
COVER FE ATURE

45DECEMBER 2010Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE

solutions do not generalize well, making this option a poor
choice for an enterprise with diverse applications.

Organizations might also use databases to build such
financial applications. In addition to forming a data-
processing substrate that provides a simple yet power-
ful data model, databases enable applications to issue
and execute declarative queries over set-oriented data.
However, current databases cannot support the unique
requirements of financial applications, which demand
high-performance, complex, and time-oriented query
processing over temporal data.

Recognizing the need for a more responsive general
platform, many organizations are turning instead to data
stream management systems (DSMSs), middleware that
processes and issues long-running queries over temporal
data streams. With a DSMS, applications can register que-
ries before continuously and incrementally computing the
result as new data arrives.

DSMSs use a cycle of data monitoring, managing, and
mining to accommodate complex queries in streaming ap-
plications like computational finance. The notion of time is
crucial in such applications, which include activities with
both immediate and historic real-time data streams. Stock
trading is an example. Risk management applications must
detect various price-change patterns according to the latest
tick, yet a trading model is based on years of historical
data. Other applications make trading decisions on the
basis of algorithms, delivering financial recommendations
through some magic formula that blends past and future.

C
omputational finance applications have
unique needs born of ubiquitous network-
ing and increasingly automated business
processes. To be effective, such applications
require the rapid processing of an unending

data stream. Any system to manage this stream must
process queries over continually changing data and be
able to incorporate the results into ongoing business pro-
cesses incrementally—all with extremely low latency. The
system must also support the processing of data archived
for historical analysis, which involves mining and back-
testing real-time queries.

In this fast-paced environment, most organizations real-
ize that reduced processing latency is a key requirement.
For this reason, financial application developers often
prefer customized solutions to solve specific problems.
But customization is expensive, and, as a rule, customized

Because financial applications rely on a
continual stream of time-sensitive data,
any data management system must be
able to process complex queries on the fly.
Although many organizations turn to cus-
tom solutions, data stream management
systems can offer the same low-latency
processing with the flexibility to handle a
range of applications.

Badrish Chandramouli, Mohamed Ali, Jonathan Goldstein, Beysim Sezgin, and Balan Sethu Raman

Microsoft

DATA STREAM
MANAGEMENT
SYSTEMS FOR
COMPUTATIONAL
FINANCE

COVER FE ATURE

COMPUTER 46

DSMSs are a perfect fit for these applications, which
must query over streaming data as well as data archived
for historical analysis.1 Indeed, several DSMSs have already
become popular, each with its own execution model and
approach to stream management.

MEETING REAL-TIME NEEDS
To address the challenges of real-time applications,

a DSMS must support or have certain features. One is
specification ease and completeness. DSMS users, whose
programming expertise varies widely, want to worry less
(if at all) about application execution, focusing instead on
query logic—how to compose the most effective query.
Users might wish to encapsulate query logic into higher-
level meaningful components and compose them into
complex queries. A DSMS must also be able to handle
late-arriving data or corrections. Computational finance
activities, such as stock trading, are dynamic, which
means that the DSMS must deterministically resolve late-
arriving events. Also, a source can generate an event, later
detect an error, and then either change or remove the
previously generated event.

Another desirable feature is extensibility. The DSMS
toolbox covers many scenarios, but computational finance
applications are complex and can evolve quickly, requir-
ing some framework for extending existing tools. Specific
challenges include supporting legacy libraries and writing
streaming building blocks.

Ease of query debugging is also useful because it is
difficult to verify the correctness data that the system is
constantly processing. Using application time instead of
system time, along with concrete temporal algebra se-
mantics, makes query results deterministic regardless of
the order in which the system processes individual events.

Finally, high performance is of paramount importance
in real-time applications. To achieve high performance,
DSMSs usually maintain internal state in main memory
and discard events or state when they are no longer needed.
When event arrival rate exceeds the system’s processing ca-
pability, the system buffers events in the in-memory event
queues between operators. Performance measurement is
usually based on three definitions:

 • measurable latency period —the point at which an
event enters the DSMS to the point at which the user
observes its effect in the output;

 • throughput—the number of result events that the
DSMS produces per second of runtime; and

 • memory use—the in-memory state accumulated
during runtime as a result of query processing.

Beyond answering queries over streaming data, a DSMS
must support the ability to publish query results and
enable queries to consume the results of other published
queries and streams at runtime. A DSMS should be easy
to deploy in a variety of environments, including single
servers, clusters, and smartphones. Like other business
systems, it should implement security features to avoid
unauthorized data access and monitor system health
against defined performance metrics.

HOW THE SYSTEM WORKS
Figure 1 shows how a DSMS might support a stock trad-

ing application by managing the flow of both historical and
real-time data. As the figure implies, stock trading can have
multiple data streams, but the most obvious one is stock
quotes, in which each event (or notification) in the stream
represents a single quote.

For each stock, the trading application smoothes
out the signal using a moving average to rid the data
stream of spikes or outliers and then performs some
customized computation, such as detecting a chart
pattern. The stocks that the application is interested
in tracking can change according to the stock port-
folio, and the application typically has a stock white
list (stocks to trade) or blacklist (stocks to avoid). The
DSMS continually monitors the event stream and
alerts the trading application when it detects a chart
pattern for a relevant stock.

Support of the trading application begins when the
application registers a continuous query (CQ) with
the DSMS. The DSMS then processes incoming stock
quotes against the registered CQ, considering quotes
that satisfy the black- or white list and performing the
requested CQ operations, such as grouping and pat-
tern matching. Stock trade messages reach the DSMS
as events, each of which consists of a trade timestamp,
stock symbol, and last traded price. The trading model
views both stock trades and list updates as event
streams, since both activities consist of notifications
that report either a stock trade or a change to a set of
stock symbols.

The DSMS produces a new event when the CQ results re-
quire updates or other changes. For example, if the DSMS
detects a chart pattern for a particular stock, it produces
output conveying this discovery. The trading application
can then take appropriate action such as buying or selling.
Because a CQ receives as well as produces event streams,
a DSMS user can compose CQs to satisfy a variety of com-
plex requirements.

Ease of query debugging is useful
because it is difficult to verify the
correctness of data that the system
is constantly processing.

Monitor-manage-mine cycle
Computational finance ap-

plications like stock trading
rely on key performance indi-
cators (KPIs), which refer to the
va lues, measures, or func-
tions the system must monitor
before making a decision or a
recommendation. Historically,
application designers have at-
tempted to answer two questions
about KPIs:

 • What KPIs are of interest in
the monitored environment?

 • Given specific KPI values,
what actions should the
system take?

The answers to these ques-
tions depend, of course, on the
domain and the questioner’s expertise, but a DSMS can
help alleviate some of the angst of seeking them through
its monitor-manage-mine (M3) cycle. In this cycle, the
DSMS continuously monitors a predefined set of KPIs,
helps manage the application domain through a set of
KPI-triggered actions, and then mines data for interesting
patterns and better KPIs.

As Figure 1 shows, the M3 cycle has five major steps,
which together give the DSMS the flexibility to accommo-
date changing needs in both business processes and the
monitored environment’s behavior.

 1. Acquire and archive. The DSMS acquires data from
real-time streams, makes it available for real-time data
processing, and archives it for subsequent operations
or to satisfy legal requirements. As part of this pro-
cess, the system can clean or compress the acquired
data.

 2. Mine and design. The DSMS replays historical data to
execute queries that mine for interesting patterns. The
overall goal is to design meaningful and effective KPIs.

 3. Deploy. After finding the KPIs, the DSMS deploys a
selected subset as queries that read real-time data
streams.

 4. Manage. The DSMS computes the selected KPIs over the
real-time data from Step 1 and manages the applica-
tion domain according to a predefined set of actions
governed by the KPIs. The business benefits from low
latency and high throughput.

 5. Feed back. The DSMS archives the real-time processing
output and analyzes KPI values to determine KPIs’ ef-
fectiveness. After this step, another iteration of Steps
2 through 4 occurs, completing the M3 cycle.

47DECEMBER 2010

Data sources, operations, assets, feeds, stock ticks, sensors, and devices

DSMS

Operational
data store

and archive

Acquire
and

archive

1

g(y)
f(x) h(z)

g'(y)
f ' (x) h'(z)

Results

Histo
ry

In
pu

t d
at

a s
tre

am
s

In
pu

t d
at

a s
tre

am
s

Ou
tp

ut
 da

ta
 st

rea
m

s

Mine
and

design

2

DSMS
g(y)f(x)

g'(y)

KPIsDeploy

3

Feed back
5

Manage
4

Figure 1. Flow of historical and real-time data in a DSMS that supports a stock trading
application.

Data input and output
Any data exchange requires a communication moderat-

ing mechanism. In a DSMS, adapters fill this role. An input
adapter pushes data from stream sources to the DSMS; an
output adapter streams query results from the DSMS to
the consumer.

The adapter writer must first understand the source
event’s format and provide a schema that describes the
event. A stock ticker adapter, for example, might provide
a stream with a schema that contains two fields (symbol:
string, price: decimal).

The writer must also augment each event with temporal
attributes. Because each event occurs at a specific time
and generally lasts for some period (known or unknown),
the adapter must augment the schema with one or more
timestamps to denote the event’s temporal attributes. The
writer chooses one of three formats for conveying the tem-
poral information:

 • Point event: An event occurs at a point in time, taking
the form (timestamp: DateTime, symbol, String, price
decimal), where timestamp denotes the time at which
the stock price is reported.

 • Interval event: An event that spans an a priori known
period, taking the form (Vs: DateTime, Ve: Datetime,
symbol: string, price: decimal), where Vs and Ve are
the start and end times of the interval during which
the reported stock price was valid.

 • Edge event: An event that spans an a priori unknown
period and is represented by two signals: (Vs: Date-
Time, symbol: string, price: decimal) to denote the
interval’s start and (Ve: DateTime, symbol: string,
price: decimal) to denote the interval’s end.

COVER FE ATURE

COMPUTER 48

A stock tick could be a point event, since it ticks at a spe-
cific time, but it could also be an interval event that spans
the duration between consecutive ticks. The customer’s
intent to sell stocks for a certain price is an edge event,
starting as soon as the customer places the transaction.
The end time is not known ahead of time; rather, the event
remains open until the sell transaction takes place, signal-
ing the end of the event.

Query construction
To illustrate query construction, we describe the pro-

cess in terms of Microsoft’s StreamInsight, a commercial
DSMS that currently ships as a part of SQL Server 2008
R2. Figure 2 shows the StreamInsight queries for the stock
trading application, which are written in Language In-
tegrated Query (LINQ; http://msdn.microsoft.com/en-us/
netframework/aa904594.aspx). The six queries we de-
scribe are applicable to many scenarios in stream-oriented
workloads.

Query construction begins with a statement in English,
which has from, where, and select clauses. The results of
LINQ queries are associated with variables that subsequent
queries reference.

The informal English version of the first query in Figure
2 is

Q1: Select stock quote events for symbol “MSFT,” discarding
all the other events.

Tables 1 and 2 provide insights into the precise seman-
tics of this query.

We have made Tables 1 and 2 finite to drive the under-
standing of what operations the system must perform on

Figure 2. Query construction for a stock trading application using Microsoft Streamlight. The DSMS uses LINQ queries, each of
which has three sections: “from” identifies the source stream; “where” applies filters; and “select” performs projection to ensure
that the query output has events with the expected schema and content.

Table 1. Sample finite input (StockTickerInfo) for “Select stock
quote events for symbol ‘MSFT,’ discarding all other events.”

Timestamp Symbol Price

0 MSFT 25.00

0 IBM 110.00

1 MSFT 25.03

Table 2. Sample finite output (SelectQuery) for “Select stock quote
events for symbol ‘MSFT,’ discarding all other events.”

Timestamp Price

0 25.00

1 25.03

struct StockEvent // Stock event type
{ string Symbol;
 float Price; }

// Filter and project (Q1)
var filteredStream =
 from e in StockTickerInfo
 where e.Symbol == “MSFT”
 select new (Price = e.Price);

// Windowing operation (Q2)
var hoppingAvg =
 from w in filteredStream.HoppingWindow
 (TimeSpan.FromSeconds(3),
 TimeSpan.FromSeconds(1),
 HoppingWindowOutputPolicy.
ClipToWindowEnd)
 select new { SmoothedPrice =
 w.Avg(e => e.Price) };

// User-defined operator (Q3)
var HSPattern =
 from w in filteredStream.HoppingWindow
 (TimeSpan.FromMinutes(10),
 HoppingWindowOutputPolicy.
ClipToWindowEnd)
 select w.AfaOperator(HeadShoulderPattern);

// Group and apply (Q4)
var EachHeadAndShoulders =
 from e in StockTickerInfo
 group e by e.Symbol;

var AllHeadAndShoulders =
 EachHeadAndShoulders.ApplyWithUnion(
 applyIn => HeadAndShoulders(applyIn),
 e => new { e.Payload, e.Key });

// Join or correlation (Q5)
var InterestingStream =
 from e1 in StockTickerInfo
 join e2 in WhiteListStream
 on e1.Symbol equals e2.Symbol
 select new { Symbol = e1.Symbol,
 Price = e1.Price }

// Anti-join (Q6)
var InterestingStream =
 from e1 in StockTickerInfo
 where (from e2 in BlackListStream
 where e1.Symbol == e2.Symbol
 select e2).IsEmpty()
 select e1;

49DECEMBER 2010

this data stream. In reality, typical streaming operations
do not assume finite data. We also assume that all stock
readings are point events, so it is possible to implement
Q1 using filter and project operations. A filter operation
subjects the event to a Boolean test to compare the symbol
to MSFT. If the event passes the test, the operation retains
it and removes the unnecessary ticker symbol column in
the output.

The second query is

Q2: Take the output signal produced by FilteredStream, and
smooth it by reporting a 3-second trailing average every second.

This query introduces windowing extensions that use
a hopping window approach to create windows using two
parameters to group events into buckets. The first param-
eter, window size, determines the duration of each bucket.
In the query, the trailing average is 3 seconds, so the goal
should be to aggregate 3 seconds worth of data with each
result, making the window 3 seconds long.

The second parameter in the hopping window approach
is hop size, which specifies how often the system creates
buckets along the timeline. Because the query specifies that
reports occur every second, the hop size is 1 second. It is
also feasible to use a sliding window, which reports updates
to the result whenever the DSMS receives a new event.

For each window, a hopping average computed with
these parameters will produce an event with a price equal
to the average price across all the events in that window.
The first window that contains data starts at time 1 and
contains only one event (with timestamp 3).

Tables 3 and 4 show sample (again finite) input and
output streams. We assume that time is in seconds.

The third query highlights the need for an extensibility
mechanism to cover more specific business logic:

Q3: Detect the head-and-shoulders pattern over the stock
stream for MSFT, over a 10-minute window.

A DSMS toolbox has many operations that are common
across business applications, making it sufficient for most
requirements, but each business sector tends to have its
own demands. The extensibility mechanism seamlessly
integrates specific logic into the stream processing.

Extending the DSMS is a collaboration between the
user-defined module (UDM) writer and the query writer.
The two collaboratively use an extensibility framework to
execute the UDM. A domain expert writes the UDM, which
essentially comprises libraries of domain-specific opera-
tions. The query writer invokes a UDM as part of the query
logic. The extensibility framework executes the UDM logic
on demand, in essence connecting the UDM and query
writers and making the writing process convenient and
efficient for both.

As Figure 3 shows, the head-and-shoulders trading pat-
tern starts at price p1, moves up to local maximum p2,
declines to local minimum p3 > p1, climbs to local maxi-
mum p4 > p2, declines to local minimum p5 > p1, climbs
again to local maximum p6 < p4, and finally declines to
below the starting price.

Pattern matching is a typical use case for the extensi-
bility framework. DSMSs generally use native operators
to support basic pattern matching, but complex pattern
matching, which targets financial applications, is beyond
the capabilities of simple pattern languages. Researchers
have proposed several alternative techniques that are more
suitable for matching complex patterns over streams.

Microsoft is exploring a technique2 to augment a
finite state automaton with a register to track added

Table 3. Sample finite input (FilteredStream) for “Take the output
signal produced by FilteredStream, and smooth it by reporting a

3-second trailing average every second.”

Timestamp Price

3 18.00

4 24.00

5 18.00

6 30.00

Table 4. Sample finite output (SmoothedStream) for “Take the
output signal produced by FilteredStream, and smooth it by

reporting a 3-second trailing average every second.”

Timestamp Price

3 18.00

4 21.00

5 20.00

6 24.00

7 24.00

8 30.00

p1

Time

Pr
ice

p2

p3

p4

p6

p5

Figure 3. The head-and-shoulders trading pattern. This
complex pattern is beyond the capability of simple pattern
languages, such as regular expressions.

COVER FE ATURE

COMPUTER 50

runtime information, which is associated with the autom-
aton during event-triggered transitions between states. (A
UDM for pattern matching with this technique is avail-
able at the StreamInsight blog; http://blogs.msdn.com/b/
streaminsight/archive/2010/09/02/pattern-detection-with-
streaminsight.aspx).

The queries so far concern operations on a single stock,
but a trader might want to perform similar operations for
multiple stocks. The next query performs grouped compu-
tation using the “group by” LINQ clause, with the repeated
computation (“apply”) specified as a separate query.

These operations rely on the notion of group-and-
apply, which distributes some stream computation to every
partition of the stream according to a specific grouping or
partitioning function.

The fourth query applies the head-and-shoulders pat-
tern detector to each symbol in the stream:

Q4: For each unique ticker symbol, detect the occurrence of
the head-and-shoulders chart pattern of query Q3.

The first part of Q4 partitions the incoming stock ticks
by the ticker symbol. The second part applies per-symbol
pattern matching2 to each partition. The query output
combines all the outputs produced for each partition.
This group-and-apply operation (grouped computation) is
surprisingly powerful in practice and is common in DSMS
queries. The operation partitions a stream into substreams,
each of which has the same nature as the parent stream,
making it easier to compose and scale streams. In that
sense, it is similar both to the standard relational group-by
operation and—for large amounts of stream data—to the
map-reduce operation.

In contrast to stream partitioning, the fifth query brings
together two data sources—stock ticker data and the set of
stocks monitored over a particular interval:

Q5: For each stock on a dynamic “white list,” determine all
occurrences of the head-and-shoulders chart pattern.

Each event in this stream will have a ticker symbol
and associated lifetime. Table 5 shows a white-list stream
(WhiteListStream).

According to this stream, particular symbols are of
interest only during the corresponding event lifetimes.

For events with matching symbols, a join of StockTicker-
Info and WhiteListStream correlates the two streams and
produces output only if lifetimes intersect and the join
condition is satisfied. Hence, the join operation exploits
the temporal aspects of the incoming stream events.

There is often a need to check for the absence of cer-
tain information. For example, although Q5 returns all
stock tick events that satisfy the white-list condition, it
is also easy to remove stock tick information using a
blacklist.

Q6: For each stock that is NOT on a dynamic “blacklist,”
determine all occurrences of the head-and-shoulders chart
pattern.

This query yields BlackListStream, which has the same
schema as WhiteListStream. Replacing the join operator
with an anti-join operator detects the nonoccurrence of an
event (applies the blacklist).

EXISTING SYSTEMS AND DESIGN CHOICES
Several organizations, both academic and commercial,

have developed prototype and fully functional DSMSs,
including but not limited to

 • Oracle Complex Event Processing (CEP),3 based on the
Stanford Stream research model;

 • StreamBase,4 based on the Aurora and Borealis
research models;

 • StreamInsight,5 based on Microsoft’s Complex Event
Detection and Response (CEDR) project;

 • IBM InfoSphere Streams,6 based on the System S
research project; and

 • Coral8 (acquired by Sybase).

Developers of each system have chosen various execution
models, semantics, query processing approaches, and ex-
tensibility mechanisms.

Execution model and semantics
Systems vary in their use of query specification seman-

tics and how and when they produce output.7 For example,
Oracle CEP and Coral8 produce an operator result when-
ever the window content changes. When the user sends
events to the system, the system assigns the event to the
appropriate window according to the window definition
the user provides as part of the CQ specification. Stream-
Base produces result events every predetermined period,
(for example, every second) regardless of when actual
events enter or exit windows.

Microsoft StreamInsight incorporates an underlying
temporal algebra that treats events as having lifetimes
and query output as a time-varying database over the set
of events. Application time helps define operational se-
mantics. The output at any given application time T is the

Table 5. White list stream (WhiteListStream) in response to the
query “For each stock on a dynamic ‘white list,’ determine all

occurrences of the head-and-shoulders chart pattern.”

Vs Ve Symbol

0 4 MSFT

4 7 IBM

5 7 MSFT

51DECEMBER 2010

result of applying the query semantics to the set of events
that are alive at time T—all events whose lifetimes contain
time T.

Toolsets
Software tools combine features such as programma-

bility, ease of management, and powerful visualization
capability to enhance the DSMS user’s system experience
and productivity. Several tools are integral to DSMS opera-
tion, and are usually offered as part of the DSMS. Event
flow debuggers are event trace-based tools that track the
effect of events on the resultant output stream. The debug-
gers illustrate the query plan graphically and visualize
event movement across operators as the query executes.
Event flow debuggers also let users pause and resume ex-
ecution as well as trace the effect of a single event in the
output. Figure 4 gives a snapshot of the event flow debug-
ger in the StreamInsight DSMS.

Output adapters are also useful tools because they
enable desktop connectivity to streams through infor-
mation tools such as Web browsers, spreadsheets, word
processors, and report generators.

Query specification
The languages and specification techniques used in

the streams community demonstrate remarkable diver-
sity. The first DSMSs derived from databases and thus

inherited the use of SQL (with temporal extensions).
Oracle and StreamBase have followed this trend with the
StreamSQL language, although convergence between the
semantics is still an issue.8 IBM InfoSphere Streams uses
an Eclipse-based integrated development environment,
with a language called SPADE.6 Microsoft StreamInsight
uses the .NET and Visual Studio IDE for writing streaming
applications, with LINQ for queries.

Stream disorder
Events can arrive late or out of order for many reasons,

including network delays and varying packet routes and
merging streams from different sources. Most commer-
cial systems handle disorder by assuming that events
are buffered and reordered before entering the DSMS.
The Stanford Stream project uses heartbeats to bound
disorder; StreamBase uses Timeout, and Coral8 uses Max-
Delay. However, bounding disorder has disadvantages. It
is difficult to predict the amount of disorder, and the wait
for late arrivals might be long, even without disorder in
the stream.

StreamInsight takes a different approach, operating
directly over disordered data. If an event arrives late, the
DSMS incorporates it into computations and produces
“revision” events to indicate a changed result. Such a solu-
tion needs some notion of time progress to bound disorder.
SteamInsight uses punctuations associated with an appli-

Figure 4. Microsoft StreamInsight’s event flow debugger. The tools trace events and keep track of how they affect the output
stream.

COVER FE ATURE

COMPUTER 52

cation time T, which guarantees that no future event will
have a timestamp earlier than T.

Extensibility and composition
IBM InfoSphere Streams allows the extension of op-

erator sets with user-defined operators, programmable in
either C++ or Java. StreamInsight incorporates an extensi-
bility framework that permits the addition of user-defined
operators in any .NET language such as C# in Visual
Studio. Most DSMSs allow some form of composition.
IBM InfoSphere Streams uses SPADE to support modular
component-based programming. StreamInsight supports
dynamic query composition, in which queries can reuse
published stream endpoints.

C
omputational finance has unique require-
ments that argue strongly for a new form of
continuous data processing. DSMSs show
promise in satisfying the special needs of
real-time applications with their ability to

process and issue long-running queries over temporal
data streams.

As with any maturing technology, work remains to
refine the concept. Research must be devoted to identi-
fying a common language and semantics standard and
providing better real-time analysis, mining, and learn-
ing techniques and tools. Such tools will complete the
M3 cycle, making it fully real time. Despite these open
issues, DSMSs appear to be a near-perfect fit for many ap-
plications over both streaming data as well as offline data
archived for historical analysis.

Acknowledgments
We thank the Microsoft StreamInsight team for nominating
us to represent the team and supporting us in preparing this
article.

References
 1. B. Chandramouli et al., “Data Stream Management

Systems for Computational Finance,” tech. report, MSR-
TR-2010-130, Microsoft Research, Sept. 2010; http://
research.microsoft.com/pubs/138844/streams-finance.
pdf.

 2. B. Chandramouli, J. Goldstein, and D. Maier, “High-Per-
formance Dynamic Pattern Matching over Disordered
Streams,” Proc. Conf. Very Large Databases (VLDB 10), ACM
Press, 2010, pp. 220-231.

 3. A. Arasu, S. Babu, and J. Widom, “CQL: A Language for
Continuous Queries over Streams and Relations,” Proc.
9th Int’l Workshop Database Programming Languages, ACM
Press, 2003, pp. 1-11.

 4. D.J. Abadi et al., “The Design of the Borealis Stream Pro-
cessing Engine,” Proc. 2nd Biennial Conf. Innovative Data
Systems Research (CIDR 05), ACM Press, 2005, pp. 277-289.

 5. R.S. Barga et al., “Consistent Streaming Through Time:
A Vision for Event Stream Processing,” Proc. 3rd Biennial
Conf. Innovative Data Systems Research (CIDR 07), ACM
Press, 2007, pp. 363-374.

 6. B. Gedik et al., “SPADE: The System S Declarative Stream
Processing Engine,” Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data (SIGMOD 08), ACM Press, 2008, pp. 1123-1134.

 7. I. Botan et al, “SECRET: A Model for Analysis of the Ex-
ecution Semantics of Stream Processing Systems,” Proc.
Conf. Very Large Databases (VLDB 10), ACM Press, 2010,
pp. 232-243.

 8. N. Jain et al, “Towards a Streaming SQL Standard,” Proc.
Conf. Very Large Databases (VLDB 08), ACM Press, 2008,
pp. 1379-1390.

Badrish Chandramouli is a researcher in the database
group at Microsoft Research. His research interests include
stream processing, publish-subscribe systems, networks,
and database query processing. Chandramouli received
a PhD in computer science from Duke University. He is a
member of IEEE and the ACM. Contact him at badrishc@
microsoft.com.

Mohamed Ali is a senior software design engineer in the
StreamInsight group at Microsoft. His research interests
include advancing the state of the art in streaming systems
to cope with the requirements of emerging applications.
Ali received a PhD in computer science from Purdue Uni-
versity. He is a member of the ACM. Contact him at mali@
microsoft.com.

Jonathan Goldstein is part of Microsoft’s StreamInsight
development team. His research interests include query
optimization and processing, multimedia retrieval, and
streaming. Goldstein received a PhD in computer science
from the University of Wisconsin. Contact him at jongold@
microsoft.com.

Beysim Sezgin is a principal architect in Microsoft’s
StreamInsight group. His interests include the architec-
ture and design of low-latency event data processing and
continuous query processing systems. Sezgin received a
BS in computer science from Ege University, Izmir, Turkey.
Contact him at beysims@microsoft.com.

Balan Sethu Raman is a Distinguished Engineer in Micro-
soft’s Business Platform Division and head of the Stream-
Insight group. His interests include distributed systems and
algorithms, query processing, and information retrieval.
Raman received an MTech in computer science from the
Indian Institute of Technology, Chennai. He is a member of
the ACM. Contact him at sethur@microsoft.com.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org

