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solutions do not generalize well, making this option a poor 
choice for an enterprise with diverse applications.

Organizations might also use databases to build such 
financial applications. In addition to forming a data- 
processing substrate that provides a simple yet power-
ful data model, databases enable applications to issue 
and execute declarative queries over set-oriented data. 
However, current databases cannot support the unique 
requirements of financial applications, which demand 
high-performance, complex, and time-oriented query  
processing over temporal data. 

Recognizing the need for a more responsive general 
platform, many organizations are turning instead to data 
stream management systems (DSMSs), middleware that 
processes and issues long-running queries over temporal 
data streams. With a DSMS, applications can register que-
ries before continuously and incrementally computing the 
result as new data arrives.

DSMSs use a cycle of data monitoring, managing, and 
mining to accommodate complex queries in streaming ap-
plications like computational finance. The notion of time is 
crucial in such applications, which include activities with 
both immediate and historic real-time data streams. Stock 
trading is an example. Risk management applications must 
detect various price-change patterns according to the latest 
tick, yet a trading model is based on years of historical 
data. Other applications make trading decisions on the 
basis of algorithms, delivering financial recommendations 
through some magic formula that blends past and future. 

C
omputational finance applications have 
unique needs born of ubiquitous network-
ing and increasingly automated business 
processes. To be effective, such applications 
require the rapid processing of an unending 

data stream. Any system to manage this stream must 
process queries over continually changing data and be 
able to incorporate the results into ongoing business pro-
cesses incrementally—all with extremely low latency. The 
system must also support the processing of data archived 
for historical analysis, which involves mining and back-
testing real-time queries.

In this fast-paced environment, most organizations real-
ize that reduced processing latency is a key requirement. 
For this reason, financial application developers often 
prefer customized solutions to solve specific problems. 
But customization is expensive, and, as a rule, customized 

Because financial applications rely on a 
continual stream of time-sensitive data, 
any data management system must be 
able to process complex queries on the fly. 
Although many organizations turn to cus-
tom solutions, data stream management 
systems can offer the same low-latency 
processing with the flexibility to handle a 
range of applications.
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DSMSs are a perfect fit for these applications, which 
must query over streaming data as well as data archived 
for historical analysis.1 Indeed, several DSMSs have already 
become popular, each with its own execution model and 
approach to stream management.

MEETING REAL-TIME NEEDS 
To address the challenges of real-time applications, 

a DSMS must support or have certain features. One is 
specification ease and completeness. DSMS users, whose 
programming expertise varies widely, want to worry less 
(if at all) about application execution, focusing instead on 
query logic—how to compose the most effective query. 
Users might wish to encapsulate query logic into higher-
level meaningful components and compose them into 
complex queries. A DSMS must also be able to handle 
late-arriving data or corrections. Computational finance 
activities, such as stock trading, are dynamic, which 
means that the DSMS must deterministically resolve late-
arriving events. Also, a source can generate an event, later 
detect an error, and then either change or remove the 
previously generated event.

Another desirable feature is extensibility. The DSMS 
toolbox covers many scenarios, but computational finance 
applications are complex and can evolve quickly, requir-
ing some framework for extending existing tools. Specific 
challenges include supporting legacy libraries and writing 
streaming building blocks.

Ease of query debugging is also useful because it is 
difficult to verify the correctness data that the system is 
constantly processing. Using application time instead of 
system time, along with concrete temporal algebra se-
mantics, makes query results deterministic regardless of 
the order in which the system processes individual events. 

Finally, high performance is of paramount importance 
in real-time applications. To achieve high performance, 
DSMSs usually maintain internal state in main memory 
and discard events or state when they are no longer needed. 
When event arrival rate exceeds the system’s processing ca-
pability, the system buffers events in the in-memory event 
queues between operators. Performance measurement is 
usually based on three definitions:

 • measurable latency period —the point at which an 
event enters the DSMS to the point at which the user 
observes its effect in the output;

 • throughput—the number of result events that the 
DSMS produces per second of runtime; and 

 • memory use—the in-memory state accumulated 
during runtime as a result of query processing.

Beyond answering queries over streaming data, a DSMS 
must support the ability to publish query results and 
enable queries to consume the results of other published 
queries and streams at runtime. A DSMS should be easy 
to deploy in a variety of environments, including single 
servers, clusters, and smartphones. Like other business 
systems, it should implement security features to avoid 
unauthorized data access and monitor system health 
against defined performance metrics.

HOW THE SYSTEM WORKS
Figure 1 shows how a DSMS might support a stock trad-

ing application by managing the flow of both historical and 
real-time data. As the figure implies, stock trading can have 
multiple data streams, but the most obvious one is stock 
quotes, in which each event (or notification) in the stream 
represents a single quote. 

For each stock, the trading application smoothes 
out the signal using a moving average to rid the data 
stream of spikes or outliers and then performs some 
customized computation, such as detecting a chart 
pattern. The stocks that the application is interested 
in tracking can change according to the stock port-
folio, and the application typically has a stock white 
list (stocks to trade) or blacklist (stocks to avoid). The 
DSMS continually monitors the event stream and 
alerts the trading application when it detects a chart 
pattern for a relevant stock. 

Support of the trading application begins when the 
application registers a continuous query (CQ) with 
the DSMS. The DSMS then processes incoming stock 
quotes against the registered CQ, considering quotes 
that satisfy the black- or white list and performing the 
requested CQ operations, such as grouping and pat-
tern matching. Stock trade messages reach the DSMS 
as events, each of which consists of a trade timestamp, 
stock symbol, and last traded price. The trading model 
views both stock trades and list updates as event 
streams, since both activities consist of notifications 
that report either a stock trade or a change to a set of 
stock symbols.

The DSMS produces a new event when the CQ results re-
quire updates or other changes. For example, if the DSMS 
detects a chart pattern for a particular stock, it produces 
output conveying this discovery. The trading application 
can then take appropriate action such as buying or selling. 
Because a CQ receives as well as produces event streams, 
a DSMS user can compose CQs to satisfy a variety of com-
plex requirements.

Ease of query debugging is useful 
because it is difficult to verify the 
correctness of data that the system  
is constantly processing. 



Monitor-manage-mine cycle
Computational finance ap-

plications like stock trading 
rely on key performance indi-
cators (KPIs), which refer to the 
va lues, measures, or func-
tions the system must monitor 
before making a decision or a 
recommendation. Historically, 
application designers have at-
tempted to answer two questions 
about KPIs:

 • What KPIs are of interest in 
the monitored environment?

 • Given specific KPI values, 
what actions should the 
system take?

The answers to these ques-
tions depend, of course, on the 
domain and the questioner’s expertise, but a DSMS can 
help alleviate some of the angst of seeking them through 
its monitor-manage-mine (M3) cycle. In this cycle, the 
DSMS continuously monitors a predefined set of KPIs, 
helps manage the application domain through a set of 
KPI-triggered actions, and then mines data for interesting 
patterns and better KPIs. 

As Figure 1 shows, the M3 cycle has five major steps, 
which together give the DSMS the flexibility to accommo-
date changing needs in both business processes and the 
monitored environment’s behavior.

 1. Acquire and archive. The DSMS acquires data from 
real-time streams, makes it available for real-time data 
processing, and archives it for subsequent operations 
or to satisfy legal requirements. As part of this pro-
cess, the system can clean or compress the acquired 
data. 

 2. Mine and design. The DSMS replays historical data to 
execute queries that mine for interesting patterns. The 
overall goal is to design meaningful and effective KPIs.

 3. Deploy. After finding the KPIs, the DSMS deploys a 
selected subset as queries that read real-time data 
streams.

 4. Manage. The DSMS computes the selected KPIs over the 
real-time data from Step 1 and manages the applica-
tion domain according to a predefined set of actions 
governed by the KPIs. The business benefits from low 
latency and high throughput.

 5. Feed back. The DSMS archives the real-time processing 
output and analyzes KPI values to determine KPIs’ ef-
fectiveness. After this step, another iteration of Steps 
2 through 4 occurs, completing the M3 cycle.
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Figure 1. Flow of historical and real-time data in a DSMS that supports a stock trading 
application.

Data input and output
Any data exchange requires a communication moderat-

ing mechanism. In a DSMS, adapters fill this role. An input 
adapter pushes data from stream sources to the DSMS; an 
output adapter streams query results from the DSMS to 
the consumer. 

The adapter writer must first understand the source 
event’s format and provide a schema that describes the 
event. A stock ticker adapter, for example, might provide 
a stream with a schema that contains two fields (symbol: 
string, price: decimal).

The writer must also augment each event with temporal 
attributes. Because each event occurs at a specific time 
and generally lasts for some period (known or unknown), 
the adapter must augment the schema with one or more 
timestamps to denote the event’s temporal attributes. The 
writer chooses one of three formats for conveying the tem-
poral information:

 • Point event: An event occurs at a point in time, taking 
the form (timestamp: DateTime, symbol, String, price 
decimal), where timestamp denotes the time at which 
the stock price is reported. 

 • Interval event: An event that spans an a priori known 
period, taking the form (Vs: DateTime, Ve: Datetime, 
symbol: string, price: decimal), where Vs and Ve are 
the start and end times of the interval during which 
the reported stock price was valid.

 • Edge event: An event that spans an a priori unknown 
period and is represented by two signals: (Vs: Date-
Time, symbol: string, price: decimal) to denote the 
interval’s start and (Ve: DateTime, symbol: string, 
price: decimal) to denote the interval’s end.
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A stock tick could be a point event, since it ticks at a spe-
cific time, but it could also be an interval event that spans 
the duration between consecutive ticks. The customer’s 
intent to sell stocks for a certain price is an edge event, 
starting as soon as the customer places the transaction. 
The end time is not known ahead of time; rather, the event 
remains open until the sell transaction takes place, signal-
ing the end of the event.

Query construction
To illustrate query construction, we describe the pro-

cess in terms of Microsoft’s StreamInsight, a commercial 
DSMS that currently ships as a part of SQL Server 2008 
R2. Figure 2 shows the StreamInsight queries for the stock 
trading application, which are written in Language In-
tegrated Query (LINQ; http://msdn.microsoft.com/en-us/
netframework/aa904594.aspx). The six queries we de-
scribe are applicable to many scenarios in stream-oriented 
workloads.

Query construction begins with a statement in English, 
which has from, where, and select clauses. The results of 
LINQ queries are associated with variables that subsequent 
queries reference. 

The informal English version of the first query in Figure 
2 is

Q1: Select stock quote events for symbol “MSFT,” discarding 
all the other events.

Tables 1 and 2 provide insights into the precise seman-
tics of this query.

We have made Tables 1 and 2 finite to drive the under-
standing of what operations the system must perform on 

Figure 2. Query construction for a stock trading application using Microsoft Streamlight. The DSMS uses LINQ queries, each of 
which has three sections: “from” identifies the source stream; “where” applies filters; and “select” performs projection to ensure 
that the query output has events with the expected schema and content.

Table 1. Sample finite input (StockTickerInfo) for “Select stock 
quote events for symbol ‘MSFT,’ discarding all other events.”

Timestamp Symbol Price

0 MSFT 25.00

0 IBM 110.00

1 MSFT 25.03

Table 2. Sample finite output (SelectQuery) for “Select stock quote 
events for symbol ‘MSFT,’ discarding all other events.”

Timestamp Price

0 25.00

1 25.03

struct StockEvent  // Stock event type
{  string Symbol;
   float Price;   }

// Filter and project (Q1)
var filteredStream =
  from e in StockTickerInfo
  where e.Symbol == “MSFT”
  select new (Price = e.Price);

// Windowing operation (Q2)
var hoppingAvg = 
  from w in filteredStream.HoppingWindow
    (TimeSpan.FromSeconds(3),   
     TimeSpan.FromSeconds(1),
     HoppingWindowOutputPolicy.
ClipToWindowEnd)
  select new { SmoothedPrice = 
             w.Avg(e => e.Price) };

// User-defined operator (Q3)
var HSPattern = 
  from w in filteredStream.HoppingWindow
    (TimeSpan.FromMinutes(10),   
     HoppingWindowOutputPolicy.
ClipToWindowEnd)
  select w.AfaOperator(HeadShoulderPattern);

// Group and apply (Q4)
var EachHeadAndShoulders = 
  from e in StockTickerInfo
  group e by e.Symbol;

var AllHeadAndShoulders = 
  EachHeadAndShoulders.ApplyWithUnion(
    applyIn => HeadAndShoulders(applyIn),
    e => new { e.Payload, e.Key });

// Join or correlation (Q5)
var InterestingStream =
  from e1 in StockTickerInfo
  join e2 in WhiteListStream
  on e1.Symbol equals e2.Symbol
  select new { Symbol = e1.Symbol,
               Price = e1.Price } 

// Anti-join (Q6)
var InterestingStream = 
  from e1 in StockTickerInfo 
  where (from e2 in BlackListStream 
         where e1.Symbol == e2.Symbol
         select e2).IsEmpty()
  select e1;
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this data stream. In reality, typical streaming operations 
do not assume finite data. We also assume that all stock 
readings are point events, so it is possible to implement 
Q1 using filter and project operations. A filter operation 
subjects the event to a Boolean test to compare the symbol 
to MSFT. If the event passes the test, the operation retains 
it and removes the unnecessary ticker symbol column in 
the output. 

The second query is 

Q2: Take the output signal produced by FilteredStream, and 
smooth it by reporting a 3-second trailing average every second.

This query introduces windowing extensions that use 
a hopping window approach to create windows using two 
parameters to group events into buckets. The first param-
eter, window size, determines the duration of each bucket. 
In the query, the trailing average is 3 seconds, so the goal 
should be to aggregate 3 seconds worth of data with each 
result, making the window 3 seconds long. 

The second parameter in the hopping window approach 
is hop size, which specifies how often the system creates 
buckets along the timeline. Because the query specifies that 
reports occur every second, the hop size is 1 second. It is 
also feasible to use a sliding window, which reports updates 
to the result whenever the DSMS receives a new event.

For each window, a hopping average computed with 
these parameters will produce an event with a price equal 
to the average price across all the events in that window. 
The first window that contains data starts at time 1 and 
contains only one event (with timestamp 3).

Tables 3 and 4 show sample (again finite) input and 
output streams. We assume that time is in seconds. 

The third query highlights the need for an extensibility 
mechanism to cover more specific business logic:

Q3: Detect the head-and-shoulders pattern over the stock 
stream for MSFT, over a 10-minute window.

A DSMS toolbox has many operations that are common 
across business applications, making it sufficient for most 
requirements, but each business sector tends to have its 
own demands. The extensibility mechanism seamlessly 
integrates specific logic into the stream processing.

Extending the DSMS is a collaboration between the 
user-defined module (UDM) writer and the query writer. 
The two collaboratively use an extensibility framework to 
execute the UDM. A domain expert writes the UDM, which 
essentially comprises libraries of domain-specific opera-
tions. The query writer invokes a UDM as part of the query 
logic. The extensibility framework executes the UDM logic 
on demand, in essence connecting the UDM and query 
writers and making the writing process convenient and 
efficient for both. 

As Figure 3 shows, the head-and-shoulders trading pat-
tern starts at price p1, moves up to local maximum p2, 
declines to local minimum p3 > p1, climbs to local maxi-
mum p4 > p2, declines to local minimum p5 > p1, climbs 
again to local maximum p6 < p4, and finally declines to 
below the starting price.

Pattern matching is a typical use case for the extensi-
bility framework. DSMSs generally use native operators 
to support basic pattern matching, but complex pattern 
matching, which targets financial applications, is beyond 
the capabilities of simple pattern languages. Researchers 
have proposed several alternative techniques that are more 
suitable for matching complex patterns over streams. 

Microsoft is exploring a technique2 to augment a 
finite state automaton with a register to track added 

Table 3. Sample finite input (FilteredStream) for “Take the output 
signal produced by FilteredStream, and smooth it by reporting a 

3-second trailing average every second.”

Timestamp Price

3 18.00

4 24.00

5 18.00

6 30.00

Table 4. Sample finite output (SmoothedStream) for “Take the 
output signal produced by FilteredStream, and smooth it by 

reporting a 3-second trailing average every second.”

Timestamp Price

3 18.00

4 21.00

5 20.00

6 24.00

7 24.00

8 30.00

p1

Time

Pr
ice

p2

p3

p4

p6

p5

Figure 3. The head-and-shoulders trading pattern. This 
complex pattern is beyond the capability of simple pattern 
languages, such as regular expressions.
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runtime information, which is associated with the autom-
aton during event-triggered transitions between states. (A 
UDM for pattern matching with this technique is avail-
able at the StreamInsight blog; http://blogs.msdn.com/b/
streaminsight/archive/2010/09/02/pattern-detection-with-
streaminsight.aspx).

The queries so far concern operations on a single stock, 
but a trader might want to perform similar operations for 
multiple stocks. The next query performs grouped compu-
tation using the “group by” LINQ clause, with the repeated 
computation (“apply”) specified as a separate query.

These operations rely on the notion of group-and- 
apply, which distributes some stream computation to every  
partition of the stream according to a specific grouping or 
partitioning function. 

The fourth query applies the head-and-shoulders pat-
tern detector to each symbol in the stream:

Q4: For each unique ticker symbol, detect the occurrence of 
the head-and-shoulders chart pattern of query Q3.

The first part of Q4 partitions the incoming stock ticks 
by the ticker symbol. The second part applies per-symbol 
pattern matching2 to each partition. The query output 
combines all the outputs produced for each partition. 
This group-and-apply operation (grouped computation) is 
surprisingly powerful in practice and is common in DSMS 
queries. The operation partitions a stream into substreams, 
each of which has the same nature as the parent stream, 
making it easier to compose and scale streams. In that 
sense, it is similar both to the standard relational group-by 
operation and—for large amounts of stream data—to the 
map-reduce operation.

In contrast to stream partitioning, the fifth query brings 
together two data sources—stock ticker data and the set of 
stocks monitored over a particular interval:

Q5: For each stock on a dynamic “white list,” determine all 
occurrences of the head-and-shoulders chart pattern.

Each event in this stream will have a ticker symbol 
and associated lifetime. Table 5 shows a white-list stream 
(WhiteListStream). 

According to this stream, particular symbols are of 
interest only during the corresponding event lifetimes. 

For events with matching symbols, a join of StockTicker-
Info and WhiteListStream correlates the two streams and 
produces output only if lifetimes intersect and the join 
condition is satisfied. Hence, the join operation exploits 
the temporal aspects of the incoming stream events.

There is often a need to check for the absence of cer-
tain information. For example, although Q5 returns all 
stock tick events that satisfy the white-list condition, it 
is also easy to remove stock tick information using a 
blacklist. 

Q6: For each stock that is NOT on a dynamic “blacklist,” 
determine all occurrences of the head-and-shoulders chart 
pattern.

This query yields BlackListStream, which has the same 
schema as WhiteListStream. Replacing the join operator 
with an anti-join operator detects the nonoccurrence of an 
event (applies the blacklist). 

EXISTING SYSTEMS AND DESIGN CHOICES
Several organizations, both academic and commercial, 

have developed prototype and fully functional DSMSs, 
including but not limited to 

 • Oracle Complex Event Processing (CEP),3 based on the 
Stanford Stream research model;

 • StreamBase,4 based on the Aurora and Borealis 
research models;

 • StreamInsight,5 based on Microsoft’s Complex Event 
Detection and Response (CEDR) project;

 • IBM InfoSphere Streams,6 based on the System S 
research project; and 

 • Coral8 (acquired by Sybase).

Developers of each system have chosen various execution 
models, semantics, query processing approaches, and ex-
tensibility mechanisms.

Execution model and semantics
Systems vary in their use of query specification seman-

tics and how and when they produce output.7 For example, 
Oracle CEP and Coral8 produce an operator result when-
ever the window content changes. When the user sends 
events to the system, the system assigns the event to the 
appropriate window according to the window definition 
the user provides as part of the CQ specification. Stream-
Base produces result events every predetermined period, 
(for example, every second) regardless of when actual 
events enter or exit windows.

Microsoft StreamInsight incorporates an underlying 
temporal algebra that treats events as having lifetimes 
and query output as a time-varying database over the set 
of events. Application time helps define operational se-
mantics. The output at any given application time T is the 

Table 5. White list stream (WhiteListStream) in response to the 
query “For each stock on a dynamic ‘white list,’ determine all 

occurrences of the head-and-shoulders chart pattern.”

Vs Ve Symbol

0 4 MSFT

4 7 IBM

5 7 MSFT
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result of applying the query semantics to the set of events 
that are alive at time T—all events whose lifetimes contain 
time T. 

Toolsets
Software tools combine features such as programma-

bility, ease of management, and powerful visualization 
capability to enhance the DSMS user’s system experience 
and productivity. Several tools are integral to DSMS opera-
tion, and are usually offered as part of the DSMS. Event 
flow debuggers are event trace-based tools that track the 
effect of events on the resultant output stream. The debug-
gers illustrate the query plan graphically and visualize 
event movement across operators as the query executes. 
Event flow debuggers also let users pause and resume ex-
ecution as well as trace the effect of a single event in the 
output. Figure 4 gives a snapshot of the event flow debug-
ger in the StreamInsight DSMS. 

Output adapters are also useful tools because they 
enable desktop connectivity to streams through infor-
mation tools such as Web browsers, spreadsheets, word 
processors, and report generators. 

Query specification
The languages and specification techniques used in 

the streams community demonstrate remarkable diver-
sity. The first DSMSs derived from databases and thus 

inherited the use of SQL (with temporal extensions). 
Oracle and StreamBase have followed this trend with the 
StreamSQL language, although convergence between the 
semantics is still an issue.8 IBM InfoSphere Streams uses 
an Eclipse-based integrated development environment, 
with a language called SPADE.6 Microsoft StreamInsight 
uses the .NET and Visual Studio IDE for writing streaming 
applications, with LINQ for queries. 

Stream disorder
Events can arrive late or out of order for many reasons, 

including network delays and varying packet routes and 
merging streams from different sources. Most commer-
cial systems handle disorder by assuming that events 
are buffered and reordered before entering the DSMS. 
The Stanford Stream project uses heartbeats to bound 
disorder; StreamBase uses Timeout, and Coral8 uses Max-
Delay. However, bounding disorder has disadvantages. It 
is difficult to predict the amount of disorder, and the wait 
for late arrivals might be long, even without disorder in 
the stream.

StreamInsight takes a different approach, operating 
directly over disordered data. If an event arrives late, the 
DSMS incorporates it into computations and produces 
“revision” events to indicate a changed result. Such a solu-
tion needs some notion of time progress to bound disorder. 
SteamInsight uses punctuations associated with an appli-

Figure 4. Microsoft StreamInsight’s event flow debugger. The tools trace events and keep track of how they affect the output 
stream.
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cation time T, which guarantees that no future event will 
have a timestamp earlier than T.

Extensibility and composition
IBM InfoSphere Streams allows the extension of op-

erator sets with user-defined operators, programmable in 
either C++ or Java. StreamInsight incorporates an extensi-
bility framework that permits the addition of user-defined 
operators in any .NET language such as C# in Visual 
Studio. Most DSMSs allow some form of composition. 
IBM InfoSphere Streams uses SPADE to support modular 
component-based programming. StreamInsight supports 
dynamic query composition, in which queries can reuse 
published stream endpoints.

C
omputational finance has unique require-
ments that argue strongly for a new form of 
continuous data processing. DSMSs show 
promise in satisfying the special needs of 
real-time applications with their ability to 

process and issue long-running queries over temporal 
data streams. 

As with any maturing technology, work remains to 
refine the concept. Research must be devoted to identi-
fying a common language and semantics standard and 
providing better real-time analysis, mining, and learn-
ing techniques and tools. Such tools will complete the 
M3 cycle, making it fully real time. Despite these open 
issues, DSMSs appear to be a near-perfect fit for many ap-
plications over both streaming data as well as offline data 
archived for historical analysis. 
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