A Typed Logic for Stacks and Jumps
DRAFT

Nick Benton
Microsoft Research

March 2, 2004

Abstract

This note shows how one may define a program logic in the style of
Floyd and Hoare for a simple, typed, stack-based, imperative language
with unstructured control flow and local variables.

1 Introduction

Recent interest in security and certification has led to Floyd-Hoare and VDM-
style programming logics becoming surprisingly fashionable, and to much work
on type systems and specification logics for low-level code. Two industrially sig-
nificant typed intermediate languges have received a great deal of attention: the
bytecode of the JVM, used as a target for Java, and the Common Intermediate
Language of the CLR, used as a target for languages including C* and Visual
Basic. Both of these intermediate languages are stack-based! with control flow
expressed using labelled jumps.

Most work on formalizing the type systems of these intermediate languages
[10, 4] has treated the reality of stacks and jumps, though some authors have
chosen to work with structured imperative control flow [5] or functional-style
applicative expressions [11].

Even recent work on more general specification logics [1, 7, 6] has, however,
mostly been done in the context of high-level languages. Borgstrom [2] has
approached the problem of proving bytecode programs meet specifications by
first decompiling them into higher-level structured code and then reasoning
in standard Floyd-Hoare logic. Quigley [8, 9] has formalized rules for Hoare-
like reasoning about a small subset of Java bytecode within Isabelle, but her
treatment is based on trying to rediscover high-level control structures (such as
while loops); this leads to rules which are both complex and rather weak.

Here we present and prove the correctness of a simple logic for directly
proving partial correctness assertions on a minimal stack-based language with

L Actually a rather poor design decision, but it’s done now. . .

jumps. This is slightly more complex than traditional Hoare logic for while
programs, as we have to deal with

e Unstructured control flow

e A stack which varies in size

e Globals and stack locations which vary in type

e Errors (underflow and type errors) arising from the previous factors

The first is not a significant problem (Floyd dealt with unstructured flowcharts
in 1967 [3]). Here we address the other difficulties by imposing a simple type
system to track the types of locations and the size of the stack and then defining
assertions relative to those types.

2 The Language

2.1 Syntax

The syntax of basic values, instructions and programs is as follows. We assume
the existence of a set V of variables (this is naturally taken to be finite if one
thinks of them as local variables for a method or registers).

n € Z

b € B={true, false}

v = bln

l € N labels

z € V variables
op € A{+,*%,—,<,>=,...}

I := pushc v |pushvar z | pop z | binop,, | brtrue [| halt
p = [1:1,2:1,...,0:1] programs

The pushc v instruction pushes a constant boolean or integer value v onto the
stack. The pushvar z instruction pushes the value of the variable z onto the
stack. The pop z instruction pops the top element off the stack and stores it
in the variable z. The binop,, instruction pops the top two elements off the
stack and pushes the result of applying the binary operator op to them. The
brtrue [instruction pops the top element of the stack and transfers control
either to label [if the value was true, or to the next instruction if it was false.
The halt instruction halts.

Note that programs can be viewed as functions from an initial segment of
the strictly positive naturals to instructions. Thus we may use either functional
or unordered list notation for them.

2.2 Operational Semantics

States are functions from variables to values (i.e. to the union of the booleans
and the integers, which in this presentation we assume to be disjoint). Stacks
are finite sequences of values:

S > States =V — (ZUB)

o 3 Stacks = (ZUB)*

A configuration consists of a program p and triple of a state, a stack and
program counter (the current label). We present the operational semantics using
a small-step transition relation:

[p]; (S,0,0) — (S, 0", ")
defined by

[p, ! : pushc v]; (S, 0,1) — (S, (o,v),l + 1)

[p,! : pushvar zl; (S, 0,l) — <S, (0,8(x)),l +1)
2,1 pop 21 (S, (0, 0),1) — (Slo/a], 0,0+ 1)
[p,! : binop,,|; (S
[p, 1 : brtrue I'];{
[p, ! : brtrue I'];

, (o,01,v2),1) = (S, (0,v10pv2),l + 1) if op defd
S, (o, true),l) — (S,o0,1")
S, (o, false),l) — (S,o,l + 1)

and we define the multistep transition relation [p]; (S, o,l) —* (S’,0’,1’) in the
obvious way:

[pl; (S, 0,1) —* (S, 0,1)

[p); (S,0,1) = (8",0", 1) [pl; (5", 0", 1) =" (5", 0",1")
[pl; (S,0,1) — *<S" "1

We sometimes write [pl; (S, ,1) | (S’,0’) to mean [p]; (S,0,l) —* (5", 0’,1I') for
some !’ such that p(l’) = halt.

The following is obvious, assuming each primitive operation is a function,
since each configuration has at most one successor.

Lemma 1. The operational semantics is deterministic. O

It is also worth noting that execution preserves, and is independent of, ex-
tensions to the stack at the bottom:

Lemma 2. If [p]; (S, 0,l) =* (S",0',l') then for any ", [p]; (S, (¢",0),l) —*
<S/ (// /) l/> D

3

Types and Assertions

As well as terminating executions that hit a halt instruction, programs can
exhibit four other kinds of behaviour:

1
2
3
4

. Divergence
. Type errors
. Stack underflow

. Wild jumps

In the small step semantics, divergence is corresponds to an infinite sequence
of transitions, whilst stack underflow, type errors and wild jumps show up as
configurations in which the current instruction is not halt, yet no transition is
possible (stuck configurations).

Our goal is to define a Floyd-Hoare style logic. Clearly we will have predi-

cate
tics

1.

7.

s P of some sort on stacks and states, but there are various possible seman-
for judgements? {P} p,1 {Q}:

Total correctness. If (S, o) € [P] then [p]; (S, o,1) | (S, 0’) with (S, 0") €
[Q]-

Very partial correctness. If (S,o0) € [P] and [p]; (S,0,1) | (S’,0'), then
(8',0") € [Q]. Such specifications are satisfied by erroneous as well as
diverging programs.

Error-free partial correctness. If (S, o) € [P] then EITHER [p[; (S, 0,1) |
(87, 0") with (S',0") € [Q], OR [p]; (S, 0,1) diverges.

Error-tracking partial correctness. We enrich the language of predicates
to include explicit treatment of erroneous states (as in the work of Jacobs
and Huisman [6]).

Underspecified partial correctness. We modify the semantics to be defined
but non-deterministic in some error cases (e.g. simple type errors like
adding a boolean to an integer, maybe reading below the bottom of the
stack). Then do normal partial correctness wrt the modified semantics.

Default values. Modify the semantics to return default values for accesses
below the bottom of the stack.

Move to a relational interpretation of predicates.

8 ...

2 Actually, our judgements are not of quite this form.

There also seems to be some scope for varying exactly how predicates on stacks
themselves should be formulated, to deal with, or avoid, references to inacces-

sible stack locations.

Here we choose to rule out erroneous behaviour by means of a simple type
system, and to define our predicates relative to those types. Thus we will only be
able to prove properties of programs which are typeable. This seems natural, but

it is worth stressing that it is not the only reasonable way to proceed — although

both the JVM and CLR have type systems and type checkers (‘verifiers’), the
CLR does give a semantics to unverifiable code; such code can be executed if it
has been granted sufficient permissions. Our type-based approach prevents one

from proving any properties at all of unverifiable code.

3.1 Basic Types
We start by defining types for values, states and stacks:

7 € {int,bool} base types
Y o= — X7 stack types
A € V — {int,bool} state types

We define [int] = Z and [bool] = B. Typing for states is straightforward:

FS:Aiff Ve e V.S(x) € [A(x)]
For stacks, we use the following® rules:

Fo:¥ Fo:r

Fo:—
Fov:X T
We define substitution on states and state types like this:
Alz = 7))(y) = { A(y) otherwise
(Slz=)y) = { S(y) otherwise

Lemma 3. If-S: A andv: 7 then - S[x — v] : Alx — 7].

Similarly for stacks, though here substitution is partial:

E,0—71] = X7
E,Ni+1—1 = Z[i—1,7
(0, 0)[0—v] = o,v
(o, V)i +1—v] = oli—v,v

Lemma 4. Ifto: X and v: 7 then b ofi — v] : X[i — 7).

3Note that these rules interpret stack types as constraints on the top of the stack, not as

a exact specification of the whole stack.

O

3.2 Assertions and Program Types

To write specifications, we will need a syntax for boolean- and integer-valued
expressions. This is given by the following grammar:

E :=n|blxz|si)|EopE

As before, the metavariable op ranges over all our binary operators, including
arithmetic and logical ones. n and b are integer and boolean constants, and =
ranges over V. We also have an expression form s(i) for ¢ a natural number,
which represents the ith element down the stack. (We could equally well use list
notation, with hd(s) and tl(s), instead of indexing stack locations by natural
numbers.)

Expressions can have type either int or bool in the context of a given stack
and store typing:

A Y Fn:int A Y Fb:bool
Az 1), XFa:T A (S, 7)Fs(0):T
AYEs(i):T AYFE 11 AYXFEE, T op:7Ti X7y — T3
AT Rs(i+1) 7 AYFEiopEs: T3

We define substitution F[E’/x] and E[E’/s(i)] in the usual way.
Lemma 5.
1. If Sx—71'l,o - E:7 and S,o b E': 7/ then S,0 - E[E'/z] : T.
2. If S;oli— 7| E:7 and S,c - E' : 7' then S,o b E[E'/s(3)] : T.
O

EAYHFE:7,5:Aand o: X then we define [E](S, o) € [r] inductively
as follows: (and this is well-defined):

[n](S,0) =
[01(S,0) = b
[z](S,0) = S(z)
[s(0)](S,(o,v)) = v
[s(i + D](S, (o,v)) = [s())](S,0)
[E1op E2](S,0) = [EA](S,0) op [E2](S,0)

Lemma 6.
1. If Sjx—1',o - E:7 and S,o0 - E' : 7/ then

[ELE/)](S, o) = [E](S[x — [E'](S,)], 0).

2. If S;oli—7FE:7 and S,c - E' : 7/ then

[ELE/s()])(S,0) = [E](S, oli — [E'] (S5, 0)).

O
If A)X F E; :bool for i € {1,2}, we write ¥, A E E; = FE5 to mean
VSVoif FS: A and Fo: X then [E1](S,0) = [E2](S,0)
If E is an expression, then we define shift(FE) by
shift(s(i)) = s(i+1)
shift(E; op E2) = shift(E;) op shift(Eg)
shift(E) = FE otherwise
Lemma 7.
1. If AX+ E: 7 then for any 7, A, (3, 7') b shift(E) : T.
2. IfASFE:7,FS:A and o : X then for any v,
[E)(S,0) = [shift(B)](S, (o,).
O

One can present the type system for programs and then the assertion check-
ing rules on typed programs, but here we choose to combine them into one
system. A program type I' thus maps labels to triples of state type, stack type
and assertion:

I = [1:A1,5, 1.0 ALY, B
with the well-typedness condition
V1l < U <Il. Ay, %y F Ep :bool
Fl:ALSL Byl AL S, EY

The rules for checking a particular instruction in a program in the context of a
program typing I', assuming that F I' holds, are shown in Figure 1. We then
say a program is well-typed and specified, and write I' - p, if all its instructions

are:
FT Vi<U<LTFI

TH[1:L,...,l1: 1]

I'F1l:halt

F(l):Al,El,El Fo:T F(l—l—l):Al,(El,T),EH_l
Ay, (30, 7) | shift(E) = Ej1[v/s(0)]

I'F1l:pushcwv

F(l):AhZhEl Al(l'):’r P(l+1):Al,(El,T)7El+1
Ay, (B, 7) [shift(E) = Eia[z/s(0)]

I' -1 : pushvar z

L) = Ay, (Bi41,7), By Ll +1) = Ag[z = 7], 8141, By
Ay, (S0, 7) F By = (shift(Ei41))[s(0) /7]

I'Fl:popz

F(l)ZAZ,(E,Tl,Tg),El I‘(l—f—l):Al,(Z,Tg),ElH op:TL X T — T3
Ay, (E,72,71) E Bl = (shift(Ei11))[(s(0) ops(1))/5(1)]

I'+1:binop,,

I'(l) = Ay, (X141, bool), E Fl+1)=A,%111, B I =AY, By
Ay, (X141,bo0l) E E;p A —s(0) = shift(Ei41)
Ay, (El+1, bOOl)): E; N S(O) — Shift(El/)

T'F1l:brtruel

Figure 1: Rules for checking types and specifications

3.3 Soundness

We say what it means for a configuration to be well typed and specified with
respect to an extended program type:

F"p F(l):Al,Zl,El }—O'ZEZ FSZA[[[El]](&o):true
'k [p]; (S,0,1)

Taking the requirements in order, we need that the whole program is well typed
and specified (which includes the requirement that the extended program type is
well-formed), the state and stack have the type assigned to them at the current
label and meet the specification associated with this label.

Soundness of the logic with respect to the operational semantics is then
formulated in the usual preservation and progress style:

Theorem 1. If T [p];(S,0,l) then either p(l) = halt or there exist S',o’,l
such that [pl; (S,o,1) — (S",0’,l') and T\ [p]; (S', o', 1").

Proof. We consider each case for the instruction I; in turn.

halt Nothing to prove.

pushc v If we take S’ = S, ¢/ = (0,v), I’ =1+ 1 then we have a transition. We
know - S : Aj, b o : X and [E(](S,0) = true by assumption. We know
Ay = Ay, Xy = (2, 7) and v : 7 from the fact that I; is well typed and
specified. Hence we can deduce F ¢’ : ¥y and = 5" : Ay, Now

[E](S, o) = true
= [shift(E)](S, (o,v)) = true Lemma 7
= [Er[v/s(0)]](S, (o,v)) = true assmp
= [Ey](S’,0’) =true Lemma 6

pushvar x Let v = S(z) and take S’ = S, 0/ = (0,v), I’ =1+ 1. Then we have a
transition. We know Ay = Ay, 5y = X, 7, where 7 = Aj(z) by the type
rules, so = S’ : Ay and F o’ : ¥y, For the specification, we then reason
essentially as in the case above.

pop x Take I’ = [4+ 1 then we know there’s a 7 such that ¥; = (X, 7), Ay =
Ajlz — 7] from typing, and - S : A; and F o : ¥; by assumption. So
o = (¢',v) for some ¢’ : ¥y and v : 7. Let 8" = S[z — v] so we have a
transition, and S’ : Ay by Lemma *

[E](S,0) = true
= [shift(Ep)[s(0)/z]](S,0) = true assmp
— (B [s(0)/211(S, (", 0) = truc
— [if(B))(S[z — [5O)](S, (o',v))], (0", v)) = true TLemma 6
= [[shzft(El N(S[z — 0], (6’,v)) = true
= [Ey](5',0') = true

as required.

binop,, Takel’ =I+1 then we know that 3 = (3, 72, 71) and ¥y = (3, 73) for some
Y., where op : 71 X T2 — 73. Then as b o : ¥; we must have o = (¢, vq, v1)
for some F ¢” : 3, vy : 75 and vy : 7. Let o/ = (6", v 0pvy) and then
F o’ : Xy. For the state, we know - S : A; and Ay = A; so we take
S’ = S and we have typing and a transition. Now

[E:](S,0) = true

[E](S, (6", va,v1)) = true

[shift (Er)[(s(0) op s(1))/s(V)]1(S, (0", v2, v1)) = true

LA CEIS 07 5(0) aps(DI(S, (o v1)) n)) =t
[shift(E1)](S, (¢”,v1 opva,v1)) = tru
[Er](S, (6", v10pva)) = true
[Ev](S,0") = true

FEEELy

as required.

brtrue k We know A;y; = Ak = Ay, and ¥4 = Xk and ¥; = (g, bool). So
o = (0’,b) for some boolean b, and - ¢’ : ¥ by typing. If b = true then

we have a transition with I’ = k and S’ = S, so = S’ : Ay is immediate.
Then for the spec

(S, o) = true
1(S, (¢’ true)) = true
1 A s(0)](S, (o, true)) = true
ift(Ex)](S, (o', true)) = true
Ek]](S, ") = true
(8',0") = true

DjEij

LEEEl

as required. The case for b = false and I’ = [+ 1 is similar.

3.4 Examples

Consider the source program

x := 0;
while(5>x) {
X = x+1;

}

A typical Java or C* compiler would produce code roughly like the following,
where we have annotated each instruction with a type and specification. Note
that the while loop is compiled with the test and conditional backwards branch
at the end, and is preceded by a header which branches unconditionally into the
loop to execute the test the first time.

I I A Y E;

1 pushc 0 Z:int;— true

2 popz x :int;int s(0)=0

3 pushc true z:int;— T =

4 brtrue9 =z :int;bool x=0As(0) =true

5 pushvar z z:int;— r <>

6 pushc 1 x:int;int s(0) <5

7 binop,,, x :int;int,int s(1) <5As(0) =1

8 popx x:int;int 5(0) <5

9 pushvar z z:int;— r <5
10 pushc 5 x :int;int x<5As(0)==x
11 binop,, x :int;int,int z<5As(l)=xzAs(0)=5
12 brtrue5 z:int;bool x <5As(0)=(x<5)
13 halt T :int; — =25

Here are the justifications that each instruction is well-typed and specified ac-
cording to the rules:

1. x :int, (int) = shift(true) = (s(0) = 0)[0/s(0)] which is valid.

10

w

10.

11.

12.

13.

x:int, (int) = s(0) =0 = shift(z = 0)[s(0)/z] which is valid.

. x @ int,(bool) | shift(z = 0) = (x = 0A s(0) = true)[true/s(0)]

which is valid.

Here there are two things to check. x : int, (bool) | & = 0 A s(0) =
true A =s(0) = shift(z < 5) which holds because we have false on the
left, and z : int, (bool) = x = 0 A s(0) = true A s(0) = shift(z < 5)
which is valid.

2 :int, (int) = shift(z < 5) = (s(0) < 5)[z/s(0)] which is valid.

x @ int, (int, int) | shift(s(0) < 5) = (s(1) < 5 A s(0) = 1)[1/s(0)]
which is « : int, (int,int) = s(1) <5 = (s(1) < 5A 1 = 1) which is
valid.

x : int, (int,int) = s(1) < 5As(0) =1 = shift(s(0) < 5)[(s(0) +
s(1))/s(1)] which is « : int,(int,int) | s(1) < 5As(0) =1 =
s(0) + s(1) < 5 which is valid.

x :int, (int) = s(0) <5 = shift(z < 5)[s(0)/x] which is valid.

x i.(ilnt,(int) E shift(z < 5) = (x < 5As(0) = z)[z/s(0)] which is

x : int, (int,int) E shift(z < 5As(0)=2) = (x < 5As(l) =
x A s(0) =5)[5/s(0)] which is « : int, (int,int) F 2z < 5As(l) =z =
(x <5As(1) =2 A5 =>5) which is valid.

x :int, (int,int) = (

z<5As(1)=x2As(0)=5) =
shift(z < 5 N s(0) =

(z < 5))[(s(0) > s(1))/s(1)]
which is z : int,(int,int) F (z < 5As(l) = zAs(0) =5) =
shift(z < 5 A (s(0) > s(1)) = (z < 5)) which is valid.

Two things to prove: z : int, (bool) = a < 5As(0) = (z < 5)A—s(0) =
shift(x = 5) which is valid, and x : int, (bool) E 2 < 5As(0) = (z <
5) A s(0) = shift(z < 5) which is valid.

Nothing to prove.

Thus we have established that the program is well-typed and that the value of
x will be 5 on termination.

4

Conclusions

We have presented a typed program logic for a tiny stack-based intermediate
language (bearing roughly the same relation to Java bytecode or CIL that the

11

language of while programs does to Java or C*). The logic is proved to be sound
with respect to an operational semantics.

Nothing about the logic is amazingly novel, though the interplay between

the type system and assertion language (the size of the stack and the types of
stack locations and locals can vary) and the use of the shift(-) operation are
interesting. As far as I can ascertain, this simple and natural system has not
been presented before, though it certainly seems worth writing down.

References

1]

[10]

M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In
Proceedings of 7th International Joint Conference on Theory and Practice
of Software Development (TAPSOFT), 1997.

J. Borgstrom. Translation of smart card applications for formal verification.
Masters Thesis, SICS, Sweden, 2002.

R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proceedings of the AMS Symposium in Applied Mathematics, volume 19,
pages 19-32, 1967.

S. N. Freund and J. C. Mitchell. A type system for object initialization
in the Java bytecode language. ACM Transactions on Programming Lan-
guages and Systems, 1998.

A. D. Gordon and D. Syme. Typing a multi-language intermediate code.
In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages (POPL), 2001.

M. Huisman and B. Jacobs. Java program verification via a Hoare logic
with abrupt termination. In 3rd International Conference on Fundamental
Approaches to Software Engineering (FASE), pages 284-303, 2000.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential
Java. In European Symposium on Programming (ESOP), 1999.

C. Quigley. A programming logic for Java bytecode programs. In Proceed-
ings of the 16th International Conference on Theorem Proving in Higher
Order Logics, volume 2758 of Lecture Notes in Computer Science. Springer-
Verlag, September 2003.

C. L. Quigley. A Programming Logic for Java Bytecode Programs. PhD
thesis, University of Glasgow, Department of Computing Science, January
2004.

R. Stata and M. Abadi. A type system for Java bytecode subroutines. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, 1998.

12

[11] D. Yu, A. Kennedy, and D. Syme. Formalization of generics for the .NET
common language runtime. In Proceedings of the 31st ACM Symposium on
Principles of Programming Languages (POPL), 2004.

13

