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Abstract—Computational finance leverages computer 

technologies to build models from large amounts of data to 

extract insight. In today’s networked world, the amount of 

data available to build and refine models has been increasing 

exponentially.   Often times the difference between seizing an 

opportunity and missing one is the latency involved in 

processing this data. The need to do complex processing with 

minimal latency over large volumes of data has led to the 

evolution of different data processing paradigms.  Increasingly 

there is a need to develop an event-oriented application 

development paradigm to decrease the latency in processing 

large volumes of data.  Such an event-oriented system 

incorporates the lessons that we have learnt from earlier data 

processing platforms, i.e., declarative programming, etc. and 

adapts them for incremental processing.  Some of the systems 

have adopted techniques from artificial intelligence while 

others have adopted techniques from database management 

systems. 

This technical report motivates the need for using a specialized 

platform for such applications, and delves into a deeper 

discussion about systems that are architected to operate over 

temporal data (streams of events), called Data Stream 

Management Systems (DSMSs). With the aid of a running 

example from the financial domain, it describes the salient 

characteristics of these platforms and the advantages they 

offer. 

I. INTRODUCTION 

A. Need for a New Data Processing Paradigm 

The computational finance application domain leverages 
the ability to process and analyze large amounts of data and 
extract useful insight. With the recent proliferation of 
computer networks along with the computerization of almost 
every business process, increasing quantities of data are 
being produced by machines, sensors, and applications, and 
are becoming available as input for analysis and mining by 
financial applications. There are several interesting aspects 
of this data: 

 The data is available instantaneously and continuously, 
being delivered to applications as an unending “stream” 
of data. 

 The data is inherently time-oriented (temporal) in 
nature. Thus, to derive maximum value out of the data, 
there is a need to process queries over this data 
incrementally and on-the-fly, and incorporate the results  
into ongoing business processes such as algorithmic 
stock trading. 

 The temporal data is also stored offline for subsequent 
analysis, mining, and back-testing, often using the same 
queries that are used in the real-time scenario. 

In this fast-paced environment, the difference between a 
leveraged opportunity and a missed one is often  the latency 
involved in processing the stream of temporal data. Given 
the importance of processing temporal data, financial 
applications may choose to build customized vertical 
solutions to solve specific problems. While such solutions 
could be efficient for a particular application, it is hard to 
generalize the effort across diverse applications, and further, 
it can be expensive to build, maintain, manage, and re-use 
such customized systems. 

Software platforms solve the re-usability problem by 
providing a generic substrate upon which many user 
applications can be easily built. One such platform that has 
been extensively used in many application domains in the 
past is databases, which exposes a simple yet powerful data 
model called relational algebra, to enable applications to 
issue and execute complex declarative queries over set-
oriented data. While databases are well-suited for set-
oriented offline analysis of infrequently changing datasets, 
the new environment of long and possibly unending 
sequential data streams (in real time as well as over historical 
temporal data) poses new challenges beyond the scope of 
database systems. Given the high data arrival rates, we are no 
longer in a situation where we can afford to collect all the 
data, load it into a database system, build database indexes 
over the data for query efficiency, and finally allow users to 
execute one-time queries over the data. Rather, we need to 
allow applications to issue queries a priori; in this case, the 
results of the query need to be continuously and 
incrementally computed and updated as new relevant data 
arrives from the data sources. Here, incremental computation 
denotes the capability to update the result of a query when 
new data arrives, without having to re-process earlier data. 
Incremental computation is necessary for a low-latency 
response to incoming data, but databases, due to the one-time 
nature of database queries, do not directly support quick 
incremental result computation as new data arrives as the 
database.  

B. An Event-Based Temporal Data Processing Paradigm 

Figure 1 shows a spectrum of data processing 
applications and solutions in terms of the data rates and 
latencies that they target. Given the unsuitability of custom 
solutions and database systems for managing high-volume 
temporal data at low latency, there have been many recent 
efforts to build Data Stream Management Systems (DSMSs). 



A DSMS enables applications to issue long-running queries 
over streaming data sources. For example, we may have a 
stream (or data feed) of stock quotes, where each event (or 
notification) in the stream contains a stock symbol and price. 
An application may wish to continuously monitor this stream 
and produce an alert when the price crosses some pre-
defined threshold. Such a requirement would be expressed as 
a long-running query, called a continuous query (CQ). 

CQs are registered with the DSMS by applications. The 
DSMS monitors and efficiently processes streams of data in 
real time. CQs are processed by the DSMS in an event-
driven manner – for every new event, the DSMS efficiently 
and incrementally checks if the query result needs to be 
updated due to the event – if yes, an output event is 
produced. In our example, whenever we receive a stock 
quote, the DSMS checks to see if the price exceeds the 
threshold, and if yes it would produce the corresponding 
quote as output of the CQ. A CQ receives as well as 
produces event streams, and thus CQs can be composed to 
achieve more complex application requirements. 

DSMSs are used for real-time in-memory data processing 
in a broad range of applications including fraud detection, 
monitoring RFID readings from sensors (e.g., for 
manufacturing and inventory control), and algorithmic 
trading of stocks. In a typical application for computational 
finance, there are several points during the workflow where 
there could be friction between the application and its data 
processing needs: getting data into the system, decoupling 
application logic from the actual management of data, and 
the ability to plug-in the results into business logic or 
workflow. These points of frictions can be alleviated by 
using a DSMS, and at the same time it can provide low-
latency data processing which is crucial for many 
applications in this domain. 

 

 
Figure 1.  Scenarios for Event-Driven Applications. 

C. Lifecycle for Business Applications 

The value proposition of a DSMS to a business is captured 

by the “monitor-manage-mine (M
3
) cycle” shown in Figure 

2. We monitor data in real-time to answer continuous 

queries and detect interesting patterns. The results of these 

operations are used to manage and perform daily business 

actions such as algorithmic stock trading, fraud detection, 

etc. Finally, the raw temporal data is stored offline, so that 

the business can mine the historical data to determine new 

CQ requirements or patterns that are fed back to the monitor 

phase. 
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Figure 2.  The monitor-manage-mine (M3) cycle. 

In deploying the M
3
 cycle, applications may often need to 

execute the same queries over offline temporal data, for 

example, to perform back-testing over historical data or 

mining to discover interesting trends and patterns. We will 

discuss this aspect further in the context of the M
3
 cycle in 

Section II, where we will also cover the other concepts 

depicted in Figure 2 in greater detail. 

D. Running Example 

We next formalize a concrete end-to-end stock trading 
application, to serve as a running example for the rest of our 
discussion. 
 
Example 1 (Stocks Trading Application) Assume that we 
have stock trade messages reaching the application as events, 
from various stock exchanges. Each event consist of the 
timestamp of the trade and a stock symbol, along with the 
last traded price and volume. For each stock that the trader is  
interested in tracking, the trader may wish to first “smooth 
out” the signal with a moving average, and then perform 
some customized computation such as detecting a chart 
pattern. The set of stocks that the trader is interested in 
tracking may itself change over time based on the current 
stock portfolio, or there may instead be a blacklist of stocks 
such that they wish to track all stocks other than those in the 
blacklist. Note that in this example, one can model both the 
stock trades and the updates to the whitelist/blacklist as event 
streams, since both activities consist of notifications that 
report either a stock trade or a change to the 
whitelist/blacklist of stock symbols. 

 

E. Challenges for DSMSs 

There are several classes of challenges unique to this 

new environment for processing queries over large-scale 

unending stream data, which a DSMS needs to effectively 

address; these challenges are briefly summarized below. 



 

1) Ease and completeness of specification 

a) Ability to express fundamental query logic: 

It is important for a DSMS user to easily specify their query 

logic declaratively as a composable sequence of queries. 

Declarative programming allows the query writer to focus 

on query logic expression without having to worry about 

how it would be implemented or executed. Further, since a 

DSMS is intimately related to temporal (time-oriented) data, 

it is necessary to incorporate concepts such as windowed 

processing and time progress as a core component of the 

query logic. 

 

b) Ability to handle  late-arriving data or corrections 

Given that a DSMS needs to operate over temporal data, 

issues such as late arrival of events need to have a 

deterministic resolution. Another issue is the case where a 

source generates an event, but later detects an error and 

either changes or completely removes the earlier event. One 

option is to delay processing until we are guaranteed to see 

no late-arriving events, but this could increase the latency in 

producing results. Another alternative is to aggressively 

process events and produce tuples, issuing compensations 

when we receive disordered events. 

c) Extensibility 

While the toolbox of operations provided natively by a 

DSMS may cover many scenarios, given the complexity and 

diversity of applications, there is a need for a general 

extensibility framework using which applications can 

deploy custom streaming logic as part of the DSMS. 

Challenges here include the ability to support legacy 

libraries, provide the ability to easily write streaming 

building blocks that leverage windowing and incremental 

computations, and yet offer flexibility to power-users. 

Extensibility is important in the computational finance 

domain, particularly given the fact that custom libraries and 

technology is where financial institutions tend to mainly 

develop and maintain competitive advantage. 

d) Genericity of specification 

We would like the specification and semantics of query 

logic to be independent of when and how we physically read 

the events. For example, the output should be the same for a 

set of events and a specified query, regardless of whether we 

read it from a file on from a sensor in real time. Recall the 

M
3
 cycle from Section 1 – it is clear that genericity of 

specification allows us to use a DSMS to complete the loop 

without duplicating effort, by preventing an impedance 

mismatch between the mental model (and queries) over 

historical data for back-testing, and real time data for a live 

deployment. 

Genericity of specification is achieved by employing 

application time instead of system time, to define the 

semantics of stream operations. The basic idea of 

application time is that time forms a part of the actual event 

itself (in the form of a control parameter), and output of the 

DSMS is independent of when tuples physically get 

processed – depending only on the timestamps present in 

individual events. The semantics of stream operators are 

usually specified as a temporal algebra over event payloads 

and application timestamps – an extension of the relational 

algebra with time-oriented semantics. 

e) Ease of debugging 

An important challenge that DSMSs need to resolve is the 

capability to perform debugging of stream queries. This is 

particularly useful in a streaming system since data is 

constantly being processed in an online fashion, which 

makes correctness verification an apparently infeasible task. 

One important concept that helps debugging is the use of 

application time instead of system time.  

The use of application time in association with a temporal 

algebra and semantics underlying the query specification, 

makes query results deterministic regardless of when or how 

individual events in a stream are processed. This form of 

repeatability is useful to trace the root cause of any 

anomalous results observed in an output stream. 

f) Deployment obliviousness 

We would like the user of the streaming system to be 

isolated from system aspects such as the number of 

machines that the query is being executed upon, and the fact 

that redundancy may be employed for high-availability. 

Ideally, one would like the user to submit their queries and 

operational requirements in terms of quality of service 

(QoS), to a single DSMS endpoint, and the system to 

transparently scales out or run in highly available mode 

based such on user specifications. 

 

2) Performance 

Performance is of primary concern to applications of a 

DSMS because of its common use in real-time applications. 

Unlike databases, DSMSs usually do not have the flexibility 

of writing data to disk and processing it later. Thus, in order 

to achieve low latency, DSMSs usually maintain internal 

state in main memory and discard events/state when they are 

no longer needed for processing CQs in the future. When 

the event arrival rate becomes higher than processing 

capability of the system, events are buffered in in-memory 

event queues that exist between operators. Techniques such 

as flow control and load shedding are sometimes necessary 

if the DSMS is unable to keep up with incoming data rates 

and event queues get filled up as a consequence. 

There are various metrics that the DSMS needs to optimize 

performance for, such as (1) latency, the time from when an 

event enters the DSMS to when its effect is observed in the 

output, i.e., the time spent by events waiting in queues and 

getting processed by operators; (2) throughput, the number 

of result events that the DSMS produces per second of 

runtime; (3) correctness, which reflects how much the query 

result deviates from the true value due to actions such as 

dropping of events due to load shedding, delayed arrival of 



events, etc.; (4) memory usage, the amount of in-memory 

state accumulated during runtime due to query processing. 

Note that performance metrics may sometimes be 

conflicting, and the system may need to choose to optimize 

performance for a user-specified QoS specfication. 

 

3) Ease of management 

The task of the DSMS does not end with issuing and 

answering queries over streaming data. A DSMS needs to 

provide a rich end-to-end management experience. Issues 

that need to be addressed include query composability, easy 

deployment over a variety of environments (single servers, 

clusters, cellphones, etc.), and security features to avoid data 

being accessed by users without the correct credentials. 

Query composability requires the ability to “publish” query 

results, as well as the ability for CQs to consume results of 

existing CQs and streams. Composability is a crucial 

building block for complex event-driven applications. 

Another crucial feature is the ability to perform system 

health monitoring, where the user is able to easily query the 

current behavior of the system in terms of performance 

metrics such as throughput, memory usage, etc. 

 

4) Inter-operability 

A DSMS needs to operate closely with data from a variety 

of sources such as sensors, message buses, network ports, 

databases, distributed caches, etc. This facility is important 

because the DSMS is often used in combination with other 

middleware technologies in order to implement a rich end-

to-end user experience.  

 

F. Summary and Overview 

We find that DSMSs perform very good job of 

addressing these challenges, surpassing custom oriented 

techniques as well as database systems, due to the following 

characteristics: 

 Ability to natively handle time (temporal semantics) 

and support for temporal concepts such as windows. 

 High-performance main-memory-based execution 

 Performing incremental computation of CQ results 

Thus, DSMSs are a particularly good fit for 

computational finance applications. While DSMSs employ a 

fundamentally different push-based or event-driven 

processing model, they leverage many useful ideas from 

databases (declarative querying paradigm, strongly typed 

data with schema, leveraging indexes for performance, etc.). 

In this paper, we provide a detailed overview of stream 

processing systems from the perspective of our example 

financial application, walking the user through the process 

of creating and executing a complex continuous query over 

temporal data (real-time or offline). 

The rest of this report is organized as follows. We first 

discuss the use of a DSMS for online as well as offline data 

in the context of the monitor-manage-mine loop in Section 

II. Then, we illustrate various aspects of using a DSMS for 

computational finance, along with the capabilities and 

advantages of using a DSMS, using the running example 

query introduced earlier. Specifically, Section III covers the 

problem of getting data into and out of the DSMS. Section 

IV covers basic operators, while Section V discusses the 

handling of user-provided computations. Section VI 

discusses other operations such as partitioned computations 

and correlations. Section VII covers several tools that are 

useful supplements in a DSMS. Section VIII presents design 

choices made by various DSMSs. Section IX presents a 

closer look at Microsoft StreamInsight as an example 

DSMS. We finally conclude the report in Section X. 

II. THE MONITOR-MANAGE-MINE CYCLE 

The notion of time has been very crucial in many 

application scenarios across various business domains. To 

better understand how time is involved in these business 

domains, we conducted a survey over a wide range of 

customers, both in the financial and the non-financial 

domains. The survey investigates the range of time that is of 

interest to a specific domain. 

Present
Time of interest

Web Analytics, Ad placement,

Smart Grids, Power Utilities, 

Health Care, Manufacturing

years months days hrs min sec

$ value of 
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Forecasting in Enterprises

Historical Trend Analysis

 
Figure 3.  The value of time in analytics. 

 

Going outside the scope of financial applications for a 

while, (Figure 3) illustrates the outcome of the survey across 

these business domains. For example, historical trend 

analysis applications build models, profiles, sketches or 

trends of users’ behavior, stock prices or performance 

measures using years or months of historical data. 

Forecasting in enterprises consider months to days worth of 

data. Interestingly, some business domains are by far more 

time critical where minutes and seconds make a difference. 

Manufacturing is one of these domains where the failure of 

a sensor-monitored production line is not tolerable. 

Similarly, web analytics and online ad placement take 

advantage of the current user’s behavior (up to the latest 

web click) to deliver targeted ads as the user navigates the 

web [1]. Most applications in health monitoring, power 

utilities and smart grids require, by nature, real time or near 

real-time decision making.  



Now, moving back to the financial domain which is the 

focus of this paper, financial applications span the entire 

spectrum over the timeline. For example, building a trading 

model considers years of historical data while risk 

management applications detect various patterns of changes 

to stock prices according to latest stock tick. It is even more 

interesting, that financial recommendation systems combine 

the past and the future and blend them together according to 

a magic formula to deliver one piece of recommendation or 

to suggest a trading action. More specifically, algorithmic 

trading recommends a trading action by considering the 

pattern(s) exhibited by the latest stock tick(s) as well as the 

history of the monitored stock symbols. It looks up the past 

history for conditions that are similar to the current ones and 

predicts the future in the guidelines of the past experience.  

To formalize one of the core concepts in decision making 

systems or recommendation based systems, the term Key 

Performance Indicator (KPI) is usually used to refer to the 

values, measures, or functions that are be monitored before 

a decision or a recommendation can be made. In particular, 

two questions need to be answered: 

 What KPIs are of interest and are descriptive with 

respect to the monitored environment? 

 What actions are to be taken given specific values 

of the KPIs? 

The answers to the above questions are domain specific and 

very cumbersome. It is definitely the net outcome of years 

of domain expertise that shapes the answers to these 

questions. However, in the remainder of this section, we 

provide an approach where DSMSs help alleviate some of 

the pain involved in the design and deployment of a 

decision making or recommendation based system. We first 

provide some financial trends and facts learned over the past 

few decades before we describe the DSMS approach in 

more detail.  

A. Trends and facts 

On one hand, the cost of data acquisition has become 

negligible thanks to the advances in hardware and software 

technologies, and more specifically thanks to the advances 

in communication technologies. Similarly, thanks to the 

advances in massive data storage devices, the cost of raw 

data storage is small and continues to decrease. On the other 

hand, data processing costs are non-negligible despite the 

advances in CPU technologies, cloud computing and 

parallel and distributed processing. Moreover, enormous 

amount of data is being acquired on a regular basis and is 

possibly stored to massive storage devices. The cost of 

loading such data (from storage devices) for processing and 

analysis purposes is significant and continues to increase 

with the increase in the data arrival rate. Therefore, although 

the advances in data acquisition and in data storage devices 

have been tangible, these advances resulted in large archives 

of data. These archives of data keep waiting for processing 

resources and are eventually held back from acquiring these 

resources due to the significant cost of data loading. 

Fortunately, with the ability to process data incrementally 

while the data is in flight, DSMSs avoid data loading costs 

and provide the ability to process the data as it is being 

“streamed on the wire”. Figure 2 introduced in Section I 

summarizes some of the previously-mentioned key trends 

and highlights some of the DSMS advantages. More 

interestingly, Figure 2 illustrates the M
3
 cycle, which stands 

for “monitor-mine-mange”. This concept is widely adopted 

by DSMSs to continuously monitor KPIs and to adapt to 

changes in the business needs as well as to changes in the 

behavior of the monitored environment. In the monitor-

manage-mine cycle, a DSMS monitors a predefined set of 

KPIs, manages the application domain through a set of KPI-

triggered actions and mines for interesting patterns and 

better KPIs as the system gets the opportunity to be trained 

over time using the incoming streams of data. In the 

following section, we elaborate on the role of a DSMS in 

the monitor-manage-mine cycle in more detail. 

B. A dual role and a DSMS approach 

Figure 4 is a data flow diagram that illustrates the role of a 

DSMS as the monitor-manage-mine cycle takes place. The 

figure highlights five major steps (shown as numbered 

arrows in the figure). We summarize these steps as follows: 

1. Monitor and record: Real time data streams are 

archived in a data store. Usually, many companies 

and institutions maintain years or months worth of 

data for operational and legal purposes. This step 

takes place outside a DSMS to collect an archive of 

historical data. 

2. Mine and design: The historical data is replayed 

and pushed through a DSMS to mine for 

interesting patterns and to design good, 

meaningful, and effective KPIs as defined by 

business standards. In this “training” phase, several 

KPIs are devised and tested thanks to the ease and 

completeness of specification offered by DSMSs 

(as described in Section 1). 

3. Deploy: Out of the devised KPIs (as described in 

step 2), a selected subset of KPIs are deployed over 

a DSMS instance that reads real time data streams. 

4. Manage and benefit: At real time, a DSMS 

monitors the KPIs and manages the application 

domain according to a predefined set of KPI 

triggered actions. This step is termed as “manage 

and benefit” thanks to low-latency high-throughput 

nature of DSMS that gives the ability to invoke 

beneficial actions at real time. 

5. Feedback: The resultant output of the real time 

processing (on the form of KPI values along the 

timeline) is sent back and archived in the data 

store. These KPIs values are analyzed to figure out 

how descriptive this selected subset of KPIs has 

been over the last deployment cycle. 
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Figure 4.  A data flow diagram for historical and real-time data through a DSMS. 

Another shot of the “mine and design” phase (step 2) is 

conducted to further optimize the KPIs and come up with 

even more effective KPIs; and hence, the monitor-manage-

mine cycle is reinitiated. 

 

Note that a DSMS plays a dual role in the context of the 

monitor-manage-mine cycle. The DSMS is deployed over 

both historical and real time data. For historical data, a 

DSMS goes under a training phase to mine for interesting 

patterns and to help design effective KPIs. For real time 

data, a DSMS is deployed to monitor the previously 

designed KPIs and to manage the environment using KPI-

triggered actions. The continuous monitor-manage-cycle 

ensures adaptivity to changes in the behavior of the 

underlying stream sources as well as flexibility to emerging 

business requirements. 

III. GETTING DATA IN AND OUT OF THE STREAMING 

SYSTEM 

From a ten thousand foot architectural view of traditional 
database management systems (DBMSs), we notice that 
DBMSs encompass two major components: a storage engine 
and a query processing engine.  Regardless of where the data 
is coming from, the data end up being stored and indexed in 
secondary storage devices, at the discretion of the storage 
engine, in the “best” possible format. The query processing 
engine executes subsequent queries by first loading the data 
from the storage engine. The data moves from one operator 
to another through the query pipeline and the result is sent 
back to the query consumer. Therefore, data loading (in 
traditional databases) is carried over through, and only 
through, a storage engine. Also, note that both the input and 

the output of a query are potentially large, yet, finite bags of 
events. 
With the paradigm shift in streaming-oriented workloads and 
the movement towards real-time low-latency requirements, 
the notion of a storage engine is getting out of the picture. 
The cost to materialize the data in secondary storage devices 
and to subsequently load it for query processing is a severe 
barrier in front of the previously mentioned real time low 
latency requirements. Moreover, the nature of the continuous 
queries that run over infinite (usually high-rate) input streams 
necessitate that query processing takes place and copes with 
the events as they are being streamed into the system’s input 
buffers. Hence, a stream query processing engine needs to 
interact with the stream sources in real time and without a 
storage manager. Typically, the notion of an input adapter is 
used to refer to the mechanism that is used to push data from 
stream sources (e.g., sensor readings, stock quotes, etc.) to 
the DSMS. Similarly, and output adapter streams out the 
query result from the DSMS to the query consumer.  

Adapters sit on the border between stream sources and 
the DSMS to moderate the communication between the two 
sides. Therefore, adapters are expected to provide several 
functionalities and to maintain several properties. In the 
remainder of this section we summarize some of these key 
functionalities and properties. 

 

A. The Functionalities of an Adapter 

An input adapter writer needs to go through several steps 
to understand the properties of the stream source and to 
properly stream events out of the source. The adapter 
conveys the generated events to the DSMS as well the 
underlying properties of the stream source for optimization 
purposes. Given the fact that the output of a DSMS is a data 



stream that is of similar nature to the input data stream, 
similar steps are needed to write an output adapter. The 
output adapter conveys the resultant stream events from the 
DSMS to the sink node or to the target consumer of the 
query output as well as the output stream properties.  

We summarize the steps needed by an adapter writer as 
follows: 

Understand the format of the event. Adapters need to 
understand the format of the events generated by the source 
and provide a schematized format that describes the event. 
For example, a stock ticker adapter might provide a stream 
with a schema that contains two of fields (symbol String, 
price decimal) 

Augment each event with temporal attributes. 
Because each event occurs at a specific point in time and 
may last for a known (or an unknown) period of time, the 
adapter needs to augment the schema with one or more 
timestamps to denote the temporal attributes of the event. 
More precisely, we can think of three formats through which 
the adapter conveys the temporal information to the DSMS: 

a- An event that occurs at a point in time, that is on the 
form of (timestamp DateTime, symbol String, price 
decimal), where timestamp denotes the point in time 
at which the stock price is reported. Events 
represented by this format are usually referred to as 
point events.  

b- An event that spans an a priori known period of 
time, that is on the form of (Vs DateTime, Ve 
Datetime, symbol String, price decimal), where Vs 
and Ve are the start and end times of the validity 
interval over which the reported stock price has been 
valid, respectively. Events represented by this format 
are known as interval events. 

c- An event that spans an a priori unknown period of 
time, where the event is represented by two signals: 
(Vs DateTime, symbol String, price decimal) denotes 
the time the event starts. Later on, another signal 
comes on the form of (Ve DateTime, symbol String, 
price decimal) to denote the end of the interval once 
information about the end time becomes available. 
Events represented by start/end signals are referred 
to as “edge events”. 

A stock tick is an example of point events as it ticks at a 
specific point in time. Alternatively, the stock price may be 
viewed as interval event that spans the duration in between 
two ticks. Finally, the intent of a customer to “sell” stocks 
for a certain price is an edge event. The event starts as soon 
as the transaction is placed. The end time is not known in 
advance. The event remains open till the point in time the 
sell transaction takes place. This is when the end of the event 
can be signaled. 

 
Handle out-of-order and retraction events. Adapters 

communicate to the DSMS whether or not the events in the 
stream are coming in the order of their timestamps. Also, 
adapters interrogate the source for stability guarantees. 
Stability guarantees tell whether a generated event is final or 
it can be retracted and its value is altered later on. If late 
arrivals or retractions are expected from the input source, the 

adapter should be able to generate punctuations to denote 
stability guarantees and insert these punctuations in the input 
stream. Consequently, the DSMS uses these punctuations to 
provide correctness and stability guarantees on the generated 
output.  

Understand the delivery model of the streaming 
source (push versus pull based). Depending on how source 
data arrives and interfaces provided by the DSMS system, an 
adapter might use a pull-based or a push-based model. 
Usually, real time events are pushed asynchronously while 
historical events are pulled synchronously. When pushing 
data to DSMS, adapter might have to negotiate the 
acceptable event rate with the DSMS (through control flow 
APIs) if the event rate exceeds DSMS’s processing 
capabilities.  

Push computations as close to the source as possible. 
DSMS’s might optimize computations by filtering and 
reducing the data, as early as possible in the computation 
pipeline. The earliest possible stage would be the input 
adapter, thus a good adapter should have a way to negotiate 
filter and project pushdowns as close to the sources as 
possible. Note that this step is specific to input adapters and 
does not apply to output adapters. 

B. Adapter-level High Availability and Scalability 

Besides the previously mentioned functionalities of 
adapters, there are two desirable properties adapters are 
expected to hold for robust deployment. First, an adapter is 
expected to be highly available and has the ability to interact 
with a highly-available DSMS. Note that having an adapter 
that is highly available on its own is a separate issue from the 
ability to interact with highly-available system. On one hand, 
a highly available adapter is an adapter that is resilient to 
failures (e.g., network failures) and has the ability to resume 
once the failure is over. On the other hand, highly-available 
DSMS have the ability to recover from failures. However, 
such recovery is not feasible without the help of input/output 
adapters. To recover from a failure, the DSMS may request 
the input adapter to replay portions of the input streams that 
have been previously submitted to the system and that got 
dropped due to an unexpected failure. Moreover, the DSMS 
may request the output adapter to rip out portions of the 
output streams that have been partially generated but 
abruptly interrupted due to the failure. 

Second, an adapter is expected to be performant and to 
support the interaction with scalable DSMSs. A performant 
adapter is an adapter that does not stand as a bottleneck in 
the course of the continuous query execution. Multi-
threading, buffering and stream multiplexing are example 
techniques adapters utilize to achieve high performance. In 
addition to being performant on their own, adapters should 
promote scalability to achieve high performance in large 
scale systems. Hence, adapters are expected to communicate 
with scalable DSMSs. In this situation, adapters are expected 
to partition the input streams and feed them to multiple nodes 
(each node is running an instance of the DSMS) and, later 
on, collect the output streams and merge them back to 
reconstruct the output stream. 



C. Built-in versus Custom Adapters 

To ensure that adapters meet a minimum level of quality 
and to help developers write their own adapters, commercial 
DSMSs deliver a set of built-in adapters for widely used data 
sources and provide a mechanism for third-party vendors to 
build domain specific adapters. Example input adapters 
include modules to replay data from storage media (e.g., text 
files, event logs, or databases) and feed them to the DSMS in 
the form of streams. Also, an input adapter that reads live 
data from a web service is another interesting example. 
Output adapters compliment the process by providing a 
mechanism to stream the query output to text files, event 
logs, databases, or web services. More interestingly, some 
output adapters visualize the data graphically in a way that 
captures the trend and the intrinsic properties of the stream. 
Section VII provides example adapters for visualization 
purposes provided as part of commercial DSMS.  

IV. BASIC STREAM OPERATIONS  

Now that the stock data is available in our system, we are 
ready to write some queries. Whenever we design a query, 
we begin with a clear statement of the query in English: 

 
Q1 : Select all stock quotes for the ticker symbol 
“MSFT”, removing the unnecessary ticker symbol 
information in the output. 
 
In order to clearly understand the semantics of this query in 
precise, streaming terms, we provide example finite input 
and output tables: 
 
StockTickerInfo: 

Timestamp Symbol Price 

0 MSFT 25.00 
0 IBM 110.00 
1 MSFT 25.03 

 
SelectQuery: 

Timestamp Price 

0 25.00 
1 25.03 

 
While the tables above are finite, none of the streaming 

operations we perform on the data assume finite data. Rather, 
we use this finite example as a way to drive understanding of 
the operations we wish to perform on our stream. Note that 
we are assuming that all stock readings are point events. 
Queries like these may be implemented using filter and 
project operations, where each event in the table is subjected 
to a test in the form of a boolean predicate. If the test passes, 
the event is retained, and a subsequent project removes the 
unnecessary ticker symbol information in the output.  

 
Our next query is stated as follows: 

Q2 : Take the output signal produced by FilteredStream, 
and smooth it by reporting a 3 second trailing average 
every second. 

For exposition purposes, assume that the lifetime units 
are seconds. The following are example input and output 
streams: 

FilteredStream:  

Timestamp Price 

3 18.00 
4 24.00 
5 18.00 
6 30.00 

 
SmoothedStream: 

Timestamp Price 

3 18.00 
4 21.00 
5 20.00 
6 24.00 
7 24.00 
8 30.00 

 
There are some interesting properties of the above table. 

First, there are no implicit zero values in the stream. 
Therefore, as we consider trailing averages prior to time 5 
and after time 6, there are fewer than 3 readings used to 
calculate the average. 

Computations like these may be modeled using the 
powerful windowing capability. One way to model this 
computation is using hopping windows, which group events 
together into buckets using two parameters. The first 
parameter, window size,  determines the duration of time 
which each bucket corresponds to. In this case, since we 
have a trailing average of 3 seconds, we want to aggregate 3 
seconds worth of data with each result, so the window size is 
3 seconds. The second parameter is the hop size, which 
specifies how often these buckets are created along the 
timeline. In this case, since we are reporting every second, 
the hop size is 1 second. 

A 3 second hopping window with a 1 second hop will 
create windows along the timeline in the following manner: 

24.00 30.0018.00

Time1 2 3 4 5 6

18.00

18.00

18.00

18.00

24.00

24.00

24.00

18.00

18.00 30.00

 
 

A hopping average computed with the above hopping 
window will produce, for each window above, an event 
whose lifetime is the lifetime of the associated window, and 
which averages the data whose lifetime intersects the 
window definition. Note that since all time intervals are 
inclusive of the start time, and exclusive of the end time, the 
first window which contains actual data is the one which 
starts at time 1, which includes only the first data point (at 
time 3).  



V. PERFORMING CUSTOM COMPUTATIONS 

A DSMS provides a toolbox of “off-the-shelf” operations 

that are common across business applications. Very often, 

this toolbox is sufficient for the most common application 

requirements. However, it is natural for each business sector 

to have unique demands that are specific to its business 

logic. Business logic is the outcome of domain expertise in 

a specific sector over years. It is hard to expect that a single 

platform can out-of-the-box cover domain expertise in 

different domains. Thus, for broad applicability, a DSMS is 

expected to have an extensibility mechanism that can 

seamlessly integrate domain-specific business logic into the 

incremental in-memory streaming query processing engine. 

A. Design of an Extensibility Mechanism 

      
As shown in Figure 5, there are three distinct entities 

that collaborate to extend a streaming system. The user 

defined module (UDM) writer is the domain expert who 

writes and packages the code that implements domain-

specific operations as libraries. The query writer invokes a 

UDM as part of the query logic. A query is expected to have 

one or more UDMs wired together with standard streaming 

operators (e.g., filter, project, joins). Note that multiple 

query writers may leverage the same existing repository of 

UDMs for accomplishing specific business objectives. The 

extensibility framework is the component that connects the 

UDM writer and the query writer. The framework executes 

the UDM logic on demand based on the query to be 

executed. Thus, the framework provides convenience, 

flexibility, and efficiency for both the UDM writer and the 

query writer.  

B. An example UDM for pattern matching 

As a concrete example, we discuss how one can 

implement a UDM that allows complex pattern matching 

over event streams. We assume that the user specifies the 

pattern to be matched in the form of a non-deterministic 

finite automaton (NFA). In order to support complex chart 

patterns, we add the concept of a register that consists of 

added runtime information associated with the automaton 

during transitions. We call such an augmented pattern 

matching specification as augmented finite automaton 

(AFA). The automaton consists of directed acyclic graph of 

states, including a start state and a set of final states. The 

states are connected by arcs or transitions, each of which is 

associated with a fence function (to determine if the arc can 

be triggered by an incoming event) and a transfer function 

(to compute the new value of the register in case the arc can 

be triggered). Both these functions have two input 

parameters: the new event and the current register value. 

Assume we are currently in state X with register value 

R. If a new event arrives, we evaluate the fence function for 

each outgoing arc (from state X) to test whether that arc can 

be traversed due to the event. If yes, we would evaluate the 

transfer function to compute the new register R’ associated 

with the destination state X’. If the X’ is a final state, we 

produce an output event indicating a successful pattern 

match. For more details on AFA, the reader is encouraged to 

look at our paper [2]. In the next subsection, we will show 

how a complex chart pattern can be specified using AFA. 

The AFA pattern matcher can be implemented as a 

UDM that can be reused by multiple query writers for 

matching different patterns. The query writer defines the 

actual automaton, and provides this AFA as input to the 

UDM. The UDM receives events from the system. For 

every event, the UDM performs some computation, updates 

its internal state, and optionally produces output events. 

Note that the query writer can use the UDM in a similar 

fashion as the native operators, combining it with 

windowing, selections, and other stream operations.  

C. Example: Chart Patterns over Smoothed Stock Stream 

Q3: Detect the head & shoulders chart pattern over the 

stock stream for MSFT, over a ten-minute window. 

Consider the smoothed stock stream in our running 

example. The query writer uses the AFA UDM to detect the 

head & shoulders chart pattern, where we look for a trading 

pattern that starts at price p1, moves up to local maximum 

p2, declines to local minimum p3 > p1, climbs to local 

maximum p4 > p2, declines to local minimum p5 > p1, climbs 

again to local maximum p6 < p4, and finally declines to 

below the starting price p1. An example of such a pattern is 

shown in Figure 6. 

 
Figure 6: The head & shoulders chart pattern 

We can use the AFA of Figure 7 to detect this pattern, 

where we use three registers <r1, r2, r3> to track the prices 

p1, p2, and p4 respectively. In the figure, each arc in the 

automaton is annotated with the fence function and the 

transfer function (separated by a semicolon). State q0 is the 

start state, while q7 is the final state in the automaton. Stock 

upticks and downticks events are represented as up(e) and 

down(e) respectively. For example, the arc a2 checks if we 

see a stock uptick; if yes, we store the current stock price 

(p2) in register r2, for later comparison within arc a6. 
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Figure 7: The head & shoulders chart pattern 

 

VI. PARTITIONED COMPUTATIONS, CORRELATIONS, AND 

ANTI-CORRELATIONS 

In our examples so far, we are performing operations on 
an individual stock. In many cases, we wish to perform 
operations like these for each stock in the stock universe. For 
these types of operations, we use group and apply, which 
applies some stream valued function to partitions of a stream 
according to some partitioning function. We now write a 
query which applies the head and shoulders pattern detector 
to each stock in the stock universe: 

 
Q4: For each unique ticker symbol, detect the occurrence 
of the head & shoulders chart pattern of query Q3. 

 

… IBM MSFT Partition Union

MSFTMSFT

….….

IBM

… IBM MSFT

 
 
The first part of this query partitioned the incoming stock 

ticks by the ticker symbol. The second part applies, to each 
of these partitions, our head and shoulders pattern matcher. 
The output of this query is all the outputs produced for each 
partition combined together into one unioned output stream. 

This seemingly simple operation is surprisingly powerful 
in practice, and is leveraged to achieve high utilization of 
multiple cores. 

 
So far, all of our queries have been queries over single 

streams of input. We now introduce a query that brings 
together two clearly different sources of data: 

 
Q5: For each stock on a dynamic “white list”, determine 
all occurrences of the head & shoulders chart pattern. 

 
In addition to our stock ticker data, we now have another 

stream which describes the set of stocks which are being 
monitored at a particular time. Each event in this stream will 
have a ticker symbol and associated lifetime. For instance, 
the following is a valid white list stream (WhiteListStream): 

Vs Ve Symbol 

0 4 MSFT 
4 7 IBM 
5 7 MSFT 

 

The above white list tells us that we will search for our 
head and shoulders patterns for Microsoft using data from 
time 0 to time 10, IBM from time 2 to time 20, and 
Microsoft again, but at the later time interval of 20 to 100. 

To achieve the desired effect, we will join the above 
white list with the raw ticker data. Join takes two input 
streams, and correlates the events between them in the 
following way: Events on each side are matched to events on 
the other side whose lifetimes intersect, and for which a join 
condition involving the events from both sides holds. For 
each matching pair of events, an output is produced whose 
lifetime is the intersection of the input lifetimes, and whose 
payload combines the information from the two matching 
events. 
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For instance, if we join WhiteListStream and 

StockTickerInfo, and specify a join condition which matches 
the Symbol fields, the output is the filtered set of point 
events from StockTickerInfo which occurred during a 
matching lifetime specified in the WhiteListStream. 

While the query above returns all stock tick info which 
conforms to our white list, we can also easily remove stock 
tick info using a black list. For instance, consider the 
following query: 
Q6: For each stock not present in a dynamic “black list”, 
determine all occurrences of the head & shoulders chart 
pattern. 

Given a BlackListStream with a schema which is 
identical to the WhiteListStream, we could apply our black 
list by replacing join with an anti-semi-join operator. Anti-
semi-join is used to detect the absence of information, and 
can also be used to detect the non-occurrence of an event. 

VII. SOFTWARE TOOLS 

DSMSs are expected to be equipped with powerful engines 

that provide the necessary processing capabilities for real 

time data streams. The low-latency and high throughput 

aspects of these stream processing engines have been 

discussed throughout the sections of this paper. In this 

section, we describe some software tools that complement 

the processing capabilities of DSMS engine and provide 

smooth development and deployment experience of 

streaming applications. In this section, we focus mainly on 

programmability, manageability and visualization tools. 

A. Programmability Tools 

Programmability tools enable developers to write, test and 

debug queries. With the continuous nature of streaming 

oriented workloads, debugging a continuous query becomes 

a challenge compared to ad hoc or snapshot queries in 

traditional database systems. Moreover, the temporal 

attributes of incoming events pose a major challenge in 



determining the validity of the results under diverse and 

dynamic stream behavior. Hence, a tool is needed to 

facilitate the debugging and the tracing of events as they 

flow in the pipeline of the continuous query. 

Note that there are fundamental differences between a 

control flow debugger of a programming language (for 

example, a C# or C++ debugger) and an event flow 

debugger in DSMSs. In control flow debugging, the 

developer "builds" a program written in a specific language 

in debug mode, enables breakpoints at specific statements or 

junctions in the control flow of the program, "runs" the 

program until these specific breakpoints are hit, reasons 

about the code and the state of the system, steps into or over 

functions and procedures, watches variables and so on until 

the completion of execution. Temporal reasoning of data 

variables (that is, analyzing the transformation of these 

variables through the passage of time) is limited or non-

existent. 

In contrast, event flow debugging traces an event through 

the passage of time, as it proceeds from one operator in the 

query to the next. Here, debugging involves understanding 

the effect an event has on the stream and how new events 

are generated as a result of the computations. The emphasis 

in event flow debugging is on how the operator’s semantics 

(Filter, Project, Join, Aggregate, and so on) affect the event, 

rather than on the (control flow) execution of the operators 

themselves. 

B. Manageability tools 

Managing the state of a DSMS involves tracking the overall 

health of the system and measuring the performance of 

running queries. Maintaining statistics that show the number 

of events produced/consumed by the system as well as CPU 

and memory usages help diagnose problems and 

troubleshoot the system in a timely manner. It also helps for 

resource planning and load balancing. 

It is worth mentioning that maintaining statistics over fine 

grained granularities can be very costly in the resource 

intensive environment of streaming applications. Statistics 

are usually aggregated by time (e.g., hour, day, week, etc) 

and/or by query components. For example, component-level 

statistics are maintained at the operator level, query level, or 

even aggregated to the entire system level.  

 

C. Visualization Tools 

Visualization tools are utilized for different purposes in the 

context of DSMSs. Yet, we summarize three major uses of 

visualization tools in this section. First, some DSMSs offer 

UI-based tools to compose queries graphically in a drag and 

drop fashion. Operators are represented as boxes while the 

flow of events among these operators is represented by 

arrows. Second, some DSMSs offer tools to visualize the 

query plans of queries that are being executed along with 

running statistics over each query component. Last but not 

least, there are visualization tools that enable users to 

monitor the data streams or aggregations/summaries over 

the data streams at real and compare them against each other 

and against historical data.  

VIII. CHALLENGES AND CHOICES IN EXISTING DSMSS 

In this section, we dive into some of the more important and 

fundamental issues that a DSMS needs to solve, and discuss 

how various systems and research proposals have chosen to 

architect their solutions to address these issues. Our 

subjective analysis is not intended to comprehensively cover 

all choices in the commercial market, and is primarily 

intended to demonstrate some variety of choices, along with 

the strategies adopted by different systems. In Section IX, 

we will take a closer look at solutions adopted by Microsoft 

StreamInsight. 

A. Range of Stream Processing Systems 

We are seeing a wide range of DSMS offerings in both 

research and commercial domains. The Stanford STREAM 

project [6] was one of the earlier stream processing systems 

proposed in the academic community; the Oracle CEP [10] 

engine [10] mostly follows STREAM’s execution model. 

Another academic prototype named Aurora/Borealis [5] was 

later commercialized as the StreamBase [4] product. Coral8 

(now acquired by Sybase CEP) is a popular DSMS, whose 

model is different from both Oracle CEP and StreamBase. 

Esper is yet another offering that focuses mostly on complex 

pattern detection over streaming data. The CEDR project [3] 

from Microsoft Research proposed a temporal algebra 

inherited from relational algebra and motivated by early 

research on temporal databases. Microsoft StreamInsight [1] 

uses an underlying execution model that is derived from this 

research. IBM InfoSphere Streams [8] is yet another streams 

offering whose roots are from the System S research project 

at IBM Watson Research. 

B. Application time vs. System time 

Most stream processing systems consider time as a 

“first-class citizen”, and offer native constructs such as 

temporal correlations (joins) and windows that allow 

operations over well-defined subsets of time (systems such 

as IBM InfoSphere Streams do not mandate time-oriented 

computations but can support them if needed by the 

application). StreamBase associates windows with 

operators, whereas systems such as StreamInsight associate 

window semantics with events, in the form of event lifetime 

which denotes the period of time during which an event 

contributes to output. An advantage of associating lifetimes 

with events is that it naturally fits into the intuitive 

definition of when an event is active, and also allows 

windowed operations to fit well into a temporal algebra (we 

discuss this in detail later).  

The traditional notion of time is implicitly the system 

time at which the DSMS receives or processes events – 

indeed the first generation of streaming systems such as 

Stanford STREAM and Aurora used system time for 



defining and computing windows. This choice has carried 

over to some commercial streaming systems such as Esper. 

Some streaming systems offer the ability to use and operate 

over timestamps specified by the application, called 

application time. StreamBase uses application time, but re-

assigns application time to events based on the current 

system time. Such use of system time during stream 

processing has the potential of producing varying results 

across runs, for the same input dataset and query. 

There are many advantages to separating application 

time (timestamps provided by the application and contained 

within the event) from system time (the time at which the 

DSMS receives or processes events), and further ensuring 

that all computations are deterministic in terms of 

application time. For example, it allows repeatable results 

regardless of when the DSMS processes the input, and how 

long individual operators take to process individual events. 

This helps query writers in understanding and reasoning 

about the operational semantics of the system, and can also 

enable easy debugging. 

 

C. Execution Model, Semantics, and Algebra 

The semantics of query specification and how/when 

output is produced varies across systems. For example, in 

Oracle CEP and Coral8, an operator (such as moving 

average) result is produced whenever the window content 

changes (e.g., when an event gets added or removed from 

the window). On the other hand, StreamBase produces 

result events every pre-determined period of time (e.g., 

every second) regardless of when actual events enter or exit 

windows. The systems also differ in whether they report 

only when windows end or otherwise. Further, Coral8 

supports an atomic bundling mechanism, using which we 

can simulate either tuple-driven output or time-driven output 

by simply controlling the content of each bundle/batch. 

Reference [12] gives a good overview of the range of 

different semantics and execution models across systems. 

Microsoft StreamInsight recognizes and gives primary 

importance to semantics-related issues. One design goal for 

StreamInsight has been to ensure deterministic well-defined 

semantics for streaming queries. StreamInsight incorporates 

an underlying temporal algebra that treats events as having 

lifetimes, and query output as a time-varying database over 

the set of events. Application times, and not system time, is 

used to define operational semantics. The output at any 

given application time T is the result of applying the query 

semantics to the set of events that are “alive” at time T, i.e. 

all events whose lifetimes contain time T. 

D. Event Types 

Recall the basic event types of point, edge, and interval (see 

Section II). Most commercial systems support only point 

events. In systems like STREAM, there is indirect support 

for edge events using the concepts of Istreams (insert 

streams) and Dstreams (delete streams) which correspond to 

start and end edge events. Each of these event types can be 

represented in Microsoft StreamInsight using events with 

lifetimes. In case of edge events, a start edge corresponds to 

an interval with infinity as endpoint, while an end edge sets 

the right endpoint to the correct value. Point events in 

StreamInsight are simply intervals with the right endpoint 

set to the left endpoint plus a chronon – the smallest 

possible time unit. 

Interestingly, StreamInsight leverages its temporal 

algebra for testing the DSMS internally – a SQL Server 

database system is used to compute the expected output, 

which is compared with actual output to detect bugs in the 

DSMS engine (see [13] for details). 

E. Query Specification 

We see a remarkable diversity in languages and 

specification techniques in the streams community, that we 

overview and summarize in this subsection. 

The first streaming systems derived from databases, and 

thus inherited the use of SQL as the specification language. 

For example, the Stanford STREAM project proposes CQL 

(Continuous Query Language), which is a variant of SQL 

with windowing primitives. Commercial offering such as 

Oracle [10] and StreamBase [4] have followed this trend, 

offering variants of a language called StreamSQL (although 

convergence between the semantics is still an issue [9]). 

While SQL-like queries may appeal to users coming to 

the streams world from a database background, one problem 

with this approach is the need for the application to 

construct query statement strings within the application and 

“hike them over the wall” to the DSMS for processing. This 

disconnect can affect the ease of entry into smoothly 

integrating stream processing into an end-to-end application. 

IBM InfoSphere Streams uses an Eclipse-based 

integrated development environment, with a language called 

SPADE (Stream Processing Application Declarative 

Engine). Systems like Esper propose their own event 

processing language with constructs for pattern matching. 

Microsoft StreamInsight uses the .NET and Visual 

Studio development environment for writing streaming 

applications, with the use of LINQ [11] for queries, with 

added temporal concepts for temporal specifications (e.g., 

windows). In this environment, the application writer gets 

the full power and flexibility of an integrated environment 

with facilities such as code correction and auto-complete 

while composing streaming queries. We discuss 

StreamInsight in detail in Section IX. 

F. Disorder and Revisions in Streams 

Events typically arrive at the DSMS in non-decreasing 

timestamp order. However, there may be several reasons for 

events to arrive out-of-order – due to network delays and 

varying packet routes, merging streams from different 

sources, etc. Most commercial systems handle disorder by 

assuming that events are buffered and re-ordered before 

entering the DSMS. However, this approach has limitations: 



it is difficult to predict the amount of disorder and hence 

buffering, and we may need to unnecessarily wait for a long 

time for late arrivals, even if there is no disorder in the 

stream. 

Microsoft StreamInsight can internally operate directly over 

disordered data. The basic idea is that at any given time, it 

produces the best-effort result given the current set of events 

that have been delivered to the DSMS. If an event arrives 

late, it is incorporated into computations and the DSMS 

produces “revision” events to indicate a change in the actual 

result. This fits well with the temporal algebra, where at any 

given point in time, the DSMS result matches the expected 

output assuming we had seen everything in the input stream.  

However, such a solution needs some notion of progress 

of time – for guaranteeing correctness of delivered output as 

well as for cleanup of internal state. This is achieved by 

using CTI (Current Time Increment) events. CTI events 

(also called punctuations) are associated with an application 

time T, that guarantee that no future event will have a 

timestamp earlier than T. 

A similar concept exists in other systems, for the 

purpose of synchronizing system time with application time, 

such as heartbeats in STREAM, TIMEOUT in StreamBase, 

and MAXDELAY in Coral8. 

G. Native Operations and Extensibility 

Given the diverse application domains where DSMSs 

are deployed, there is a strong need for a rich yet efficient 

set of extensibility mechanisms in the DSMS. For example, 

IBM InfoSphere Streams allows the ability to extend the set 

of built-in operators with user-defined ones, programmable 

in either C++ or Java. Microsoft StreamInsight incorporates 

a rich extensibility framework, giving application writers 

the flexibility to either re-use existing libraries or write new 

operators specifically for streaming environments. A range 

of windowing constructs and support is provided to users of 

this framework. User-defined operators can be written in 

any .NET language such as C#, and fits nicely into the 

single Visual Studio-based programming environment.  

H. Query Composition 

It is necessary for a DSMS to allow the composition of 

queries by allowing new queries to re-use the results of 

existing queries. Most DSMSs allow some form of 

composition. Aurora uses a boxes-and-arrows style query 

construction technique that can be used for query 

composition. IBM InfoSphere Streams uses SPADE to 

support modular component-based programming. Microsoft 

StreamInsight supports dynamic query composition, where 

queries can re-use prior published stream endpoints.  

IX. MICROSOFT STREAMINSIGHT – A CLOSER LOOK 

Micrrosoft StreamInsight is Microsoft’s commercial DSMS 
that currently ships as a part of SQL Server 2008 R2. The 
StreamInsight data and execution model and programming 
surface is carefully designed to solve the challenges 

discussed in this report. In this section, we walk through the 
process of writing and executing queries in StreamInsight. 

A. Getting data into the DSMS 

StreamInsight applications are written using Visual Studio. 

Thus, events types are simply classes or structs. For 

example, we may define a stocks event type as: 
struct StockEvent { 

   string Symbol; 

   float Price; 

} 

 

The adapter developer writes input and output adapters. The 

input adapter reads data from the source and converts them 

into a stream of events of type StockEvent. Once the 

data has been defined and pulled in from the external 

source, we can write the streaming query logic (discussed in 

the next subsection) over this typed input stream. Finally, 

the output adapter reads the result stream and delivers it 

back to the application, for example using a graphical 

dashboard, on a console, or to a file on disk. StreamInsight 

supports a variety of adapter types, and a rich flow control 

model to control the buffering of events in the DSMS. 

B. Writing a Continuous Query in LINQ 

StreamInsight queries are written in LINQ [11]. Our LINQ 

query for selecting events pertaining to a particular stock (M

SFT) is written as follows (query Q1): 
 
var filteredStream = 
  from e in StockTickerInfo 
  where e.Symbol == “MSFT” 
  select new (Price = e.Price); 
 

This query has 3 sections. The first section, the from clause, 

specifies that this query will process events from the 

StockTickerInfo stream. For each of these events e, we 

apply the filter specified in the where clause, which retains 

events where the ticker symbol equals MSFT. The select 

line says that the output of the query is a stream of events 

with one payload column, Price, and that Price is passed 

along unmodified from e.Price. We associate with the 

output stream, the variable FilteredStream. 

 

Next, we wish to smooth the filtered stock stream, in order 

to report a 3 second trailing average every second (query 

Q2). This operation is performed using the following query. 

 

var hoppingAvg =  
from w in filteredStream.HoppingWindow 
 (TimeSpan.FromSeconds(3),    
  TimeSpan.FromSeconds(1), 
  HoppingWindowOutputPolicy.ClipToWindowEnd) 
select new { SmoothedPrice =  
             w.Avg(e => e.Price) }; 
 



Therefore, the output of this hopping average is very 
close to our desired output. The only difference is that the 
output lifetimes aren’t quite right. More specifically, we need 
to shift the output start times forward 2 secs, and reduce the 
lifetime to a chronon (instead of the 3 sec window 
description). This may be accomplished with an 
AlterEventLifetime, which modifies the lifetime of each 
event in the stream with two functions. The first function 
modifies the event start time, while the second modifies the 
event duration. The following query computes the final 
smoothed output for our query. 
 
var correctedHoppingAvg = 
hoppingAvg.AlterEventLifetime 
  (e => e.StartTime+TimeSpan.FromSeconds(2), 
  e => TimeSpan.FromTicks(1)); 

 
Note that the above query does not have a from clause. 

Some operations, like AlterEventLifetime, operate on 
streams, not events. As a result, these operations may be 
applied anywhere where a stream is required, including in 
the from clause of a query, which would apply the operation 
to the input before being processed by the rest of the query. 

Another noteworthy feature of the above query is the use 
of lambda expressions ( e => etc…), which is a notation for 
defining functions within an expression. Each of these 
functions takes as input an event e. The first function 
computes, from this e, the new valid start time. The second 
function computes, from this e, the new event duration. 
 

Next, assume that we wish to detect the head & 

shoulders chart pattern over a tumbling window of 10 

minutes (query Q3). A non-incremental version of an AFA-

based user-defined module (UDM) for StreamInsight is 

available at the StreamInsight blog [7]. We can write the 

AFA specification for the head & shoulders chart pattern 

depicted in Figure 7, and invoke our AFA UDM (called 

AfaOperator) using the LINQ query shown below: 

 

var HSPattern =  
from w in filteredStream.HoppingWindow 
 (TimeSpan.FromMinutes(10),    
  HoppingWindowOutputPolicy.ClipToWindowEnd) 
select w.AfaOperator(HeadShoulderPattern); 
 

Next, in order to detect the pattern for every unique stock 
symbol in a stream with quotes for multiple stocks (query 
Q4), we perform a grouping operation called Group&Apply 
(by stock symbol) using the following LINQ queries: 

 

var EachHeadAndShoulders =  
  from e in StockTickerInfo 
  group e by e.Symbol; 
 
var AllHeadAndShoulders =  
  EachHeadAndShoulders.ApplyWithUnion( 
    applyIn => HeadAndShoulders(applyIn), 

    e => new {  
      e.Payload,  
      e.Key }); 
 

Finally, if we wished to limit pattern detection to only 
stock trades pertaining to a “whitelist” of stocks that we are 
interested in tracking (query Q5), we need to perform a join 
operation with the whitelist stream, before feeding the stock 
quotes to the grouping queries above. This is written in 
LINQ as follows: 

 
var InterestingStream = 
  from e1 in StockTickerInfo 
  join e2 in WhiteListStream 
  on e1.Symbol equals e2.Symbol 
  select new { Symbol = e1.Symbol, 
               Price = e1.Price }  
 

Now that we have selected all the desired stock 
information using our white list, we may apply our other 
query logic to the reduced ticker stream to achieve the 
desired results. 

While the query above returns all stock tick info which 
conforms to our white list, StreamInsight can also easily 
remove stock tick info using a black list (query Q6). For 
instance, given a BlackListStream with a schema which is 
identical to the WhiteListStream, we could apply our black 
list using the following LINQ query: 

 

 var InterestingStream =  
  from e1 in StockTickerInfo  
  where (from e2 in BlackListStream  
         where e1.Symbol == e2.Symbol 
         select e2).IsEmpty() 
  select e1; 

 
The above query, for each event in StockTickerInfo, tries 

to join it to the BlackListStream. If the event from 
StockTickInfo doesn’t join to any event in BlackListStream 
(the join result is empty), the event from StockTickerInfo is 
output. This query construct is called anti-semi-join, and was 
discussed briefly in Section VI. 

Note from this example that StreamInsight queries are 
fully composable. Further, using a facility called dynamic 
query composition, one can publish/feed the result of one 
query, so that it can be re-used as the input to several another 
separately issued queries. 

C. Software Tools in StreamInisght 

Figure 8 gives a snapshot of an example event flow 

debugger, the Microsoft StreamInsight Event Flow 

Debugger, which is an event trace-based debugging tool to 

trace events and to keep track of their effect on the resultant 

output stream. The debugger illustrates the query plan 

graphically and visualizes the movement of events across 

operators as the query is executed. The debugger gives users 



the ability to pause and resume execution as well trace the 

effect of a single event in the output. 

For query plan visualization purposes, Microsoft 

StreamInsight Event Flow Debugger (Figure 8) connects to 

the DSMS and visualizes all running query plans 

graphically. Meanwhile, for manageability purposes, 

Microsoft StreamInsight Event Flow Debugger (Figure 8) 

serves as a vehicle for exposing operator-level, query-level 

and server-level statistics to the user. These statistics are 

referred to as “diagnostic views” given the fact that these 

statistics are used to diagnose the state of the system and its 

running queries.  

 
Figure 8: Microsoft StreamInsight Event Flow Debugger. 

As an example, Microsoft StreamInsight provides an output 

adapter that continuously sends the output stream events to a 

Microsoft Excel sheet. Excel-based output adapters leverage 

all the visualization tools offered by Microsoft Excel. 

Moreover, Microsoft StreamInsight provides a Silverlight-

based output adapter that enables output streams to be 

visualized from a web browser as shown in Figure 9. In the 

figure, streams of stock prices of various stock symbols are 

being visualized in real time. The combined value of 

programmability, manageability and visualization tools 

enable developers and administrators to take full advantage 

of the capabilities of DSMSs. 

X. CONCLUSIONS 

In this report, we motivated the need for considering a new 

form of continuous data processing for computational 

finance. We introduced data stream management systems 

(DSMSs) as a general middleware for processing and 
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Figure 9: Microsoft StreamInsight Sliverlight based output adapter. 

issuing long-running queries over temporal data streams. 

We detailed the unique challenges that DSMSs need to 

tackle, and showed how these challenges are addressed in 

the context of a running end-to-end example application in 

the financial domain. Given the inherent temporal nature of 

data in computational finance, our belief is that DSMSs are 

a perfect fit for many applications over both streaming data 

as well as offline data archived for historical analysis. 

 

XI. ACKNOWLEDGMENTS 

We would like to thank the Microsoft StreamInsight team 

for nominating us to represent the team and supporting us in 

preparing this report. 

 

REFERENCES 

[1] Mohamed Ali et al.: Microsoft CEP Server and Online Behavioral 
Targeting. In VLDB 2009. 

[2] B. Chandramouli, J. Goldstein, and  D. Maier. High-Performance 
Dynamic Pattern Matching over Disordered Streams. In VLDB 2010. 

[3] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng 
Hong. Consistent Streaming Through Time: A Vision for Event 
Stream Processing. In CIDR, 2007. 

[4] StreamBase. http://www.streambase.com/ 

[5] D. Abadi et al. The design of the Borealis stream processing engine. 

[6] In CIDR, 2005.Arvind Arasu, Shivnath Babu, Jennifer Widom: CQL: 
A Language for Continuous Queries over Streams and Relations. 
DBPL 2003: 1-19 

[7] Pattern Detection with StreamInsight. http://tinyurl.com/2afzbhd. 

[8] IBM InfoSphere Streams. http://www.ibm.com/software/data/ 
infosphere/streams/ 

[9] N. Jain et al. Towards a streaming SQL standard. In VLDB, 2008. 

[10] Oracle. http://www.oracle.com/ 

[11] Language Integrated Query (LINQ). http://msdn.microsoft.com/en-
us/netframework/aa904594.aspx 

[12] I. Botan et al. SECRET: A Model for Analysis of the Execution 
Semantics of Stream Processing Systems. In VLDB 2010. 

[13] A. Raizman et al. An Extensible Test Framework for the Microsoft 
StreamInsight Query Processor. In DBTest 2010.  


