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Abstract. Spatio-temporal data collected from GPS have become an
important resource to study the relationships of moving objects. While
previous studies focus on mining objects being together for a long time,
discovering real-world relationships, such as friends or colleagues in hu-
man trajectory data, is a fundamentally different challenge. For example,
it is possible that two individuals are friends but do not spend a lot of
time being together every day. However, spending just one or two hours
together at a location away from work on a Saturday night could be a
strong indicator of friend relationship.
Based on the above observations, in this paper we aim to analyze and
detect semantically meaningful relationships in a supervised way. That is,
with an interested relationship in mind, a user can label some object pairs
with and without such relationship. From labeled pairs, we will learn
what time intervals are the most important ones in order to characterize
this relationship. These significant time intervals, namely T-Motifs, are
then used to discover relationships hidden in the unlabeled moving object
pairs. While the search for T-Motifs could be time-consuming, we design
two speed-up strategies to efficiently extract T-Motifs. We use both real
and synthetic datasets to demonstrate the effectiveness and efficiency of
our method.

1 Introduction

With the increasing popularity of GPS devices, the tracking of moving objects
in general has become a reality. As a result, a vast amount of trajectory data is
being collected and analyzed. Based on the temporal meeting pattern of objects,
one of the most important and interesting problems in trajectory data analysis
is relationship detection.

Previous studies of moving object relationships have been constrained to de-
tecting moving object clusters. Studies such as flock [13], moving cluster [11],
convoy [10], and swarm [16] focus on the discovery of a group of objects that
move together. All these studies take the entire trajectory as a sequence of time
points, and treat every time point or time interval equally. Therefore, the longer
two moving objects are together, the better they are in terms of forming a clus-
ter. However, all of these studies suffer from several drawbacks. On one hand,
clusters discovered in this way usually do not carry any semantical meaning,
such as friends, colleagues and families which naturally exist in human trajec-
tory data. On the other hand, object pairs with certain relationship may not



necessarily meet more often than the other pairs, hence it leads to the failure of
aforementioned methods in detecting such relationship. Considering the follow-
ing example.
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Fig. 1. Meeting frequency for a friend and a non-friend pair

Example 1. Reality Mining project1 collected 94 human trajectories of the 2004-
2005 academic year and conducted a survey about their friendship to each other.
In Figure 1, we plot the meeting frequencies for one friend pair and one non-
friend pair. Comparing two frequency curves, the one has overall higher meeting
frequency is the non-friend pair. Thus, longer overall meeting time does not
necessarily indicate friend relationship. In addition, we observe that the friend
pair shows significantly higher meeting frequency on weekends, which indicates
that, in the friend relationship case, not every time point has equal importance.
In other words, since two people who meet more frequently on weekends are more
likely to be friends, the weekend time interval are considered more discriminative
and should play a more important role in the friend relationship detection task.

The above example reveals an important problem when analyzing relation-
ship for moving objects: some time intervals are more discriminative than the
others for a particular relationship. In fact, besides friend relationship, many
relationships have their unique temporal patterns. For example, if we want to
examine whether or not two people are colleagues, daytime on weekdays be-
comes the discriminative time intervals. If two people are family members, they
often gather on holidays. Therefore, to detect semantically meaningful relation-
ships in moving objects, we cannot treat all time intervals equally, instead we
need to learn from the data what time intervals are the most important ones to
characterize a relationship.

Consequently, in this paper we aim to detect relationship for moving object in
a supervised way. That is, given a set of labeled data consisting of positive pairs
having such relationship and negative pairs not having such relationship, our
job is to first find those discriminative time intervals, namely T-Motifs. Then,
these T-Motifs are used as features to detect this relationship in the remaining
unlabeled pairs. Consider the following example.

1 http://reality.media.mit.edu/



Example 2. In Reality Mining dataset, [21:56 Wed., 23:08 Wed.] is a T-Motif
for friend relationship, because 37.3% friend pairs have meeting frequency more
than 12 minutes in this time interval whereas only 3.17% non-friend pairs have
meeting frequency that could reach 12 minutes.

According to the above example, we can interpret T-Motif as a time interval
for which the meeting frequency between positive and negative pairs can be well
split by a frequency value. Hence we propose to use information gain to measure
the significance of a time interval. We need to calculate the significance score
for any time interval and pick those intervals with high scores as T-Motifs. So
the main technical challenge remains in the computation of significance score for
huge number of T-Motif candidates.

To efficiently handle the large number of T-Motifs candidates, we design
two efficient speed-up techniques for our algorithm. The first speed-up strategy
is based on the observation that two similar time intervals, such as [S, T ] and
[S, T + 1], should have similar significance scores. Therefore, we propose to use
time-indexed meeting pairs, so that when shifting the ending time from T to
T + 1, we only need to update pairs who meet at time T + 1 and at the same
time maintain the sorted list for all the pairs. The second speed-up technique
takes advantage of skewed data. That is, positive pairs are only a small portion
of all pairs. Based on a property of information gain, we could reduce the time
to find the best split point from O(|D|) to O(|D+|), where |D+| is the number of
positive pairs. This further speeds up the computation when the positive pairs
are only a small portion of all pairs, which is indeed the case for our problems.

In summary, the contributions of our work are as follows. (1) Our work is
the first to detect semantically meaningful relationships in moving objects in a
supervised way. This is done by introducing the concept of T-Motifs to prop-
erly represent the temporal characteristics for a relationship. (2) Two speed-up
techniques are proposed to efficiently discover the T-Motifs. (3) The effective-
ness and efficiency of our methods are demonstrated on both real and synthetic
datasets.

The rest of this paper is organized as follows. Section 2 depicts the gen-
eral framework. Section 3 describes the basic algorithm to mine T-Motifs. In
Section 4, we introduce the speed-up techniques. Section 5 shows experimental
results with respect to effectiveness and efficiency. Related work is discussed in
Section 6, and the paper concludes in Section 7.

2 Problem Analysis

In this paper, the time intervals are defined in a relative time frame instead
of an absolute one. This is because the movements of objects such as human
usually have strong spatio-temporal regularities [8][6][19]. Therefore for human
movements, for instance, it is more informative use “week” as the relative time
frame. By default, we take minute as the basic time unit and consider any time
point in a weekly time window (see Figure 1). Hence the total number of time
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Fig. 2. Framework Overview

points is P = 7 (days) × 24 (hours) × 60 (minutes) = 10080. Any minute in
the original absolute frame can be mapped to an integer from 1 to P . Similarly,
a time interval [S, T ] is also defined in the relative time frame and should be
understood in a cyclic order when S > T . The maximum length of a time
interval is P by definition.

Let ODB = {o1, o2, . . . , on} be the set of all moving objects. The meeting
frequency between any two objects could be inferred from their movements. For
any object pair (oi, oj) and time t, 1 ≤ t ≤ P , the meeting frequency freqoi,oj(t)
is defined as the total number of times they meet at t in the relative time
frame. There are various ways to determine whether two objects meet at one
time. The most common way is to see whether the distance of their spatial
locations are within certain distance threshold. Such distance threshold is based
on the property of moving objects and the specific application. Another way
could be using bluetooth to detect nearby objects, such as the dataset used in
our experiment.

With a particular relationship in mind, a user can label some pairs of objects
having or not having such relationship. We use D+ and D− to denote the set of
positive and negative pairs, respectively. For example, we write (oi, oj) ∈ D+ if
objects oi and oj are labeled by the user to have such a relationship. Further,
we use D = D+

⋃
D− to denote the set of all labeled pairs.

Figure 2 shows an overview of our framework. Given the meeting frequen-
cies of the labeled pairs, a set of significant time intervals, namely T-Motifs, are
extracted to capture the temporal characteristics of the relationship. Then, a
classification model is built using T-Motif features of training data. The remain-
ing unlabeled pairs can be classified using the learned classification model. In
this framework, the most challenging part is how to find T-Motifs. In the follow-
ing sections, we will present the definition of T-Motifs and an efficient method
to extract them.



3 Finding T-Motifs

A T-Motif is a significant time interval to characterize the relationship. In this
section, we will first describe how to calculate the significance score for a time
interval and then analyze the basic algorithm to extract top-k T-Motifs.

3.1 Significance of Time Intervals

To examine the significance of a time interval [S, T ], we need to first calculate
the meeting frequency for every pair in this time interval. Meeting frequency
freqoi,oj (S, T ) is the amount of time that oi and oj meet within the time interval
[S, T ]:

freqoi,oj (S, T ) =
∑

t∈[S,T ]

freqoi,oj(t).

In addition, for any set of pairs A consisting of positive pairs A+ and A−, its
entropy is

H(A) = −α logα− (1 − α) log(1− α),

where α = |A+|
|A| is the fraction of positive numbers.

Intuitively, a time interval [S, T ] is significant if a large portion of positive
(or negative) pairs have higher meeting frequencies than most of the negative
(or positive) pairs. Once we select a meeting frequency value v as the split point,
the pairs in D having meeting frequency in [S, T ] no less than split point form

the set DS,T
≥ (v) and the rest form D

S,T
< (v):

D
S,T
≥ (v) = {(oi, oj)|freqoi,oj (S, T ) ≥ v}, DS,T

< (v) = {(oi, oj)|freqoi,oj (S, T ) < v}.

The information gain of [S, T ] at split point v is:

IGS,T (v) = H(D)−
|DS,T

≥ (v)|

|D|
H(DS,T

≥ (v))−
|DS,T

< (v)|

|D|
H(DS,T

< (v)).

The significance score of [S, T ] is the highest information gain that any split
point can achieve:

G(S, T ) = max
v

IGS,T (v).
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Fig. 3. An example for calculation of G(S, T )

This concept is illustrated in Figure 3.



Example 3. Suppose the labeled set D contains 4 positive pairs and 6 negative
pairs. Figure 3 shows the meeting frequency of each pair in a time interval
[S, T ]. We compute H(D) = − 4

10 log
4
10 − 6

10 log
6
10 ≈ 0.97. At split point v, the

information gain of [S, T ] is IGS,T (v) = 0.97 − 5
10 × 0.72 − 5

10 × 0.97 ≈ 0.125.
The highest information gain is achieved at split point v′: G(S, T ) =IGS,T (v′)=
0.97− 7

10 × 0.59− 3
10 × 0 ≈ 0.557.

3.2 Overview of Basic Algorithm

Algorithm 1 Find T-Motifs

Input:
freq: meeting frequency for each pair;
D+: positive pairs;
D−: negative pairs.
Output: T-Motifs.
Algorithm:

1: D← D+ ⋃
D−

2: for S ← 1 to P do

3: for len← δmin to δmax do

4: T ← S + len− 1
5: freq arr ← {freqoi,oj (S, T ),∀(oi, oj) ∈ D}
6: Sort freq arr

7: for i← 1 to |D| do
8: v ← freq arr(i)
9: if IG(D, v) > best IG then

10: best IG = IG(D, v)
11: G(S, T ) = best IG

12: Return top-k non-overlapped time intervals

The basic algorithm is summarized in Algorithm 1. To find the T-Motifs,
we first need to compute the significance score (i.e., information gain) for every
time interval [S, T ]. But sometimes it is unnecessary to consider time intervals
which are too short or too long, such as one-minute time interval or the intervals
with maximum length such as [1, P ]. So the algorithm has an option to limit
the length of time interval to [δmin, δmax], where δmin and δmax are specified
by the user. Now, for a time interval [S, T ], to get the meeting frequency of
each pair takes O(|D|) time (Line 5 in Algorithm 1). In order to calculate the
significance score, the pairs will be sorted first (Line 6 in Algorithm 1). The
sorting takes O(|D| log |D|) time. Taking each meeting frequency as split point
v, the information gain IGS,T (v) can be calculated (Line 7-10 in Algorithm 1).
The time complexity for this step is O(|D|). And finally the maximal information
gain value is set as the significance score for interval [S, T ]. With the significance
scores for all time intervals, we pick the top-k non-overlapped time intervals as



T-Motifs. This procedure is similar to the selection of discriminative patterns in
[3][17].

From Algorithm 1, we can see that the number of all time intervals is O(P 2)
in the worst case. And for each time interval [S, T ], it takes O(|D| log |D|) to com-
pute the significance score. So the overall time complexity is O(P 2|D| log |D|).

4 Speed Up the Searh for T-Motifs

In this section, we propose two accelerating techniques to our basic algorithm.
The first one is to build a time-indexed data structure, which allows us to quickly
retrieve the pairs that meet at a certain time point T , and locally adjust the order
of all pairs based on the changes in meeting frequencies. The second speed-up
technique is based on an important property of information gain, which greatly
reduces the number of split points one needs to examine for each time interval
in order to compute its significance score.

4.1 Time-indexed Meeting Pairs

In Algorithm 1, for a time interval [S, T ], we need to compute the meeting
frequency for every pair (Line 5), which takes O(|D|) time. However, it may be
unnecessary to update every pair when expanding time interval from [S, T ] to
[S, T+1], since in the real data only a limited number of pairs meet at time T+1.
For any time point t, to retrieve the pairs that meet at t, we use a time-based
list T list(t) to record those pairs,

T list(t) = {(oi, oj)|freqoi,oj(t) 6= 0}.

With this data structure, Line 5 in Algorithm 1 can be replaced by retrieving
every pair stored in T list(t) and just update frequencies for those pairs. Even
though T list takes Ω(P · d) additional memory, where d is the average num-
ber of meeting pairs per time point, it helps the updating step reduce its time
complexity from O(|D|) to O(d). In real scenarios, as shown in our experiments
(Section 5.3), d is usually much smaller than |D|

After updating frequencies, all the pairs need to be sorted according to their
frequencies (Line 6 in Algorithm 1), which takes O(|D| log |D|) time. But when
expanding T to T + 1, only a few pairs update their frequencies. Therefore,
instead of doing sort all over again, we can update the sorted list with a small
number of adjustments.

Take Figure 4 for example. All the pairs are sorted in ascending order when
ending time is T . When a pair increases its meeting frequency from 6 to 16
for time interval [S, T + 1], it switches its position with the one on the right
repeatedly, until it reaches the right-most position or the value on the right is
larger than 16.

To update the position for one pair, it takes O(|D|) in the worst case. In total,
it takes O(d|D|) to adjust the positions in the sorted list for all the updated
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pairs in T list. Theoretically, this sorting strategy is no better than fast sort
(O(|D| log |D|)) because d may not be smaller than log |D|. However, it takes
much less time in practice since one pair will not increase its meeting frequency
drastically by expanding ending time from T to T + 1. We will verify this in
experiment.

4.2 Finding the Best Split Point

Given the order of all pairs, it takes O(|D|) time to consider each pair as a
split point and calculate corresponding significance score. We next prove that it
suffices to enumerate the values of all positive pairs, which takes O(|D+|) time.
We observe that, in most real scenarios, the data have an important property:
the number of pairs having the labeled relationship only takes a small portion
of all the pairs (i.e., |D+| ≪ |D|).

For a split point v in time interval [S, T ], let p(v) and q(v) be the fractions
of positive and negative pairs whose meeting frequencies are no less than v,
respectively:

p(v) =
|D+

⋂
D

S,T
≥ (v)|

|D+|
, q(v) =

|D−
⋂
D

S,T
≥ (v)|

|D−|
. (1)

Given a pair (p(v), q(v)), we can write the information gain IG(v) as a func-
tion of p and q:

IG(v) = IG(p(v), q(v)).

To introduce our second speed-up technique, we will find the following general
property of information gain useful:

Lemma 1. Given a pair of probabilities (p, q) as defined in (1), we have the

following two properties of information gain:

1. if p > q, then ∂IG
∂p

> 0, ∂IG
∂q

< 0,

2. if p < q, then ∂IG
∂p

< 0, ∂IG
∂q

> 0.



Basically, the above lemma states that if the frequency difference of positive
pairs and negative pairs increases, then the split point v becomes more signifi-
cant. In fact, in addition to information gain, it can be proven that many other
popular statistical measures, such as the G-test score, also satisfy this good
property. Interested readers are referred to [23] and the reference therein for the
proof and more discussion of the lemma.

In the context of our work, Lemma 1 could be interpreted as follow.

Corollary 1. For any two split points v1 and v2 and a time interval [S, T ],

1. if p(v1) > q(v1), p(v2) ≥ p(v1) and q(v2) ≤ q(v1) where the two equalities do

not hold simultaneously, then IG(v2) > IG(v1),
2. if p(v1) < q(v1), p(v2) ≤ p(v1) and q(v2) ≥ q(v1) where the two equalities do

not hold simultaneously, then IG(v2) > IG(v1).

p(v2)=3/4
freq(S,T) freq(S,T)v1 v2

p(v1)<q(v1)p(v1)>q(v1)

v2 v1
p(v2)=0
q(v2)=3/5

p(v1)=0p(v1)=3/4

v2 is a better split point than v1

q(v1)=1/5q(v1)=2/5 q(v2)=1/5

Fig. 5. Illustration for Corollary 1

The left subfigure of Figure 5 illustrates the first case in Corollary 1, i.e.,
p(v1) > q(v1). As we can see, v1 takes a negative pair as a split point. If we
select v2 as the split point, there is one less negative pair on the right side
(i.e., q(v2) < q(v1)) but the number of positive pairs on the right side remains
the same (i.e., p(v2) = p(v1)). Since the difference between positive pairs and
negative pairs on the right side increases, IG(v2) > IG(v1). In practice, we can
observe the following two facts in the real data: (1) |D−| ≫ |D+| and (2) a
considerable portion of negative pairs have very low or zero meeting frequency
for any given time interval [S, T ]. Therefore, for any time interval [S, T ], we can
always assume p(v) > q(v), where 0 < v ≤ max(oi,oj)∈D+{freqoi,oj (S, T )}. With
this assumption, we can skip any negative pair whose meeting frequency is no
larger than the maximum meeting frequency among all positive pairs.

Therefore, in addition to the positive pairs, we only need to examine those
negative pairs which are on the right of the rightmost positive pair, as shown
in the right subfigure of Figure 5. In fact, among all of these negative pairs,
examining the leftmost one suffices. This is because in this case we have p(v1) =
0 < q(v1). Therefore, by further shifting the split point to the left from v1 to v2,
we always have p(v2) = p(v1) = 0 and q(v2) > q(v1), thus IG(v2) > IG(v1) by
Corollary 1.

We summarize our second speed-up technique as the following theorem.



Theorem 1. For a time interval [S, T ], assume the maximum meeting frequency

of all positive pairs is v∗, then the best split point v must take one of following

values:

1. the value of one positive pair: v ∈ {freqoi,oj(S, T ) : (oi, oj) ∈ D+},
2. the smallest value for the negative pairs that is larger than the maximum

meeting frequency of all positive pairs:

v = min
(oi,oj)∈D−

{freqoi,oj (S, T ) : freqoi,oj (S, T ) > v∗}.

Therefore, for a time interval [S, T ], it takes O(|D+|) to compute signifi-
cance score G(S, T ). Since |D+| ≪ |D| in our problem, this saves a lot of time
comparing with original time complexity O(|D|).

5 Experiment

Our experiments are carried on both real and synthetic datasets. All the algo-
rithms are implemented in C++, and all the experiments are carried out on a
2.13 GHz Intel Core machine with 4GB memory, running Linux with version
2.6.18 and gcc 4.1.2.

5.1 Dataset Description

To evaluate the effectiveness of our method, we use the Reality Mining dataset2.
The Reality Mining project was conducted from 2004-2005 at MIT Media Lab-
oratory. The study followed 94 subjects using mobile phones. We filtered the
subjects with missing information and 86 subjects are left. The proximity be-
tween subjects can be inferred from repeated Bluetooth scans. When a Bluetooth
device conducts a discovery scan, other Bluetooth devices within a range of 5-10
meters respond with their user-defined names. Therefore, instead of using the
trajectory data, we take the Bluetooth data directly to generate the meeting
frequencies for any two subjects. Although 86 subjects should form 3655 pairs,
there are 1856 pairs which have zero meeting frequency. After filtering those
pairs, our dataset has 1799 pairs in total.

We study two relationships on this dataset.

– Friend relationship. Subjects were asked about their friend relationship to
the other individuals in the study. The survey question was “Is this person
a part of your close circle of friends?” According to the survey, there are
22 reciprocal friend pairs, 39 non-reciprocal friend pairs and 1718 reciprocal
non-friend pairs. In the survey, subjects were also asked about their physical
proximity with the other individuals. In this analysis, we only use the pairs
who have mutually reported some proximity. By doing so, we filter out those

2 http://reality.media.mit.edu/



pairs with low meeting frequencies. The reason of doing this is because it is
more trivial to achieve high accuracy if we include those pairs with few inter-
actions. Similar pre-processing step was conducted in work [7] to study friend
relationship. In the remaining pairs, we take reciprocal and non-reciprocal
friend pairs as positive pairs (i.e., |D+| = 59) and the non-friend pairs as
negative ones (i.e., |D−| = 441).

– Colleague relationship. One subject could belong to one of the affiliations
such as media lab graduate student, media lab staff, professor, Sloan business
school, etc.. To study colleague relationship, we take all the pairs belong to
Sloan business school as the positive pairs and the remaining ones as the
negative pairs. There are 218 positive pairs (i.e., |D+| = 218) and 1561 (i.e.,
|D−| = 1561) negative pairs in this case.

5.2 Discovery of T-Motifs

In this section, we will show the T-Motifs for friend relationship and colleague
relationship separately.

T-Motif [S, T ] best split point v
|D

S,T

≥
(v)∩D+|

|D+|

|D
S,T

≥
(v)∩D−|

|D−|

[21:56 Wed., 23:08 Wed.] 12 0.372881 0.031746

[22:45 Tue., 23:39 Tue.] 55 0.305085 0.0181406

[19:07 Sat., 7:07 Sun.] 249 0.220339 0.00453515

[20:56 Tue., 22:44 Tue.] 1 0.508475 0.113379

[23:55 Tue., 1:42 Wed.] 10 0.355932 0.0453515

[23:22 Wed., 3:43 Thurs.] 53 0.220339 0.00680272

[7:08 Sun., 16:49 Sun.] 53 0.40678 0.0770975

[1:20 Fri., 5:12 Fri.] 12 0.20339 0.00680272

[21:52 Mon., 9:00 Tue.] 11 0.644068 0.240363

[18:12 Sun., 20:01 Sun.] 3 0.389831 0.0793651
Table 1. Top-10 T-Motifs for friend relationship

Table 1 shows the top-10 T-Motifs mined for friend relationship. Among all
time intervals, [21:56 Wed., 23:08 Wed.] plays the most important role, as 37.3%
friends have meeting frequency more than 12 minutes whereas only 3.17% non-
friends can exceed 12-minutes meeting frequency. As one can see, the interactions
at night are more discriminative for friend relationship in general, with excep-
tions during the daytime on weekends, such as [7:08 Sun., 16:49 Sun.].

Table 2 shows the top-10 T-Motifs for the colleague relationship. Interest-
ingly, the colleague pairs (students from Sloan business school) usually have high
meeting frequencies during the morning, especially on Tuesdays and Thursdays.
It may suggest that these students have classes on Tuesday and Thursday morn-
ings. Comparing to the friend relationship, it is obvious that colleagues have
quite different temporal interaction patterns. T-Motifs provie us an insight in
the uniqueness of each relationship.



T-Motif [S, T ] best split point v
|D

S,T

≥
(v)∩D+|

|D+|

|D
S,T

≥
(v)∩D−|

|D−|

[9:20 Thurs., 10:30 Thurs.] 7 0.7201 0.0557

[9:42 Tue., 10:35 Tue.] 3 0.7431 0.0749

[10:36 Tue., 11:34 Tue.] 56 0.6376 0.0384

[10:34 Thurs., 11:04 Thurs.] 31 0.6055 0.0358

[11:05 Thurs., 11:40 Thurs.] 31 0.6146 0.0589

[7:31 Tue., 8:44 Tue.] 1 0.4449 0.0109

[21:16 Thurs., 9:10 Fri.] 7 0.6376 0.0723

[8:02 Thurs., 8:49 Thurs.] 2 0.4220 0.0128

[8:45 Tue., 9:19 Tue.] 22 0.3853 0.0070

[5:32 Wed., 10:28 Wed.] 2 0.5917 0.0749
Table 2. Top-10 T-Motifs for colleague relationship

5.3 Efficiency Study

In this section, we analyze the scalability issue w.r.t. different data sizes and
parameter settings. We compare the T-Motif mining baseline method as shown
in Algorithm 1 (denoted as baseline) with the one with speed-up techniques
(denoted as speedup). We first present the comparison results on the friend re-
lationship data. By default, we will use all the pairs in D to find T-Motifs and
set δmin = 1 and δmax = 6× 60.
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Figure 6 shows the time spent on each step when computing the significance
scores for time intervals. In baseline method, to compute G(S, T ), there are three
steps: updating meeting frequency with the time complexity O(|D|), sorting all
pairs with the time complexity O(|D|log|D|) and finding the best split point with
the time complexity O(|D|). As shown in Figure 6, all the steps take roughly the
same time. Compared to baseline, speedup compresses updating and sorting of the
meeting frequencies into one step. As we mentioned in Section 4.1, even though
this step takes O(d|D|) time in theory, it is actually much faster in practice. In
particular, updating and sorting by speedup together take 10.15 seconds whereas
they take 175 seconds for baseline. The reason is illustrated in Figure 7. For many
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Fig. 7. Number of pairs meeting at each time point (friend relationship)
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Fig. 8. Running time on friend relationship

time points, especially the ones at mid-night, very few pairs meet. On average,
there are only 56.86 pairs meeting at each time point. Therefore, it is unnecessary
to update the frequency for every pair and sort the frequencies all over again.
Besides, the second speed-up technique reduces the best split point step from
299 seconds to 28 seconds since we only need to enumerate positive pairs as the
split points.

Now we randomly select p% of the pairs from the entire dataset as the training
samples and apply Algorithm 1. p% is enumerated from 10% to 100% with an
increment of 10% in each trial. Figure 8(a) shows the running time w.r.t different
data sizes. It is obvious that speedup techniques make the T-Motifs mining
process much faster. The difference between speedup and baseline becomes bigger
as the data size increases. When applying to the whole dataset, baseline takes
260 seconds whereas speedup only takes 23 seconds.

In Algorithm 1, we use δmin and δmax to limit the length of time intervals.
When δmax − δmin increases, the search space for T-Motifs also increases. By
setting δmin = 1, we increase δmax by hour, until it reaches 24 hours. The
running times for baseline and speedup are plotted in Figure 8(b). Again, speedup
is significantly faster than baseline, especially when δmax is large.

We also conduct the same experiments on the dataset of colleague relation-
ship. Figure 9 shows the running times w.r.t. different parameters, from which
we can see that speedup is much faster than baseline.
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Fig. 9. Running time on colleague relationship
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Fig. 10. Running time on synthetic dataset

Finally, we synthesize an even larger dataset based on the Reality Mining
dataset. In our synthetic dataset, there are 1, 000 positive pairs and 10, 000
negative pairs. To generate a new positive pair, we randomly select one positive
pair from the Reality Mining dataset and perturb its meeting frequency for
each time point within 10% of the original value. We repeat this process to
generate new negative pairs. We report the efficiency w.r.t. data size and δmax

in Figure 10. Compared to Figure 8, the difference in running time between the
two methods is getting bigger in larger dataset.

5.4 Relationship Detection using T-Motifs

Next we use the extracted T-Motifs to find the interested relationship in unla-
beled data. In this experiment, we set δmin = 1 and δmax = 12 ∗ 60 to mine
T-Motifs and use the top-20 T-Motifs. A classification model is built using la-
beled pairs as training data and the meeting frequency within each T-Motif as
the feature. We report the classification results using Support Vector Machine
(SVM) and Gradient Boosting Machine (GBM) as learning methods. For com-



parison, we set the baseline as directly counting the meeting frequency over the
entire time frame, which is equal to freqoi,oj (1, P ) for a pair (oi, oj).

Using the classification model, we will get a score for each test sample indi-
cating the probability to be a positive pair. In the top-k ranked test samples Sk,
we use precision to examine the ratio of true positives, and recall to measure
how many pairs having such relationship are retrieved. Precision and recall are
defined as:

Prec@k =
|D+

test

⋂
Sk|

k
,Rec@k =

|D+
test

⋂
Sk|

|D+
test|

,

where D+
test is the set of positive pairs in the test set.
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Fig. 11. Effectiveness comparison on friend relationship

We use 5-fold cross validation on the friend relationship data. Figure 11 shows
the precision and recall of T-Motif based methods comparing with that of base-
line. We can see that Prec@1=0.8 for both T-Motif(SVM) and T-Motif(GBM).
It means that, when using T-Motifs, 80% top-1 pairs are real friends. In contrast,
Prec@1=0.2 for baseline method, which indicates that the pair that has the high-
est meeting frequency does not necessarily have the friend relationship. In terms
of recall measure in Figure 11(b), the methods based on T-Motif have higher re-
call value when k is smaller than 30. It means that T-Motifs can promote friend
pairs to higher ranks. But it is worth noting that the baseline can retrieve 89%
friend pairs at top-50 ranked pairs. This suggests that friends generally meet
more frequently.

For colleague relationship, we use 10-fold cross validation. As one can see
in Figure 12, baseline method performs poorly on this dataset, as it barely
retrieves any colleague pair in the top-20 pairs. Even in the top-100 pairs, as
shown in Figure 12(b), baseline can only retrieve less than 30% colleague pairs.
This indicates that the pairs meeting very often are not necessarily colleagues.
As we have seen in Table 2, colleagues meet only at particular times. These
patterns are well captured by T-Motifs, and we can retrieve 60% colleague pairs
from top-100 pairs using T-Motifs.
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6 Related Work

Previous studies mainly focus on the discovery of one specific relationship -
moving object clusters, such as flock [13], moving cluster [11], convoy [10], and
swarm [16]. They try to find a group of objects that move together for k con-
secutive or non-consecutive times. All these work simply count the timestamps
that objects are being together. Laube et al. [14][9] define several spatio-temporal
patterns, including flock, leadership, convergence, and encounter. However, each
pattern is defined and studied individually. These patterns cannot be generalized
to detect any real-world relationship for moving objects.

Many methods have been proposed to measure the similarity between two
trajectories, such as Dynamic Time Warping (DTW) [25], Longest Common
Subsequences (LCSS) [20], Edit Distance on Real Sequence (EFR) [2], and Edit
distance with Real Penalty (ERP) [1]. The geometric trajectory distance plays
an important role in determining the similarity between two objects. However,
two objects having some relationship may not necessarily have similar trajec-
tories. There are also studies to measure the similarities between two human
trajectories [15][22]. But the similarity is measured by the travel sequence, such
as shopping → movie → restaurant. Such similarity does not consider the times
that two objects are being close.

There are several interesting studies showing the potential of using mobile
or positioning technologies to study the human social behavior, such as mobility
regularity [8][6][19] and interactions [18][7][4]. Miklas et al. [18] and Eagle et

al. [7] focus on the analysis of the relationships between physical network and
social network. [18] finds that “friends meet more regularly and for longer dura-
tion whereas the strangers meet sporadically” and [7] shows that “friend dyads
demonstrate distinctive temporal and spatial patterns in their physical proxim-
ity and calling patterns”. A more recent work by Cranshaw et al. [4] develops a
technique to infer friendship in a supervised way, which is the most related work
to ours. They design a set of spatial-temporal features and build a classification
model for friend relationship. Their temporal features, such as the number of co-
locations in evening/weekends, are heuristically designed. Our work is a much
more general approach to detect any relationship with any temporal patterns.



Our idea of making use of T-Motifs is also motivated by a recent work [24]
on time series classification problem. Different from other time series classifi-
cation methods [12][21][5], Ye et al. [24] use shapelets, which are time series
subsequences that can maximally represent a class. The pruning rules developed
in [24] try to avoid the expensive time cost to compute the distance between
a shapelet and a time series. Our problem is different from typical time series
classification because our time dimension is fixed to a relative time frame, such
as a week, and it only takes O(1) to calculate the meeting frequency for each
object pair. Our speed-up techniques aim to save time for computing significance
scores.

7 Conclusion

In this paper, we introduce a supervised framework to detect relationships for
moving objects from their meeting patterns. In this framework, the concept of T-
Motifs is proposed to capture the temporal characteristics for relationships. A T-
Motif is a time interval which has high information gain with respect to meeting
frequencies for labeled pairs. We develop two speed-up techniques to enumerate
T-Motif candidates and calculate their significance scores. In the experiments
with real-world datasets, the proposed method is both efficient and effective in
discovering the relationship for moving objects. Extensions to make use of spatial
features to better detect the relationships could be interesting themes for future
research.
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8. M. C. González, C. A. H. R., and A.-L. Barabási. Understanding individual human
mobility patterns. Nature, 453:779–782, 2008.

9. J. Gudmundsson, P. Laube, and T. Wolle. Movement patterns in spatio-temporal
data. In Encyclopedia of GIS, pages 726–732, 2008.

10. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys
in trajectory databases. PVLDB, 1(1):1068–1080, 2008.

11. P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-
temporal data. In SSTD, pages 364–381, 2005.

12. E. J. Keogh and S. Kasetty. On the need for time series data mining benchmarks:
A survey and empirical demonstration. Data Min. Knowl. Discov., 7(4):349–371,
2003.

13. P. Laube and S. Imfeld. Analyzing relative motion within groups of trackable
moving point objects. In GIScience, pages 132–144, 2002.

14. P. Laube, M. J. van Kreveld, and S. Imfeld. Finding remo - detecting relative
motion patterns in geospatial lifelines. In Int. Symp. on Spatial Data Handling,
2004.

15. Q. Li, Y. Zheng, X. Xie, Y. Chen, W. Liu, and W.-Y. Ma. Mining user similarity
based on location history. In GIS, page 34, 2008.

16. Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving
object clusters. PVLDB, 3(1):723–734, 2010.

17. D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun. Classification of software
behaviors for failure detection: a discriminative pattern mining approach. In KDD,
pages 557–566, 2009.

18. A. G. Miklas, K. K. Gollu, K. K. W. Chan, S. Saroiu, P. K. Gummadi, and
E. de Lara. Exploiting social interactions in mobile systems. In Ubicomp, pages
409–428, 2007.

19. C. Song, Z. Qu, N. Blumm, and A. L. Barabasi. Limits of predictability in human
mobility. In Science, pages 1018–1021, 2010.

20. M. Vlachos, D. Gunopulos, and G. Kollios. Discovering similar multidimensional
trajectories. In ICDE, pages 673–684, 2002.

21. X. Xi, E. J. Keogh, C. R. Shelton, L. Wei, and C. A. Ratanamahatana. Fast time
series classification using numerosity reduction. In ICML, pages 1033–1040, 2006.

22. X. Xiao, Y. Zheng, Q. Luo, and X. Xie. Finding similar users using category-based
location history. In GIS, pages 442–445, 2010.

23. X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap
search. In SIGMOD Conference, pages 433–444, 2008.

24. L. Ye and E. J. Keogh. Time series shapelets: a new primitive for data mining. In
KDD, pages 947–956, 2009.

25. B.-K. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar time
sequences under time warping. In ICDE, pages 201–208, 1998.


