum of the actual and potential resources
embedded within, available through, and derived from the
network of relationships possessed by an individual or social unit”
[14]. It is regarded as important as financial capital and
intellectual capital for an individual as well as a social
organization because it would promote cooperation and reduce
transaction cost [6]. While helping is costly, taking no action also
incurs social cost. Saying “no” untactfully to an asker deteriorates

the expert’s relation with the asker, and affects negatively the
expert’s social reputation among other peers because it deviates
from social norms [18].

4. AN APPOACH: STeP_IN
We have developed the STeP_IN (Socio-Technical Platform for
In situ Networking) framework to help developers to use peer
expertise based on the above considerations [23]. The goal of
STeP_IN is twofold: (1) to increase the ease of accessing peer
experts by asking questions, and at the same time (2) to reduce the
total cost of experts being interrupted and that of providing help.
We try to achieve this goal by creating an ephemeral knowledge
network, called a Dynamic Community (DynC) to connect an
expertise seeking developer with other developers who have not
only technical expertise but also good social relations with the
expertise seeker, and support their collaboration with socially
aware communication mechanisms.
STeP_IN presupposes a knowledge workspace, which consists of
a group of developers, artifacts (their code and related documents),
and the three types of relations among them (Figure 3): artifact-
artifact, developer-artifact (a developer’s technical profiles), and
developer-developer (a developer’s social profile). The
framework uses those relations to retrieve relevant artifacts for a
developer’s task at hand, and then to create a DynC for the
developer first by identifying experts for the task, and then by
selecting experts based on the developer’s social profile.

Figure 3: Knowledge Workspace and Relations in STeP_IN
The framework is instantiated in Step_IN_Java (SIJ) for
supporting Java developers (see Figure 4) [23]. In SIJ, a Java
developer can (1) search for methods, (2) read documents and
examples, and (3) ask questions about a specific method to
selected experts through the formation of a DynC. See [23] for
more details.

Figure 4: STeP_IN_Java
By using SIJ, developers do not need to have the awareness of
who are the experts for the problem that he/she has in seeking for
peer expertise. Potential shame of ignorance in asking a question
is reduced because only experts with established good
relationships are selected. The established social relationships
also increase the likelihood for the asker to obtain timely

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

33

responses because such social relationships are likely to motivate
the experts to actively engage in communications with the asker.
A DynC in SIJ complies with the principle of asymmetrical
disclosure of information. The membership is not revealed unless
one explicitly posts a reply to the DynC. A member, therefore,
may leave the DynC (a social equivalent of saying “no”) at any
moment without being publicly known. Due to this principle, no
participation does not constitute the violation of social norms,
which is punishable by the “iron hand of social pressure” of
enforcing required individual behavior in a social unit [18]. On
the other side, because replying to the DynC reveals the identity
of the sender of the message, the DynC members’ contribution is
publicly acknowledged and can lead to the improvement of
motivation [5].
This socially aware mechanism that allows unwilling peer
developers exit socially safely has two implications. The
remaining peers are the participants of willing, and hence the
expertise sharing becomes more effective. From the perspective
of the asker, knowing that other developers could easily exit,
he/she feels less pressured to post a question because the
availability is controlled by the experts.
Unlike a mailing list, because questions are only sent to DynC
members, other developers who have neither interest nor expertise
on the topic are not disturbed. The collective cost of attention and
interruption is reduced by the reduction of the number of
receivers.

5. Summary
This paper analyzed the social factors that affect the knowledge
sharing practice during the software development from the
perspective of viewing software project as evolving knowledge
ecology. The STeP_IN framework was described to support the
use of peer expertise with socially aware mechanisms. The
framework was illustrated in the SIJ system that supports
knowledge collaboration among Java developers.

6. REFERENCES
[1] L.M. Berlin, "Beyond Program Understanding: A Look at

Programming Expertise in Industry," in Empirical Studies of
Programmers: Fifth Workshop, C.R. Cook, J.C. Scholtz, and
J.C. Spohrer, Eds. Palo Alto, CA: Ablex Publishing
Corporation, 1993, pp. 6-25.

[2] Cosley, D., Frankowski, D., Terveen, L., Riedl, J., Using
Intelligent Task Routing and Contribution Review to Help
Communities Build Artifacts of Lasting Value, Proc. CHI06,
ACM Press, pp. 1037-1046, 2006.

[3] R. Cross and S.P. Borgatti, "The Ties That Share: Relational
Characteristics That Facilitate Information Seeking," in
Social Capital and Information Technology, M. Huysman
and V. Wulf, Eds. Cambridge, MA: The MIT Press, 2004,
pp. 137-161.

[4] Fischer, G., “Symmetry of Ignorance, Social Creativity, and
Meta-Design,” Knowledge-Based Systems Journal, Elsevier
Science B.V., Oxford, UK, Vol. 13, No. 7-8, pp. 527-537,
2000.

[5] G. Fischer, E. Scharff, and Y. Ye, "Fostering Social
Creativity by Increasing Social Capital," in Social Capital,
M. Huysman and V. Wulf, Eds., 2004, pp. 355-399.

[6] F. Fukuyama, "Social Capital and Civil Society," presented
at IMF Conference on Second Generation Reforms,
Washington, DC, 1999.

[7] M.H. Goldhaber, "The Attention Economy," First Monday,
vol. 2, 1997.

[8] J. Herbsleb and A. Mockus, "An Empirical Study of Speed
and Communication in Globally-Distributed Software
Development," IEEE Transactions on Software Engineering,
vol. 29, pp. 1-14, 2003.

[9] J.D. Herbsleb and R.E. Grinter, "Architectures,
Coordination, and Distance: Conway's Law and Beyond,"
IEEE Software, vol. 1999, pp. 63-70, 1999.

[10] I. Illich, Deschooling Society. New York: Harper and Row,
1971.

[11] R.E. Kraut, W. Scherlis, M. Patterson, S. Kiesler, and T.
Mukhopadhyay, "Social Impact of the Internet: What Does It
Mean?" Communications of the ACM, vol. 41, pp. 21-22,
1998.

[12] T.D. LaToza, G. Venolia, and R. DeLine, "Maintaining
Mental Models: A Study of Developer Work Habits,"
presented at Proceedings of International Conference on
Software Engineering, Shanghai, 2006.

[13] FD.W. McDonald and M.S. Ackerman, "Expertise
Recommender: A Flexible Recommendation System
Architecture," Proceedings of CSCW 2000, 2000.

[14] A. Mockus and J. Herbsleb, "Expertise Browser: A
Quantitative Approach to Identifying Expertise," in
Proceedings of ICSE02. Orlando, FL, 2002, pp. 503-512.

[15] J. Nahapiet and S. Ghoshal, "Social Capital, Intellectual
Capital, and the Organizational Advantage," Academy of
Management Review, vol. 23, pp. 242-266, 1998.

[16] Nakakoji, K., Ohira, M., Yamamoto, Y., Computational
Support for Collective Creativity, Knowledge-Based
Systems Journal, Elsevier Science, Vol. 13, No. 7-8, pp. 451-
458, December, 2000.

[17] Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., Ye,
Y., Evolution Patterns of Open-Source Software Systems and
Communities, Proc. IWPSE2002, ACM Press, Orlando, FL,
pp. 76-85, May, 2002.

[18] A. Pentland, "Socially Aware Computation and
Cmmunication," Computer, vol. 38, pp. 33-40, 2005.

[19] M.P. Robillard, W. Coelho, and G.C. Murphy, "How
Effective Developers Investigate Source Code: An
Exploratory Study," IEEE Transactions on Software
Engineering, vol. 30, pp. 889-903, 2004.

[20] A.M. Szoestek and P. Markopoulos, "Factors Defining Face-
to-Face Interruptions in the Office Environment," in
Proceedings of Conference on Human Factors in Computer
Systems, 2006, pp. 1379-1384.

[21] J.R. Tyler and J.C. Tang, "When Can I Expect an Email
Response? A Study of Rhythms in Email Usage," in
Proceedings of the Eighth European Conference on
Computer Supported Cooperative Work (Ecscw2003).
Helsinki, 2003, pp. 239-258.

[22] Wenger, E., Communities of Practice − Learning, Meaning,
and Identity. Cambridge, UK: Cambridge University Press,
1998.

[23] C. Westrup, "On Retrieving Skilled Practices: The
Contribution of Ethnography to Software Development," in
Social Thinking: Software Practice, Y. Dittrich, C. Floyd,
and R. Klischewski, Eds. Cambridge, MA: MIT Press, 2002,
pp. 95-110.

[24] Y. Ye, Y. Yamamoto, K. Nakakoji, Helping Programmers
through In Situ Networking of Peer Expertise, ICSE 2007
(submitted).

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

34

Distributed cognition in software engineering research:
Can it be made to work?

Jorge Aranda
University of Toronto

10 King’s College Road
Toronto, Ontario, M5S 3G4, Canada

1-416-946-8878

jaranda@cs.toronto.edu

Steve Easterbrook
University of Toronto
40 St. George Street

Toronto, Ontario, M5S 2E4, Canada
1-416-978-3610

sme@cs.toronto.edu

ABSTRACT
Distributed cognition is a theoretical and methodological
framework that considers social groups, their artifacts, and their
contexts as a single cognitive entity working towards the solution
of a shared problem. In this paper we briefly describe the
framework and consider its strengths and weaknesses as a
theoretical foundation for software engineering research. We
propose a series of techniques to address the methodological
problems that the application of the framework entails in our
research field. Finally, we present an ongoing exploratory case
study that aims to evaluate the adaptability of the framework and
of the techniques we propose here.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – programming
teams, software process models.

General Terms
Documentation, Experimentation, Human Factors, Theory.

Keywords
Distributed Cognition, Social Networks Analysis, Artifact
Analysis, Empirical Software Engineering.

1. INTRODUCTION
Research of software engineers at work –of their team structures,
interactions, and dynamics– has been largely performed as a
butterfly collection exercise: We have many interesting bits of
results, but we do not have a theoretical framework that links the
separate phenomena we observe, unifies our perspectives of the
domain, and allows us to generate testable predictions of software
projects and software teams. As a consequence, our findings are
not exploited to their full potential; and our research effort is often
spent exploring unviable or shallow hypotheses [6].

For illustration purposes, consider the extensive literature on
design and code inspections [7]. Although there have been dozens
of studies testing the phenomenon, they provide little insight as to
why it occurs, how can its beneficial effect be amplified, and what
could possibly be the consequence of performing inspections in
ways that have not been empirically tested. The reason, we claim,
is that until recently inspection studies were not designed over a
theoretical foundation that predicted their effects and addressed
these issues. If inspection researchers had a theory to guide their
work, they could have spent their efforts validating it and probing
its predictive power, yielding even stronger findings for our
domain.

The inspections literature is the norm, not the exception, when it
comes to theory building and theory validation in the software
engineering realm. To address this problem, we are evaluating the
capabilities of a theoretical framework (distributed cognition) and
its applicability to software engineering in an exploratory case
study. In this paper we present the gist of the distributed cognition
theory, its strengths and weaknesses with regards to software
engineering research demands, and the adaptations we feel are
necessary for such a framework to be convenient for our research.
We also briefly describe the case study we are conducting and the
roadmap we intend to follow in the near future.

2. DISTRIBUTED COGNITION
Distributed cognition is an interdisciplinary theoretical framework
designed to study cognition as it occurs in socially situated
contexts. Its unit of analysis is the functional system of people and
artifacts in charge of executing a cognitive task. That is, for a
distributed cognition researcher, the functional system is a single
cognitive entity, and although no element within this entity may
know how to solve the cognitive task, the full range of
interactions and transformations of information within the group
produce a workable solution to the cognitive problem at hand
[11]. Perhaps the classic example of distributed cognition research
is Hutchins’ study of sea navigation [4], where each person in the
navigation team of a ship performs a set of simple tasks based on
their role and the information available to them, and although no
person in the team has a full knowledge of the situation, the end
result is a calculation of the ship’s position in the world.

Although the distributed cognition framework is too extensive to
be summarized here, there are several properties about it worth
mentioning. First, it centers on the study of situated cognitive
activities, as opposed to artificial laboratory settings. According to

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

35

the theory, cognitive performance should not be analyzed in
constrained settings, since much of people’s real cognitive work is
done by the interaction among them and with their context.

Second, artifacts are viewed as embodied knowledge –they store
rules and processes that simplify the cognitive tasks of their users.
Therefore, analyzing the artifacts people use is an essential aspect
of the framework.

Third, identifying the paths that chunks of information follow to
reach the persons that need them is a key consideration of
distributed cognition work. Team members that work on a
cognitive problem start up with different bits of knowledge, and
an important step towards solving the problem is to share and
transform them, through mediated or direct communication, until
they reach the person who needs them.

Finally, the framework studies cognitive work on two different
levels: In the short term, it focuses on the actual resolutions of
cognitive problems; while in the long term, it analyzes the
learning and structuring activities that take place in teams.

Since its original formulation, the framework has been used to
examine a wide variety of groups and contexts, including
navigation [4], aviation [5], hotline centres, rescue teams, and, in
one occasion, software developers performing maintenance tasks
[1]. Unfortunately, so far there have only been a few teams
applying the framework and producing this research –most
notably Hutchins’ own research group at San Diego.

The distributed cognition framework is still far from being
generally accepted by any research community. In the CSCW
literature, a response by Bonnie Nardi to a paper on theories for
CSCW [3] critiques several theoretical and practical problems of
the framework [10]. She points out how its insistence on
ethnographic methods, and in particular of ethnomethodology,
causes an “anemic theoretical development”, which, she warns,
leads to “a withering of community in any field of study.” She
also notes that distributed cognition, as proposed by Hutchins and
in parallel to ethnomethodology, is suspicious of conceptual
elaboration, undermining communication and comprehension
efforts in the research community.

3. DISTRIBUTED COGNITION IN
SOFTWARE ENGINEERING
3.1 Applicability of the theory: Benefits and
drawbacks
The idea of conceptualizing software development as a socially
distributed, artifact-intensive cognitive activity is compelling, and
we believe the software engineering field could reap important
benefits by adopting this view. Here are some of the advantages
that result from appropriating this theoretical foundation:

• A systemic view of software teams, which includes the social
aspects of team collaboration and the study of the interactions
between humans and their artifacts. All software development
practices, documents, and tools, can be re-interpreted and
explored within this view.

• An abstraction of all interactions and uses of artifacts as
transformations of representational states across
representational media [4], which allows for evaluating the

effectiveness of alternative transformations by interpreting
software development techniques (such as code reviews, pair
programming, and prototyping) as transformations and
representations of information with particular coordination-
and communication-related strengths and weaknesses.

• An emphasis on analyzing artifacts both as embodied
knowledge and as communication media, leading to insights
about new and modified proposals for tools and languages to
capture and transfer that knowledge.

• A consideration of individual and organizational learning, role
specialization dynamics, and the context in which these
phenomena take place, which may prove to be a fruitful
perspective for software project management research.

Both in general, as a paradigm of the software development field,
and in particular, as a collection of techniques for improving the
context and tools in which cognitive-intensive activities take
place, distributed cognition seems to be a useful perspective to
adopt for software engineering research. However, if it is to
become a theoretical foundation for this research, it will need to
undergo significant methodological alterations to achieve
practicality.

We think software engineering research cannot be built over an
ethnomethodological foundation. Ethnomethodological studies
are necessarily constrained to the analysis of particular, detailed
phenomena, and the amount and variability of such phenomena in
software projects is overwhelming, even for small-scale projects.
It boggles the mind to consider how a comprehensive
ethnomethodological study, of the kind performed in the
distributed cognition literature, could be carried out in a large-
scale, geographically distributed, multi-year development project.

To turn the framework into a feasible alternative for this type of
research, we need methods that abstract away some of the details
of day-to-day phenomena and focus on detecting the essential
patterns of communication, team structure, and artifact use in
software projects. Before proposing any methods, however, we
must address the question of whether such departures from
ethnomethodology are compatible with the core ideas of
distributed cognition or, alternatively, ethnomethodological detail
is an essential component of the framework.

It seems to us that ethnomethodology is, though valuable,
accidental to the theory; a result of the background of the original
distributed cognition researchers. Just as it might be desirable for
cognitive scientists (but impractical under our technological and
practical circumstances) to examine every synapse in the brain,
analyzing every utterance of a problem-solving group is not
essential to the conceptualization of such group as a distributed
cognitive entity.

What, then, is essential? To get a basic picture of a distributed
cognitive system, at least the following elements need to be
analyzed:

• Group structure and patterns of group interaction

• Artifacts (tools, documents), and patterns of artifact use

• Nature and frequency of tasks

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

36

• Development of shared understanding, breakdowns and
recoveries

There are techniques, both from distributed cognition and from
other disciplines, to study these types of information. In the next
subsection we propose some of the most promising ones.

3.2 Social Network Analysis (SNA)
Sociologists have developed a collection of methods to analyze
the structural and dynamic qualities of social groups [13]. We do
not have the space to describe them in detail, but we would like to
mention a short list of them. To start, social network graphs and
simple SNA measurements such as centrality and density provide
an initial overview of the structure of a group. More elaborate
techniques, such as blockmodelling (for clustering nodes based on
their similarities in several networks) and positional analysis (for
simplifying the information in network data sets), among others,
complete the picture of group structures. Finally, other SNA-
inspired concepts, such as knowledge transfer and social capital,
add fruitful perspectives to the study of group interactions.

Some kinds of software projects are particularly amenable to SNA
methods –those for which communication takes place almost
exclusively in electronic form, such as most open source projects
[9]. In these cases, a full record of interactions is available to the
researcher, and one can track the proposal of new ideas, the types
and frequency of contributions, and the transfer of information
among project members. For other projects, particularly those in
which participants are collocated, many exchanges of information
and much knowledge of the social structure of the group is not
recorded electronically or in the project’s documentation, and
must be extracted directly from participants.

However, an important advantage of SNA methods for our
purposes is that the data they require are relatively easy to collect.
Conducting case studies to understand the full structure of
software development teams becomes feasible, and surveys of
wide ranges of software houses are also possible.

On the other hand, SNA methods were designed for sociological
goals, and they are often concerned with topics that are not of
immediate relevance to software engineering, such as power
relations, social support, and the job market. To our knowledge,
no study has yet analyzed in detail the implications of applying
the methods of SNA to the software engineering field.

3.3 Artifact analysis
Some of the most satisfying results from distributed and external
cognition studies are their analyses of artifacts people use to
perform their tasks. Through these analyses we discover how
cognitive activities are simplified by representing information and
rules “in the world”, rather than in people’s heads [15], and by re-
representing complex information in ways that simplify its
understanding [12].

For software development projects, artifact analyses may provide
insight into the efficacy and dynamics of document and tool use.
For documents (a category in which we include, for instance,
specifications, models, and emails), the researcher may find what
information flows among people, how expressive, efficient, and
useful are the representations, how quickly do they become
obsolete or out of sync with the world, and what are the skills
necessary to create them, modify them, and read them.

The thorough study of all documents used in a project is not
practical. But collecting data on the frequency with which
different types of documents are used and their relevance for each
group member provides us with useful patterns of interactions and
of team dynamics. It will also point to particularly relevant
documents, which may be studied with the more careful detail that
traditional distributed cognition literature displays.

For tools, of which every programming language, IDE, project
website, and debugger are examples, the researcher may uncover
cognitive benefits provided by new and existing proposals based
on the computational effort they demand from their users.

Tool analyses are detailed and time-consuming. However, once
performed, their findings are applicable for projects that use the
same tools under similar settings, paying off the investment
considerably.

3.4 Other approaches
We are evaluating the utility and practicality of other approaches
to support distributed cognition in software engineering;
approaches that in principle can be effective complements to SNA
and artifact analysis, but whose empirical validity is still not clear.

One such alternative is conceptual sketching [2], which may
provide rich details about the networks, perceptions, and mental
models of participants of a software team. Conceptual sketching,
however, may also be prone to misinterpretations and vague
results, which are, of course, undesirable characteristics in
software engineering research.

4. CASE STUDY
To test the viability of the distributed cognition framework and
the methodological adaptations we propose, we are conducting a
pilot case study on the release team of a software division at IBM.
This work feeds upon other studies of developers, such as that of
LaToza et al. [8], and other attempts to conciliate software
engineering and distributed cognition [14].

The release team is a high-impact, high-interaction volume group
within the division. It oversees product development and serves as
a bridge between “technical” and “business” people. This bridge
role requires from them, in addition to advanced project
management skills, a familiarity with at least two different
professional cultures, vocabularies, and goals. They are focal
enablers of shared understanding in the division, in the sense that
they are the main point of contact for developers to learn project
requirements, and for managers to learn their projects’ status.

For these reasons, the people at the release team have experienced
the need to create roles, team dynamics, and processes that help
them handle their responsibilities and coordinate the efforts of the
full division towards shipping their releases. We think the analysis
of these roles, dynamics, and processes, with a distributed
cognition lens, should be particularly insightful.

We designed our case study to explore these phenomena. We
decided to interview every member of the team with a structured
questionnaire that probes the techniques we described above. Our
interview has four main sections. First, we ask participants to
draw conceptual sketches of their team, of their interactions with
other teams, and of their division within and outside the company.
Second, we collect social network data, focusing on several types

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

37

of personal networks (information consumers and producers,
collaborators, mentors, and informal networks). Third, we ask
participants to describe the main activities they perform according
to their role, and to list the artifacts (documents and tools) that
they use to perform each of these activities. Finally, we ask them
open-ended questions about the goals of their role and their team,
success criteria, success factors, and an overall description of their
position in the company.

Each section of the interview will first be analyzed separately, and
their findings will later on be put together to detect patterns
among them. We designed the questionnaire in a way that allows
us to evaluate both the team itself and the methods we chose to
use, so we can refine them for future larger-scale case studies.

We are, at the moment of writing, in the data collection phase of
our case study. We have collected the data of nine participants,
with five more to go. We will proceed to analyze their conceptual
sketches and their social networks data separately, and to identify
the most relevant tools and documents they use in order to
perform an artifact analysis on them.

After refining our techniques with findings of this case study, we
plan to conduct at least two other studies in the same
organization. The first is an extension of our current study –
including data from the technical and business groups that interact
with the release team we are analyzing. The second is a replication
of our initial study, for a different release team, in an effort to
detect the patterns that arise from two divisions with different
cultures within the same corporation.

As an end result of these empirical studies we expect to obtain
two types of benefits: For the organization, we should be able to
produce recommendations for tool, document, and process
improvements. For our research team, we will have data regarding
the viability of the methodological approaches we describe in this
paper, and the adaptations we find necessary for their successful
implementation by our research community.

5. CONCLUSIONS
Distributed cognition is a fruitful foundation to support research
of software engineers at work, but if it is to be used for this
purpose, we need to overcome its methodological constraints with
alternatives such as the ones discussed in this paper. We believe
that, by rejecting the notion that we can (or should) capture and
analyze every detail of the interactions of developers, software
engineering research can benefit greatly from the perspectives the
theory provides while allowing studies of the social side of
software development to remain feasible.

We think that the methods and techniques we described above can
support empirical studies of this kind by substituting the
ethnomethodological studies of traditional distributed cognition
with workable solutions that still enable us to make key findings.
However, we do not have any data to back up these claims yet.
Our pilot case study, and possible subsequent studies, will allow
us to make an evaluation of which of the techniques we propose
are off the mark, which need some adaptation, and which work
well for our field.

6. ACKNOWLEDGMENTS
We would like to thank and acknowledge the financial support
from Bell University Labs at U of T. We are also very grateful to
IBM for supporting and cooperating with our study.

7. REFERENCES
[1] Flor, N.V., and Hutchins, E. Analyzing Distributed

Cognition in Software Teams: A Case Study of Collaborative
Programming During Adaptive Software Maintenance. In
Koenemann-Belliveau, J., Moher, T., and Robertson, S.
(Eds), Empirical Studies of Programmers: 4th Workshop,
1992.

[2] Goel, V. Sketches of thought. Cambridge, MA: MIT Press.
1995.

[3] Halverson, C.A. Activity Theory and Distributed Cognition:
Or what does CSCW need to DO with theories? Computer
Supported Cooperative Work, 11, 243-267, 2002.

[4] Hutchins, E. Cognition in the Wild. MIT Press, Cambridge,
MA, 1995.

[5] Hutchins, E. How a Cockpit Remembers Its Speeds.
Cognitive Science, 19, 265-288, 1995.

[6] Jørgensen, M., and Sjøberg, D. Generalization and Theory-
Building in Software Engineering Research. Proceedings of
the Workshop on Empirical Assessment in Software
Engineering (EASE’04), 2004.

[7] Laitenberger, O., and DeBaud, J.M. An encompassing life
cycle centric survey of software inspection. Journal of
Systems and Software, 50, 1, 2000.

[8] LaToza, T., Venolia, G., and DeLine, R. Maintaining Mental
Models: A Study of Developer Work Habits. Proceedings of
the International Conference on Software Engineering
(ICSE’06). (Shanghai, China, May 20-28, 2006).

[9] Madey, G., Freeh, V., and Tynan, R. The Open Source
Software Development Phenomenon: An Analysis Based on
Social Network Theory. 8th Americas Conference on
Information Systems, 2002.

[10] Nardi, B.A. Coda and Response to Christine Halverson.
Computer Supported Cooperative Work, 11, 269-275, 2002.

[11] Rogers, Y., and Ellis, J. Distributed Cognition: an alternative
framework for analysing and explaining collaborative
working. J. of Information Technology, 9, 2, 119-128, 1994.

[12] Scaife, M., and Rogers, Y. External cognition: how do
graphical representations work? International Journal of
Human-Computer Studies, 45, 185-213, 1996.

[13] Wasserman, S., and Faust, K. Social Network Analysis:
Methods and Applications. Cambridge U. Press, 1994.

[14] Ye, Y. Supporting Software Development as Knowledge-
Intensive and Collaborative Activity. Proceedings of the 2nd
Intl. Workshop on Interdisciplinary Software Engineering
Research (WISER’06). (Shanghai, China, May 20-28, 2006).

[15] Zhang, J., and Norman, D. Representations in Distributed
Cognitive Tasks. Cognitive Science, 18, 87-122. 1994.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

38

D-SNS: A Knowledge Exchange Mechanism Using Social
Network Density among Mega-Community Users
Masao Ohira1

1Department of Information Science,
Nara Institute of Science and

Technology
8916-5 Ikoma, Nara, 630-0192, Japan

masao@is.naist.jp

Kumiyo Nakakoji2, 3
2RCAST, University of Tokyo

4-6-1 Komaba, Meguro,
Tokyo, 153-8904, Japan

3SRA Key Technology Lab. Inc.

kumiyo@kid.rcast.u-tokyo.ac.jp

Ken-ichi Matsumoto1
1Department of Information Science,

Nara Institute of Science and
Technology

8916-5 Ikoma, Nara, 630-0192, Japan

matumoto@is.naist.jp

ABSTRACT
SourceForge.net (SF.net) is a large-scale online community
hosting a number of open-source projects. We regard SF.net as a
“mega community” because many of the members of SF.net are
members of one or more open-source projects, which themselves
form online communities. By regarding SF.net as a mega online
community, we have identified four types of social relationships
among the members of SF.net. This paper describes a mechanism
to exploit measurement of the density of social networks to
understand the nature of each type of social relationships in the
mega community. We present D-SNS (Dynamic Social
Networking System), which promotes knowledge exchange
among SF.net users, by using measurement results of the density
of social networks.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Group and
Organization Interfaces – collaborative computing, computer-
supported cooperative work, organization design, web-based
interaction

General Terms
Management, Measurement, Human Factors

Keywords
Mega community, knowledge exchange system, social network
analysis, density of social networks

1. INTRODUCTION
An online community such as open source software (OSS)
community is a means to create artifacts by collaboration among
community members. A number of studies have tried to
understand various aspects of online communities [1][2][3]. The
primary objectives of most of the studies are to reveal
characteristics of collaboration and communication in a single
community, and to construct methodologies and tools for
supporting online communities. An increasing number of recent
studies especially focus on social relationships among community
members using social network analysis (SNA) in order to support
activities of members in the community [4][5].

This paper presents our study that focuses on social relationships
among people in a particular kind of online community, a “mega
community.” A mega community is a large-scale online

community consisting of a number of smaller-scale communities.
The interesting aspect of a mega community is where a member
seems to naturally switch the role between a member of a mega
community and a member of a smaller community. In fact, many
of the members of a mega community we studied belong to more
than one smaller scale communities [6]. As the result, there are
different kinds of multiple social relationships in a mega
community. The goal of our study is to support creation of social
relationships suitable to various roles of members in a mega
community.

In the next section, we illustrate SourceForge.net1, which is an
online OSS development community, as a representative example
of a mega community. We then present the particularity of social
relationships observable in SF.net. Section 3 describes a way to
understand the nature of social relationships by measuring the
density of social networks. Section 4 discusses how we can use
measurement results of the density of social networks. We
introduce the prototype system called D-SNS (Dynamic Social
Networking System), that promotes knowledge exchange among
SF.net users, as an application of exploiting measurement results
of the density of social networks.

2. SourceForge.net: A MEGA COMMUNITY
SourceForge.net (SF.net) is a large-scale online community for
OSS (Open Source Software) development. People register in
SF.net to become a SF.net user. The SF.net users have a variety of
roles (e.g., developers, bug reporters, end-users, donators and so
on). The number of unique user accounts is over 1.2 millions in
March 2006.

We regard SF.net as a “mega community,” which is a community
for a number of OSS communities. An OSS community in SF.net
is called a “project”. Over one hundred thousand OSS projects are
registered on SF.net. SF.net users participate in activities of each
OSS project such as releasing OSS, discussing issues on OSS
development, reporting bugs and so forth.

The social relationships among SF.net users are created through
the activities. SF.net users communicate with each other by using
mechanisms such as bulletin board systems called forums,
mailing lists, and bug reporting (tracking) systems. They rarely
meet face-to-face. Here, social relationships are assumed to be

1 SourceForge.net, http://sourceforge.net

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

39

relations emerged from results of communications among SF.net
users.

There are discriminative social relationships in a mega
community such as SF.net, which are different from social
relationships in a single, common OSS community. Figure 1
simply illustrates four kinds of social relationships in SF.net as
graphs called social networks. Graphs for social networks
represent persons as nodes and relations between persons as lines
(edges).

Figure 1-(a) depicts the social relationships among all SF.net
users in case of viewing SF.net as a single community. The social
relationships are defined as the same as that in a common OSS
community.

Figure 1-(b) shows the social relationships in each project in
SF.net. A small circle represents an OSS project as a single
community. The social relationships are defined by relations
created in each project.

Figure 1-(c) represents the social relationships which user(X) has
in SF.net, in user(X)’s point of view. This type of social network
is called ego-centric network. User(X) has connections to five
users.

Figure 1-(d) shows the social relationships which user(X) has in
each project in SF.net, in the user(X)’s point of view. Because
user(X) participates in three projects, her/his social relationships
are represented as three social (ego-centric) networks.

In this way, different types of social relationships exist in a mega
community depending on ways of cutting off social relationships,
that is, standpoints of people involved in the mega community
(e.g., (a) is for administrators of a mega community, (b) is for
managers of communities, and so on.). It would be important for
people in a mega community to understand the nature of social
relationships according to own roles or positions.

3. MEASURING SOCIAL RELATIONSHIPS

3.1 Characteristics of Social Relationships
There are two social networks extremely representing
characteristics of social relationships. One is that called open

network in the left of Figure 2. The other is closed network in the
right of Figure 2.

The characteristics of open network and closed network are
described by [7] as follows.

Open Network: is a large, open, diverse, and externally
focused network. It is excellent for getting lots of new
information, learning about new opportunities, and
finding resources. However, it is not so good for building
consensus, producing consistent expectations, or
developing a sense of common mission (may be prone to
conflicts or tensions).
Closed network: is a small, closed, homogeneous, and
internally focused network. It is good for building group
loyalty, identity, and a sense of common purpose. The
disadvantage is that it may be inadequate for getting
information or other resources, or insufficient for
influencing people outside the networks. It is subject to
group thinking and the development of an us-versus-them
view of the world.

3.2 Measuring Network Density
There are many metrics in the area of social network analysis
[8][9], which can be used to know characteristics of social
relationships in an organization or group. Measuring the density
of social networks is a simple way to know whether social
networks have the characteristics of open network or closed
network [9]. If social networks with low density, the social
networks tend to have the characteristics of open network. If
social networks with high density, the social networks often have
the characteristics of closed network.

The density of social networks is defined as the number of lines
(edges) in social networks, expressed as a proportion of the
maximum possible number of lines [8]. The formula for the
density of social networks is

)1(
2
−

=
nn

lND

where l is the number of lines (edges) in the networks and n is the
number of nodes in the networks. The values of ND (network
density) can be from 0 to 1.
As we described in Section 2, four types of social relationships
exist in SF.net. Here, the network density can be defined for each
type of social relationships.

(a) ND(SF): ND in SourceForge.net
(b) ND(Pi): ND in each project(Pi) in SF.net
(c) ND(Uj, SF): ND of an ego-centric network each

user(Uj) has in SF.net
(d) ND(Uj, Pi): ND of an ego-centric network each

user(Uj) has in each project(Pi) in SF.net

Figure 1. Four types of social relationships in a mega

community

Figure 2. Open network and closed network

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

40

No one ideal ND can fit all people in a mega community. Each
ND is an indicator to understand the current state of social
relationships in a community or around own, and to think how the
social relationships ought to be in the future.

4. USING NETWORK DENSITY
The four types of NDs can be used to design support tools suitable
to various roles or positions of people in a mega community.

For instance, for administrators of SF.net and managers of
projects, ND(SF) and D(Pi) are respectively important clues to
know the state of social relationships among users in SF.net and
projects they have to manage. If a project manager thinks his
project should be more closely united than the current, he would
need tools for mediating or facilitating communications among
his project’s members, so that ND(Pi) will be higher than the
current.

For each users in SF.net, measuring ND(Uj, SF) and ND(Uj, Pi)
would be helpful to support them. If user(Uj) have social
relationships expressing as high ND(Uj, SF), she might want a
help for finding people with whom she have never communicate
before because she cannot get new information through her
current social networks. A user who often has a conflict with
other users in a project might hope ND(Uj, Pi) will be more higher.

Table 1 shows the result of analysis on four NDs in SF.net. The
data for calculating four NDs is communication logs accumulated
in forums (bulletin board systems). Using forums, SF.net users
(e.g., developers, end-users, bug reporters, and so on) discuss
issue related to OSS development. If user(UA) posts a message in
a forum for project(Pi) and user(UB) replies the message, then it
assumes that there is a social relation between user(UA) and
user(UB) in project(Pi). We collected all messages in all accessible
forums (1,230,000 communication logs among 160,000 SF.net
users in 90,000 projects) and extracted social relationships among
the users.

From the result in Table 1, ND(SF) is extremely low compared to
other NDs. In case of viewing SF.net as a community, the social
relationships among SF.net users are not close at all. In contrast to
ND(SF), the average of ND(Pi) is much higher (0.24). The result
is natural because OSS development in SF.net proceeds through
project-based activities and cross-project OSS development is
infrequent [6]. Both ND(Uj, SF) and ND(Uj, Pi) show furthermore
high values. This is because over 80% of all projects in SF.net
consist of less than 3 developers [6].

The density of social network, which represents the nature of the
social relationships in a mega community, varies according to
where we are looking at in a mega community. Therefore, in

order to support to build social relationships in a mega
community, we would need to design tools in consideration of
which aspects of social relationships we are trying to support.

5. D-SNS: AN APPLICATION
This section introduces the prototype system called D-SNS
(Dynamic Social Networking System) that promotes knowledge
exchange using social relationships among SF.net users, as an
application of exploiting measurement results of the density of
social networks. In this case, ND(Uj, SF) is considered to design
the system. The detail of D-SNS is described in [6].

D-SNS collects communication logs in all accessible forums in
SF.net and extracts information on social relationships among
SF.net users, information on technical terms used for finding
knowledgeable developers (i.e., information on who is
knowledgeable about what), and information on communication
frequency among users, from the communication logs.

D-SNS helps a user chose whom she should communicate with,
according to the state of the user’s social relationships. If a
system’s user inputs a question related to OSS into the system, the
system finds other users knowledgeable on the question and
recommends knowledgeable users who answer the question.

5.1 Mechanism
Figure 3 shows the mechanism of D-SNS. Here, suppose that
user(UA) with ND(UA, SF)=0.7, who wants to make ND(UA, SF)
more lower, is asking a question. At first, user(UA) inputs a
question into D-SNS.

5.1.1 Searching knowledgeable people
D-SNS searches knowledgeable users using results of keyword
matching between technical words stored in the system and
keywords user(UA) input. The system selects up to 20 users and
delivers the questions to them.

5.1.2 Sorting by network density
If some users answer the question, D-SNS calculates ND(UA, SF)
after communicating with the users as Figure 4, and sorts the

Table 1. Four types of network density in SF.net (Nov. 2005)

 ND Max./Min. 2σ

(a) ND(SF) 0.15 x 10-10 N/A N/A

(b) ND(Pi) 0.24 (avg.) 1.0/0 0.13

(c) ND(Uj, SF) 0.65 (avg.) 1.0/0 0.16

(d) ND(Uj, Pi) 0.66 (avg.) 1.0/0 0.17

Figure 3. Mechanism of D-SNS

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

41

users in order of lower ND(UA, SF) in this case. Ordering depends
on each user(Uj)’s preference.

5.1.3 Sorting by communication frequency
If ND(UA, SF) after communicating with knowledgeable users is
same such as user(UB) and user(UE) in Figure 4, D-SNS sorts the
users in order of higher communication frequency because
user(UE) who often communicates with user(UA) might have
better understandings of user(UA)’s questions or demands than
user(UB).

5.2 User Interface
Figure 5 shows the user interface of D-SNS. The left of Figure 5
is for questioners (Alice). Alice can ask a question from the “Find
People” tab. If someone replies the question, a list of respondents
will appear as the list in the left of Figure 5.

The icons mean that S1 is a user within 1 degree of separation
from Alice (i.e. have communicated with S1 before) as in the left
of Figure 4, S2 is a user within 2 degrees from Alice as in the
middle of Figure 4, and S3 is a user with more than 3 degrees of
The numbers of the right of icons shows ND(UAlice, SF) if Alice
communicates with the listed users.

In a similar way, a respondent (Ellen) can find questioners who
would like to know Ellen’s knowledge from the “Help People”
tab in the right of Figure 5. If Ellen wants to tell a questioner
(suppose Alice) something Ellen knows, Ellen can reply to Alice’
questions using BBS only accessible for Ellen and Alice. If Ellen
does not reply any questions, none of questioners can know that

because questioners cannot know their questions will be delivered
to whom.

6. FUTURE WORK
In the near future, we need to enlarge data sources (e.g., mailing
lists and bug reporting systems) for extracting social relationships
and users’ knowledge. We have a plan to elaborate ways of
calculating NDs by using directed graphs or weighted graphs. We
also would like to design support tools for administrators and
managers in a mega community using ND(Uj, SF) and ND(Uj, Pi).

7. ACKNOWLEDGMENTS
This work is supported by the EASE (Empirical Approach to
Software Engineering) community in the Comprehensive
Development of e-Society Foundation Software program and
Grant-in-aid for Scientific Research (B) 17300007, 2006 and for
Young Scientists (B), 17700111, 2006, by the Ministry of
Education, Culture, Sports, Science and Technology of Japan.

8. REFERENCES
[1] Beenen, G., Ling, K., Wang, X., Chang, K., Frankowski, D.,

Resnick, P. and Kraut. R. E. Using social psychology to
motivate contributions to online communities. In
Proceedings of the conference on Computer supported
cooperative work (CSCW’04), 2004, 212-221.

[2] Millen, D. R. and Patterson, J. F. Stimulating social
engagement in a community network. In Proceedings of the
Conference on Computer Supported Cooperative Work
(CSCW’02), 2002, 306-313.

[3] Mockus, A., Fielding, R. and Herbsleb, J. D. Two case
studies of open source software development: Apache and
Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3), 2002, 309-346.

[4] Saltz, J. S., Hiltz, S. R., and Turoff, M. Student social
graphs: visualizing a student's online social network. In
Proceedings of the Conference on Computer Supported
Cooperative Work (CSCW’04), 2004, 596-599.

[5] Stefanone, M., Hancock, J., Gay, G., and Ingraffea, A.
Emergent networks, locus of control, and the pursuit of
social capital. In Proceedings of the Conference on
Computer Supported Cooperative Work (CSCW’04), 2004,
592-595.

[6] Ohira, M., Ohoka, T., Kakimoto, T., Ohsugi, N. and
Matsumoto, K. Supporting Knowledge Collaboration Using
Social Networks in a Large-Scale Online Community of
Software Development Projects. In Proceedings of
APSEC2005 Workshop on Supporting Knowledge
Collaboration in Software Development, 2005, 835-840.

[7] Baker, W. E., Achieving Success through Social Capital.
John Wiley & Sons Inc., 2000.

[8] Wasserman, S. and Faust, K. Social Network Analysis:
Methods and Applications. Cambridge University Press,
1994

[9] Scott, J., Social Network Analysis: A Handbook. SAGE
Publications, 2000.

Figure 4. A communication partner and changes of network
density

Figure 5. User interface of D-SNS

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

42

Collaborating Over Project Schedules
Suzanne Soroczak1,2 and David W. McDonald2

1Information Systems and Technology Group, Intel Corporation, Hillsboro, OR 97124
2The Information School, University of Washington, Seattle, WA 98195

suzanne.m.soroczak@intel.com, dwmc@u.washington.edu

ABSTRACT
Numerous case studies and ethnographies have shown project
management in software engineering to be a collaborative
activity. However, project management "tools of the trade" do not
readily support collaboration. As a result, project management
breakdowns can occur. This paper discusses the issues of
collaborative project management and makes recommendations
for future project management tool development.

General Terms
Management, Documentation, Standardization

Keywords
Software Engineering, Project Management, Collaboration,
Project Teams, PERT Chart, Gantt Chart, Work Breakdown
Structure (WBS).

1. INTRODUCTION
Software development entails many activities including
requirements gathering, design, coding, documenting, testing, and
debugging. One activity that weaves together the entire process is
project management. Many different project management
methodologies have been developed, tried, and documented. Yet
the typical tools of project management have remained largely
unchanged. In this paper we examine project management
practices in software development teams as reflected in the prior
literature. This paper reports on a survey and analysis of case
studies and ethnographies of software development teams from a
project management perspective.

In the next section we provide a brief introduction to current
project management tools and practices. Next we discuss a
number of project management breakdowns identified in the
literature on software development teams followed by the social
aspects of managing and planning software development in a
globally distributed environment. In section four, we outline
issues with implications for the development of a new generation
of project management tools. We close with ideas for future
research in distributed collaborative project management.

2. PROJECT MANAGEMENT PRACTICE
The Project Management Institute (PMI) defines project

management as "the art of directing and coordinating human and

material resources throughout the life of the project by using
modern management techniques to achieve predetermined
objectives of scope, cost, time, quality, and participant
satisfaction."[17] The PMI and the many practitioners of project
management have built a book of knowledge (PMBOK) or "best
practices", which aims to guide project managers in the art of
managing projects. The best practices are meant to be a general
guide to practice, applicable in many domains. In software
development, project management methodologies are seen as one
of the software development models used in conjunction with one
or more management methods and techniques [18]. Developing a
project task list and schedule is viewed as project management
practice [16].

2.1 Project Management Tools Of The Trade
Project management tools are used for planning, scheduling,
tracking, and controlling projects – the essential activities of
managing a project. The most common project management tools
are the project task list and the project schedule. A project task list
is an enumeration of individual tasks and subtasks to be
completed for the project. A project schedule is "a permanent
record of a set of tasks to be executed, along with their predicted
durations and completion times."[20] A schedule usually contains
task attribute data and specifies who has responsibility for each
task and information about the dependencies between tasks.

In Whittaker and Schwarz's paper on scheduling mediums, they
identify the important functions that schedules serve. Schedules
serve as a joint to-do list, allowing people to coordinate future
action. They can be seen as a type of contract of the work
promised to be executed. Schedules also "provide information
without the overhead of interrupting other team members or
calling a group meeting, serve as an external communication tool
to people outside of the group, and can assist individuals in
organizing their own work."[20]

Project teams make use of a variety of software tools for creating
and maintaining project tasks lists and schedules. Fox and
Spence's survey of project managers identified the top "tools of
the trade" in use in software companies as MS Project, Project
Workbench, and MS Excel [8]. Interestingly, project managers
rely on nontraditional project management tools, such as MS
Excel, as readily as more project-focused tools. This is especially
true for projects of a short duration (less than six months), where
the start-up costs associated with project-focused tools may
dissuade people from their use.[8] As well, emergent technologies
like SharePoint, Blogs, and Wikis are being adopted for ad hoc
project organization and communication [11].

2.2 Creation of the Project Schedule
According to the PMBOK, a project schedule begins with the
work breakdown structure (WBS). The WBS is an enumeration of
project tasks. In software development methodologies, this task
list is traditionally created using a top-down approach, in which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

43

tasks are broken into smaller more manageable subtasks. This
approach strongly appeals to management because it seems
orderly, predictable, and facilitates the allocation of resources [6].
While the top-down approach seeks to decrease task complexity,
it increases project complexity because at some point all of the
subtasks have to be integrated. Additionally, tasks may be
prioritized and scheduled based on a risk or user-driven attributes
like feature requests in iterative development cycles.

Once a task list is created, the tasks are organized into a task
timeline in the form of a Gantt or Program Evaluation and Review
Technique (PERT) chart. The Gantt chart, named after H.L. Gantt
[9], is widely used to represent projected schedules and actual task
progress against time. PERT charts allow teams to manage the
interdependencies between tasks.

In Agile software development, tasks are identified using a
bottom-up approach. Individual tasks are established and then
built up to more complex solutions. Teams are empowered to
decide what they will work on and how they will do it. The Agile
method, eXtreme Programming (XP), takes the managing activity
to the extreme (no pun intended) by specifically banning the use
of PERT charts [14]. The philosophy holds that PERT charts are
built on the faulty assumption that the tasks of a project can
actually be positively identified, ordered, and reliably estimated.
Teams using Agile methods may employ other techniques such as
whiteboards and stickies to manage task coordination and
execution.

3. LITERATURE SURVEY
We surveyed a number of case studies and ethnographies of
software development teams to identify project management
activities. The development teams ranged in size from as few as 5
to more than 120 developers. The application domains included
enterprise Internet solutions, telecommunications software,
medical solutions, configuration management tools, government
information systems, and commercial single-use software. Teams
in these studies were practicing both formal and informal software
development methods. The projects employed a variety of
development methodologies including: Rapid Application
Development (RAD), open source software (OSS) development,
traditional or waterfall development processes, and several ad
hoc, unspecified or unknown methodologies. Collaborative
planning activities include brainstorming project task lists,
identifying task attributes, such as estimating deadlines, recording
task interdependencies, and assigning roles and responsibilities,
and reporting task/project status.

3.1 Project Management Breakdowns
Despite the existence of "best practices" and standard project
management tools, breakdowns in the activities of managing still
occur. Project team members can have misunderstandings about
the development process and can become isolated from each other
and the rest of the organization, the coordination process may
become bogged down so as to incur a schedule delay, and the
scheduling tools may not adequately provide for the needs of the
project team. The following subsections highlight how current
project management tools contribute to these breakdowns.

3.2 Tools Obfuscate the Process
Because project schedules organize information by tasks, a project
team using these tools is forced "to organize work by task and not

by person"[20]. This can make it difficult to get a handle on what
other team members are doing and how one's own work fits into
the whole process. Additionally, there is no way to link other
management artifacts such as requirements documentation, test
plans, or application programming interfaces (APIs) to the
schedule. de Souza reports that because there was "no formal
process to create and maintain APIs in the project plan" and
therefore schedule, the APIs were forgotten until the last minute
and caused additional schedule delays.[7]

Grinter similarly reports that Configuration Management tools did
not create visibility into the development process. "At a higher
level of abstraction, removed from the details of individual
changes, the developers could not see how their work or other
people's fitted together."[10]

Since project schedules contain a list of tasks and offer the ability
to assign people to complete those tasks, it should be clear by
looking at the schedule who does what. Yet misunderstandings
about roles and responsibilities of project team members continue
to crop up [4, 5]. This problem is exacerbated by the fact that
team member roles and responsibilities can change over the
course of the project [2]. Geographical distance and subtask
complexity can also exacerbate the problem in large, distributed
software development projects.

3.3 Schedule Can Isolate Team Members
In some cases the project manager can become isolated both from
members of the project team and/or the rest of the organization.
This can happen when the schedules and other work products
created or maintained by project managers are incomplete or out-
of-date. "Although most managers had developed progress
tracking schemes, many were less aware of system status than
were their system engineers."[4] How can it be that the person
maintaining the schedule is so out of the loop?

Herbsleb found that reliance on documents can lead to
impoverished and slow communication [13]. "There is a strong
requirement for frequent updates of the schedule, so that it
correctly reflects the current state of the project."[20] This can
require daily maintenance without which the schedule can quickly
become obsolete. Relying on these charts can cause project
managers to overvalue the schedule to the process and
consequently isolate themselves from the rest of the activities.

3.4 Tools Not Tied to Practice
Project management tools are not adequately tied to the practice
of managing a project. Standard tools for maintaining project
schedules are not linked to status reporting processes and require
that the updates be funneled through a single person. In many
cases, project teams reply on email status reports or 'today'
messages to support group awareness [1, 12, 20]. This self-
reported data may include as much or as little information as the
developer wishes and as seen elsewhere, tight deadlines can
encourage developers to be sparse with their comments [10].
When received by the project manager via email, the status report
data must often be manually entered into the appropriate
scheduling system to update the schedule. Consequently activities
can feel like busy-work to the project manager and artifacts
useless to the project team if the information is behind the times.

In some cases, status report and task data was conveyed via face-
to-face meeting. Yet we have seen instances where "meeting data

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

44

was not collected, so that information about decisions, rationales,
and responsibilities was lost."[19] Teams also had difficulties
assimilating new members to on-going projects because there was
no connection between streams of communication [12]. Meeting
data that is collected may be entered into word processing
documents or spreadsheets so that it can be emailed to the project
team. Again, there may be no ties connecting this data back to the
project schedule.

3.5 Unintelligible Project Schedules
Geographically separated development teams are more likely to
have different development philosophies and make use of
different terminology. For example, the role of the project
manager in one group may differ from that in another part of the
organization, causing confusion about responsibilities [5]. The
terminology used in the task list and project schedule can create a
problem of mutual unintelligibility. "For the schedule to be
interpretable by all, it must use a shared vocabulary."[20]

"Large groups of 'project size', as Grudin (1994) calls them, can
not find out what the status of the project is by social interaction
alone."[4] As project team size grows, the number of tasks grows,
and Gantt and PERT chart representations make it easy to get lost
in the schedule. Large groups relying on the project schedule for
status information may require matrix printers and entire walls to
display such huge amounts of data. Such large schedules can
make even simple navigation of the schedule problematic.

4. DISCUSSION
4.1 The Social Aspects of Managing a Project
In large-scale development teams, membership in teams and work
on projects is not static. Team members are likely to be working
on more than one project at a time. Additionally, project team
structures can change to meet the needs of the organization. The
assimilation of new project members becomes a project
management activity. Project management tools can aid the
assimilation of new team members by providing a contextualized
knowledge record of the project.

The collaborative generation of project tasks and task attributes is
a social activity and can produce a greater mutual understanding
and expectations for the project. Collaborative scheduling
empowers team members to determine task deadlines and may
improve task deadline estimates. Additionally, making a schedule
visible in a social context influences how the schedule is
understood and interpreted by project members. Whittaker notes
that publicly displayed project schedules support collaborative
reflection on the project and task deliverables.[20] In comparing a
publicly displayed wall schedule vs. an electronic version, "the
board was considered more 'real' and 'credible' than traditional
electronic schedules".[20]

4.2 Role of Documented Schedules
The use of formal documents impacts the flow of communication
in organizations in many different ways. Charts and graphs can
improve the vertical flow of information, because they abstract
data to a level which informs management about the progress of
activities. [22] Email and other informal written communication
can improve the horizontal flow of information. [1, 12] Many
development teams use email as a primary method of
communication amongst developers quite successfully. Subtask

groupings in schedules and APIs can serve to reify organization
boundaries, which may impede the flow of information [7].
Having a clear understanding of the role of project schedules in
team communication is a necessity to future tool development.

In summary, project management tools, namely the project task
list and project schedule have not changed much since their
introduction. Because of the high-level of goal uncertainty in
software development these tools may not be meeting the needs of
project teams. Software tools for creating project schedules were
initially developed as single-user software, and despite new
collaborative features continue to be used as such. Unlike standard
MS Office offerings, MS Project may not be installed on
everyone's computer and so the outputs from the tool such as a
Gantt chart are no more interactive than a paper printout. The
source data may not be publicly available and therefore difficult to
keep current. Scheduling tools give little guidance to support a
task structure that is universally understandable. The current state
of the project schedule can obfuscate the development process
instead of making that process visible to the development team.
Finally, these tools are designed to be used in a myriad of contexts
so much so that they may be too generic for contextualized use.

5. FUTURE DIRECTIONS
Research contends that there is no one-size-fits-all methodology
[3], so why are we using one-size-fits-all tools? Perhaps its time to
move away from the PERT chart view of project management.
Software development projects are known to be more uncertain
than other types. A few methodologies have strived to overcome
uncertainty issues with project management tools by avoiding
them altogether. In XP, for instance, no formal project schedule is
created. In these methodologies informal communication is
expected to suffice for managing activities. However informal
communication will not be sufficient in large-scale, distributed
software development projects.

Based on the data drawn from current project management
practices in software development teams, we make the following
recommendations in the future direction of project management
tools:

� Make the project management process more visible.
� Align tools with planning practices.
� Link tools to other project artifacts.
� Strive for a people-oriented, not task-oriented focus.

� Tool should be accessible by all to promote individual
responsibility and collaborative planning.

� Tools should be publicly viewable to promote informal
communication, collaborative reflection.

� Make the tools easy to keep update and maintain.

� Try other visualizations for identifying and enumerating
tasks and task attributes.

6. CONCLUSION
In this paper we have discussed the social-aspects of project
management in software development. Based on an analysis of a
survey of the literature, we have made some recommendations for
the future development of collaborative project management tools.
We hope that future development may be inspired by other

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

45

visualization techniques such as social network maps and activity
rhythms.

7. ACKNOWLEDGMENTS
We would like to acknowledge support by Intel Corporation for
this research. We thank our colleagues at the UW iSchool for their
input and reflection.

8. REFERENCES
[1] Bernheim-Brush, A. J., & Borning, A. (2003). 'Today'

messages: lightweight group awareness via email. In CHI '03
extended abstracts on Human factors in computing systems
(pp. 920-921). Ft. Lauderdale, Florida, USA: ACM Press.

[2] Beynon-Davies, P., Mackay, H., & Tudhope, D. (2000). It’s
lots of bits of paper and ticks and post-it notes and things…’:
A Case Study of a Rapid Application Development Project.
Journal of Information Systems, 10(3), 195-216.

[3] Charvat, J. (2003). Project management methodologies:
selecting, implementing, and supporting methodologies and
processes for projects. Hoboken, NJ: John Wiley.

[4] Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field-Study of
the Software-Design Process for Large Systems.
Communications of the ACM, 31(11), 1268-1287.

[5] Damian, D.E. & Zowghi D. (2003) RE Challenges in Multi-
site Software Development Organizations. Requirements
Engineering 8:149-160.

[6] DeGrace, P. & Stahl, L.H. (1990) Wicked Problems,
Righteous Solutions. Englewood Cliffs, NJ. Yourdon Press.

[7] de Souza, C. R. B. d., Redmiles, D., Cheng, L.-T., Millen,
D., & Patterson, J. (2004). Sometimes you need to see
through walls: a field study of application programming
interfaces In Proceedings of the 2004 ACM conference on
Computer supported cooperative work (pp. 63-71). Chicago,
Illinois, USA ACM Press.

[8] Fox, T.L., & Spence, J.W. (1998) Tools Of The Trade: a
survey of project management tools. Project Management
Journal 29(3), 20-27.

[9] Gantt, H.L. (1919) Organizing For Work. Harcourt, Brace, &
Howe. New York, NY.

[10] Grinter, R. E. (1995). Using a configuration management
tool to coordinate software development. Paper presented at
the Proceedings of conference on Organizational computing
systems, Milpitas, California, United States.

[11] Grudin, J. (2006) Enterprise Knowledge Management and
Emerging Technologies. Proceedings of the 39th Hawaii
International Conference on System Sciences (HICSS-39).
10 pages

[12] Gutwin, C., Penner, R., & Schneider, K. (2004). Group
awareness in distributed software development. Paper
presented at the Proceedings of the 2004 ACM conference on
Computer supported cooperative work, Chicago, Illinois,
USA.

[13] Herbsleb, J.D. & Mockus, A. (2003) An Empirical Study of
Speed and Communication in Globally-Distributed Software
Development. IEEE Transactions on Software Engineering
29(6), June 2003.

[14] Larman, C. (2003) Agile & Iterative Development: a
manager's guide. Boston, MA. Addison-Wesley.

[15] Lin, J., Newman, M.W., Hong, J.I., Landay, J.A. (2000)
DENIM: finding a tighter fit between tools and practice for
web site design. In the Proceedings of CHI 2000. April 1-6,
2000. The Hague, Amsterdam.

[16] Maylor, H. (2001) Beyond the Gantt Chart: project
management moving on. European Management Journal
19(1), 92-100.

[17] PMI. (2006). Project Management Best Practices (PMBOK).
Retrieved March 3, 2006, 2005, from
http://www.pmi.org/prod/groups/public/documents/info/pp_p
mbokguidethirdexcerpts.pdf

[18] Sorensen, R. (1995, January 1995). A Comparison of
Software Development Methodologies. Crosstalk, 1, from
http://www.stsc.hill.af.mil/crosstalk/1995/01/comparis.asp

[19] Walz, D. B., Elam, J. J., & Curtis, B. (1993). Inside a
Software-Design Team - Knowledge Acquisition, Sharing,
and Integration. Communications of the ACM, 36(10), 63-
77.

[20] Whittaker, S., & Schwarz, H. (1999). Meetings of the Board:
The Impact of Scheduling Medium on Long Term Group
Coordination in Software Development Computer Supported
Coop. Work 8 (3), 175-205

[21] Yates, J. (1993). Genres of Internal Communication. In
Control Through Communication: the rise of system in
American management (pp. 65-100). Baltimore: Johns
Hopkins University Press.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

46

Social Dependencies and Contrasts in Software
Engineering Practice

Jonathan Sillito
Department of Computer Science

University of Calgary
Calgary, AB Canada

sillito@cpsc.ucalgary.ca

Eleanor Wynn
Strategic Capabilities, Information Technology

Intel Corporation
Hillsboro, OR U.S.A.

eleanor.wynn@intel.com

ABSTRACT
This paper reports initial observations from a qualitative study of
software engineering at a large technology company. Data were
collected from interviews with software engineers and managers,
formal company documents, and observations of group and team
meetings. This is an early assessment of analytical categories we
believe are important for understanding informal work processes
and flow in a distributed software engineering team. These cate-
gories include the distributed nature of the organization; ownership
and dependencies between code modules; and process improve-
ment initiatives. Findings suggest that software engineers think
about module dependencies as people dependencies; and reveal
contradictions between the motivations of diverse and often con-
current process improvement efforts.

1. INTRODUCTION
We report on initial observations from a qualitative study of soft-
ware engineering at a large technology company. Our observa-
tions are based on interviews with software engineers at the com-
pany, company documents and team meetings. Specifically, data
for this study came from approximately thirty-five interviews of
both managers and software engineers at the company. The inter-
views mainly took the form of conversations, and lasted between
fifteen and thirty minutes. We regularly attended group and team
meetings and read company documents relating to software engi-
neering processes and issues. Much of the information we present
in this paper is in the words of our participants or is based on quotes
from documents we have reviewed. For each quote we identify
the source as a software engineer, a manager or a document. The
quotes reflect perspectives of the participants. All interviews and
meetings took place during the summer and fall of 2005.

Our analysis focuses on social aspects of software process, as pos-
sible keys to fully understanding software engineering at this com-
pany. Our thinking follows the lines established by Dalbohm and
Mathiassen [6] and Cibora [4] about the importance of considering
social issues in the study of technical systems. Data analysis is pre-
liminary; and our aim is to provide a relatively low-inference view

of our data. Our reason for presenting results at this early stage is
that we believe insights will inform other researchers working in
social aspects of software engineering. We also hope to generate
discussion and get feedback to direct further analysis and research
directions.

In the next section we briefly describe aspects of the organizational
setting of our study (see Section 2). Then we present our obser-
vations about source code ownership and dependencies (see Sec-
tion 3); followed by observations about attempted process changes,
including efforts based on CMMI, extreme programming, and the
open source model. We conclude the paper with a summary of key
themes (see Section 5).

2. THE SETTING
We studied software engineering at a large technology company
which has thousands of employees working on software develop-
ment. In this paper, we refer to these employees as software en-
gineers (SEs). They are located in multiple divisions within the
company hierarchy and are globally distributed. Many software
engineers in the study group focused on providing support for very
large hardware engineering groups working on time-critical, high-
value designs. Some SEs spend almost all of their time on software
development. Others split software development with other respon-
sibilities such as operations or architecture (for example, one soft-
ware engineer we spoke with spent one third of his time coding and
the rest on operational support). The software written and main-
tained by the software engineers we met with ranges from “small
projects” and “one off scripts” to multi-million line programs, in-
cluding both internal and external applications.

The company is geographically distributed with software engineer-
ing sites around the entire globe. Several of the groups (employ-
ees who report to the same direct manager) and teams (employees
working on the same project, possibly reporting to different man-
agers) samples are distributed between two or more countries as
well as different states within the US. This includes countries that
are on essentially opposite sides of the world. One team had mem-
bers in Israel, Russia and two different US states. Another group
was distributed between the US and India.

When groups or teams are not collocated, meetings are held us-
ing phones and a multipoint video conferencing application which
supports sharing desktops. Many employees expressed a prefer-
ence to meet in person: “we are getting so distributed that when
I get a chance to meet some one face-to-face it is so exciting”
[manager]; and “I am better face-to-face” [SE], but other research

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

47

shows that employees can cope well with distance even when it is
not preferred, depending on task complexity (e.g., [9]). Some face-
to-face interaction was believed to be important for trust and as-
pects of collaboration: “some people need face time to build trust”
[manager]; and “face-to-face collaboration is essential for effec-
tiveness” [manager]. Some travel occurs, frequently at the begin-
ning of projects, to provide this social linkage (“the project be-
gan with some intense face-to-face meetings in various locations”
[SE]); one long standing team meets weekly by phone and yearly
in a “face-to-face” [SE].

When teams are widely spread across time zones, for one or more
participants, meetings end up occurring at inconvenient times (see
for example [8]): “time-zones are awkward, we often have 7am
meetings” [SE]. Rotating the time for meetings to vary the team
member who is inconvenienced was commonly referred to as “shar-
ing the pain” [SE]. Several managers expressed challenges for their
groups in working across time-zones: “time zone makes it hard to
trouble shoot and interact with customers” [manager]; “I find that
working across time-zones in this way results in lots of misunder-
standings and rehashing—you think you are in agreement but then
later realize you are not” [manager]; and “major collaboration
problem is time-zone—this problem is structural, unchangeable”
[manager].

The employees we spoke with, expressed concerns about collabo-
ration or coordination that may be normal for employees at a large,
highly distributed company: “doesn’t seem to be much cross polli-
nation anywhere” [SE]; “we waste time solving a problem already
solved elsewhere” [document]; and “lots of reinventing the wheel
in our department” [manager]. One aspect of collaboration issues
were concerns raised over community, including accessing or mak-
ing available expertise on a particular software development tech-
nology:

“There could be 50 different people using this [tech-
nology], but I don’t know. We are the experts [. . .] but
everyone is inundated with email and newsletters. We
just scan them. So how do you get the word out there?”
[manager].

In addition to the company size and its geographical distribution,
concerns about collaboration may also be related to the company
culture around information, including source code and other soft-
ware project information, ownership (discussed further in the next
section) and the sharing of that information, which the author of
one document felt was heavily based on “tribal knowledge” [docu-
ment]. A manager felt that the state of development tools was also
part of the issue: “[current] collaboration [tools] are not very rich
for developers” [manager].

3. OWNERSHIP AND DEPENDENCIES
There are different source code ownership models in the company,
though generally ownership falls within organizational groups. Ac-
cess to and awareness of that code is also often limited along or-
ganizational lines. In some groups, smaller code bases or modules
are owned by individuals and the associated support structure made
some software engineers hesitant to take on certain commitments
or to release code beyond their local context, lest they be required
to “support it for life” [SE]. One group we observed was moving
from this model to one of “shared ownership of code” [manager].
We also observed that some groups own (or are organized around)

a particular software development technology area: “so in all those
four layers we have expertise within our group” [SE].

Software engineers from two different groups said that their code
bases are split into multiple versions “because it’s from different or-
ganizations” [SE]. In other words, in some cases, different groups
own different forks (or branches) of a the same code base. One
software engineer called this approach to handling forks a “recipe
for disaster”. In these cases a common task (“I do this lots” [SE])
is to “replicate the same work by separate people because they are
different groups” [SE]. Describing his copy and paste approach to
avoiding this duplication of effort one software engineer said “so
being the lazy engineer that I am I went and got their work and
brought it over. I am sure that it’s probably not going to work first
time around, but it will be a lot easier to debug this than start from
scratch” [SE].

At times software engineers expressed dependencies between code
modules in terms of dependencies between people or between or-
ganizations; and at times software engineers talked about locations
in the world or the building when we would expect them to re-
fer to locations in a code base: “all the code in the department”
[SE]; “that module is provided by another guy downstairs” [SE];
and “[my] module that pretty much the rest of the department is
going to depend on” [SE]. One software engineer duplicated code
to manage or avoid a dependency on another person: “so I ended
up taking a lot of code from other places and bring them in here”
[SE].

In one case, where several groups each had ownership for different
large modules that were all part of a very large (more than 1 million
lines of code) and critical application, effort was put into isolating
those modules by minimizing the dependencies between them so
that software engineers “can get away with just knowing [their]
little bit” [SE]. One of our participants said, of this effort: “how-
ever all the complexity, well big chunks of the complexity get moved
into the translating from one data model in to the next” [SE]. An-
other member of that same group said: “what happens is a lot of
times in integration, when you integrate that module into the big-
ger system, something goes wrong” [SE]. Further, access to code
may be organized in a similar way: “if I wanted to grep through all
of the code in the department I wouldn’t be able to—I don’t know
how to get to all of the code” [SE]. This finding is also reflected in
a report by de Souza et al. claiming that the use of APIs impacted
forms of collaboration between groups [7].

Making changes to production code is naturally difficult and mem-
bers of some groups are understandably cautious, partly because
any changes “might break other code” [SE]. One software engi-
neer felt that “unit tests cannot be written for all types of code [. . .]
simply because you see unit tests attached to code does not mean
that the code is actually being sufficiently tested” [SE], which cre-
ates a confidence problem when changes are made. Examples of
software engineers expressing this hesitation to make changes in-
clude: “this could use some improving but everything is tied into
this, so no one wants to mess with it” [SE]; and “when refactoring,
what we do is in order to not break things for other developers, we
leave the old code in place” [SE]. One group has a formal change
“process” [SE] which involves multiple meetings between various
parties, with the consequence that “when we change a core com-
ponent it usually takes a long time, even for small changes, and for
the most part we just don’t change them” [SE].

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

48

Like dependencies between modules, issues around making changes
are expressed in terms of relationships between people: “I think
the hardest parts are [three certain modules] because you have
so many people depending on your code. . . very difficult to know
what changes are safe, and so there is a natural reluctance to make
changes” [SE]. Dealing with situations like this naturally becomes
a coordination problem between people and groups (“organization-
ally you have a person on [team A] who is just assigned to talk to
[team B] and then on [team B] you have someone who is assigned
to talk to [team A]” [SE]; and “lots of negotiation: a back-end folk
and somebody from our side” [SE]) rather than an issue primarily
handled using code exploration or debugging tools.

4. PROCESSES AND PRACTICES
During our study, we observed three types of process improvement
efforts: Capability Maturity Model Integration (CMMI) based ef-
forts [3], agile or extreme programming based efforts [5, 2], and
efforts inspired by the open source model [10]. These efforts var-
ied in their motivations, in who initiated them (i.e., management or
the software engineers themselves) and the organizational scale of
the effort.

The CMMI based process improvement efforts were large scale,
official efforts, and were typically initiated by high-level manage-
ment: “CMMI is the way we manage work, we have level two and
are moving forward with key process areas” [manager]. The pri-
mary motivation for was to improve control and consistency: “the
impetus was that we were an organization of 3500 people with soft-
ware development as the core competency, but we couldn’t tell how
things were being done. We needed a consistent process to fix the
issues” [manager]. In addition to control and consistency, CMMI
was intended to improve timeliness, quality, and reduce rework and
defects in released code. The initial goal of one organization was to
be at level three in eighteen months, but “two and a half years later
we are not even close.” [manager]. For this organization reaching
a particular certification level is no longer the focus, the focus is
now on solving specific problems with their software engineering
processes.

Employee reaction to the CMMI initiative was mixed. Some em-
ployees were openly skeptical: “customers don’t care about lev-
els... I have seen a company at level four that produces garbage.
CMMI should be approached as a problem solving exercise, not
for its own end” [SE]. Others felt the particular approach to CMMI
taken by their organization was flawed: “what is in place is too
rigid or too engineered” [manager]; and “I would like a much sim-
pler interpretation” [SE]. We also observed a more general inter-
est in “simplifying and streaming our software development proce-
dures” [SE]; and CMMI initiatives were seen simply as overhead
by some software engineers: “I would like to have more time ac-
tually doing what I consider to be the meat of my job, which is de-
velopment, including design and analysis and all that stuff and less
time messing with the bureaucracy of the company” [SE]. While
some groups or teams aimed to put in a minimal amount of effort to
satisfy the requirements (“the way we do it is, tell us what we need
to do satisfy our CMMI requirements” [SE]), others were more en-
thusiastic (“our team is kind of zealous about CMMI and we really
don’t like dragging our feet. . . Our team is really unique in that we
really do a lot of the CMMI based things that aren’t necessarily on
[the company] road map. We do validation, verification of every
work product. . . and we do a traceability matrix that we got from
and old CMMI thing. We are trying to do as much as we can from
beginning to end. . . There are still gaps but we are trying the best

we can. Especially with the things that we can see will add value
right away, which most of it does” [SE]).

Efforts to follow an agile approach originated at the group level,
often having been initiated by the software engineers themselves.
This was less systematic or widespread than the CMMI efforts
but appeared to be gaining momentum: “there seems to be more
of a trend of extreme programming picking up within [this com-
pany]” [SE]. The primary motivation for agile approaches gener-
ally seemed to be to improve responsiveness and speed. For exam-
ple, one manager described his group’s motivations for using ex-
treme programming: “We have been using agile methods for about
two years. The push came from our customers who wanted things
faster... We succeeded, but we are not as fast as we hoped” [man-
ager].

The groups made adaptations to extreme programming practices to
fit their needs. Most of these were done expressly to accommo-
date the distributed nature of the work environment. For example,
stand-up meetings took place using a phone bridge (because the
team was “tending to be more distributed” [SE]). One group was
starting to use more upfront design to reduce the coupling within
the group: “two parts of our group [one in India and the other in
the US] working together is causing work life balance problems”
[manager].

Pair programming seemed to be the most often modified extreme
programming practice. One pair we observed used a screen sharing
application to share their desktops with each other (though they
were collocated) and there was no clear “driver” and “observer”
roles [11]. Another pair (distributed between the US and Israel)
shared responsibility for the same aspects of a code base but did
not program together:

“When I say pair programming I guess I mean do-
ing the design together, doing peer review of the code,
maybe the tests will be written by the other person, but
not so much in the extreme programming sense of sit-
ting down together” [SE].

Several groups we met with have used screen sharing for pair pro-
gramming between geographically distributed pairs. This approach
was not viewed as very successful: “pair programming over [screen
sharing]is very tiring and not very enjoyable...” [manager]; “one
other real-life problem we have encounter is that pairing does not
naturally allow developers to take time to really think a problem
through if one is unexpectedly encountered [. . .] This is especially
problematic for virtual pairs, since it appears awkward for devel-
opers to be on the phone in silence for extended periods of time,
sometimes even just for a few seconds. So the developers just keep
on talking, digging themselves deeper into the problem, rather than
calling for a time out” [document describing one teams experience
with extreme programming].

One software engineer expressed his opinions on the CMMI initia-
tive and the extreme programming efforts in his group this way:

“CMMI is very rigid. XP can be very loose depend-
ing on how you interpret it. We feel in this group that
we need some middle ground between the two. So we
are not quite happy with either process. That’s what

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

49

it boils down to. I think XP went a little overboard.”
[SE].

Though the general attitude towards extreme programming was
positive (“experimented with XP... the results of which were basi-
cally positive. The biggest win was test driven development” [SE];
“XP is way better than the other models I have followed. I love
XP... everyone knows where you are” [SE]), one software engineer
made this comment about extreme programming as performed by a
team he was not on: “XP methodology just doesn’t deliver: [a cer-
tain project] has gone on for three years and has still not delivered.
For most of it they have been close” [SE]. Interestingly, a member
of the team he has referring to said that “XP is working very well
for us; we are more of a team” [SE].

Process improvement efforts based on the open source model were
on a smaller scale, though there was some official interest in the
organization, including experiments involving making various sup-
porting tools available. These efforts appeared to be motivated by
a desire to avoid duplication (“too many point solutions” [SE]), to
resolve code ownership and support issues such as those discussed
above, and generally to improve the level of collaboration, both
within groups and between groups. Open source is viewed as more
community oriented, and by nature, non-proprietary, so it would al-
low for group standardization rather than externally imposed stan-
dards on software. Our opportunity to investigate the open source
initiative was limited and may have occurred more extensively in
other groups than those we observed.

5. SUMMARY
The results we have presented reflect preliminary observations; fur-
ther analysis and data collection will undoubtedly deepen the view
into the exploration of ownership and the tensions around process.
Historical developments may also overtake or provide nuance to
what we describe above. Still we believe the results expose valu-
able leads to themes and issues from within team experience as
collected by a participant observer with steady access to the envi-
ronment. We summarize these themes along with possible future
research directions below.

The first theme concerns ownership and sharing of code and other
artifacts. Software engineers often expressed dependencies between
code modules as dependencies between people and groups. Deal-
ing with code integration is an organizational rather than purely
technical matter. Many software engineers would clearly prefer not
to make changes to production code because of the overhead im-
posed by change processes (including change committees), between-
group friction, and uncertainty about testing. One way to pursue
these issues further would be to look deeper into ownership models
and approaches to version management, and to study organizational
issues in change management.

Process improvement efforts remain an area of interest for ongo-
ing study. CMMI initiatives are largely seen as a method to im-
prove consistency. Extreme programming initiatives are efforts to
improve responsiveness and flexibility. The extreme programming
practices that appear to work poorly in a distributed environment in-
clude pair programming, lack of upfront design and standup meet-
ings (which end up being at the end of the day for some people).
Process improvement efforts inspired by the open source model are
seen as solutions to issues around ownership and duplication of ef-
fort. Going forward, a relevant research issue will be how well the

various improvement efforts address expected challenges and what
factors (at various levels) differentiate successful initiatives from
unsuccessful ones.

CMMI based initiatives were typically at a large scale and initi-
ated by high-level management. Agile based approaches were typ-
ically local efforts initiated by the software engineers in a partic-
ular group. These diverse process improvement efforts are likely
to come more and more into direct contact and contradiction. For
example, a team that has decided to pursue an extreme program-
ming approach will be instructed to begin following a prescribed
CMMI based initiative. Scenarios such as this raise important ques-
tions about bottom-up versus top-down improvement efforts and
how well these efforts can coexist, commingle, reconcile or be in-
tegrated. Further research could consider these contrasts in the con-
text of existing theories (from the military domain) that propose the
integration of command and control with tactical freedom [1].

6. REFERENCES
[1] David S. Alberts and Richard E. Hayes. Power to the edge.

US DOD Command and Control Research Center
Publications, 2003.

[2] Kent Beck and Cynthia Andres. Extreme Programming
Explained: Embrace Change. Addison-Wesley Professional,
2nd edition, 2004.

[3] Mary Beth Chrissis, Mike Konrad, and Sandy Shrum.
CMMI: Guidelines for Process Integration and Product
Improvement. Addison-Wesley Professional, 1st edition,
2003.

[4] Claudio Ciborra. From Control to Drift: The Dynamics of
Corporate Information Infrastructures. Oxford University
Press, 2000.

[5] Alistair Cockburn. Agile Software Development.
Addison-Wesley Professional, 1st edition, 2001.

[6] Bo Dahlbom and Lars Mathiassen. Computers in Context
The Philosophy and Practice of System Design. Blackwell,
1993.

[7] Cleidson de Souza, David Redmiles, Li-Te Cheng, David
Millen, and John Patterson. Sometimes you need to see
through walls: A field study of application programming
interfaces. In Proceedings of the 2004 ACM Conference on
Computer Supported Cooperative Work, pages 63–71, 2004.

[8] Alberto Espinosa and Cynthia Pickering. The effect of time
separation on coordination processes and outcomes: A case
study. In Proceedings of the International Conference on
System Sciences, 2006.

[9] Cynthia Pickering and Eleanor Wynn. An architecture and
business process framework for global team collaboration.
Intel Technology Journal, 8(4), 2004.

[10] Eric S. Raymond. The Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental Revolutionary.
O’Reilly Media, 1st edition, 1999.

[11] Laurie Williams, Robert R. Kessler, Ward Cunningham, and
Ron Jeffries. Strengthening the case for pair-programming.
IEEE Software, 17(4):19–25, 2000.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

50

Architecture to Support Team Awareness
in Large-Scale Software Development
Andrew Sutherland, Tadeusz Stach, Kevin Schneider, Carl Gutwin

University of Saskatchewan
Saskatoon, SK, Canada

1-306-966-4886
{andrew.sutherland, tad.stach, kevin.schneider, carl.gutwin} @usask.ca

ABSTRACT
Developers in large-scale software development projects
depend on multiple sources of information in order to stay
aware of the activities of other team members. For example, a
programmer will attend meetings, engage in conversations
with other developers, read mailing lists, and examine version
control logs so that duplication of work and conflicting
changes are avoided. Gathering and tracking this information
requires additional effort, and adds to the already complex
process of writing software. In this paper, we describe a
technique that allows developers to dynamically receive
awareness information as they develop, maintain, and
document software. The technique allows for collecting
diverse awareness information from multiple sources;
increasing the likelihood that important awareness
information is available to the user.

Categories and Subject Descriptors
D.2.10 [Methodologies] – group awareness, design, large-
scale software development

General Terms
Human Factors, Management, Measurement

Keywords
Team-oriented development, tool support, architecture

1. INTRODUCTION
Group awareness in software development refers to having
knowledge of other developers’ activities as they make
changes to the software. This knowledge is necessary to avoid
duplication of effort and conflicting changes when performing
software development tasks.

A study of open-source development teams [3] showed that
open source developers maintain group awareness primarily
through textual channels such as email lists, text chat, and
version control system logs. This same study also identified a
desire and need for tools that can assist in gathering, filtering,
and interpreting the information obtained from awareness
information resources.

Our approach integrates awareness entities with software
project artifacts. Awareness entities link and distill the various
sources of awareness information to allow a software developer
to maintain team awareness while performing a number of
software engineering tasks. For example, with awareness
entities it is possible to seamlessly navigate information
about a team’s activities while navigating the project’s source
code. The developer does not need to search through volumes

of email, news groups, project plans or change logs. Our intent
is to explicitly represent awareness entities in the architecture
of the software system.

1.1 Motivation
A number of tools have been developed to support awareness
in team oriented software development [1][2][4]. Although
these tools have been shown to be effective at visualizing or
expressing certain awareness data, they have not been adopted
for general use by development teams. We propose there are
three reasons for this lack of enthusiasm.

The first reason is that awareness data is maintained using a
multitude of information sources, including (but not limited
to) source code repositories, e-mail lists, chat histories, and
bug tracking programs. Existing tools have primarily focused
on mining information from only one or two of these sources.
This means the provided awareness information is often
incomplete, as it has been shown that developers often rely on
most or all of these information sources [3]. For example, i t
has been demonstrated in some systems [2][4][7] that the facts
from the CVS repository of a project can be mined to inform
the user of the software artifacts that have been worked on and
by whom. Although this is useful information, it can provide
a false sense of the expertise and responsibilities among the
developers. For example, a person may have performed many
CVS commits on a system file; however this person is actually
a junior developer responsible for committing files once the
senior developers have completed their code changes. If a user
were shown the number of e-mail conversations between the
senior developers regarding the particular file, perhaps a better
understanding of the roles and responsibilities would be
obtained.

The second reason for lack of use of awareness tools is that
they often focus on the gathering of the data itself, and do not
provide mechanisms for the user to find the desired
information. The data is often displayed in large quantities,
and requires the user to search through the results in order to
find what is usually a relatively small item of information.
This issue can be addressed by making the returned results
more specific to what the user is actually interested in finding
out.

Finally, the volatile nature of awareness information also
presents challenges. Changes to artifacts, and conversations
about artifacts are constantly occurring within a large project.
Supplying the user with up-to-date information becomes
difficult due to the fast pace with which decisions and changes
are made on large software projects.

To address these issues, we propose a new design for awareness
support tools. This design is based on an architecture that
simplifies the process of gathering up-to-date awareness

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

51

information from a variety of resources. These resources are
monitored by awareness entities that are responsible for
certain artifacts in the software being developed. The
information contained in these entities can include: a history
of version control operations performed on the artifact (i.e., the
number of times it has been checked in, checked out, or
committed with other files), who has most recently handled the
artifact, the related messages found in the mailing lists and
chat systems regarding the artifact, and any reported bugs
related to the artifact. These sources of information are
monitored so that when new commits, messages, or other
actions are performed, the information in the awareness
entities is immediately updated and the developer can be
supplied with the most up-to-date information.

Furthermore, since these entities contain awareness
information only, they can be attached to a variety of
presentation formats. For example, the entity could either be
presented in a graphical visualization, or simply serialized to a
text file for archiving.

2. BACKGROUND
2.1 Collaboration in Development
The collaboration among developers in large-scale projects
has been an area of interest among both software engineering
and CSCW communities. One area of research examines how
programmers organize themselves and maintain awareness of a
project (both distributed and onsite). Herbsleb and Grinter [5]
examined how developers coordinate and communicate. Their
research shows that dependencies are sometimes missed and
that work is often duplicated or adverse changes are made to
the code. These problems arise due to a lack of awareness
about what is occurring in the project. Similarly, Gutwin et al.
[3] looked at how developers maintained awareness in several
open-source projects. Their findings show that mailing lists
and chat tools were most often used as a means of
understanding what was occurring within the software project.

These studies reveal the need for tools to increase the
awareness among developers. The software design proposed in
this paper is meant to address the issues of collaboration in
development projects by making it easier to maintain
awareness of other’s activities.

2.2 Tool Support for Awareness
Collaborative software development involves numerous
actions and tasks: design, coding, documentation, version
control, as well as online and offline discussion. All of these
items provide information to the developer for a better
understanding of a project. Several software visualization
tools have been proposed in order to make it easier for
developers to maintain an understanding of software projects.
De Souza et al. [7] introduced the Augur tool for software
visualization of large systems. Augur mines data from a CVS
repository and encodes it visually. The tool is able to present
several data elements within one visual frame. For example,
line type (i.e. method, comment, class, etc), authorship, and the
date of last modification for each line of code in a project can
all be revealed in a single view.

Gutwin et al. [4] developed a tool to increase awareness within
a distributed development environment. The intent of the tool
is to provide developers with easier access to awareness
information. The awareness information is obtained from data
mining the CVS repository used for a particular project and

then visually displaying information such as who worked on
what file, and what changes have occurred in the project.
Although both Augur and ProjectWatcher can provide insight
into particularities of a software project, the information i s
collected solely from a single source (e.g., a CVS repository).
However, as Gutwin et al. [3] discovered, developers in
distributed projects rely on several sources of information to
understand the current state of affairs.

Research into large scale-scale software development has
shown that mailing lists can be an important source of
information [3] [5]. Despite this fact, there have been few tools
which present this information to developers in a usable
fashion, and they are therefore forced to search for items of
interest manually. Viégas et al. [8] performed research on
mining email archives for relationship data between
correspondents, and presenting the results visually. This area
of research has yet to be applied to software development
projects, but has the potential to improve awareness among
developers.

Cubranic et al. [1] presented the Hipikat tool, which provides
recommendations to developers about which artifacts should
be examined prior to making a change to the software project.
Recommendations are based on the history of the software
project. A unique feature of this tool is that data is mined from
multiple sources: email lists, documentation, change reports,
and CVS logs. Although Hipikat does not necessarily aide in
group awareness, this is an important feature since i t
demonstrates that it is possible to gather and summarize data
from multiple project artifacts.

Our design allows current information, collected from multiple
data sources, to be provided to the developer in a variety of
forms. This will allow for the creation of tools with the ability
to gather data from several sources (e.g., CVS and mailing
lists) with the flexibility to present the information in
multiple formats.

A similar idea has been proposed by Kirsh-Pinheiro et al. [6].
They designed a framework for supporting awareness of certain
events within groupware applications. Their approach differs
from our approach in that we focus on providing the user with
awareness of other developers’ activities on a project, and our
design is not limited to synchronous distributed groupware
applications.

3. PROPOSED SOLUTION
3.1 Architecture Description
To approach the problem of supplying the user with relevant,
up-to-date awareness information, we have based our design
on an architecture consisting of a repository of awareness
facts, and a series of awareness entities that are responsible for
consolidating the facts related to a particular software artifact.
Figure 1 shows a typical setup for our architecture. In this
case, the awareness fact repository monitors the four awareness
resources on the right.

The Awareness Fact Repository (AFR) is responsible for
storing facts based on awareness information obtained from
the awareness resources. The AFR monitors these resources and
maintains a list of awareness facts. These facts are generated
whenever awareness events occur in the awareness resources.

For example, if a system file ViewManager.java is committed
to the CVS repository (an awareness event), a CVS log entry i s

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

52

generated. The AFR monitors the CVS commit log, and stores
the following fact based on information present in the log:

Artifact: cs/discussion/ViewManager.java
Edited At: 2005-09-28 15:17:20
FactType: CVScommit

-
Total Edits: 2
Edited By: rss050
Revision: r3390
Comment: added 'synchronized' to all of
the getInstance() methods

This fact represents a particular type of awareness data – a CVS
commit. The fact is indexed by the artifact name, time the fact
was created, and the fact type. The fact type corresponds to the
resource from which the fact was generated. This means that
the ViewManager.java artifact can have facts of multiple types
associated with it, each corresponding to a different time
and/or awareness resource.

Figure 1 – Illustration of an architecture for supplying
dynamic specific awareness data

In addition, the ViewManager.java artifact could have
awareness facts generated from bug reports, e-mail messages,
chat histories, or any other source of awareness information.
Also, the design is extensible, and so monitors for new types
of awareness resources can be added. Additional functionality
can also be added to the AFR for monitoring a different
resource type. This and other implementation details we be
discussed further in the next section.

Since new facts are generated whenever an event occurs in an
awareness resource (e.g. CVS commit, new e-mail, bug report,
etc.), the AFR always has the most recent awareness
information stored. The other advantage of storing the
awareness data in this fashion is that it becomes a simple task
to quickly retrieve awareness data pertaining to a particular
artifact. The awareness information is keyed to the artifact
name, date, and resource it was obtained from. This means that
if data pertaining to a certain artifact in a particular period of

time is desired (e.g. who changed ViewManager.java in the
previous week) it is a simple matter to retrieve the facts that
meet these criteria. This allows for the creation of awareness
entities, which are objects consisting of consolidated
awareness facts. The awareness facts are consolidated
according to what software artifact they are relevant to. For
example, the shaded awareness entity seen in Figure 1 contains
awareness facts concerning Class A.

Consolidation of the relevant awareness facts into an entity
has a number of benefits. The awareness entity can be treated
like another software artifact. For example, it can be
represented in a visualization application as an entity that can
be navigated to, associated with other artifacts, and stored for
later use. It also allows multiple members of a team to refer to
the same group of awareness data, which may prove useful in
supporting the social aspect of software development. We also
believe that giving awareness data a more substantial
representation in the architecture will open avenues for future
research that will allow us to study navigation of awareness
information, just as the navigation of regular software artifacts
is studied.

3.2 Implementation
To implement monitoring of the awareness resources, the AFR
will compare the latest version of each awareness resource it i s
monitoring with the current version at certain time intervals.
Since these awareness resources are based on textual
information, it is a simple matter to detect changes in the
content. Differences between the previous version of the text
and the recent versions will cause the AFR to generate new
facts based on what was changed. More often than not, the
changes will simply be additions to the textual awareness
information (e.g. a log entry for a commit or checkout, a e-mail
sent to the group, etc.).

The consolidated awareness information used to form the
awareness entities is gathered from the AFR. The awareness
entity is instantiated when the user triggers the system,
informing that awareness information concerning a certain
artifact is required. How this triggering of the system occurs
depends on the nature of the system being used to develop the
artifact. For example, it may be that the user begins editing a
certain source code file, or informs the system that he wants to
know who last updated certain design documents. It could
also be that the user selected a particular artifact while using a
visualization application.

The manner in which the awareness entity is presented to or
interacted with by the user is flexible. A system that utilizes
this architecture may provide the user with direct access to the
textual information stored inside the entity through a pop-up
information box as in Figure 2. Alternatively, it may be useful
to interpret the entity by presenting it graphically. The
awareness entity could be mapped to a graphical
representation, in order to perceive qualities about the data
and its relation to the software. Figure 3 demonstrates how an
awareness entity containing facts about developer activity on
a certain software artifact can be visualized. In this case, the
length of each bar represents how much each developer
contributed to the coupling of the corresponding artifact in
relation to another artifact. Note that if this information had
not been readily available in an awareness entity, the
visualization application would have to mine the entire CVS
repository for facts pertaining to this artifact.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

53

Figure 2 - Example of how awareness entity could be
represented using a pop-up information box

Figure 3 - Visualization of an awareness entity: developer
activity contributing to coupling is represented by coloured
bars

4. CONCLUSION
Using the architecture described for the development of tools
supporting team awareness provides a number of advantages.
Firstly, it provides a separation of concerns between the task
of gathering awareness data, and presenting it to the user. The
awareness entity allows for the data to be presented in a
multitude of formats, without having to change the method in
which the data is retrieved. This separation of concerns also
allows support tools to be easily adapted to harvest awareness
facts from different kinds of awareness resources.

Another advantage of using such a design in awareness tools
is that the user will be presented with relevant information
more often, and not overloaded with awareness information
pertaining to unrelated artifacts. The awareness entities
contain information related to a specific artifact, and so the
user will not have to search through many unrelated items of
information.

When designing tools to collect information concerning the
activities and expertise of others, a number of privacy
concerns are raised. For example, sometimes it is not desirable
to reveal the intricate social networks that sometimes develop
in large teams. It can become apparent that certain individuals
are known for making faulty changes, or giving bad advice on
the mailing lists. Consideration must be taken not to mine
data that may be damaging to a project or a person’s privacy.

In summary the technique presented in this paper should
result in tools that require the developers to spend less time
maintaining awareness through the checking and browsing of
textual channels, yet still allow them to be aware of the
information that is being posted to these resources. While i t
has been shown that open-source projects rely heavily on
textual channels for maintaining awareness [3], it i s
conceivable that commercial projects may use similar means to
keep aware of team activities. Further study may be needed to
determine this, however our architecture could also be adapted
to non-textual channels of awareness information.

5. REFERENCES
[1] Cubranic, D., Murphy, G.C., Singer, J., and Booth, K.S.

Learning from Project History: A Case Study for Software
Development. Proc. CSCW, 2004, 82-91.

[2] Froehlich, J. and Dourish, P. Unifying Artifacts and
Activities in a Visual Tool for Distributed Software
Teams. Proc. ICSE, 2004, 387-396.

[3] Gutwin, C., Penner, R., and Schneider, K. Group Awareness
in Distributed Software Development. Proceedings of the
ACM Conference on Computer-Supported Cooperative
Work, 2004, 72-81.

[4] Gutwin, C., Schneider, K., Paquette, D., and Penner, R.
Supporting Group Awareness in Distributed Software
Development. Proceedings of IFIP Conference on
Engineering for Human-Computer Interaction, 2004.

[5] Herbsleb, J., and Grinter, R., Architectures, coordination,
and distance: Conway’s law and beyond. IEEE Software,
1999.

[6] Kirsh-Pinheiro, M., Valdeni de Lima, J., Borges, M.R.S. A
Framework for Awareness Support in Groupware Systems.
The 7th International Conference on Computer Supported
Cooperative Work in Design, 2002.

[7] De Souza, C., Froehlich, J., and Dourish, P. Seeking the
Source: Software Source Code as a Social and Technical
Artifact. Proceedings of the ACM Conference Supporting
Group Work GROUP 2005.

[8] Viégas, F. B., Golder, S., Donath, J. Visualizing Email
Content: Portraying Relationships from Conversational
Histories. CHI 2006.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

54

 1

Together apart: An ethnographic study of industry-
academia collaboration

N. Sadat Shami
Cornell University Information Science Program

301 College Ave, Ithaca NY 14850, USA
sadat@cornell.edu

ABSTRACT
Industry-academia collaboration brings together
collaborative partners that have very different cultures,
goals and technologies. Through an ethnographic study, this
paper highlights various organizational constraints and their
impact on collaboration effectiveness. Team characteristics
including multiple group memberships and geographic
distribution coupled with stringent security policies and
lack of explicit collaborative norms can all cause
impediments to effective collaboration. Implications for the
design of collaboration technologies to cater to these
organizational circumstances are discussed.

Author Keywords

Industry-academia collaboration, collaboration technology,
collocation, ethnography, organizational culture.

ACM Classification Keywords
H.1.2 [User/Machine Systems] human factors; H.5.3
[Group and organizational interfaces] computer
supported cooperative work.

INTRODUCTION
Collaboration between industry and academia creates great
opportunities for sharing knowledge, accessing scarce
expertise, making efficient use of limited resources, and
leveraging funding opportunities from government agencies
[9]. This is achieved through access to the skills and
capabilities of each partner in the collaborative relationship.
Recent advances in computer and communication
technologies increase the potential for collaboration
between industry and academia members that do not share
geographic proximity.

Inspite of technological advances and the benefits of
industry-academia collaboration, such partnerships face
considerable challenges [9]. These challenges are

compounded when participants are geographically
distributed. It has long been recognized that the real
complexities of distributed work lie in the interactions
between people, i.e., how they communicate, how they
share information, and how they negotiate shared goals.
These human interaction aspects can turn even the simplest
of tasks into very complex operations. Consequently
CSCW researchers have studied social properties of
distributed teams such as trust [3], conventions [4],
common ground [5], attribution [1] as well as the
technologies to support such teams (see [6] for a review).
Although these studies involved distributed teams, we feel
that industry-academia collaboration has certain
characteristics that make it particularly interesting.
Different goals, different cultures, and different
technologies set industry academia collaboration apart from
other collaborative practices where organizational
differences are not as pronounced.

While the literature on collaboration is vast, there have been
relatively few studies of industry-academia collaboration.
The majority of those studies have focused on issues such
as knowledge transfer from scientific or engineering labs in
the university to industry [8]. In 1994, Slonim et al.
introduce the Center for Advanced Studies (CAS) model of
applied research involving industry and academia members
[9]. In a later study, Perelgut et al. reflect on the initial
model and evaluate its success [7]. These two studies detail
principles and strategies that provide a solid basis for
undertaking industry-academia collaboration. However, to
the best of our knowledge, there have been relatively few
published accounts of critical analysis of practice. Such
informed ethnographies provide a rich and nuanced
description of the subtleties inherent in industry-academia
collaboration. They also provide developers of CSCW
systems with an understanding of user behavior as it
actually exists, rather than how it ‘ought’ to be. In this
paper, we provide an ethnographic account of four
distributed teams comprising of industry-academia
members engaged in software development. As such, the
material presented here documents the varied and complex
interrelationships among individuals in work teams
participating in industry-academia collaboration.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

55

STUDY SETTING
This study was conducted at a software development lab of
TC3 (a pseudonym), one of the largest information
technology companies in the world. The lab is the third
largest within TC3 and leads development efforts for a
large number of software products.

The mission of the research wing of the lab is to bring
together university faculty, graduate students, and TC3
developers to work on projects that are mutually beneficial
to TC3 and the academics. These projects are 2-3 years in
length. Students and faculty divide their time between the
lab and their university over the duration of the project.
Most students spend at least 3 months of the summer at the
lab where they work closely with TC3 developers. During
that time, their faculty advisor makes occasional visits.
When their classes start, students return to their universities.
They continue to work on the project, but more closely with
their faculty advisor. A TC3 Research Liaison physically
located at the lab is assigned to each project and performs
project management duties, even when students and faculty
are away at their universities. The Liaison is the connection
between TC3 and the academic community and is
responsible for ensuring the project meets its objectives.

We were provided with an opportunity to analyze work
patterns and use of collaboration technologies of four (out
of over 40) representative project teams. All teams were
working on a particular version of a major software
subsystem. The teams were at different stages of their
respective development cycles and consequently no
overarching process was applicable to all teams. Each team
was responsible for mandating its own processes. Teams
ranged in size from 6 to 9 members.

Data for this study was collected over four months of the
summer. This is a period of time when most student
members of project teams are physically located at the lab.
Students have their desks in an open office environment
within the research wing of the lab. This space is known as
the student collaborative space. Desks are arranged in
clusters of four and are partitioned with walls. The height
of the walls allows some degree of privacy. Such a setting
is meant to facilitate ease of communication and
interaction. Research Liaisons have their cubicles adjacent
to the student collaborative space. The cubicles of TC3
developers are located on different floors of the lab.

METHODOLOGY
The data collection procedures used in this study were
participant observation, semi-structured interviews, and
email analysis. Data collection was performed during my
stay at the lab. I was physically located in the student
collaborative space. I had a Liaison that supervised me and
I went through the same activities as students from other
project teams. This allowed me to develop an in-depth
understanding of the work context by casting me as both the
informant ‘insider’ and the analyst ‘outsider’. Being an
authentic participant in the study allowed me to draw on my

personal experiences, thoughts, and reactions in addition to
the collected data. The hallway conversations I had with
other students, the informal interactions during picnics and
socials, the research talks I attended with other students and
TC3 employees all allowed me to develop a rich
appreciation of the teams I studied.

While at the lab, I spent roughly forty hours of observing
meetings of the four project teams. Additionally, being
collocated with the students of the project teams I was
studying allowed me to observe their natural work settings.
This provided useful contextual information about who
were dominant members of the teams, how they addressed
bottlenecks, and how they interacted with each other.

I interviewed all members of the project teams I was
studying. In total, thirty one semi-structured interviews
were conducted to probe individual impressions about
collaborative work processes. Each interview typically
lasted an hour. Interview questions revolved around project
responsibilities and goals, relationship with other project
members, progress of the project, physical arrangement of
project members, technologies used and
strengths/weaknesses of the project.

Participants were requested to copy me on non-personal
project related email. This provided insight into the
interaction and communication patterns among team
members. However, obtaining these emails was not an easy
task. Project participants were at times forgetful in copying
me on their emails. I would then meet with those
participants and have them go through their ‘sent messages’
folder and forward relevant emails to me. I would do this
on roughly a bi-weekly basis when I noticed a lack of
incoming email from project members or when I received
an email that had content that did not follow previous
emails.

Being physically located at the lab was not without its
challenges. I sometimes faced a difficult environment
when I started conducting research. My lack of experience
and perhaps low credibility with employees all contributed
to difficulties in conducting valid and probing research.
This field study was particularly tricky since project
participants were told that the researchers were interested in
identifying team processes that were working, as well as not
working. Collection of such data may be perceived to be
intrusive or sensitive. While management desires results
that translate into answers, because of privacy laws they are
unable to grant outsiders access to some of the very data
that could result in effective solutions. On the researchers’
side, there is a risk of upsetting key stakeholders by
revealing unfavorable information that may result in a
curtailment of future access to the study setting. In order to
conduct such potentially sensitive research, I had to gain the
trust of study participants so they would confide in me.
Management also had a true desire to implement changes in
order to improve collaboration effectiveness and was thus

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

56

 3

convinced that they needed to know what was going wrong,
regardless of whether it was pleasant to hear.

Being physically collocated at the lab was particularly
useful in establishing trust with research participants.
Being able to have face-to-face contact with other students,
Liaisons, and TC3 developers allowed me to establish
rapport.

The data gathered from participant observation, interviews
and emails overlapped, thus providing a way of
triangulating, or cross-checking the accuracy of the data.
Grounded theory [10] was used to identify themes (patterns
of recurring phenomena) in our observation, interview and
email data. Through open coding we first identified the
general categories of: project deliverables, impediments to
deliverables, technologies used, organizational policies and
social norms. Axial coding was then used to search for
causal relationships between these concepts. Through
selective coding, we refined these concepts into an
understanding of how organizational constraints affected
collaboration: how multiple team memberships created
different priorities, how project teams stagnated because of
differing priorities, how security policies could limit the
natural flow of collaboration, and how the lack of norms
affected sharing knowledge.

RESULTS
Our analysis revealed a complex relationship between team
characteristics interacting with social norms, and
technology use. We identified both positive and deficient
group processes. However, we chose to focus on deficient
processes in order to discuss how collaboration
technologies may ameliorate them. The research model
employed by the lab has been in place for several years and
has resulted in the creation of a community of faculty
performing research that is of mutual interest to TC3 and
themselves. This is a testament to the success of the
research model.

Multiple memberships and differing priorities
All four categories of members in a project team have
multiple group memberships. TC3 developers are involved
in different product teams, Liaisons have an average of 8
project teams they oversee, faculty members have other
research and students they have to supervise, and students
have their coursework and dissertation to take care of.
Most challenging for the project team is multiple
memberships of TC3 developers. Their availability is often
dictated by product release cycles, which can take priority
over the research project. In two of the projects we studied,
there was considerable inertia because all TC3 developers
were busy with their primary responsibility of meeting
production deadlines. Furthermore, since research projects
are based on problems that are not on the critical path of
development products, there is some degree of uncertainty
regarding whether the research project will be able to be
incorporated into a TC3 product. In some cases, the absence

of development leadership slowed projects, and in some
cases they even stagnated. The following quote illustrates
the tension of multiple memberships and priorities.

“Anyone who is not personally invested in the research
project will continue to struggle with the balance of giving
it enough focus… we have a lot of tugs, pressures and pulls
and this is one of the first things to fall off the cart when
things get heated up.”

Because of these pressures, it is hard to keep track of the
current status of a particular project, especially for TC3
developers and faculty members.

Security policies and geographic distribution
Security policies required that most project members be on
site when accessing TC3 services. Once outside the
premises of the lab, students and faculty members did not
have access to TC3 email or instant messaging applications,
let alone the code they were working on. The imposed
restrictions on use of collaboration technologies impeded
the natural free flowing nature of collaborative work.
Students could not work from home. When they returned
to their universities, they could not easily access their work
and maintain contact with TC3 developers. The instant
messaging application was the most popular means of
communication among both students and TC3 developers.
It provided awareness of team members and afforded
opportunistic interactions. Needless to say, the use of this
technology was sorely missed by students when they were
not physically located at the lab. On the other hand, TC3
employees had Virtual Private Network (VPN) access so
they could access all lab resources when they worked
remotely. Out of approximately forty students, only one
was given VPN access privileges.

Even when on-site, mandatory security policies could create
impediments to work processes. One of the project teams
had a faculty member located in Japan. Coincidentally, a
student member of the team was working on an audio
conferencing tool and the team decided to use it for
conferences calls with Japan. However, when it came time
for the meeting, team members could not connect with
Japan after repeated tries. It was later discovered that the
reason behind this was that the TC3 firewall did not allow
connections to the conferencing server, which was located
at the student’s university.

Norms of effective collaborative work
Perhaps the most interesting finding of our study was that
adequate norms of effective collaborative work could have
led to more opportunities for sharing knowledge. The
collaborative student space where students sit is an ideal
setting for creating a community of practice that can serve
as an additional source of support and learning. The
intention of having students sit together in close proximity
was so that they could informally consult each other and get
exposed to new and diverse ideas. Cultivating explicit
norms emphasizing the collaborative nature of the space

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

57

would help students take better advantage of collocation.
“Most students just do their own thing” was a comment by
a student. For many students, the collaborative space was
unlike anything they experienced before. Fostering norms
encouraging exchange of ideas would thus promote better
use of the collaborative space for knowledge sharing.

Nurturing collaborative norms might also lead to a less
competitive culture, as was evident in one project team.
That team had students from two different universities. In
contrast to working together collaboratively on the same
project, one student commented:

“It seems that there are two teams, and goals differ
between the two. Ours is to complete our tasks, while theirs
is to complete theirs. Two separate teams with minimal
sharing of information.”

IMPLICATIONS FOR THE DESIGN OF COLLABORATION
TECHNOLOGIES
The immediate pressures of daily production tasks and
deadlines will dominate employee decisions on how they
allocate their time. Thus collaboration technologies need to
allow individuals that have multiple group memberships a
mechanism to stay abreast of the projects they are involved
in without increasing cognitive burden. Since scheduling
meetings is often difficult, a shared workspace can act as a
supplement to meetings. Project members can input what
they did during the week, where they are facing bottlenecks
and what they need from fellow members. This
asynchronous medium would allow project members to
check on project status and remain ‘in the loop’ while
allowing them to concentrate on their primary
responsibilities.

The criticism with shared workspaces is that people will not
take the time to check it. However, recent studies show that
subtle design changes can influence behavior, such as
making employees aware that their supervisor is checking
the system [6]. A study of an online knowledge sharing
community for teachers found that it was successful even in
the absence of a strong organizational mandate [2].
Volunteer knowledge stewards created conditions necessary
for the success of the community by playing an active role.
In an industry-academia project team, students can act as
knowledge stewards to keep the shared workspace running
smoothly.

Collaborative technologies can also help in creating
collaborative norms. Personal profiles in a digital space
where students share their background and interests might
facilitate interaction between students by providing a
common ground for conversation. Students can browse
profiles of other students before they even arrive at the lab
and find others that share their interests. This provides a
springboard for conversation that may lead to exploring
common or related interests.

There is also a need to create secure collaboration
technologies that can be used anytime, anywhere. Such

technologies will allow geographically dispersed teams to
adhere to security concerns while preserving the open and
flexible nature of collaborative work.

CONCLUSION
Our findings lead us to believe that while the model of
industry-academia collaboration studied was very effective
overall, overcoming organizational constraints could
improve it even more. Better alignment of priorities, less
stringent security policies, and fostering collaborative
norms can help better realize the benefits of collaborative
relationships. Our study provides practical implications
how collaboration technologies can be better designed to
cater to different organizational circumstances.

ACKNOWLEDGMENTS
Nathan Bos supervised this work. It was funded in part by
TC3 as well as NSF grant #IIS 0308009 to Judy Olson and
Nathan Bos.

REFERENCES
1. Cramton, C. Attribution in distributed work groups. In

P. Hinds & S. Kiesler (Eds), Distributed work: New
ways of working across distance using technology, MIT
Press, 2002.

2. Brazelton, J. & Gorry, G.A. Creating a knowledge-
sharing community: If you build it, will they come?
Comm. of the ACM, 46(2), (2003), 23-25.

3. Jarvenpaa, S., Leidner, D. Communication and trust in
global virtual teams. Journal of Comp. Mediated
Comm., 3(4), (1998).

4. Mark, G. Conventions and commitments in distributed
groups. Computer Supported Cooperative Work: The
Journal of Collaborative Computing, 11 (3-4), (2002).

5. Olson, G.M. and Olson, J.S. Distance Matters. Human
Computer Interaction, 15, (2000), 139-178.

6. Olson, G.M. and Olson, J.S. Groupware and Computer-
Supported Cooperative Work. In J. Jacko and A. Sears
(Eds.), The Hum. Comp. Inter. Handbook. LEA, 2003.

7. Perelgut, S.G., Siberman, G. M., Lyons, K. A., Bennet,
K. L. Overview: The Centre for Advanced Studies. IBM
Systems Journal, 36 (4), (1997).

8. Scott, J.E. & Gable, G. Goal Congruence, Trust, and
Organizational Culture: Strengthening Knowledge
Links. In Proc. ICIS ‘97, (1997), 107-120.

9. Slonim, J., Bauer, M.A., Larson, P.A., Schwarz, J.,
Butler, C., Buss, E.B., Sabbah, D. The Centre for
Advanced Studies: A model for applied research and
development. IBM Systems Journal, 33 (3), (1994).

10. Strauss, A.L. & Corbin, J. Basics of Qualitative
Research: Techniques and Procedures for Developing
Grounded Theory. Sage Publications: 1998.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

58

Help, I Need Somebody!

Computer-mediated Preemptive Mentoring for Domain Novices

Andrew Begel
Microsoft Research
One Microsoft Way

Redmond, WA 98052
andrew.begel@microsoft.com

ABSTRACT
Information discovery is a very difficult and frustrating as-
pect of software development. Novice developers are of-
ten assigned a mentor who preemptively provides answers
and advice without requiring the novice to explicitly ask for
help. A similar situation occurs among expert developers in
radically collocated settings. The close proximity enhances
communication between all members of a group, provid-
ing needed information, often preemptively due to ambient
awareness of other developers. In this paper, we propose
a mechanism to extend this desirable property of preemp-
tive mentoring to developers in more traditional software
engineering environments. The proposed system will infer
when and how a developer becomes blocked looking for in-
formation, and notify an appropriate expert to come to his
aid. We believe that this preemptive help will lower devel-
oper frustration and enhance diffusion of expert knowledge
throughout an organization.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communi-
cations Applications

Keywords
expert, novice, mentor, blocking, information discovery

1. INTRODUCTION
Information discovery is one of the most difficult, frustrating
tasks in software development. Experienced developers of-
ten become blocked on fairly easy-to-formulate, but difficult-
to-answer questions concerning code rationale, bug triage,
and co-worker awareness. Novice developers, whether they
are fresh out of university or transferred in from another
professional job, also experience the same kinds of frustra-
tions in information-seeking, but have a unique aid, a men-
tor. Mentors are experienced developers, or domain experts,
whose job is to look over their protégés’ shoulders and help
them out when they become confused or blocked, sometimes

before they have even asked for help. Once the novices gain
experience, the mentoring relationship is tailed off and they
are left to her own devices.

Berlin and Sim and Holt [1, 16] characterize the mentor rela-
tionship provided to new hires or “immigrants” to a software
team as providing answers to simple questions, explaining
design rationale and hard-to-find information, proffering ad-
vice on tool usage and administration, and very importantly,
introducing them to their new social network. They and
Singer and Lethbridge [17] find that the mentor relation-
ship tails off after a few months once the novice becomes
integrated into the group. This is a good thing because in
many development cultures, it can be perceived as intru-
sive to continually ask questions of others, though providing
answers and advice can usually be considered to be part of
one’s job and helpful to advance the product as a whole [12].

Once a novice learns how to find his way in an organization,
is there no more help to be provided? Of course not. Nu-
merous studies of information-seeking behaviors show that
coordination between software developers goes on at vari-
ous levels of an organization [1, 2], through various com-
munications modalities [6, 13, 20], enabling developers to
discover several important classes of information [8, 9] and
promote team awareness [5, 6, 9, 11, 14, 18]. These stud-
ies on information-seeking behaviors were characterizing ex-
perienced developers, not novices. Who are these human
sources of information and what is their relationship to one
another? Do domain experts have mentors?

Part of the problem with associating a mentor with a soft-
ware developer is that experienced developers create and
maintain code with a large and mostly unique domain due
to the traditional approach to divide up software projects
by contributor. While a mentor for a novice need only be
an expert in the local group’s software project (since novice
projects are chosen to be small and self-contained), a mentor
for an expert might need to be quite knowledgeable about an
entire product’s codebase. This may be possible in a small
organization, but it cannot scale to large ones with many
software development teams. Thus, an expert is likely to
require multiple experts, each with expertise in a particular
area.

So, to where do real experts turn for help when they get
stuck? Ko, DeLine and Venolia conducted a study of the
content of information sought by 17 developers at Microsoft [8],

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

59

and noting where the answers (if any) were found. Their
data indicate that many types of information that cause
developers to become blocked could be found by going to
coworkers. The study did not identify the responders’ ar-
eas of expertise, nor place them in the social network of the
seeker. In open source projects, experts turn to mailing lists
to look for other experts [5]. An inquiry is made to a mailing
list, and the experts monitoring the list will see the question
and respond when they have the answer. Other researchers
analyze software repositories to automatically identify likely
experts given a domain, for instance, a code file or module
in a project [10]. Those who edit a file or module most often
are inferred to be most expert in that area. Since this in-
formation is fairly well hidden without analysis, de Souza et
al. [3] propose a social call graph (analogous to a procedure
call graph in program analysis) that relates developers to
one another when their code interacts in some way.

These notions of code expertise are all based on the no-
tion that an inquirer will seek out an expert when he gets
blocked or stuck. But that is not always what happens.
Latoza, Venolia, and DeLine report that developers first ex-
hausted other, often inadequate, sources of information (the
code, documentation, debuggers, logs, bug databases), be-
fore seeking the help of others [9]. Sillito, Murphy and De
Volder note that the questions developers often ask do not
always map very well onto the answers that software tools
can provide [15]. Humans can be much more efficient at an-
swering vague or desperate questions. Mentors assigned to
novices keep track of them and drop by their desks to see
what they are up to. Mentors can usually tell when a novice
is stuck without the novice having to ask. The mentor pre-
emptively provides the answer before the novice wastes too
much time looking on his own. This is a good thing. Unfor-
tunately, in a typical development culture of private offices
and cubicles, looking over someone’s shoulder to see if they
are stuck is not prevalent.

Teasley et al. [19] report that a technique called radical
collocation makes preemptive advice a regular occurrence.
Radically collocated groups work together in one big room.
Developers can use their ambient senses to overhear con-
versations and see their colleague’s screens as they work.
Whenever one developer needs help, she needs only pop up
her head and spot the right person already in the room to
answer her question, or someone else will notice her frustra-
tion and preemptively ask to help out. If another expert is
nearby, he can join the conversation just as easily and pro-
vide extra information, context and institutional memory.
Radical collocation, in short, provides the mentoring rela-
tionship that novice developers receive and makes it avail-
able to every developer in the room.

Unfortunately, just like most face-to-face communication,
radical collocation induces large coordination problems when
scaling to very large software projects. In the past, when
direct human coordination proved unwieldy, researchers de-
veloped technological solutions to mediate the communica-
tion, such as email, bug databases, configuration manage-
ment systems and wikis. Using each of these systems may
appear to each developer to be a locally optimal solution,
however, they exact a cost. Each provides a less immedi-
ate and lower bandwidth mode of information transfer than

would otherwise be achieved with face-to-face communica-
tion.

We think that face-to-face communication opportunities should
be encouraged, mediated by a new technology that combines
the best aspects of radical collocation, social call graphs
and ambient displays. This technology would enable experts
across a large product team to preemptively interrupt do-
main novices when they are stuck on a problem, without re-
quiring the novice to discover who to ask, without requiring
the novice to exhaust all personal means of searching infor-
mation repositories before asking his question, and without
a novice feeling like he creates too much of an imposition on
the expert to ask his question.

In our model, the expert is considered the altruistic, omni-
scient superhero who comes to save the day when he some-
how detects that another developer is in trouble. It is a
scenario already proven to work for novice developers new
to a programming team, and in radically collocated teams
for experts who need help. It is a model that can coexist
with notions of privacy where individual developers main-
tain their own office or cubicle space. We view our par-
ticular statement of the model in direct opposition to an
alternate one, where a system notices that a developer is
stuck on something and “warns” the expert that the novice
may come to ask a question. By using the word “warn” we
mean to imply that an introverted expert may actually close
his door to maintain privacy or appear very busy to avoid
taking the novice’s question. It is exceedingly important, we
think, to ensure the model is one of altruism, giving advice
to a customer in need, rather than bothersome interruption,
receiving questions from someone who does not deserve an-
swers or who should have been smart enough to figure out
the answer.

Why should an expert be so altruistic and preemptively
talk to someone who needs their help? Experts are short
of time; they need to get their own work done [12]. But,
domain novices who use an expert’s code are the expert’s
customers. If the customers cannot use the expert’s soft-
ware, they will feel frustrated and spread their negativity to
their friends. If the customers get blocked and the author
of some code comes to their rescue, a positive review can be
formed and spread. In addition, creating satisfied customers
reflects well on a developer among the members of his own
product group, as long as they all know about it.

Note that not all questions require human help. If a system
can identify a human developer as an expert in a particular
area, it ought to be possible to tag other information sources
as appropriate repositories of answers that a domain novice
might look at before needing help. In fact, frequent use of
these sources could be interpreted as a trigger to understand
when the novice requires expert intervention.

To test out our ideas, we will need to answer five questions.

1. Is it possible to tell when a developer is stuck or blocked
and needs help? It is likely a domain expert can tell,
but can this state be inferred through logs of developer
actions?

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

60

2. Once it is possible to know when someone is stuck,
is it possible to identify what topic or code area the
developer is stuck on? It may be possible to record
wear on the code, documentation or bug database to
detect this.

3. Once the areas of blockage are known, is it possible to
use it to discover which the likely experts who know
something about the areas? Mining source code repos-
itories for experts based on code ownership [10] is a
start, but should be extended to other information
sources as well as validated in a real software project.

4. What kinds of ambient displays can you put on a de-
veloper’s desktop to make them aware when people
need their help? For example, a digest of all domain
novice/customer activity could be delivered to the ex-
pert (and his product group), enabling the expert to
understand his customers’ behaviors, spot when they
are stuck, and preemptively help them when it appears
appropriate.

5. How would such a technology affect the culture of the
organization in which it was deployed? The design and
potential success of such a technology has to be sensi-
tive to an organization’s existing culture, especially in
regards to the value system placed on asking questions,
asking for help, helping someone in need, and help-
ing someone repeatedly. A thorough understanding of
these issues can be developed using a value-sensitive
design methodology [4].

2. STUDY PROPOSAL
To learn if our model is viable and answer each question
posed above, we will undertake several studies. The first
study will begin with an survey of a random sampling of
software developers at Microsoft. Surveyed developers who
agree to take part in the study will be shadowed for an entire
workday once a month by a researcher who will code their
activities according to a coding schema initially designed by
Ko, DeLine and Venolia [8]. This schema will enable us to
record developers’ information-seeking activities and their
outcomes. If other developers meet the study participant
to ask a question, those interactions, the identity, and the
expertise of the coworker will be recorded as well. To capture
more information about developer behavior, a developer’s
computer-based activities will be logged. An IDE logger will
record their development activities, a window title logger
will record their windowing behavior [7], and if accepted by
the developer and his colleagues, an email logger will record
his conversations with other members of their software team.
Our hope is that the logging information can be used to
synthesize a summary of developer behavior that can be
subsequently analyzed and correlated with the observations
to enable us to infer the tasks the developer is working on
and identify the events that lead up to task switches caused
by blocking.

The second question can be answered by the shadow ob-
server during the first study. Whenever a task switch due
to blocking occurs, the observer can ask what areas of the
code the developer was working in and learn whether they
are related to the blockage or are merely incidental. This
can then be correlated with the logging information.

The third question can be answered with a survey. Given
several existing technologies for relating developer experts
to code and bug reports, a list of potential matches can
be generated. We can send out a survey to developers at
Microsoft and ask them what their area of expertise is and
for which files, code modules, and bugs they feel they could
provide expert help. There is quite likely to be a many-
to-one mapping of expert developers to area. A question
we might ask next is how often the mapping remains stable
or changes over time. It is possible that human resources
information might be used to help keep this mapping up to
date.

Finally, the real test is to build a system using the task infer-
ence technologies proposed above that can notify an expert
automatically as to the activities of the domain novice who
is using his software, and enable the expert to stop by or
communicate electronically to solve the problem. Note that
this kind of interaction can be run through a Wizard of Oz
study, where an expert observer can watch a developer dur-
ing the day and hit a private Help Me button when they
think the developer has become stuck. We expect to pro-
vide a knob to the developer to tune how quickly help is
requested after they get stuck. Some developers may want
more time to play around before someone helps them, some
may want less.

The effects of this technology may be difficult to measure.
Much of it may simply be that the general stress level and
level of frustration experienced by developers goes down
with this tool. It may take just as long to get help as it
did before, but as developers become more accustomed to
asking for (and providing) information to others, less time
may be wasted learning about irrelevant code in the search
for understanding. In addition, by linking domain experts
with other programmers in the organization, knowledge will
flow more freely.

The technology may have negative effects as well, including
the perception that person who needs help is less capable
than others, or that a person who offers help is not spending
enough time doing their own work. A study is necessary to
understand and evaluate the software development culture
and identify how to design and sell the technology to make
sure it is perceived as a good thing and not a target or
enabler for scorn.

3. CONCLUSION
In this paper, we have proposed a new mechanism for en-
abling expert developers to preemptively help less knowl-
edgeable colleagues when those colleagues get blocked. Car-
rying out the proposed studies will help inform us of the
feasibility of this mechanism and of its utility and accep-
tance in practice. If it works, it could help bring some of
the benefits of group awareness and participation enjoyed
by small development teams to larger organizations.

4. REFERENCES
[1] L. M. Berlin. Beyond program understanding: A look

at programming expertise in industry. In C. R. Cook,
J. C. Scholtz, and J. C. Spohrer, editors, Empirical
Studies of Programmers: Fifth Workshop, pages 6–25.
Ablex Publishing Corporation, 1993.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

61

[2] B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems.
Communications of the ACM, 31(11):1268–1287, Nov.
1988.

[3] C. R. B. de Souza, D. F. Redmiles, L.-T. Cheng, D. R.
Millen, and J. F. Patterson. Sometimes you need to
see through walls: a field study of application
programming interfaces. In J. D. Herbsleb and G. M.
Olson, editors, Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work,
CSCW 2004, Chicago, Illinois, USA, November 6-10,
2004, pages 63–71. ACM, 2004.

[4] B. Friedman. Value-sensitive design. interactions,
3(6):16–23, 1996.

[5] C. Gutwin, R. Penner, and K. A. Schneider. Group
awareness in distributed software development. In
J. D. Herbsleb and G. M. Olson, editors, Proceedings
of the 2004 ACM Conference on Computer Supported
Cooperative Work, CSCW 2004, Chicago, Illinois,
USA, November 6-10, 2004, pages 72–81. ACM, 2004.

[6] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson.
Introducing collaboration into an application
development environment. In J. D. Herbsleb and
G. M. Olson, editors, Proceedings of the 2004 ACM
Conference on Computer Supported Cooperative Work,
CSCW 2004, Chicago, Illinois, USA, November 6-10,
2004, pages 21–24. ACM, 2004.

[7] D. R. Hutchings, G. Smith, B. Meyers, M. Czerwinski,
and G. G. Robertson. Display space usage and
window management operation comparisons between
single monitor and multiple monitor users. In M. F.
Costabile, editor, Proceedings of the working
conference on Advanced visual interfaces, AVI 2004,
Gallipoli, Italy, May 25-28, 2004, pages 32–39. ACM
Press, 2004.

[8] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development groups. In
Submitted to 29th International Conference on
Software Engineering (ICSE 2007). ACM, 2007.

[9] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining
mental models: a study of developer work habits. In
L. J. Osterweil, H. D. Rombach, and M. L. Soffa,
editors, 28th International Conference on Software
Engineering (ICSE 2006), Shanghai, China, May
20-28, 2006, pages 492–501. ACM, 2006.

[10] A. Mockus and J. D. Herbsleb. Expertise browser: a
quantitative approach to identifying expertise. In
Proceedings of the 24th International Conference on
Software Engineering (ICSE-02), pages 503–512, New
York, May 19–25 2002. ACM Press.

[11] C. O’Reilly, P. J. Morrow, and D. W. Bustard.
Improving conflict detection in optimistic concurrency
control models. In B. Westfechtel and A. van der
Hoek, editors, Software Configuration Management,
ICSE Workshops SCM 2001 and SCM 2003 Toronto,
Canada, May 14-15, 2001 and Portland, OR, USA,
May 9-10, 2003. Selected Papers, volume 2649 of

Lecture Notes in Computer Science, pages 191–205.
Springer, 2003.

[12] L. A. Perlow. The time famine: Toward a sociology of
work time. Administrative Science Quarterly,
44(1):5781, 1999.

[13] D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
People, organizations, and process improvement.
IEEE Software, 11(4):36–45, July 1994.

[14] A. Sarma, Z. Noroozi, and A. van der Hoek. Palant́ır:
Raising awareness among configuration management
workspaces. In ICSE, pages 444–454. IEEE Computer
Society, 2003.

[15] J. Sillito, G. C. Murphy, and K. D. Volder. Questions
programmers ask during software evolution tasks. In
Proceedings of the 14th ACM SIGSOFT Symposium
on Foundations of Software Engineering, Portland,
Oregon, November 2006. ACM SIGSOFT.

[16] S. E. Sim and R. C. Holt. The ramp-up problem in
software projects: A case study of how software
immigrants naturalize. In ICSE, pages 361–370, 1998.

[17] J. Singer and T. Lethbridge. Studying work practices
to assist tool design in software engineering. In IWPC,
page 173. IEEE Computer Society, 1998.

[18] M.-A. D. Storey, D. Cubranic, and D. M. Germán. On
the use of visualization to support awareness of
human activities in software development: a survey
and a framework. In T. L. Naps and W. D. Pauw,
editors, Proceedings of the ACM 2005 Symposium on
Software Visualization, St. Louis, Missouri, USA,
May 14-15, 2005, pages 193–202. ACM, 2005.

[19] S. Teasley, L. Covi, M. S. Krishnan, and J. S. Olson.
How does radical collocation help a team succeed? In
CSCW, pages 339–346, 2000.

[20] J. Wu, T. C. N. Graham, and P. W. Smith. A study of
collaboration in software design. In ISESE, pages
304–315. IEEE Computer Society, 2003.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

62

Exploring the Relationship between Software Dependencies and

the Coordination of Software Development Work

Cleidson R. B. de Souza
Departamento de Informática
Universidade Federal do Pará

Belém, PA, Brasil
cdesouza@ufpa.br

Abstract
In this paper we present a tool to facilitate the work of
managers of global software development projects. This tool
explores the relationship between software dependencies
and coordination of work and uses social networks to
suggest potential coordination problems for managers. The
overall architecture of the tool is described as well as the
theoretical and empirical motivations for the tool.

Keywords: Software Dependencies, Coordination,
Distributed Software Engineering, Social Networks.

1. Introduction

In the past years, more and more organizations have
distributed their software development projects in sites
around the globe. Different strategies, tools, and approaches
have been proposed to facilitate this scenario which faces
social, technical and cultural challenges [1]. In this paper we
present a tool that aims to facilitate the work of managers of
global software development projects. This tool is based on
theoretical predictions and empirical observations about the
nature of software development work. Through our tool, a
manager could potentially monitor distributed software
developers and anticipate coordination problems among
them. This paper describes the design of this tool and our
theoretical motivations.

2. Background and Motivation

One way to manage the growing complexity of complex
systems is to decompose them into smaller parts, the
subsystems [2]. In software systems, this idea is called
decomposition, and these smaller parts are called modules
[3]. The predictable consequence of dividing a system into
modules is that these modules need to be put back together
in a way that the software system can provide its services. A
dependency between software modules is said to exist when
a module relies on another to perform its operations or when
changes to the latter must be reflected on the former [4].

Software engineers have long recognized the need to deal
with dependencies. For example, there are different
techniques for program dependency analysis [5]. These
approaches are used, among other goals, to improve
software testing, evolution, and understanding.

Another approach is the creation of mechanisms in
programming languages to reduce dependencies between
software elements. In this case, the most important principle
is Parnas’ information hiding [6]. Parnas proposed more
than just a technical approach: he recognized the
relationship between software dependencies and
coordination when he suggested that by reducing
dependencies between modules, it is possible to reduce
developers’ dependencies on one another, a managerial
advantage. Nowadays, this is a well-known argument cited
in software engineering textbooks [3, p. 241]. Conversely,
but also supporting this relationship between dependencies
and coordination, Conway [7] postulated that the structure
of a software system would reflect the communication needs
of software developers. In short, whereas Parnas argues that
dependencies shape the coordination and communication
activities performed by software developers, Conway argues
the converse: that dependencies reflect these coordination
and communication activities. That is, technical
dependencies between components create a need for
communication between developers, and similarly,
dependencies between the development tasks are reflected in
the software. Both Parnas’ and Conway’s arguments have
been validated by different empirical studies in collocated
and distributed software projects [8, 9].

This relationship between software dependencies and the
coordination of the work holds even when modular
decomposition is applied. In fact, software engineering
research has already found that one module can not be
implemented completely independent of its clients [14]. This
means that software developers who are supposed to work
independently instead need to communicate and coordinate
to guarantee a smooth flow of work. Our own empirical
studies acknowledge this when they describe the
coordination problems faced by software developers despite
the usage of interfaces and state-of-the-art software
development and collaborative tools [9].

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

63

Despite this acknowledged relationship between
dependencies and communication and coordination needs,
this relationship has not been explored to facilitate and
understand software development activities. Software
development is a strong candidate for exploring this
relationship since (i) dependencies among software
components can be automatically identified, and (ii)
software is malleable, i.e., their dependencies, if so desired,
can be more or less easily changed, and consequently the
coordination of those developing it. In this paper we explore
this relationship to support software development projects
through the description of a software development tool to
help managers of distributed projects. This tool is described
in the following section.

3. The Tool

Among the empirical studies that describe the
relationship between software dependencies and
coordination, some of them are more relevant to this work.
To be more specific, Morelli [10] and Sosa [11] found a
strong correlation between dependent components in a
software system and the frequency of communication
among the members dealing with these components. This
suggests that developers dealing with dependent components
are more likely to engage in communication than developers
implementing independent components. According to these
authors, technical dependencies could then be used to
predict communication frequency among team members.
That is, given two dependent software modules, the
developers responsible for developing those modules need
to interact to coordinate their work, despite the usage of
interfaces and other mechanisms to minimize dependencies.
It is this insight that guides the design and usage of our tool.

However, in order to explore the relationship between
software dependencies and coordination, it is necessary to
identify dependent pieces of software and communication
events among the software developers. Our tool
automatically identifies dependent pieces of code and their
authors using Ariadne [12], so that it is possible to create a
social network [13] of developers that establishes which

developer depends on the code of another software
developer. Communication events are more difficult to be
identified since developers can use different media to
communicate: emails, instant messages, phone calls and so
on. Our current implementation registers email exchanges
through an event-notification server that receives all emails
exchanged among pairs of developers. The aggregation of
all emails creates a communication network of developers.
These two social networks – dependency and
communication – are combined by our tool.

The goal of our tool is to automatically identify situations
when there is a mismatch between the dependency and
communication networks. This includes two situations. In
the first case, there is a dependency between two
components, but the software developers dealing with them
are not engaging in communication events. This might mean
that those developers are not aware of each other, a usually
problematic situation [9]. The second case happens when
two developers are communicating with some frequency but
there is not a dependency between their components. This
situation might suggest a need for re-structuring the
architecture of the system (that’s why they are
communicating) or that possibilities for software reuse are
being lost.

Our tool supports the visualization of different social
networks: the communication and dependency networks, the
network that highlights the matches between the
communication and dependency networks, and finally, the
network of communication (dependency) not accompanied
by dependency (communication). This way it provides to
managers easy access to the information of interest.

Figure 1 below presents three views provided by the tool:
(i) the union of the two networks, (ii) the dependency
network minus the communication network, and (iii) the
communication network minus the dependency network.
Again, the overall idea is to identify the mismatches
between the networks, which is achieved by presenting the
difference between the networks.

Figure 1: Tree different views provided by the tool

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

64

An important design decision of our tool is just to present

information to the manager, letting him to decide how to
handle it. That is, the tool just indicates the mismatches
between the networks; it does not automate tasks for the
manager. The reason is that the manager might be aware of
additional information, which would help him to make sense
of the reported mismatches: e.g., a refactoring of the code
that is about to happen might justify the communication that
is going on among developers despite the fact that their
components are independent.

Our tool is implemented in Java and uses Elvin as the
event-notification server that monitors and receives email
information exchanged among software developers. The
dependency network from Ariadne is imported as CSV files.
The comparison between the social networks is done using
matrix operations, as in standard social network software
implementations [13] and the visualization of networks is
done using JUNG (http://jung.sourceforge.net).

4. Conclusion and Final Remarks

The goal of this paper is to present a tool developed by
the authors to facilitate the work of managers dealing with
software development projects. This tool is based on the
relationship between software dependencies and the
coordination of software development work. This
relationship has been predicted in the past and corroborated
by different empirical studies. Managers could use the tool
to monitor interactions among distributed software
developers and therefore anticipate potential problems.

We plan to continue improving the tool and also to

conduct empirical studies with it. For instance, by using it to
analyze real data from global software development projects
or deploying it in global teams.

5. References

[1] J. D. Herbsleb and D. Moitra, "Global software development,"
IEEE Software, vol. V18, pp. 16-20, 2001.

[2] H. A. Simon, "The Architecture of Complexity: Hierarchical
Systems," in The Sciences of the Artificial. Cambridge, MA:
The MIT Press, 1996, pp. 183-216.

[3] C. Ghezzi, et. al., Fundamentals of Software Engineering,
Second Edition ed: Prentice Hall, 2003.

[4] G. Spanoudakis and A. Zisman, "Software Traceability: A
Roadmap," in Handbook of Software Engineering and
Knowledge Engineering, S. K. Chang, Ed.: World Scientific
Publishing Co., 2004.

[5] A. Podgurski and L. A. Clarke, "The Implications of Program
Dependencies for Software Testing, Debugging, and
Maintenance," Symposium on Software Testing, Analysis,
and Verification, 1989.

[6] D. L. Parnas, "On the Criteria to be Used in Decomposing
Systems into Modules," CACM, vol. 15, pp. 1053-1058, 1972.

[7] M. E. Conway, "How Do Committees invent?" Datamation,
vol. 14, pp. 28-31, 1968.

[8] A. MacCormack, et. al., Exploring the Structure of Complex
Software Designs: An Empirical Study of Open Source and
Proprietary Code, Harvard University, 05-016, 2004.

[9] C. R. B. de Souza, et. al., "How a Good Software Practice
thwarts Collaboration - The Multiple roles of APIs in
Software Development," presented at Foundations of Software
Engineering, Newport Beach, CA, USA, 2004.

[10] M. D. Morelli, et. al., "Predicting Technical Communication
in Product Development Organizations," IEEE Trans. on
Engineering Management, vol. 42, pp. 215-222, 1995.

[11] M. E. Sosa, et. al., "Factors that influence Technical
Communication in Distributed Product Development: An
Empirical Study in the Telecommunications Industry," IEEE
Trans. on Engineering Management, vol. 49, pp. 45-58, 2002.

[12] E. Trainer, et. al., "Bridging the Gap between Technical and
Social Dependencies with Ariadne," presented at Eclipse
Technology Exchange, San Diego, CA, 2005.

[13] S. Wasserman and K. Faust, Social Network Analysis:
Methods and Applications. Cambridge, UK: Cambridge
University Press, 1994.

[14] Kiczales, G. Beyond the Black Box: Open Implementation.
IEEE Software, 13 (1). 8-11.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

65

Knowledge-sharing in open-source software development
using a social bookmarking system

Davor Čubranić
cubranic@acm.org

1. INTRODUCTION
As increasing numbers of successful open-source software (OSS)
projects reach hundreds of thousands of lines of code, a dominant
architectural model has emerged that allows such projects to cope
with communication and coordination challenges of working in ge-
ographically dispersed teams that are potentially open to anyone on
the internet.

Despite their size, projects such as Linux,1 Apache,2 Mozilla,3

and Eclipse4 are driven by a small core group of no more than
a couple of dozen developers. Although there may be numerous
other contributors to the project, from bug reporters and testers to
coders, the members of the core group typically write the majority
of the system’s code themselves and review all the externally writ-
ten contributions before they can be accepted into the projects code
base.

Thanks to the small core group size, these projects can maintain
cohesion and focus even though their members may have barely
even met face-to-face. However, the core group is also a limit-
ing factor to the project’s growth in a sense, since there is only so
much its members can physically do in a given period of time. As
a compromise between an ever-expanding list of feature requests
from their users and the need to allocate the core group’s time and
effort, most large OSS projects have independently evolved an ex-
tremely modularized and extensible architecture. Such an architec-
ture allows the project to keep the functionality written by the core
team rigorously focused, while at the same time the wider devel-
oper community can develop third-party modules that plug into the
core system and address their own specific needs.

Examples of such third-party modules range range from low-
level device drivers in Linux, to Eclipse plug-ins that allow edit-
ing of more esoteric programming languages, to Mozilla extensions
that change the web browser’s user interface or add tighter integra-
tion with certain web services. The extensible architecture of these
systems is arguably an important contributing factor to their popu-

1–TODO: URL–
2http://www.apache.org
3http://www.mozilla.org
4http://www.eclipse.org

Copyright held by authors.

larity and growth of a lively user community. Indeed, it is hard to
imagine that a successful open-source project of a reasonable size
and duration and with a large user community could maintain cen-
tralized development. Analysis of communication patterns in over
150 OSS projects conducted by Crowston and Howison [1] sup-
ports this idea, finding that the level of centralization of communi-
cation in bug solving is negatively correlated with project size.

However, non-core developers interested in writing their own ex-
tensions face significant challenges. First, they have to understand
the extension API and know the functionality that is available to ex-
tensions. Second, they have to know how to use the API properly,
such as a particular sequence of steps that have to be executed in
the right order. Third, developing an extension involves more than
just writing the code and typically includes setting up its configura-
tion files, packaging, and distribution. Each of these steps requires
knowledge of specialized syntax and format, often idiosyncratic to
the particular project. Therefore, a beginning extension developer
must absorb a significant amount of very specialized knowledge
that can not be found outside the project—for example, transferred
from another project or even learned in school, the way a program-
ming language might be. In other words, such a developer is com-
pletely dependent on the project’s community while coming up to
speed.

The community itself, of course, is initially completely depen-
dent on the core development team to provide documentation and
advice about the project. The importance of this initial step cannot
be overstated: witness the problems faced by the Mozilla project in
its first year, after Netscape open-sourced its browser code but was
too slow to provide documentation that would allow beginners to
the project to start contributing. [4] However, with time non-core
developers start creating their own project documentation. Such
documentation is usually written to complement the one provided
by the core team, especially by being “friendlier” to newcomers to
the project. For example, it may be written as a tutorial designed to
get the newcomer off the ground writing useful code quickly, rather
than as an exhaustive reference.

Open-source projects today use a variety of forums to which
members can turn for help and information about the project, as
well as discuss development issues or report bug. These forums
range from official project web site, bug tracking database, and
mailing lists, to IRC channels, blogs, and user-written newsletters.
In this paper, we report on initial results of our investigation into a
previously overlooked channel for knowledge sharing—web-based
collaborative bookmarking.

2. SOCIAL BOOKMARKING SYSTEMS
Web browsers have early on introduced the “bookmarking” feature:
creating a collection of pointers to web pages, together with addi-

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

66

http://www.apache.org
http://www.mozilla.org
http://www.eclipse.org

tional user-defined metadata such as a brief description or a set of
keywords. Social bookmarking systems [3] take this concept from
a personal collection to one shared world-wide. Typically, a social
bookmarking system allows individuals to enter their bookmark
collection into the system, where it can be accessed by anyone on
the internet, most commonly through a web-based interface. The
power of social bookmarking comes from the multiple ways that
their users can view, search, and organize the collection: by the
bookmark’s URL, author, or keywords. The system’s home page
is frequently the place where most popular bookmarks are listed,
so that casual browsers come across them and further enhance their
popularity.

The most popular social bookmarking system today is del.icio.us
(pronounced Delicious).5 One of the foremost features of Deli-
cious iscollaborative tagging– marking bookmarks with multi-
ple keywords, or tags. The vocabulary of tags is completely open;
any user is free to attach any word or combination of words to
a bookmark. In addition, the system automatically records the
bookmarked URL’s title and time when the bookmark was cre-
ated. Delicious’s user interface then makes it easy to browse book-
marks along one of three axes: users, URLs, and tags. For ex-
ample, one can search for all bookmarks created for a given URL,
and seem them displayed in reverse-chronological order along with
each bookmark’s creator, a list of all the tags the user has attached
to the bookmark, and an optional brief note. Clicking on a user’s
name in this list shows all bookmarks created by that user; simi-
larly, clicking on a tag lists all bookmarks “tagged” with that word.

Thanks to this intuitive interface, it is easy for a user to start ex-
ploring a given topic area and find out URLs in it or other users with
that interest. The social “feel” of Delicious is further enhanced by
making it simple to define and view networks of users with shared
interests, friends or family, and to share one’s bookmarks with peo-
ple in this network (the “Links for you” feature). Furthermore, to
encourage users to stay active and keep up to date, Delicious pro-
vides features for monitoring creation of new bookmarks – again,
filtered by their creator, tag, or URL, to focus on one’s area of in-
terest – either with RSS feeds or “subscriptions” directly from the
system.

Delicious also offers several ways to get a more general overview
of user activity in the system. The home page shows the “hotlist”,
URLs that have been bookmarked by large numbers of people very
recently, and “tags to watch”, a list of most frequently used tags
along with most-bookmarked URLs for each tag. The “recent” and
“popular” pages expand on the hotlist, showing the chronological
and frequency overview of bookmarking activity,

3. FIREFOX AND EXTENSIONS
Mozilla Firefox is an open source web browser developed by the
Mozilla Corporation and hundreds of volunteers. The project started
in 1998, when Netscape released its commercial web browser Netscape
Communicator under an open source license. Firefox is one of the
largest and most visible open-source projects today with over 200
million downloads in the last two years alone. However, the project
gained momentum slowly, and there was widespread concern in its
early years that it is too big and too complex a product to be devel-
oped in an open-source manner. This complexity required at least
one major rewrite of the code-base, but arguably even more impor-
tant was the decision in late 2002 to shift the development effort
from a “web suite” that incorporated a wide range of functionality
to developing stand-alone applications focused on a single-task: the
browser (Firefox) and the email client (Thunderbird). The shift was

5http://del.icio.us

more fundamental than simply changing how applications were
packaged and distributed; instead, the project switched its men-
tality from an “everything but the kitchen sink” outlook to “if it’s
not essential, make it an extension.” This allowed the code to be
simplified, and the core developers to focus their effort more effec-
tively. Conversely, the team was now committed to an extensible
and fully-documented architecture, so that anyone could write ex-
tensions that transparently hooked into the application and could
add any new functionality. The result was a success not only on the
basis of Firefox’s meteoric rise in the market share, but also on the
growth of a vibrant ecosystem of third-party extensions, with over
1,800 listed on the official Mozilla extension site.6

4. BOOKMAKING FIREFOX EXTENSIONS
Our analysis was performed on a set of Delicious data collected
in early September 2006. We started off by retrieving all book-
marks with tags “Firefox”, “extension” (or “extensions”), and one
of “development”, “dev”, “programming”, “api”, “xul”,7 “xpi”, 8

“tutorial”, “howto”, or “tips”. This set comprises a total of 2922
bookmarks, identifying 1675 unique URLs.

We then took a sample of 100 bookmarks from this set, compris-
ing 93 unique URLs, and collected the complete history of their
URLs. Because of problems with the Delicious retrieval interface,
we could only retrieve bookmarking activity for 76 URLs. A total
of 24479 bookmarks were created by 17,469 unique users. Within
these bookmarks, 3,603 unique tags were used, 83,164 in total.
Mean number of tags per bookmark was 3.4, median 3 (range 1–
117). Table 1 below presents the descriptive statistics of bookmark-
ing and tagging activity per each URL in the sample:

Mean Median Min Max

Bookmarks/URL 322.1 68.5 1 2919
Unique tags/URL 110.6 46 3 735
Total tags/URL 1094.3 181 3 9910

Table 1: Statistics for activity per each URL in the sample

5. RELATED WORK
Golder and Huberman have analyzed the structure and dynamics
of tagging in Delicious. [2] Looking at the bookmarking of a sam-
ple of URLs that appeared in the Popular list in a one week pe-
riod, as well as a closer look at all bookmarks of a random sam-
ple of 200 users, they discovered regularities in user activity, tag
frequencies, kinds of tags used, and bursts of popularity in book-
marking. They also discovered that the relative frequencies of tags
within a given URL quickly converge to a stable proportion. This
behaviour, explained by a simple stochastic model, has important
implications for the usefulness of individual tagging behaviour to
the wider community, because it shows that a consensus on tags
relevant to a given URL forms relatively quickly (after fewer than
100 bookmarks) and remains stable even as other users continue
to add their bookmarks and tags for the same URL. Furthermore,
the model shows how idiosyncratic, personally-oriented tags that
a user may create purely for him- or herself, can coexist with the
more general, and commonly-used, tags. Based on these findings,

6addons.mozilla.org/search.php?app=
firefox&appfilter=firefox&type=E
7XUL is an XML-based markup language used to define user in-
terface elements in Firefox.
8XPI is the packaging format for Firefox extensions.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

67

http://del.icio.us
addons.mozilla.org/search.php?app=firefox&appfilter=firefox&type=E
addons.mozilla.org/search.php?app=firefox&appfilter=firefox&type=E

Golder and Huberman argue that while there is no direct evidence
for knowledge in the bookmarking data, it certainly seems to oc-
cur based on trends in tagging dynamics such as the forming of
consensus on tagging vocabulary.

The concept of social bookmarking is being adapted to narrower
audiences, where it can be designed to their idiosyncracies and sup-
port specific tasks and requirements. For example, Millenet al.
described an “enterprise” social bookmarking system, adapting the
most successful features of a general social bookmarking system
like Delicious to use within a large organization. Their system,
called “dogear,” links in with other corporate databases and col-
laboration tools, includes the support for organizational roles, and
uses information retrieval techniques to improve detection of users
with shared interests and disseminate this information through the
system.

Storeyet al.applied social bookmarking concepts to software de-
velopment to support cordination and communication in geograph-
ically distributed software development teams. [5] Their “tagSEA”
tool interprets tags embedded in the source code to create “way-
points,” or landmarks in the code of interest to developers. Way-
points can be viewed as a list organized by tag or location, simi-
larly to bookmarks in Delicious, or can be linked into a “route” –
a sequence of landmarks that serves as a guide through a particu-
lar portion of the code. Since the source code is shared among the
members of the team through a revision control system like CVS,
tags, waypoints, and routes are also shared and collaboratively cre-
ated simply by editing the relevant source files.

6. CONCLUSION
While much more work remains to be done to analyze the book-

marking activity data that we have collected, preliminary results
show that Delicious is a rich source of links to information on de-
veloping Firefox extensions. The number of users creating book-
marks on this topic shows that there is an audience for tools that
help keep track of such information, and that it would be valuable
to investigate what additional features would be appropriate in this
niche. In the future, we also intend to investigate the dynamics of
tagging in this community, as well as extend the collection to other
communities, such as Eclipse plug-ins.

7. REFERENCES
[1] K. Crowston and J. Howison. Hierarchy and centralization in

free and open source software team communications.
Knowledge, Technology & Policy, 18(4):65–85, 2006.

[2] S. Golder and B. A. Huberman. Usage patterns of
collaborative tagging systems.Journal of Information Science,
32(2):198–208, 2006.

[3] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social
bookmarking tools: A general review.D-Lib Magazine, 11(4),
Apr. 2005.

[4] A. Mockus, R. T. Fielding, and J. Herbsleb. Two case studies
of open source software development: Apache and Mozilla.
ACM Transactions on Software Engineering and
Methodology, 11(3):1–38, July 2002.

[5] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby. Waypointing
and social tagging to support program navigation. In
Proceedings of ACM SIGCHI conference (CHI’06), pages
1367–1372, 2006.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

68

Continuous Coordination (CC):
A New Collaboration Paradigm

Ban Al-Ani, Anita Sarma, Gerald Bortis, Isabella Almeida da Silva, Erik Trainer,
André van der Hoek, David Redmiles

University of California, Irvine

Department of Informatics
444 Computer Science Building

Irvine, CA 92697-3440 USA
Phone: +1(949) 824-2776

{balani, asarma, gbortis, ialmeida, etrainer, andre, redmiles}@ics.uci.edu

ABSTRACT
The increase in software complexity introduced the need for soft-
ware development teams and consequently the need to coordinate
team members’ activities and create a shared awareness. We seek to
overcome some the pitfalls of earlier attempts to coordinate software
development through a new coordination paradigm we term Con-
tinuous Coordination (CC). Generally speaking, the CC paradigm
complements formal synchronization with support for informal ac-
tivities. In this paper, we define the CC paradigm within three di-
mensions and demonstrate how we embodied CC through a spec-
trum of Eclipse plug-ins.

CATEGORIES AND SUBJECT DESCRIP-
TORS
H.4.3 [Information Systems Applications]: Office Automation-
Groupware; H5.3 [Information Interfaces and Presentation]
Group and Organization Interfaces – Computer Supported Coopera-
tive Work.

GENERAL TERMS
Management, Design, Human Factors

KEYWORDS
Software Engineer, collaborative work, visualization, configuration
management, programming, design.

1. INTRODUCTION
Creating software is an inherently complex task because of its

changeable and intangible nature. It is further complicated by the
dependencies that exist among artifacts and the gamut of rich inter-
actions required among developers. Distributed software develop-
ment only adds to this plethora of complexities and further empha-
sized the need for development environments that provide compre-
hensive support for different aspects of software development (e.g.
Curtis et al., 1988).

The proposed paradigm, Continuous Coordination (CC), blends

the best aspects of the more formal, process-oriented approach with
those of the more informal, awareness-based approach. In doing so,
continuous coordination blends processes to guide users in their day-
to-day high-level activities with extensive information sharing and
presentation to inform users of relevant, parallel ongoing activities.
Thus it provides the underlying infrastructure for coordination.
Some of the key properties, we identified, for tools that follow this
paradigm are that the tools share relevant information and do so in a
contextualized and unobtrusive manner. We deem information rele-
vant when it is provided to a developer who will utilize it in the
foreseeable future. Shared information is contextualized and unob-
trusive when it is embedded in the development environment allow-
ing developers to modify their behavior at a time that is convenient
to them.

Other general tool properties are also being explored in our en-
deavor to increase the effectiveness of the tools developed within the
dimensions of CC. For example, we are of the opinion that develop-
ers can need differing levels of information abstraction at various
stages of development while carrying out different developmental
tasks. We sought to develop a range of tools that can offer a spec-
trum of support. The tools can then be incorporated into different
phases of development by developers as they see fit. Thereby in-
creasing flexibility and providing support for developers’ low level
programming activities through to high level support of managerial
activities.

In this paper, we present a definition of Continuous Coordina-
tion dimensions and an outline of some of the tools we have devel-
oped thus far within these dimensions. They are discussed in terms
of the kind of information it provides and to whom.

2. CONTINUOUS COORDINATION
The CC project sought to address a wide range of needs that are

typically manifested during the software engineering process when
conducted by co-located or distributed teams. Shared awareness,
through shared information is one such need. It has been recognized
as being both important and challenging (de Souza et al, 2004).

The challenge in sharing information in this way is achieving
an appropriate level of detail and providing it at a time that is suit-
able to the developers. How much information should we provide
the developer? Providing a constant stream of information can lead
the developers to feel overwhelmed whereas infrequent sharing of
information can mean that a developer lacks sufficient information
to successfully complete a task.

The information provided to the developer depends on his/her
role within the team. What kind of information does the developer
need? For example, a manager would typically need to be aware of

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Conference’06, Month 1–2, 2006, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

69

team structure, work products and interactions. A programmer, how-
ever, would generally need to be aware of changes to the design or
code made by other team members.

Finally, we also found that while identifying the amount and
the type of information needed by the developers must be deter-
mined, the manner in which it is presented should also be consid-
ered. When should information be shared? For example, if a devel-
oper chooses to ignore the shared information this should not im-
pede completing the task at hand. Furthermore, shared information
should not distract a developer from the task at hand. The informa-
tion should be available, such that, a developer can access it at a
time suitable to him/her becoming part of his/her peripheral aware-
ness in the meanwhile.

In summary, the type of information needed by the developer,
the triggers to share information and the recipients of shared infor-
mation form the three principal CC dimensions. Our approach to
embodying the CC paradigm within these dimensions will be dis-
cussed in the following section.

3. PLUG-INS: EMBODYING CONTINUOUS
COORDINATION
We sought to embody the CC paradigm through a series of

Eclipse plug-ins, for several reasons. First, we sought to enable de-
velopers to incorporate the proposed plug-ins in a manner suited to
the process they have chosen to adopt. In adopting this approach we
sought to increase the paradigm’s flexibility. Second, we sought to
tailor information to individual developer needs and consequently
the role they play within the project. We decomposed information

that is generally shared, such that, it is possible to identify who it
would benefit (e.g. programmers, designer, managers...etc) and po-
tentially minimize the amount of redundant information shared. The
third and final reason we embodied CC through plug-ins is because
we endeavored to promote self-coordination. While a developer may
not be able to coordinate the whole project within the restrictions of
their assigned roles they are able, through the proposed series of
plug-ins, to coordinate tasks with their peers and those who share
their artifacts. Furthermore, some of the plug-ins provide a high
level of abstraction or visualizations that can be useful to all types of
developers e.g. programmers, designers, managers…etc. In such
instances, in this report, they will be referred to collectively as de-
velopers only.

3.1 Lighthouse
Lighthouse is a coordination platform that is rooted in the con-

cept of emerging design, a real-time representation of the design as it
is being implemented in the code by each of the programmers.
Lighthouse then projects this emerging design view on top of the
initially conceived conceptual design (da Silva et al, 2006).

Figure 1 illustrates how programmers are able to maintain pe-
ripheral awareness of ongoing changes made to the project by the
team members when adopting the proposed dual-monitor setup. In
this set-up a main monitor would have their primary coding envi-
ronment and an auxiliary monitor would be dedicated to Lighthouse.

Lighthouse development efforts are currently focused on further
improving the user interface such that the changes made to the pro-
gram is reflected in the design more effectively. Once this is stage is
concluded the tool will be validated empirically.

 1. a. Project management view. 1. b. Programmer’s side-by-side view of code and emerging design.

Figure 1. The emerging design overlaid on top of the original conceptual design produced by Lighthouse.

3.2 Palantír
The Palantír plug-in is a workspace awareness tool that pro-

vides developers with insight into ongoing development activities in
remote workspaces (Sarma et al, 2003). Specifically, Palantír pro-
vides information that includes identifying who is conducting a
change, what is being changed, calculates a measure of the magni-
tude of those changes, a measure of the impact of those changes, and
graphically displays this information in a configurable and non-
obtrusive manner to developers involved in programming (Figure 2).

Palantír breaks the isolation of distributed Configuration Man-
agement (CM) workspaces by continuously sharing information of
ongoing changes, thereby allowing early detection of conflicts while
changes are still in progress. In addition to information regarding
which artifacts are being changed by which developer, Palantír dis-

tinguishes itself by providing information about the severity and
impact of changes. These measures allow developers to gauge which
changes are important and require their attention.

Finally, Palantír promotes a model of self-coordination recog-
nizing that many possible and flexible resolutions are possible bring-
ing to distributed development a level of awareness that begins to
approach that of local settings. Thus, while the developers are noti-
fied of changes, the notification does not impede their work or force
them to take immediate action.

Currently, we are in the process of evaluating the effectiveness
of Palantír in enabling developers detect potential conflicts earlier
and in producing better quality software (i.e. fewer unresolved con-
flicts) through controlled lab experiments and results are being ana-
lyzed.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

70

Figure 2. Palantír Visualization.

3.3 Ariadne
Ariadne is a collaborative software engineering tool that aims to

enhance developers' awareness of the social dependencies present in
their work by seamlessly integrating such information with devel-
opment activities (Trainer et al, 2005).

Figure 3. Examples of graphical representations of social de-
pendencies produced by the Ariadne plug-in.

It analyzes software development projects for source-code de-
pendencies and collects authorship information for the source-code
from a configuration management repository. The tool then links the
source-code dependencies and authorship information to create a
social network of software developers (Figure 3.a). We aim to com-
plement this social network graph with current social network analy-
sis techniques, giving programmers and designers an insight into
how their work affects other developers and how the work of other
developers affects their own. For example, "centrality" is a measure
of the power of nodes as a function of their degree of connectedness
with other nodes, their closeness to other nodes in the graph, and
their positions as intermediaries between other nodes (Figure 3.b). .

We intend to determine the validity of applying information
gleaned from social network metrics to enhance programmers’ and
designers’ awareness of their colleagues' development efforts. Cen-
trality offers a measurement of control or ownership of code, and
may help developers identify important players in the project team.
Equivalence may be used to help developers identify who is using
code similarly to prevent duplication of work.

Finally, Ariadne is currently being trialed to visualize the social
interaction within the Ariadne project itself. It succeeded in repre-
senting these interaction and the relationships between developers
involved. However, initial trials also revealed issues relating to the
display of textual information (node labels) and readability. These
issues and others will be addressed before conducting extensive
empirical studies.

3.4 Dashboard
This plug-in is currently in the design phase of development. A

“Wizard of Oz” prototype is being utilized to determine what infor-
mation would support the social interactions (Figure 4). Ultimately
we seek to provide a means to simulate informal “watercooler” con-
versation by providing a central location where project developers
can (1) be informed of their work and how it relates to the overall
project, and (2) spontaneously engage in exploration of particular
issues raised on the board. Insights gained in this phase of develop-
ment will assist in developing the first working prototype and deter-
mining which visualizations are incorporated in the final product.

Figure 4. Dashboard provides an abstract view demonstrating
the relationship between the developer and the modules under
development.

In Figure 4, the programmer’s attention is naturally drawn to
the spheres, which represent modules that have caused the build to
fail. Larger spheres emphasize module importance based on severity
metrics. Circling the modules in a clockwise fashion are the names

3.b An Ariadne “sociogram” illustrating the social network
of software developers.

3.a. An Ariadne “social call graph” illustrating code de-
pendencies and author dependencies.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

71

of the programmers who have most recently modified the module.
This visual connection between the programmer and the module is
further explored in the modifications view (made accessible through
the right panel), which displays in real-time the most recent transac-
tions to the configuration management system. Again, more severe
modifications are emphasized by a larger module name and sphere.

3.5 World View
World View plug-in provides a comprehensive view of the

team dynamics of a project, regarding the geographical location of
teams, the time zones of their operations, and the interdependencies
among teams (Figure 5). This view is intended to help developers
involved in global software identify global and local team members,
interactions between sub-groups and other vital information like
how to contact global member and when (Sarma and van der Hoek,
2006).

Figure 5. World View screen prototypes. Shaded areas of the
map represent countries where it is dark. Active teams in the
shaded areas are shown as “white stars”.

In Figure 5 teams are represented as “stars” on a world map and
interdependencies among teams are shown as “lines” connecting
them. The size of the star denotes the size of the team; larger teams
are represented as larger stars. Interdependencies among teams are
determined based on the number of shared artifacts, which are iden-
tified through program analysis of the code base. The thickness of
the lines represents the extent of sharing: the thicker the lines, the
larger the number of shared artifacts. Through this view, developers
can discern at-a-glance which teams are tightly-coupled and through
which artifacts (mouse-hovers display the list of shared artifacts).

The directed lines (arrows) in Figure 5 represent the direction
of conflicts (changes performed by which team affects which team)
and the thickness of the lines denotes the extent of the conflict: the
thicker the line, the larger the significance of the conflict. Here, sig-
nificance is calculated as the number of artifacts that are affected by
the change. Teams and their respective “arrows” are color coded to
differentiate conflicts arising from different teams. This view can
also be configured for the individual developer to show which
changes by a specific developer affects other teams. The artifacts
responsible for the conflicts are highlighted in red.

Currently, the World View tool is in the exploratory phase with
the first prototype to be made available soon.

4. CONCLUDING REMARKS
A new software engineering paradigm was presented in this re-

port, namely: continuous coordination. The project is implemented
through a collection of plug-ins. A brief description of each plug in
and an outline of the user interface were presented for each. The

descriptions sought to demonstrate how each tool fell within the
boundaries of the CC dimensions, namely:
1. Amount of shared information: each tool provides layers of

information such that the developer can adjust the volume and
level of detail based on individual need.

2. Nature of shared information: the varying forms of information
provided by each tool make it possible to focus on information
relevant to the task at hand.

3. Peripheral Awareness: the information provided by each tool is
readily available for the developer to access but does not pre-
vent the developer from continuing with his/her task. The in-
formation provided by each tool thus remains within the pe-
ripheral awareness of the developers and does not impede their
work.
Collectively, these three dimensions seek to define the essence

of CC by enabling the developers to share an awareness of activities
carried out during a collaborative development process; such that,
developers are neither constrained by the lack of information nor is
their work blurred by a high volume of information.

The degree of success achieved by each tool in conforming to
these dimensions is yet to be determined through empirical evalua-
tions. However, feedback received from walkthroughs of early pro-
totypes and mock-ups has been positive overall.

5. ACKNOWLEDGEMENTS
This research was supported by the U.S. National Science

Foundation under grants 0534775, 0326105, 0093489, and
0205724, by the Intel Corporation, by two IBM Eclipse Technology
Exchange grants, and an IBM Technology Fellowship.

6. REFERENCES
[1] Canfora, G.; Cerulo, L., Jimpa: An Eclipse Plug-in for Im-

pact Analysis, Conference on Software Maintenance and
Reengineering (CSMR'06), (March 22 - 24, 2006), 341-342.

[2] Curtis, B., H. Krasner, Iscoe, N. (1988). "A field study of the
software design process for large systems." Communications
of the ACM, 31(11): 1268-1287.

[3] de Souza, C. R., Redmiles, D., Cheng, L., Millen, D., and Pat-
terson, J. 2004. Sometimes you need to see through walls: a
field study of application programming interfaces. In Proceed-
ings of the 2004 ACM Conference on Computer Supported
Cooperative Work (Chicago, Illinois, USA, November 06 -
10, 2004).

[4] da Silva, I.A., Chen, P., Van der Westhuizen, C., Ripley, R.
and van der Hoek, A. Lighthouse: Coordination through
Emerging Design, OOPSLA Eclipse Technology Exchange
Workshop, October 2006 (to appear).

[5] Sarma, A., Noroozi, Z., and van der Hoek , A., “Palantír: Rais-
ing Awareness among Configuration Management Work-
spaces”, In Proceedings of Twenty-Fifth International Confer-
ence on Software Engineering, p. 444-454, Portland, Oregon
(May 2003).

[6] Sarma, A. and A. van der Hoek, “Towards Awareness in the
Large”, First International Conference on Global Software
Engineering, Brazil, to appear (October 2006).

[7] Trainer, E., Quirk, S., de Souza, C. R. B., Redmiles, David F.
Bridging the Gap between Technical and Social Dependencies
with Ariadne. In: Proceedings of the Eclipse Technology
eXchange (ETX) Workshop, San Diego, CA, 2005.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

72

The Potential of Instant Messaging for Informal
Collaboration in Large-Scale Software Development

Birgit R. Krogstie
Dept. of Computer and Information
Science, Norwegian University of

Science and Technology
Sem Sælands vei 7-9

NO-7491 Trondheim, Norway
+47 73596101

birgitkr@idi.ntnu.no

ABSTRACT
In this paper, we use empirical data to argue that instant
messaging can be an adequate tool for informal collaboration in
large-scale software development projects. We have conducted a
field study on lightweight collaboration tool usage in customer-
driven software development student projects. Findings indicate
that instant messaging tools can be used successfully for a variety
of informal collaboration purposes within a team or small,
informal network. We argue that from a theoretical perspective,
the usage of collaboration tools in student projects can be seen as
relevant to software development work in general, including
large-scale projects. There is a lack of empirical research in this
area, and we accordingly suggest some directions for future work.

Keywords
Software development, informal collaboration, lightweight
collaboration tools, instant messaging

1. INTRODUCTION
“But in the case I am to, have a technical question, and want to
ask somebody in the group, I first look at MSN.”

(Member of a SD student project team)
Software Development (SD) is a socio-technical activity and
inherently complex [1, 10]. Participants need to undertake
frequent re-planning and negotiation [7, 17, 18] with reference to
a shared workspace. When radical collocation is not possible, the
need for coordination increases [1, 11].
A large part of SD project work amounts to programming-related
tasks. The need to support the more “fine-grained”, code-related
aspects of software development has recently been addressed by
[4]. Gutwin and colleagues have addressed how distributed
developers in open source projects solve their needs for awareness
of the team. They found that this was done mainly through text-
based communication in the form of mailing lists and text chat
[10]. Functionality to support informal collaboration in SD may
be integrated into collaborative development environments.

Alternatively, lightweight collaboration tools may be used in
parallel with development tools.
Instant messaging (IM) is a lightweight tool seen in regular use in
work life [2, 15, 19]. It offers opportunities for easily initiated,
synchronous and partly asynchronous chat with one or more
members of a buddy list in which brief status information about
each member is displayed (e.g. ‘away’). Other features typically
included are the option to set up individual and shared spaces as
well as file transfer between users. Whereas the functionality
provided by IM tools may thus in principle be adequate for
supporting informal collaboration in SD work, the possibility of
using IM in SD has received little attention in the CSCW field.
In this paper, we address IM usage in SD work with reference to
empirical data from customer-driven SD student projects, a type
of project briefly presented in Section 2. Our cases are presented
in Section 3. In Section 4, we outline the research method, and the
main findings are presented Section 5. We next discuss limitations
to the study, possibilities for generalization of findings to
professional, large-scale SD work, and directions for further
work, before concluding with a summarized position.

2. CUSTOMER-DRIVEN SOFTWARE
DEVELOPMENT STUDENT PROJECTS
Student project represent a particular kind of SD project work,
with many elements that correspond well to professional SD work
and some elements that belong to a formal education setting.
SE student projects are examples of project based learning proven
successful in SD study programmes. The project students
typically are in the last phase of their SD education, finalising
their bachelor’s or master’s degrees. The projects normally take
up most of one semester, and are generally given high priority by
the students. The projects provide learning that cannot be
achieved through traditional course formats. Customer-driven SE
projects have external customers and ‘real’ problems that add
authenticity and a stronger aspect of situated learning.
There are three main stakeholders in a customer-driven SE
student project: A group of students forming the project team, the
customer (usually an organization external to the university,) with
a real-life problem to be solved by the group, and the university
staff associated with the course. Normally, a documented software
product is to be developed for the customer. The university
additionally requires documents reporting on project management
and the students’ reflection on the process, and a final report is an
important basis for evaluation of the group’s work.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

73

3. CASES
We have collected data from two, in many ways similar, bachelor
level, customer-driven SD project courses in Norway. Project
Course 1 is offered by a private university college offering study
programs within IT. This is the former workplace of the author.
Project Course 2 is part of the IT bachelor program at a
university, the current workplace of the author.
The student projects are conducted in groups of 3-5 students, who
receive a common grade on their result. Whereas both project
courses are customer-driven, Project Course 2 has a bigger share
of university-internal customers. Project Course 1 generally has
college-external customers. In Project Course 1, there is a
requirement that the customer offers adequately equipped office
space for the students three days a week during the course of the
project, and the students are expected to spend most of their
project working time there. In Project Course 2, students
occasionally visit their customers for meetings, but mainly stay at
university campus (or at home) while working on their project.

4. RESEARCH METHOD
We have conducted field research on the two SD project courses,
collecting qualitative data from various sources. The original
research objective was to investigate mobility in SE student
groups, understood an issue not only of physical/geographical
movement, but also of switching between different collaboration
contexts. Also, we intended to investigate the groups’ use of
collaboration tools to support mobility, with the aim of suggesting
new or improved technologies to be tried out in similar settings.
Initially, focus was on Project Course 1, in which one project
group was observed (and video recorded) on several occasions
during their project. The objective was to capture relevant aspects
of their work in different collaboration contexts: within the team
only, with the supervisor, and with the customer. We asked the
group to take a photo whenever there was a new collaboration
setting (e.g. new technology, new people, new location), and post
it to a blog. This provided us with information about relevant
situations to observe. Based on the observations, an interview
guide for a semi-structured interview across groups was designed,
addressing challenges regarding collaboration support in their
situation of distributed and – arguably – mobile work. 7 out of the
11 groups in the course agreed to participate in an audio recorded
1 hour interview. The interviews were held about 3 weeks before
the project deadline. The recordings were partly transcribed,
partly summarized in detail, and next coded in accordance with a
combination of initial categories and a grounded approach. The
analysis revealed patterns in the use of lightweight collaboration
tools that were in themselves interesting and that indicated
promising directions for further empirical, longitudinal research.
The data from Project Course 1 on the use of lightweight tools
mainly shed light on within-team use of these tools. In Project
Course 2, supervised by the author as a member of the course
staff, we found an example of a project group using MSN to
collaborate with their customer abroad. The group logged their
conversations to document their project process. After having
participants’ consent to use the material, made anonymous, for
research purposes, we included the MSN logs in our data material
illuminating use of lightweight collaboration technology in SD.
In addition to the data described, we have, from both courses,
access to project grades, students’ reflection notes from the

projects, and customers’ views on their objectives for and
outcomes from the projects (as described to us in brief telephone
interviews conducted in August 2006, retrospectively to the
project). These data are not used in the context of this paper.

5. FINDINGS
The Project Course 1 students appear very conscious about which
tool they use for collaboration under different circumstances.
Generally, they present a clear hierarchy of preferred technologies
for initiating informal collaboration when working distributedly.
All the 7 groups have MSN Messenger on top.
Reporting on their use of MSN, the groups interviewed describe
within-team collaboration only. When they refer to collaboration
with the customer or the university, they mention formal or
informal face-to-face meetings, email, and telephone, and
sometimes virtual meetings or document/feedback exchange via
shared project workspace (depending on the infrastructure offered
and/or preferred by the customer), but they never mention IM.
Groups express themselves in a way demonstrating how the use of
MSN and “being on” within and outside work hours is taken for
granted. If the group is distributed, availability for synchronous,
project-related communication is determined by the status
indicated in the MSN buddy list. The list may thus be seen as an
important source of presence information about team members.
The buddy list is very long in some cases, and agreed-upon
protocols may be needed to filter communication. For instance,
one group reported that the message ‘away’ by someone’s name
was to be interpreted as ‘probably here; will answer messages
from high-priority contacts (e.g., SD team members) only’.
MSN is often used on the side of other work tasks, typically
programming, and serves as a means for fine-grained coordination
and awareness about, and access to, the shared object of work. For
instance, programmers may each have a terminal window to a
shared server while discussing about what happens as they make
changes to the code and build and deploy the system. Major
project decisions e.g. regarding the overall system design are
typically referred to face-to-face meetings. MSN is also used for
distributing material, e.g. screenshots or pieces of source code.
Generally, work-related MSN chat is done among two
participants at the time. Exceptions are made at need: One group
reported that during Easter (mainly holiday in Norway), they had
a chat with several participants because everybody was working
on the same task, and they had some problems making it work. In
parallel to the MSN chat on this occasion, the group members
used a server logon to enable everybody to see what was
happening on the server, on which something was shown by the
programmers.
Some groups reflected over the shortcomings of MSN as
compared to the advantages of collocated work. The possibility of
misunderstandings due to the more brief form of expression than
in normally conversation was mentioned, and some found it
difficult to discuss revisions of a document via MSN.
The use of IM in the project groups interviewed is restricted to
PCs. Without exception in our data, in the context of project
work, the students only use their mobile phones – which are plain
and inexpensive - for speaking and exchanging SMS.
An aspect of the project work generally mentioned among the
teams is the significance for collaboration of the group members

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

74

knowing each other in advance. The students in each group
generally knew each other because they had formed groups
themselves, typically based on previous cooperation. When asked
about success factors for (student) SD projects, the groups
mention knowing each others’ competencies, being aware of each
others weak and strong sides, avoiding the initial phases of group
process, and not having to explain everything.
About the use of IM as a collaboration tool between project group
and customer, we have limited empirical data. The logged MSN
conversations taken from Project Course 2 have not yet been fully
analysed, having only recently become available to us. The logs
show that the students, communicating with a customer who is
situated on the other side of the globe and whom they have never
met, try to keep an informal tone while discussing issues crucial
to the success of the project, e.g. functional requirements and
server access. There is a breakdown in conversation, the customer
abruptly leaving after some rather direct statements from the
project group. (The author of this paper, as supervisor of the
group, interfered after this conversation took place, writing the
customer an email to re-establish the ground for collaboration
between customer and group, which partly succeeded.)
The logs document an atypical case compared to the other
projects, which is why we choose to include it in our data. IM is
tried out in the context of project work – with mixed success.
Theory on the adequacy of different communication media under
different circumstances and for different purposes may account
for the breakdown in communication in this case. Further analysis
of the log data, supplemented with follow-up interviews of the
parties involved, will be an important source of an explanation,
which is likely to have several components, e.g.: The parties did
not know each other personally; cultural differences; lack of
understanding of the customer’s needs and requirements, of the
students’ competence and/or expectations, and/or the goals or
pedagogical design of the project course; the participants were
trying to use medium fit for informal collaboration in a situation
of formal collaboration, and/or trying to make collaboration
informal when in fact serious, unclarified project issues were
discussed. Lack of media richness might have been the problem,
or the parties might have had an attitude which would have made
collaboration difficult over any medium.

6. DISCUSSION
To generalize from SD student projects to large-scale SD work,
we need to account for two dimensions (see Figure 1): Going
from an educational setting for project work to a professional
setting, and from small-scale to large-scale SD work.
Any specific SD project is of course subject to particular
conditions, e.g. in terms of size, criticality, methodologies,
policies, distribution of work etc., but we simplify the picture and
suggest aspects of student SD projects that resemble professional
SD work, and aspects that have less obvious counterparts there.
Customer-driven student SD projects resemble professional SD
work in having a customer with requirements for a product to be
developed, documented and actually taken into use; being
organized as a project with requirements for proper project
management in accordance with a process model; being
conducted by a team with joint responsibility for the result (at
least typical for Norwegian student projects); and having a set of
development and collaboration tools available for the developers.

Figure 1: From student projects to large-scale SD

Education-related aspects of SD student projects include: There is
a pedagogical design with learning objectives for the course, and
these objectives typically reflect a relationship with a number of
other course modules in the study program. The project is subject
to formal evaluation according to a set of criteria covering both
product quality (e.g. architecture, design, usability) and the
quality of the project process (e.g. work breakdown, estimation,
follow-up of plans, resolution of conflicts, post-hoc reflection).
There is supervision from university staff. Reports are required by
the university, usually including more extensive documentation of
the project than is required by the customer. The need to
document process and communication from a legal point of view,
is small. There is little economic risk associated with the project:
the developers are not paid for their work, and the customer
contributes only with a limited amount of resources (e.g. office
space and some work hours for supervision). For the members of
the development team, there is limited personal/career risk
associated with failure. (The final grade for the project is however
important to most students.) The project is small-size. Students
generally lack expensive technical equipment for private use.
Many of the above ‘education aspects’ of student SD projects
may however have counterparts in professional SD, e.g. due to a
focus on organizational learning and knowledge management.
Developers’ personal habits of lightweight tool use may be
important in generalizing from student projects to professional
SD. Lightweight tools such as SMS and IM tools have come to
play an important role in the life of teenagers as a means for
developing and maintaining peer group membership and social
identity [8, 9, 14]. Young users are conscious about how IM
supports both social and work-related interaction and what
features of IM are desirable for different purposes [12]. The tools,
and the links they contain to other members of the social network,
may be seen as part of a personal communication infrastructure,
used for the maintenance of social relations and potentially for
informal, work-related collaboration. This infrastructure will
change in accordance with the individual’s affiliation with a
school or workplace, but at the same time it is persistent over time
and across occupational affiliation. For instance, the buddy list of
an IM tool typically includes both friends and colleagues.
In the context of SD, we argue that when developers embark on
their professional careers, it is not only the existing routines,
technologies and policies of their employers’ organization that
will form their actual usage of collaboration tools. Young
developers who are active SMS and IM users will have their

Large-scale SD Small scale SD

Educational
setting

Professional
SD

SE student project with ’artificial’ task
provided by course staff

SE student team project with ‘real’ task
for external customer

Professional,
large-scale SD

Relevance?

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

75

habits of lightweight collaboration as part of their formative
context [3] or technological frame [16] affecting their work.
When generalizing from small-scale to large-scale SD, a key
factor is the informal networks serving as the backbone of
organizational interaction [13]. Interaction in these networks
comprise affect, politics, production and culture [20], typically
among small clusters of people. Programmers use different
communication nets for different types of work-related issues [6].
In open source development, interaction is often decentralized [5].
Tools used for informal collaboration in small SD teams may be
adequate for similar use within clusters in large-scale SD projects.
In our interviews, we have identified patterns across groups rather
than focusing on the particular characteristics of each particular
group. Generalizing to similar project courses, we need to be
aware that the heavy usage of MSN messenger in the particular
population studied is not necessarily representative of all,
bachelor level SD students, even in Norway. If IM is in fact
particularly popular in our sample project course, the findings
however still demonstrate the potential of IM in project work.
There are limitations to the use of interview as a research method
in our context. The data are filtered through students’ perception.
Also, we asked students to report to us in the presence of the rest
of their groups, which may have influenced the responses. We
gathered data from each group as a unit, which is a simplification.
To understand collaboration over time, and to get an impression
less flavored by participants’ view on their own process, some
form of observation over time is required. Also, we have made no
follow-up study to clarify issues emerging from the data.
There are many factors that might have contributed to the
successful within-team use of IM in our case, for instance: The
projects are small in scope, the developers belong to a generation
having IM as an important part of their personal infrastructure,
and the developers know each other before the project starts. We
still interpret our findings as indicating that IM can be useful in
supporting informal collaboration in SD projects.
As previously discussed, there are many possible reasons why our
example of team-customer communication via MSN broke down,
and we believe further analysis of the data may provide more
answers.
Whether mobile use of IM, not identified in our data, will be part
of the students’ habits in the years to come, remains to be seen,
and is an interesting issue for further research.

7. CONCLUSION
Our position is that IM holds a potential to support informal
collaboration within clusters of people who know each other in a
large-scale SD organization. We suggest that great caution should
be made before IM is used whenever communication is of a more
formal character, the participants do not know each other, or the
issues addressed involve major decisions for the project

8. AKNOWLEDGEMENT
The author wishes to thank Bendik Bygstad for useful insights

9. REFERENCES
[1] Carstensen, P.H. and Schmidt, K. Computer Supported

Cooperative Work: New Challenges to Systems Design. in
Itoh, K. ed. Handbook of Human Factors/Ergonomics,
Asakura Publishing, Tokyo, 2002 (1999).

[2] Cherry, S.M. IM means business. Spectrum, IEEE, 39 (11).
28 - 32

[3] Ciborra, C.U. and Lanzara, G.F. Formative Contexts and
Information Technology: Understanding the Dynamics of
Innovation in Organizations. Accounting, management and
information technologies, 4 (2). 61-86.

[4] Cook, C., Churcher, N. and Irwin, W., Towards
Synchronous Collaborative Software Engineering. in 11th
Asia-Pacific Software Engineering Conference (APSEC),
(Busan, Korea, 2004), IEEE Computer Society.

[5] Crowston, K. and Howison, J. The social structure of free
and open source software development. First Monday.

[6] Curtis, B., Krasner, H. and Iscoe, N. A field study of the
software design process for large systems. Communications
of the ACM, 31 (11).

[7] Farshchian, B. Presence technologies for informal
collaboration. in Emerging Communication: Studies on new
technologies and practices in communication, IOS Press,
2002.

[8] Grinter, R.E. and Eldridge, M., Wan2tlk?: Everyday Text
Messaging. in CHI2003, (Ft.Lauderdale, Florida, USA,
2003), ACM.

[9] Grinter, R.E. and Palen, L., Instant Messaging in Teen Life.
in CSCW'02, (New Orelans, Louisiana, USA, 2002), ACM.

[10] Gutwin, C., Penner, R. and Schneider, K., Group Awareness
in Distributed Software Development. in CSCW, (Chicago,
Illinois, USA, 2004), ACM.

[11] Hersleb, J.D., Mockus, A., Finholt, T.A. and Grinter, R., E.,
An Empirical Study of Global Software Development:
Distance and Speed. in International Conference on
Software Engineering, (Toronto, Ontario, Canada, 2001),
IEEE Computer Society, 81-90.

[12] Huang, A.H. and Yen, D.C. Usefulness of instant messaging
among young users: Social vs. work perspective. Human
Systems Management, 22 (2). 63-72.

[13] Krackhardt, D. and Hanson, J.R. Informal networks: the
company behind the chart. Harvard Business Review, 71
(4). 104-111.

[14] Lewis, C. and Fabos, B. Instant messaging, literacies, and
social identities. Reading Research Quarterly, 40 (4).

[15] Nardi, B.A., Whittaker, S. and Bradner, E., Interaction and
Outeraction: Instant Messaging in Action. in CSCW'00,
(Philadelphia, PA, USA, 2000), ACM.

[16] Orlikowski, W., Learning from Notes: organisational issues
in groupware implementation. in CSCW, (Toronto, Canada,
1992), ACM.

[17] Rönkkö, K., Dittrich, Y. and Randall, D. When Plans do not
Work Out: How Plans are Used in Software Development
Projects. Computer Supported Cooperative Work 14.

[18] Schmidt, K. and Bannon, L. Taking CSCW Seriously:
Supporting Articulation Work. Computer Supported
Cooperative Work (CSCW): An International Journal, 1 (1).
7-40.

[19] Scupelli, P., Kiesler, S., Fussell, S.R. and Chen, C., Late
Breaking Results: Posters: Project View IM: A Tool for
Juggling Multiple Projects and Teams. in CHI 2005,
(Portland, Oregon, USA, 2005), ACM Press.

[20] Waldstrøm, C. Informal Networks in Organizations - A
literature review S-WOBA (Scandinavian Working Papers in
Business Administration), Aarhus School of Business,
Aarhus, Denmark, 2001.

Supporting the Social Side of Large Scale Software Development - CSCW Workshop '06

76

	Cover Page
	Attendees
	Table of Contents
	Table of Contents, pg. 2
	Papers
	The role of science in supporting software development
	Connecting people in social networks using requirement explore
	Supporting cooperation awareness in common information spaces
	Managing complexity in collaborative software development: On the limits of modularity
	WYSISYN: Using task focus to ease collaboration
	Visualizing roles and design interactions in an open source software community
	Supporting harmonious cooperation in global software development projects
	Supporting software development as knowledge community evolution
	Distributed cognition in software engineering research: Can it be made to work?
	D-SNS: A knowledge exchange mechanism using social network density among Mega-community users
	Collaborating over project schedules
	Social dependencies and contrasts in software engineering practice
	Architecture to support team awareness in large-scale software development
	Together apart: An ethnographic study of industry-academia collaboration
	Help, I need somebody!
	Exploring the relationship between software dependencies and the coordination of software development work
	Knowledge-sharing in open-source software development using a social bookmarking system
	Continuous coordination (CC): A new collaboration paradigm
	The potential of instant messaging for informal collaboration in large-scale software development

