
Data Stream Management Systems for Computational Finance

Badrish Chandramouli, Mohamed Ali, Jonathan Goldstein, Beysim Sezgin, Balan S. Raman

Microsoft Corporation

One Microsoft Way, Redmond, WA 98052

e-mail: {badrishc, mali, jongold, beysims, sethur}@microsoft.com

Abstract—Computational finance leverages computer

technologies to build models from large amounts of data to

extract insight. In today’s networked world, the amount of

data available to build and refine models has been increasing

exponentially. Often times the difference between seizing an

opportunity and missing one is the latency involved in

processing this data. The need to do complex processing with

minimal latency over large volumes of data has led to the

evolution of different data processing paradigms. Increasingly

there is a need to develop an event-oriented application

development paradigm to decrease the latency in processing

large volumes of data. Such an event-oriented system

incorporates the lessons that we have learnt from earlier data

processing platforms, i.e., declarative programming, etc. and

adapts them for incremental processing. Some of the systems

have adopted techniques from artificial intelligence while

others have adopted techniques from database management

systems.

This technical report motivates the need for using a specialized

platform for such applications, and delves into a deeper

discussion about systems that are architected to operate over

temporal data (streams of events), called Data Stream

Management Systems (DSMSs). With the aid of a running

example from the financial domain, it describes the salient

characteristics of these platforms and the advantages they

offer.

I. INTRODUCTION

A. Need for a New Data Processing Paradigm

The computational finance application domain leverages
the ability to process and analyze large amounts of data and
extract useful insight. With the recent proliferation of
computer networks along with the computerization of almost
every business process, increasing quantities of data are
being produced by machines, sensors, and applications, and
are becoming available as input for analysis and mining by
financial applications. There are several interesting aspects
of this data:

 The data is available instantaneously and continuously,
being delivered to applications as an unending “stream”
of data.

 The data is inherently time-oriented (temporal) in
nature. Thus, to derive maximum value out of the data,
there is a need to process queries over this data
incrementally and on-the-fly, and incorporate the results
into ongoing business processes such as algorithmic
stock trading.

 The temporal data is also stored offline for subsequent
analysis, mining, and back-testing, often using the same
queries that are used in the real-time scenario.

In this fast-paced environment, the difference between a
leveraged opportunity and a missed one is often the latency
involved in processing the stream of temporal data. Given
the importance of processing temporal data, financial
applications may choose to build customized vertical
solutions to solve specific problems. While such solutions
could be efficient for a particular application, it is hard to
generalize the effort across diverse applications, and further,
it can be expensive to build, maintain, manage, and re-use
such customized systems.

Software platforms solve the re-usability problem by
providing a generic substrate upon which many user
applications can be easily built. One such platform that has
been extensively used in many application domains in the
past is databases, which exposes a simple yet powerful data
model called relational algebra, to enable applications to
issue and execute complex declarative queries over set-
oriented data. While databases are well-suited for set-
oriented offline analysis of infrequently changing datasets,
the new environment of long and possibly unending
sequential data streams (in real time as well as over historical
temporal data) poses new challenges beyond the scope of
database systems. Given the high data arrival rates, we are no
longer in a situation where we can afford to collect all the
data, load it into a database system, build database indexes
over the data for query efficiency, and finally allow users to
execute one-time queries over the data. Rather, we need to
allow applications to issue queries a priori; in this case, the
results of the query need to be continuously and
incrementally computed and updated as new relevant data
arrives from the data sources. Here, incremental computation
denotes the capability to update the result of a query when
new data arrives, without having to re-process earlier data.
Incremental computation is necessary for a low-latency
response to incoming data, but databases, due to the one-time
nature of database queries, do not directly support quick
incremental result computation as new data arrives as the
database.

B. An Event-Based Temporal Data Processing Paradigm

Figure 1 shows a spectrum of data processing
applications and solutions in terms of the data rates and
latencies that they target. Given the unsuitability of custom
solutions and database systems for managing high-volume
temporal data at low latency, there have been many recent
efforts to build Data Stream Management Systems (DSMSs).

A DSMS enables applications to issue long-running queries
over streaming data sources. For example, we may have a
stream (or data feed) of stock quotes, where each event (or
notification) in the stream contains a stock symbol and price.
An application may wish to continuously monitor this stream
and produce an alert when the price crosses some pre-
defined threshold. Such a requirement would be expressed as
a long-running query, called a continuous query (CQ).

CQs are registered with the DSMS by applications. The
DSMS monitors and efficiently processes streams of data in
real time. CQs are processed by the DSMS in an event-
driven manner – for every new event, the DSMS efficiently
and incrementally checks if the query result needs to be
updated due to the event – if yes, an output event is
produced. In our example, whenever we receive a stock
quote, the DSMS checks to see if the price exceeds the
threshold, and if yes it would produce the corresponding
quote as output of the CQ. A CQ receives as well as
produces event streams, and thus CQs can be composed to
achieve more complex application requirements.

DSMSs are used for real-time in-memory data processing
in a broad range of applications including fraud detection,
monitoring RFID readings from sensors (e.g., for
manufacturing and inventory control), and algorithmic
trading of stocks. In a typical application for computational
finance, there are several points during the workflow where
there could be friction between the application and its data
processing needs: getting data into the system, decoupling
application logic from the actual management of data, and
the ability to plug-in the results into business logic or
workflow. These points of frictions can be alleviated by
using a DSMS, and at the same time it can provide low-
latency data processing which is crucial for many
applications in this domain.

Figure 1. Scenarios for Event-Driven Applications.

C. Lifecycle for Business Applications

The value proposition of a DSMS to a business is captured

by the “monitor-manage-mine (M
3
) cycle” shown in Figure

2. We monitor data in real-time to answer continuous

queries and detect interesting patterns. The results of these

operations are used to manage and perform daily business

actions such as algorithmic stock trading, fraud detection,

etc. Finally, the raw temporal data is stored offline, so that

the business can mine the historical data to determine new

CQ requirements or patterns that are fed back to the monitor

phase.

Financial
trends

• Data acquisition
costs are
negligible

• Raw storage
costs are small
and continue to
decrease

• Processing costs
are non-negligible

• Data loading
costs continue to
be significant

Manage
business via
KPI-triggered

actions

Mine historical data
Devise new KPIs

Monitor
KPIs

Record raw
data (history)

DSMS
advantage

• Process data
incrementally,
i.e., while it is
in flight

• Avoid loading
while still
doing the
processing
you want

• Seamless
querying for
monitoring,
managing and
mining

Figure 2. The monitor-manage-mine (M3) cycle.

In deploying the M
3
 cycle, applications may often need to

execute the same queries over offline temporal data, for

example, to perform back-testing over historical data or

mining to discover interesting trends and patterns. We will

discuss this aspect further in the context of the M
3
 cycle in

Section II, where we will also cover the other concepts

depicted in Figure 2 in greater detail.

D. Running Example

We next formalize a concrete end-to-end stock trading
application, to serve as a running example for the rest of our
discussion.

Example 1 (Stocks Trading Application) Assume that we
have stock trade messages reaching the application as events,
from various stock exchanges. Each event consist of the
timestamp of the trade and a stock symbol, along with the
last traded price and volume. For each stock that the trader is
interested in tracking, the trader may wish to first “smooth
out” the signal with a moving average, and then perform
some customized computation such as detecting a chart
pattern. The set of stocks that the trader is interested in
tracking may itself change over time based on the current
stock portfolio, or there may instead be a blacklist of stocks
such that they wish to track all stocks other than those in the
blacklist. Note that in this example, one can model both the
stock trades and the updates to the whitelist/blacklist as event
streams, since both activities consist of notifications that
report either a stock trade or a change to the
whitelist/blacklist of stock symbols.

E. Challenges for DSMSs

There are several classes of challenges unique to this

new environment for processing queries over large-scale

unending stream data, which a DSMS needs to effectively

address; these challenges are briefly summarized below.

1) Ease and completeness of specification

a) Ability to express fundamental query logic:

It is important for a DSMS user to easily specify their query

logic declaratively as a composable sequence of queries.

Declarative programming allows the query writer to focus

on query logic expression without having to worry about

how it would be implemented or executed. Further, since a

DSMS is intimately related to temporal (time-oriented) data,

it is necessary to incorporate concepts such as windowed

processing and time progress as a core component of the

query logic.

b) Ability to handle late-arriving data or corrections

Given that a DSMS needs to operate over temporal data,

issues such as late arrival of events need to have a

deterministic resolution. Another issue is the case where a

source generates an event, but later detects an error and

either changes or completely removes the earlier event. One

option is to delay processing until we are guaranteed to see

no late-arriving events, but this could increase the latency in

producing results. Another alternative is to aggressively

process events and produce tuples, issuing compensations

when we receive disordered events.

c) Extensibility

While the toolbox of operations provided natively by a

DSMS may cover many scenarios, given the complexity and

diversity of applications, there is a need for a general

extensibility framework using which applications can

deploy custom streaming logic as part of the DSMS.

Challenges here include the ability to support legacy

libraries, provide the ability to easily write streaming

building blocks that leverage windowing and incremental

computations, and yet offer flexibility to power-users.

Extensibility is important in the computational finance

domain, particularly given the fact that custom libraries and

technology is where financial institutions tend to mainly

develop and maintain competitive advantage.

d) Genericity of specification

We would like the specification and semantics of query

logic to be independent of when and how we physically read

the events. For example, the output should be the same for a

set of events and a specified query, regardless of whether we

read it from a file on from a sensor in real time. Recall the

M
3
 cycle from Section 1 – it is clear that genericity of

specification allows us to use a DSMS to complete the loop

without duplicating effort, by preventing an impedance

mismatch between the mental model (and queries) over

historical data for back-testing, and real time data for a live

deployment.

Genericity of specification is achieved by employing

application time instead of system time, to define the

semantics of stream operations. The basic idea of

application time is that time forms a part of the actual event

itself (in the form of a control parameter), and output of the

DSMS is independent of when tuples physically get

processed – depending only on the timestamps present in

individual events. The semantics of stream operators are

usually specified as a temporal algebra over event payloads

and application timestamps – an extension of the relational

algebra with time-oriented semantics.

e) Ease of debugging

An important challenge that DSMSs need to resolve is the

capability to perform debugging of stream queries. This is

particularly useful in a streaming system since data is

constantly being processed in an online fashion, which

makes correctness verification an apparently infeasible task.

One important concept that helps debugging is the use of

application time instead of system time.

The use of application time in association with a temporal

algebra and semantics underlying the query specification,

makes query results deterministic regardless of when or how

individual events in a stream are processed. This form of

repeatability is useful to trace the root cause of any

anomalous results observed in an output stream.

f) Deployment obliviousness

We would like the user of the streaming system to be

isolated from system aspects such as the number of

machines that the query is being executed upon, and the fact

that redundancy may be employed for high-availability.

Ideally, one would like the user to submit their queries and

operational requirements in terms of quality of service

(QoS), to a single DSMS endpoint, and the system to

transparently scales out or run in highly available mode

based such on user specifications.

2) Performance

Performance is of primary concern to applications of a

DSMS because of its common use in real-time applications.

Unlike databases, DSMSs usually do not have the flexibility

of writing data to disk and processing it later. Thus, in order

to achieve low latency, DSMSs usually maintain internal

state in main memory and discard events/state when they are

no longer needed for processing CQs in the future. When

the event arrival rate becomes higher than processing

capability of the system, events are buffered in in-memory

event queues that exist between operators. Techniques such

as flow control and load shedding are sometimes necessary

if the DSMS is unable to keep up with incoming data rates

and event queues get filled up as a consequence.

There are various metrics that the DSMS needs to optimize

performance for, such as (1) latency, the time from when an

event enters the DSMS to when its effect is observed in the

output, i.e., the time spent by events waiting in queues and

getting processed by operators; (2) throughput, the number

of result events that the DSMS produces per second of

runtime; (3) correctness, which reflects how much the query

result deviates from the true value due to actions such as

dropping of events due to load shedding, delayed arrival of

events, etc.; (4) memory usage, the amount of in-memory

state accumulated during runtime due to query processing.

Note that performance metrics may sometimes be

conflicting, and the system may need to choose to optimize

performance for a user-specified QoS specfication.

3) Ease of management

The task of the DSMS does not end with issuing and

answering queries over streaming data. A DSMS needs to

provide a rich end-to-end management experience. Issues

that need to be addressed include query composability, easy

deployment over a variety of environments (single servers,

clusters, cellphones, etc.), and security features to avoid data

being accessed by users without the correct credentials.

Query composability requires the ability to “publish” query

results, as well as the ability for CQs to consume results of

existing CQs and streams. Composability is a crucial

building block for complex event-driven applications.

Another crucial feature is the ability to perform system

health monitoring, where the user is able to easily query the

current behavior of the system in terms of performance

metrics such as throughput, memory usage, etc.

4) Inter-operability

A DSMS needs to operate closely with data from a variety

of sources such as sensors, message buses, network ports,

databases, distributed caches, etc. This facility is important

because the DSMS is often used in combination with other

middleware technologies in order to implement a rich end-

to-end user experience.

F. Summary and Overview

We find that DSMSs perform very good job of

addressing these challenges, surpassing custom oriented

techniques as well as database systems, due to the following

characteristics:

 Ability to natively handle time (temporal semantics)

and support for temporal concepts such as windows.

 High-performance main-memory-based execution

 Performing incremental computation of CQ results

Thus, DSMSs are a particularly good fit for

computational finance applications. While DSMSs employ a

fundamentally different push-based or event-driven

processing model, they leverage many useful ideas from

databases (declarative querying paradigm, strongly typed

data with schema, leveraging indexes for performance, etc.).

In this paper, we provide a detailed overview of stream

processing systems from the perspective of our example

financial application, walking the user through the process

of creating and executing a complex continuous query over

temporal data (real-time or offline).

The rest of this report is organized as follows. We first

discuss the use of a DSMS for online as well as offline data

in the context of the monitor-manage-mine loop in Section

II. Then, we illustrate various aspects of using a DSMS for

computational finance, along with the capabilities and

advantages of using a DSMS, using the running example

query introduced earlier. Specifically, Section III covers the

problem of getting data into and out of the DSMS. Section

IV covers basic operators, while Section V discusses the

handling of user-provided computations. Section VI

discusses other operations such as partitioned computations

and correlations. Section VII covers several tools that are

useful supplements in a DSMS. Section VIII presents design

choices made by various DSMSs. Section IX presents a

closer look at Microsoft StreamInsight as an example

DSMS. We finally conclude the report in Section X.

II. THE MONITOR-MANAGE-MINE CYCLE

The notion of time has been very crucial in many

application scenarios across various business domains. To

better understand how time is involved in these business

domains, we conducted a survey over a wide range of

customers, both in the financial and the non-financial

domains. The survey investigates the range of time that is of

interest to a specific domain.

Present
Time of interest

Web Analytics, Ad placement,

Smart Grids, Power Utilities,

Health Care, Manufacturing

years months days hrs min sec

$ value of

analytics

Forecasting in Enterprises

Historical Trend Analysis

Figure 3. The value of time in analytics.

Going outside the scope of financial applications for a

while, (Figure 3) illustrates the outcome of the survey across

these business domains. For example, historical trend

analysis applications build models, profiles, sketches or

trends of users’ behavior, stock prices or performance

measures using years or months of historical data.

Forecasting in enterprises consider months to days worth of

data. Interestingly, some business domains are by far more

time critical where minutes and seconds make a difference.

Manufacturing is one of these domains where the failure of

a sensor-monitored production line is not tolerable.

Similarly, web analytics and online ad placement take

advantage of the current user’s behavior (up to the latest

web click) to deliver targeted ads as the user navigates the

web [1]. Most applications in health monitoring, power

utilities and smart grids require, by nature, real time or near

real-time decision making.

Now, moving back to the financial domain which is the

focus of this paper, financial applications span the entire

spectrum over the timeline. For example, building a trading

model considers years of historical data while risk

management applications detect various patterns of changes

to stock prices according to latest stock tick. It is even more

interesting, that financial recommendation systems combine

the past and the future and blend them together according to

a magic formula to deliver one piece of recommendation or

to suggest a trading action. More specifically, algorithmic

trading recommends a trading action by considering the

pattern(s) exhibited by the latest stock tick(s) as well as the

history of the monitored stock symbols. It looks up the past

history for conditions that are similar to the current ones and

predicts the future in the guidelines of the past experience.

To formalize one of the core concepts in decision making

systems or recommendation based systems, the term Key

Performance Indicator (KPI) is usually used to refer to the

values, measures, or functions that are be monitored before

a decision or a recommendation can be made. In particular,

two questions need to be answered:

 What KPIs are of interest and are descriptive with

respect to the monitored environment?

 What actions are to be taken given specific values

of the KPIs?

The answers to the above questions are domain specific and

very cumbersome. It is definitely the net outcome of years

of domain expertise that shapes the answers to these

questions. However, in the remainder of this section, we

provide an approach where DSMSs help alleviate some of

the pain involved in the design and deployment of a

decision making or recommendation based system. We first

provide some financial trends and facts learned over the past

few decades before we describe the DSMS approach in

more detail.

A. Trends and facts

On one hand, the cost of data acquisition has become

negligible thanks to the advances in hardware and software

technologies, and more specifically thanks to the advances

in communication technologies. Similarly, thanks to the

advances in massive data storage devices, the cost of raw

data storage is small and continues to decrease. On the other

hand, data processing costs are non-negligible despite the

advances in CPU technologies, cloud computing and

parallel and distributed processing. Moreover, enormous

amount of data is being acquired on a regular basis and is

possibly stored to massive storage devices. The cost of

loading such data (from storage devices) for processing and

analysis purposes is significant and continues to increase

with the increase in the data arrival rate. Therefore, although

the advances in data acquisition and in data storage devices

have been tangible, these advances resulted in large archives

of data. These archives of data keep waiting for processing

resources and are eventually held back from acquiring these

resources due to the significant cost of data loading.

Fortunately, with the ability to process data incrementally

while the data is in flight, DSMSs avoid data loading costs

and provide the ability to process the data as it is being

“streamed on the wire”. Figure 2 introduced in Section I

summarizes some of the previously-mentioned key trends

and highlights some of the DSMS advantages. More

interestingly, Figure 2 illustrates the M
3
 cycle, which stands

for “monitor-mine-mange”. This concept is widely adopted

by DSMSs to continuously monitor KPIs and to adapt to

changes in the business needs as well as to changes in the

behavior of the monitored environment. In the monitor-

manage-mine cycle, a DSMS monitors a predefined set of

KPIs, manages the application domain through a set of KPI-

triggered actions and mines for interesting patterns and

better KPIs as the system gets the opportunity to be trained

over time using the incoming streams of data. In the

following section, we elaborate on the role of a DSMS in

the monitor-manage-mine cycle in more detail.

B. A dual role and a DSMS approach

Figure 4 is a data flow diagram that illustrates the role of a

DSMS as the monitor-manage-mine cycle takes place. The

figure highlights five major steps (shown as numbered

arrows in the figure). We summarize these steps as follows:

1. Monitor and record: Real time data streams are

archived in a data store. Usually, many companies

and institutions maintain years or months worth of

data for operational and legal purposes. This step

takes place outside a DSMS to collect an archive of

historical data.

2. Mine and design: The historical data is replayed

and pushed through a DSMS to mine for

interesting patterns and to design good,

meaningful, and effective KPIs as defined by

business standards. In this “training” phase, several

KPIs are devised and tested thanks to the ease and

completeness of specification offered by DSMSs

(as described in Section 1).

3. Deploy: Out of the devised KPIs (as described in

step 2), a selected subset of KPIs are deployed over

a DSMS instance that reads real time data streams.

4. Manage and benefit: At real time, a DSMS

monitors the KPIs and manages the application

domain according to a predefined set of KPI

triggered actions. This step is termed as “manage

and benefit” thanks to low-latency high-throughput

nature of DSMS that gives the ability to invoke

beneficial actions at real time.

5. Feedback: The resultant output of the real time

processing (on the form of KPI values along the

timeline) is sent back and archived in the data

store. These KPIs values are analyzed to figure out

how descriptive this selected subset of KPIs has

been over the last deployment cycle.

Data Sources, Operations, Assets, Feeds, Stock ticks, Sensors, Devices

Monitor

&
Record

Operational

Data Store &

Archive

DSMS

f(x) g(y)

DSMS

g(y)

Results

Manage

&
Benefit

Mine

&
Design

Input

Data Streams
Input

Data Streams

Output

Data Streams

1

2

h(z)

4

5

f(x)

g'(y)
h'(z)

f'(x)

g'(y)

3

Feedback

Deploy

Figure 4. A data flow diagram for historical and real-time data through a DSMS.

Another shot of the “mine and design” phase (step 2) is

conducted to further optimize the KPIs and come up with

even more effective KPIs; and hence, the monitor-manage-

mine cycle is reinitiated.

Note that a DSMS plays a dual role in the context of the

monitor-manage-mine cycle. The DSMS is deployed over

both historical and real time data. For historical data, a

DSMS goes under a training phase to mine for interesting

patterns and to help design effective KPIs. For real time

data, a DSMS is deployed to monitor the previously

designed KPIs and to manage the environment using KPI-

triggered actions. The continuous monitor-manage-cycle

ensures adaptivity to changes in the behavior of the

underlying stream sources as well as flexibility to emerging

business requirements.

III. GETTING DATA IN AND OUT OF THE STREAMING

SYSTEM

From a ten thousand foot architectural view of traditional
database management systems (DBMSs), we notice that
DBMSs encompass two major components: a storage engine
and a query processing engine. Regardless of where the data
is coming from, the data end up being stored and indexed in
secondary storage devices, at the discretion of the storage
engine, in the “best” possible format. The query processing
engine executes subsequent queries by first loading the data
from the storage engine. The data moves from one operator
to another through the query pipeline and the result is sent
back to the query consumer. Therefore, data loading (in
traditional databases) is carried over through, and only
through, a storage engine. Also, note that both the input and

the output of a query are potentially large, yet, finite bags of
events.
With the paradigm shift in streaming-oriented workloads and
the movement towards real-time low-latency requirements,
the notion of a storage engine is getting out of the picture.
The cost to materialize the data in secondary storage devices
and to subsequently load it for query processing is a severe
barrier in front of the previously mentioned real time low
latency requirements. Moreover, the nature of the continuous
queries that run over infinite (usually high-rate) input streams
necessitate that query processing takes place and copes with
the events as they are being streamed into the system’s input
buffers. Hence, a stream query processing engine needs to
interact with the stream sources in real time and without a
storage manager. Typically, the notion of an input adapter is
used to refer to the mechanism that is used to push data from
stream sources (e.g., sensor readings, stock quotes, etc.) to
the DSMS. Similarly, and output adapter streams out the
query result from the DSMS to the query consumer.

Adapters sit on the border between stream sources and
the DSMS to moderate the communication between the two
sides. Therefore, adapters are expected to provide several
functionalities and to maintain several properties. In the
remainder of this section we summarize some of these key
functionalities and properties.

A. The Functionalities of an Adapter

An input adapter writer needs to go through several steps
to understand the properties of the stream source and to
properly stream events out of the source. The adapter
conveys the generated events to the DSMS as well the
underlying properties of the stream source for optimization
purposes. Given the fact that the output of a DSMS is a data

stream that is of similar nature to the input data stream,
similar steps are needed to write an output adapter. The
output adapter conveys the resultant stream events from the
DSMS to the sink node or to the target consumer of the
query output as well as the output stream properties.

We summarize the steps needed by an adapter writer as
follows:

Understand the format of the event. Adapters need to
understand the format of the events generated by the source
and provide a schematized format that describes the event.
For example, a stock ticker adapter might provide a stream
with a schema that contains two of fields (symbol String,
price decimal)

Augment each event with temporal attributes.
Because each event occurs at a specific point in time and
may last for a known (or an unknown) period of time, the
adapter needs to augment the schema with one or more
timestamps to denote the temporal attributes of the event.
More precisely, we can think of three formats through which
the adapter conveys the temporal information to the DSMS:

a- An event that occurs at a point in time, that is on the
form of (timestamp DateTime, symbol String, price
decimal), where timestamp denotes the point in time
at which the stock price is reported. Events
represented by this format are usually referred to as
point events.

b- An event that spans an a priori known period of
time, that is on the form of (Vs DateTime, Ve
Datetime, symbol String, price decimal), where Vs
and Ve are the start and end times of the validity
interval over which the reported stock price has been
valid, respectively. Events represented by this format
are known as interval events.

c- An event that spans an a priori unknown period of
time, where the event is represented by two signals:
(Vs DateTime, symbol String, price decimal) denotes
the time the event starts. Later on, another signal
comes on the form of (Ve DateTime, symbol String,
price decimal) to denote the end of the interval once
information about the end time becomes available.
Events represented by start/end signals are referred
to as “edge events”.

A stock tick is an example of point events as it ticks at a
specific point in time. Alternatively, the stock price may be
viewed as interval event that spans the duration in between
two ticks. Finally, the intent of a customer to “sell” stocks
for a certain price is an edge event. The event starts as soon
as the transaction is placed. The end time is not known in
advance. The event remains open till the point in time the
sell transaction takes place. This is when the end of the event
can be signaled.

Handle out-of-order and retraction events. Adapters

communicate to the DSMS whether or not the events in the
stream are coming in the order of their timestamps. Also,
adapters interrogate the source for stability guarantees.
Stability guarantees tell whether a generated event is final or
it can be retracted and its value is altered later on. If late
arrivals or retractions are expected from the input source, the

adapter should be able to generate punctuations to denote
stability guarantees and insert these punctuations in the input
stream. Consequently, the DSMS uses these punctuations to
provide correctness and stability guarantees on the generated
output.

Understand the delivery model of the streaming
source (push versus pull based). Depending on how source
data arrives and interfaces provided by the DSMS system, an
adapter might use a pull-based or a push-based model.
Usually, real time events are pushed asynchronously while
historical events are pulled synchronously. When pushing
data to DSMS, adapter might have to negotiate the
acceptable event rate with the DSMS (through control flow
APIs) if the event rate exceeds DSMS’s processing
capabilities.

Push computations as close to the source as possible.
DSMS’s might optimize computations by filtering and
reducing the data, as early as possible in the computation
pipeline. The earliest possible stage would be the input
adapter, thus a good adapter should have a way to negotiate
filter and project pushdowns as close to the sources as
possible. Note that this step is specific to input adapters and
does not apply to output adapters.

B. Adapter-level High Availability and Scalability

Besides the previously mentioned functionalities of
adapters, there are two desirable properties adapters are
expected to hold for robust deployment. First, an adapter is
expected to be highly available and has the ability to interact
with a highly-available DSMS. Note that having an adapter
that is highly available on its own is a separate issue from the
ability to interact with highly-available system. On one hand,
a highly available adapter is an adapter that is resilient to
failures (e.g., network failures) and has the ability to resume
once the failure is over. On the other hand, highly-available
DSMS have the ability to recover from failures. However,
such recovery is not feasible without the help of input/output
adapters. To recover from a failure, the DSMS may request
the input adapter to replay portions of the input streams that
have been previously submitted to the system and that got
dropped due to an unexpected failure. Moreover, the DSMS
may request the output adapter to rip out portions of the
output streams that have been partially generated but
abruptly interrupted due to the failure.

Second, an adapter is expected to be performant and to
support the interaction with scalable DSMSs. A performant
adapter is an adapter that does not stand as a bottleneck in
the course of the continuous query execution. Multi-
threading, buffering and stream multiplexing are example
techniques adapters utilize to achieve high performance. In
addition to being performant on their own, adapters should
promote scalability to achieve high performance in large
scale systems. Hence, adapters are expected to communicate
with scalable DSMSs. In this situation, adapters are expected
to partition the input streams and feed them to multiple nodes
(each node is running an instance of the DSMS) and, later
on, collect the output streams and merge them back to
reconstruct the output stream.

C. Built-in versus Custom Adapters

To ensure that adapters meet a minimum level of quality
and to help developers write their own adapters, commercial
DSMSs deliver a set of built-in adapters for widely used data
sources and provide a mechanism for third-party vendors to
build domain specific adapters. Example input adapters
include modules to replay data from storage media (e.g., text
files, event logs, or databases) and feed them to the DSMS in
the form of streams. Also, an input adapter that reads live
data from a web service is another interesting example.
Output adapters compliment the process by providing a
mechanism to stream the query output to text files, event
logs, databases, or web services. More interestingly, some
output adapters visualize the data graphically in a way that
captures the trend and the intrinsic properties of the stream.
Section VII provides example adapters for visualization
purposes provided as part of commercial DSMS.

IV. BASIC STREAM OPERATIONS

Now that the stock data is available in our system, we are
ready to write some queries. Whenever we design a query,
we begin with a clear statement of the query in English:

Q1 : Select all stock quotes for the ticker symbol
“MSFT”, removing the unnecessary ticker symbol
information in the output.

In order to clearly understand the semantics of this query in
precise, streaming terms, we provide example finite input
and output tables:

StockTickerInfo:

Timestamp Symbol Price

0 MSFT 25.00
0 IBM 110.00
1 MSFT 25.03

SelectQuery:

Timestamp Price

0 25.00
1 25.03

While the tables above are finite, none of the streaming

operations we perform on the data assume finite data. Rather,
we use this finite example as a way to drive understanding of
the operations we wish to perform on our stream. Note that
we are assuming that all stock readings are point events.
Queries like these may be implemented using filter and
project operations, where each event in the table is subjected
to a test in the form of a boolean predicate. If the test passes,
the event is retained, and a subsequent project removes the
unnecessary ticker symbol information in the output.

Our next query is stated as follows:

Q2 : Take the output signal produced by FilteredStream,
and smooth it by reporting a 3 second trailing average
every second.

For exposition purposes, assume that the lifetime units
are seconds. The following are example input and output
streams:

FilteredStream:

Timestamp Price

3 18.00
4 24.00
5 18.00
6 30.00

SmoothedStream:

Timestamp Price

3 18.00
4 21.00
5 20.00
6 24.00
7 24.00
8 30.00

There are some interesting properties of the above table.

First, there are no implicit zero values in the stream.
Therefore, as we consider trailing averages prior to time 5
and after time 6, there are fewer than 3 readings used to
calculate the average.

Computations like these may be modeled using the
powerful windowing capability. One way to model this
computation is using hopping windows, which group events
together into buckets using two parameters. The first
parameter, window size, determines the duration of time
which each bucket corresponds to. In this case, since we
have a trailing average of 3 seconds, we want to aggregate 3
seconds worth of data with each result, so the window size is
3 seconds. The second parameter is the hop size, which
specifies how often these buckets are created along the
timeline. In this case, since we are reporting every second,
the hop size is 1 second.

A 3 second hopping window with a 1 second hop will
create windows along the timeline in the following manner:

24.00 30.0018.00

Time1 2 3 4 5 6

18.00

18.00

18.00

18.00

24.00

24.00

24.00

18.00

18.00 30.00

A hopping average computed with the above hopping
window will produce, for each window above, an event
whose lifetime is the lifetime of the associated window, and
which averages the data whose lifetime intersects the
window definition. Note that since all time intervals are
inclusive of the start time, and exclusive of the end time, the
first window which contains actual data is the one which
starts at time 1, which includes only the first data point (at
time 3).

V. PERFORMING CUSTOM COMPUTATIONS

A DSMS provides a toolbox of “off-the-shelf” operations

that are common across business applications. Very often,

this toolbox is sufficient for the most common application

requirements. However, it is natural for each business sector

to have unique demands that are specific to its business

logic. Business logic is the outcome of domain expertise in

a specific sector over years. It is hard to expect that a single

platform can out-of-the-box cover domain expertise in

different domains. Thus, for broad applicability, a DSMS is

expected to have an extensibility mechanism that can

seamlessly integrate domain-specific business logic into the

incremental in-memory streaming query processing engine.

A. Design of an Extensibility Mechanism

As shown in Figure 5, there are three distinct entities

that collaborate to extend a streaming system. The user

defined module (UDM) writer is the domain expert who

writes and packages the code that implements domain-

specific operations as libraries. The query writer invokes a

UDM as part of the query logic. A query is expected to have

one or more UDMs wired together with standard streaming

operators (e.g., filter, project, joins). Note that multiple

query writers may leverage the same existing repository of

UDMs for accomplishing specific business objectives. The

extensibility framework is the component that connects the

UDM writer and the query writer. The framework executes

the UDM logic on demand based on the query to be

executed. Thus, the framework provides convenience,

flexibility, and efficiency for both the UDM writer and the

query writer.

B. An example UDM for pattern matching

As a concrete example, we discuss how one can

implement a UDM that allows complex pattern matching

over event streams. We assume that the user specifies the

pattern to be matched in the form of a non-deterministic

finite automaton (NFA). In order to support complex chart

patterns, we add the concept of a register that consists of

added runtime information associated with the automaton

during transitions. We call such an augmented pattern

matching specification as augmented finite automaton

(AFA). The automaton consists of directed acyclic graph of

states, including a start state and a set of final states. The

states are connected by arcs or transitions, each of which is

associated with a fence function (to determine if the arc can

be triggered by an incoming event) and a transfer function

(to compute the new value of the register in case the arc can

be triggered). Both these functions have two input

parameters: the new event and the current register value.

Assume we are currently in state X with register value

R. If a new event arrives, we evaluate the fence function for

each outgoing arc (from state X) to test whether that arc can

be traversed due to the event. If yes, we would evaluate the

transfer function to compute the new register R’ associated

with the destination state X’. If the X’ is a final state, we

produce an output event indicating a successful pattern

match. For more details on AFA, the reader is encouraged to

look at our paper [2]. In the next subsection, we will show

how a complex chart pattern can be specified using AFA.

The AFA pattern matcher can be implemented as a

UDM that can be reused by multiple query writers for

matching different patterns. The query writer defines the

actual automaton, and provides this AFA as input to the

UDM. The UDM receives events from the system. For

every event, the UDM performs some computation, updates

its internal state, and optionally produces output events.

Note that the query writer can use the UDM in a similar

fashion as the native operators, combining it with

windowing, selections, and other stream operations.

C. Example: Chart Patterns over Smoothed Stock Stream

Q3: Detect the head & shoulders chart pattern over the

stock stream for MSFT, over a ten-minute window.

Consider the smoothed stock stream in our running

example. The query writer uses the AFA UDM to detect the

head & shoulders chart pattern, where we look for a trading

pattern that starts at price p1, moves up to local maximum

p2, declines to local minimum p3 > p1, climbs to local

maximum p4 > p2, declines to local minimum p5 > p1, climbs

again to local maximum p6 < p4, and finally declines to

below the starting price p1. An example of such a pattern is

shown in Figure 6.

Figure 6: The head & shoulders chart pattern

We can use the AFA of Figure 7 to detect this pattern,

where we use three registers <r1, r2, r3> to track the prices

p1, p2, and p4 respectively. In the figure, each arc in the

automaton is annotated with the fence function and the

transfer function (separated by a semicolon). State q0 is the

start state, while q7 is the final state in the automaton. Stock

upticks and downticks events are represented as up(e) and

down(e) respectively. For example, the arc a2 checks if we

see a stock uptick; if yes, we store the current stock price

(p2) in register r2, for later comparison within arc a6.

CQ +
app

UDM
repository

UDM
writers

Data Stream
Management

System

Query
writers

Output
- dashboard
- file
- other

Figure 5: Entities in an extensible streaming solution for a domain.

Stream data
input

Figure 7: The head & shoulders chart pattern

VI. PARTITIONED COMPUTATIONS, CORRELATIONS, AND

ANTI-CORRELATIONS

In our examples so far, we are performing operations on
an individual stock. In many cases, we wish to perform
operations like these for each stock in the stock universe. For
these types of operations, we use group and apply, which
applies some stream valued function to partitions of a stream
according to some partitioning function. We now write a
query which applies the head and shoulders pattern detector
to each stock in the stock universe:

Q4: For each unique ticker symbol, detect the occurrence
of the head & shoulders chart pattern of query Q3.

… IBM MSFT Partition Union

MSFTMSFT

….….

IBM

… IBM MSFT

The first part of this query partitioned the incoming stock

ticks by the ticker symbol. The second part applies, to each
of these partitions, our head and shoulders pattern matcher.
The output of this query is all the outputs produced for each
partition combined together into one unioned output stream.

This seemingly simple operation is surprisingly powerful
in practice, and is leveraged to achieve high utilization of
multiple cores.

So far, all of our queries have been queries over single

streams of input. We now introduce a query that brings
together two clearly different sources of data:

Q5: For each stock on a dynamic “white list”, determine
all occurrences of the head & shoulders chart pattern.

In addition to our stock ticker data, we now have another

stream which describes the set of stocks which are being
monitored at a particular time. Each event in this stream will
have a ticker symbol and associated lifetime. For instance,
the following is a valid white list stream (WhiteListStream):

Vs Ve Symbol

0 4 MSFT
4 7 IBM
5 7 MSFT

The above white list tells us that we will search for our
head and shoulders patterns for Microsoft using data from
time 0 to time 10, IBM from time 2 to time 20, and
Microsoft again, but at the later time interval of 20 to 100.

To achieve the desired effect, we will join the above
white list with the raw ticker data. Join takes two input
streams, and correlates the events between them in the
following way: Events on each side are matched to events on
the other side whose lifetimes intersect, and for which a join
condition involving the events from both sides holds. For
each matching pair of events, an output is produced whose
lifetime is the intersection of the input lifetimes, and whose
payload combines the information from the two matching
events.

IBM
$$.$$

MSFT
$$.$$

IBM
$$.$$

ORCL
$$.$$

MSFT
$$.$$

Time1 2 3 4 5 6

MSFT IBM

ORCL
$$.$$

MSFT
$$.$$

0

StockTickerInfo

MSFT

WhiteListStream

MSFT
$$.$$

IBM
$$.$$

MSFT
$$.$$

1 2 3 4 5

MSFT
$$.$$

0

For instance, if we join WhiteListStream and

StockTickerInfo, and specify a join condition which matches
the Symbol fields, the output is the filtered set of point
events from StockTickerInfo which occurred during a
matching lifetime specified in the WhiteListStream.

While the query above returns all stock tick info which
conforms to our white list, we can also easily remove stock
tick info using a black list. For instance, consider the
following query:
Q6: For each stock not present in a dynamic “black list”,
determine all occurrences of the head & shoulders chart
pattern.

Given a BlackListStream with a schema which is
identical to the WhiteListStream, we could apply our black
list by replacing join with an anti-semi-join operator. Anti-
semi-join is used to detect the absence of information, and
can also be used to detect the non-occurrence of an event.

VII. SOFTWARE TOOLS

DSMSs are expected to be equipped with powerful engines

that provide the necessary processing capabilities for real

time data streams. The low-latency and high throughput

aspects of these stream processing engines have been

discussed throughout the sections of this paper. In this

section, we describe some software tools that complement

the processing capabilities of DSMS engine and provide

smooth development and deployment experience of

streaming applications. In this section, we focus mainly on

programmability, manageability and visualization tools.

A. Programmability Tools

Programmability tools enable developers to write, test and

debug queries. With the continuous nature of streaming

oriented workloads, debugging a continuous query becomes

a challenge compared to ad hoc or snapshot queries in

traditional database systems. Moreover, the temporal

attributes of incoming events pose a major challenge in

determining the validity of the results under diverse and

dynamic stream behavior. Hence, a tool is needed to

facilitate the debugging and the tracing of events as they

flow in the pipeline of the continuous query.

Note that there are fundamental differences between a

control flow debugger of a programming language (for

example, a C# or C++ debugger) and an event flow

debugger in DSMSs. In control flow debugging, the

developer "builds" a program written in a specific language

in debug mode, enables breakpoints at specific statements or

junctions in the control flow of the program, "runs" the

program until these specific breakpoints are hit, reasons

about the code and the state of the system, steps into or over

functions and procedures, watches variables and so on until

the completion of execution. Temporal reasoning of data

variables (that is, analyzing the transformation of these

variables through the passage of time) is limited or non-

existent.

In contrast, event flow debugging traces an event through

the passage of time, as it proceeds from one operator in the

query to the next. Here, debugging involves understanding

the effect an event has on the stream and how new events

are generated as a result of the computations. The emphasis

in event flow debugging is on how the operator’s semantics

(Filter, Project, Join, Aggregate, and so on) affect the event,

rather than on the (control flow) execution of the operators

themselves.

B. Manageability tools

Managing the state of a DSMS involves tracking the overall

health of the system and measuring the performance of

running queries. Maintaining statistics that show the number

of events produced/consumed by the system as well as CPU

and memory usages help diagnose problems and

troubleshoot the system in a timely manner. It also helps for

resource planning and load balancing.

It is worth mentioning that maintaining statistics over fine

grained granularities can be very costly in the resource

intensive environment of streaming applications. Statistics

are usually aggregated by time (e.g., hour, day, week, etc)

and/or by query components. For example, component-level

statistics are maintained at the operator level, query level, or

even aggregated to the entire system level.

C. Visualization Tools

Visualization tools are utilized for different purposes in the

context of DSMSs. Yet, we summarize three major uses of

visualization tools in this section. First, some DSMSs offer

UI-based tools to compose queries graphically in a drag and

drop fashion. Operators are represented as boxes while the

flow of events among these operators is represented by

arrows. Second, some DSMSs offer tools to visualize the

query plans of queries that are being executed along with

running statistics over each query component. Last but not

least, there are visualization tools that enable users to

monitor the data streams or aggregations/summaries over

the data streams at real and compare them against each other

and against historical data.

VIII. CHALLENGES AND CHOICES IN EXISTING DSMSS

In this section, we dive into some of the more important and

fundamental issues that a DSMS needs to solve, and discuss

how various systems and research proposals have chosen to

architect their solutions to address these issues. Our

subjective analysis is not intended to comprehensively cover

all choices in the commercial market, and is primarily

intended to demonstrate some variety of choices, along with

the strategies adopted by different systems. In Section IX,

we will take a closer look at solutions adopted by Microsoft

StreamInsight.

A. Range of Stream Processing Systems

We are seeing a wide range of DSMS offerings in both

research and commercial domains. The Stanford STREAM

project [6] was one of the earlier stream processing systems

proposed in the academic community; the Oracle CEP [10]

engine [10] mostly follows STREAM’s execution model.

Another academic prototype named Aurora/Borealis [5] was

later commercialized as the StreamBase [4] product. Coral8

(now acquired by Sybase CEP) is a popular DSMS, whose

model is different from both Oracle CEP and StreamBase.

Esper is yet another offering that focuses mostly on complex

pattern detection over streaming data. The CEDR project [3]

from Microsoft Research proposed a temporal algebra

inherited from relational algebra and motivated by early

research on temporal databases. Microsoft StreamInsight [1]

uses an underlying execution model that is derived from this

research. IBM InfoSphere Streams [8] is yet another streams

offering whose roots are from the System S research project

at IBM Watson Research.

B. Application time vs. System time

Most stream processing systems consider time as a

“first-class citizen”, and offer native constructs such as

temporal correlations (joins) and windows that allow

operations over well-defined subsets of time (systems such

as IBM InfoSphere Streams do not mandate time-oriented

computations but can support them if needed by the

application). StreamBase associates windows with

operators, whereas systems such as StreamInsight associate

window semantics with events, in the form of event lifetime

which denotes the period of time during which an event

contributes to output. An advantage of associating lifetimes

with events is that it naturally fits into the intuitive

definition of when an event is active, and also allows

windowed operations to fit well into a temporal algebra (we

discuss this in detail later).

The traditional notion of time is implicitly the system

time at which the DSMS receives or processes events –

indeed the first generation of streaming systems such as

Stanford STREAM and Aurora used system time for

defining and computing windows. This choice has carried

over to some commercial streaming systems such as Esper.

Some streaming systems offer the ability to use and operate

over timestamps specified by the application, called

application time. StreamBase uses application time, but re-

assigns application time to events based on the current

system time. Such use of system time during stream

processing has the potential of producing varying results

across runs, for the same input dataset and query.

There are many advantages to separating application

time (timestamps provided by the application and contained

within the event) from system time (the time at which the

DSMS receives or processes events), and further ensuring

that all computations are deterministic in terms of

application time. For example, it allows repeatable results

regardless of when the DSMS processes the input, and how

long individual operators take to process individual events.

This helps query writers in understanding and reasoning

about the operational semantics of the system, and can also

enable easy debugging.

C. Execution Model, Semantics, and Algebra

The semantics of query specification and how/when

output is produced varies across systems. For example, in

Oracle CEP and Coral8, an operator (such as moving

average) result is produced whenever the window content

changes (e.g., when an event gets added or removed from

the window). On the other hand, StreamBase produces

result events every pre-determined period of time (e.g.,

every second) regardless of when actual events enter or exit

windows. The systems also differ in whether they report

only when windows end or otherwise. Further, Coral8

supports an atomic bundling mechanism, using which we

can simulate either tuple-driven output or time-driven output

by simply controlling the content of each bundle/batch.

Reference [12] gives a good overview of the range of

different semantics and execution models across systems.

Microsoft StreamInsight recognizes and gives primary

importance to semantics-related issues. One design goal for

StreamInsight has been to ensure deterministic well-defined

semantics for streaming queries. StreamInsight incorporates

an underlying temporal algebra that treats events as having

lifetimes, and query output as a time-varying database over

the set of events. Application times, and not system time, is

used to define operational semantics. The output at any

given application time T is the result of applying the query

semantics to the set of events that are “alive” at time T, i.e.

all events whose lifetimes contain time T.

D. Event Types

Recall the basic event types of point, edge, and interval (see

Section II). Most commercial systems support only point

events. In systems like STREAM, there is indirect support

for edge events using the concepts of Istreams (insert

streams) and Dstreams (delete streams) which correspond to

start and end edge events. Each of these event types can be

represented in Microsoft StreamInsight using events with

lifetimes. In case of edge events, a start edge corresponds to

an interval with infinity as endpoint, while an end edge sets

the right endpoint to the correct value. Point events in

StreamInsight are simply intervals with the right endpoint

set to the left endpoint plus a chronon – the smallest

possible time unit.

Interestingly, StreamInsight leverages its temporal

algebra for testing the DSMS internally – a SQL Server

database system is used to compute the expected output,

which is compared with actual output to detect bugs in the

DSMS engine (see [13] for details).

E. Query Specification

We see a remarkable diversity in languages and

specification techniques in the streams community, that we

overview and summarize in this subsection.

The first streaming systems derived from databases, and

thus inherited the use of SQL as the specification language.

For example, the Stanford STREAM project proposes CQL

(Continuous Query Language), which is a variant of SQL

with windowing primitives. Commercial offering such as

Oracle [10] and StreamBase [4] have followed this trend,

offering variants of a language called StreamSQL (although

convergence between the semantics is still an issue [9]).

While SQL-like queries may appeal to users coming to

the streams world from a database background, one problem

with this approach is the need for the application to

construct query statement strings within the application and

“hike them over the wall” to the DSMS for processing. This

disconnect can affect the ease of entry into smoothly

integrating stream processing into an end-to-end application.

IBM InfoSphere Streams uses an Eclipse-based

integrated development environment, with a language called

SPADE (Stream Processing Application Declarative

Engine). Systems like Esper propose their own event

processing language with constructs for pattern matching.

Microsoft StreamInsight uses the .NET and Visual

Studio development environment for writing streaming

applications, with the use of LINQ [11] for queries, with

added temporal concepts for temporal specifications (e.g.,

windows). In this environment, the application writer gets

the full power and flexibility of an integrated environment

with facilities such as code correction and auto-complete

while composing streaming queries. We discuss

StreamInsight in detail in Section IX.

F. Disorder and Revisions in Streams

Events typically arrive at the DSMS in non-decreasing

timestamp order. However, there may be several reasons for

events to arrive out-of-order – due to network delays and

varying packet routes, merging streams from different

sources, etc. Most commercial systems handle disorder by

assuming that events are buffered and re-ordered before

entering the DSMS. However, this approach has limitations:

it is difficult to predict the amount of disorder and hence

buffering, and we may need to unnecessarily wait for a long

time for late arrivals, even if there is no disorder in the

stream.

Microsoft StreamInsight can internally operate directly over

disordered data. The basic idea is that at any given time, it

produces the best-effort result given the current set of events

that have been delivered to the DSMS. If an event arrives

late, it is incorporated into computations and the DSMS

produces “revision” events to indicate a change in the actual

result. This fits well with the temporal algebra, where at any

given point in time, the DSMS result matches the expected

output assuming we had seen everything in the input stream.

However, such a solution needs some notion of progress

of time – for guaranteeing correctness of delivered output as

well as for cleanup of internal state. This is achieved by

using CTI (Current Time Increment) events. CTI events

(also called punctuations) are associated with an application

time T, that guarantee that no future event will have a

timestamp earlier than T.

A similar concept exists in other systems, for the

purpose of synchronizing system time with application time,

such as heartbeats in STREAM, TIMEOUT in StreamBase,

and MAXDELAY in Coral8.

G. Native Operations and Extensibility

Given the diverse application domains where DSMSs

are deployed, there is a strong need for a rich yet efficient

set of extensibility mechanisms in the DSMS. For example,

IBM InfoSphere Streams allows the ability to extend the set

of built-in operators with user-defined ones, programmable

in either C++ or Java. Microsoft StreamInsight incorporates

a rich extensibility framework, giving application writers

the flexibility to either re-use existing libraries or write new

operators specifically for streaming environments. A range

of windowing constructs and support is provided to users of

this framework. User-defined operators can be written in

any .NET language such as C#, and fits nicely into the

single Visual Studio-based programming environment.

H. Query Composition

It is necessary for a DSMS to allow the composition of

queries by allowing new queries to re-use the results of

existing queries. Most DSMSs allow some form of

composition. Aurora uses a boxes-and-arrows style query

construction technique that can be used for query

composition. IBM InfoSphere Streams uses SPADE to

support modular component-based programming. Microsoft

StreamInsight supports dynamic query composition, where

queries can re-use prior published stream endpoints.

IX. MICROSOFT STREAMINSIGHT – A CLOSER LOOK

Micrrosoft StreamInsight is Microsoft’s commercial DSMS
that currently ships as a part of SQL Server 2008 R2. The
StreamInsight data and execution model and programming
surface is carefully designed to solve the challenges

discussed in this report. In this section, we walk through the
process of writing and executing queries in StreamInsight.

A. Getting data into the DSMS

StreamInsight applications are written using Visual Studio.

Thus, events types are simply classes or structs. For

example, we may define a stocks event type as:
struct StockEvent {

 string Symbol;

 float Price;

}

The adapter developer writes input and output adapters. The

input adapter reads data from the source and converts them

into a stream of events of type StockEvent. Once the

data has been defined and pulled in from the external

source, we can write the streaming query logic (discussed in

the next subsection) over this typed input stream. Finally,

the output adapter reads the result stream and delivers it

back to the application, for example using a graphical

dashboard, on a console, or to a file on disk. StreamInsight

supports a variety of adapter types, and a rich flow control

model to control the buffering of events in the DSMS.

B. Writing a Continuous Query in LINQ

StreamInsight queries are written in LINQ [11]. Our LINQ

query for selecting events pertaining to a particular stock (M

SFT) is written as follows (query Q1):

var filteredStream =
 from e in StockTickerInfo
 where e.Symbol == “MSFT”
 select new (Price = e.Price);

This query has 3 sections. The first section, the from clause,

specifies that this query will process events from the

StockTickerInfo stream. For each of these events e, we

apply the filter specified in the where clause, which retains

events where the ticker symbol equals MSFT. The select

line says that the output of the query is a stream of events

with one payload column, Price, and that Price is passed

along unmodified from e.Price. We associate with the

output stream, the variable FilteredStream.

Next, we wish to smooth the filtered stock stream, in order

to report a 3 second trailing average every second (query

Q2). This operation is performed using the following query.

var hoppingAvg =
from w in filteredStream.HoppingWindow
 (TimeSpan.FromSeconds(3),
 TimeSpan.FromSeconds(1),
 HoppingWindowOutputPolicy.ClipToWindowEnd)
select new { SmoothedPrice =
 w.Avg(e => e.Price) };

Therefore, the output of this hopping average is very
close to our desired output. The only difference is that the
output lifetimes aren’t quite right. More specifically, we need
to shift the output start times forward 2 secs, and reduce the
lifetime to a chronon (instead of the 3 sec window
description). This may be accomplished with an
AlterEventLifetime, which modifies the lifetime of each
event in the stream with two functions. The first function
modifies the event start time, while the second modifies the
event duration. The following query computes the final
smoothed output for our query.

var correctedHoppingAvg =
hoppingAvg.AlterEventLifetime
 (e => e.StartTime+TimeSpan.FromSeconds(2),
 e => TimeSpan.FromTicks(1));

Note that the above query does not have a from clause.

Some operations, like AlterEventLifetime, operate on
streams, not events. As a result, these operations may be
applied anywhere where a stream is required, including in
the from clause of a query, which would apply the operation
to the input before being processed by the rest of the query.

Another noteworthy feature of the above query is the use
of lambda expressions (e => etc…), which is a notation for
defining functions within an expression. Each of these
functions takes as input an event e. The first function
computes, from this e, the new valid start time. The second
function computes, from this e, the new event duration.

Next, assume that we wish to detect the head &

shoulders chart pattern over a tumbling window of 10

minutes (query Q3). A non-incremental version of an AFA-

based user-defined module (UDM) for StreamInsight is

available at the StreamInsight blog [7]. We can write the

AFA specification for the head & shoulders chart pattern

depicted in Figure 7, and invoke our AFA UDM (called

AfaOperator) using the LINQ query shown below:

var HSPattern =
from w in filteredStream.HoppingWindow
 (TimeSpan.FromMinutes(10),
 HoppingWindowOutputPolicy.ClipToWindowEnd)
select w.AfaOperator(HeadShoulderPattern);

Next, in order to detect the pattern for every unique stock
symbol in a stream with quotes for multiple stocks (query
Q4), we perform a grouping operation called Group&Apply
(by stock symbol) using the following LINQ queries:

var EachHeadAndShoulders =
 from e in StockTickerInfo
 group e by e.Symbol;

var AllHeadAndShoulders =
 EachHeadAndShoulders.ApplyWithUnion(
 applyIn => HeadAndShoulders(applyIn),

 e => new {
 e.Payload,
 e.Key });

Finally, if we wished to limit pattern detection to only
stock trades pertaining to a “whitelist” of stocks that we are
interested in tracking (query Q5), we need to perform a join
operation with the whitelist stream, before feeding the stock
quotes to the grouping queries above. This is written in
LINQ as follows:

var InterestingStream =
 from e1 in StockTickerInfo
 join e2 in WhiteListStream
 on e1.Symbol equals e2.Symbol
 select new { Symbol = e1.Symbol,
 Price = e1.Price }

Now that we have selected all the desired stock
information using our white list, we may apply our other
query logic to the reduced ticker stream to achieve the
desired results.

While the query above returns all stock tick info which
conforms to our white list, StreamInsight can also easily
remove stock tick info using a black list (query Q6). For
instance, given a BlackListStream with a schema which is
identical to the WhiteListStream, we could apply our black
list using the following LINQ query:

 var InterestingStream =
 from e1 in StockTickerInfo
 where (from e2 in BlackListStream
 where e1.Symbol == e2.Symbol
 select e2).IsEmpty()
 select e1;

The above query, for each event in StockTickerInfo, tries

to join it to the BlackListStream. If the event from
StockTickInfo doesn’t join to any event in BlackListStream
(the join result is empty), the event from StockTickerInfo is
output. This query construct is called anti-semi-join, and was
discussed briefly in Section VI.

Note from this example that StreamInsight queries are
fully composable. Further, using a facility called dynamic
query composition, one can publish/feed the result of one
query, so that it can be re-used as the input to several another
separately issued queries.

C. Software Tools in StreamInisght

Figure 8 gives a snapshot of an example event flow

debugger, the Microsoft StreamInsight Event Flow

Debugger, which is an event trace-based debugging tool to

trace events and to keep track of their effect on the resultant

output stream. The debugger illustrates the query plan

graphically and visualizes the movement of events across

operators as the query is executed. The debugger gives users

the ability to pause and resume execution as well trace the

effect of a single event in the output.

For query plan visualization purposes, Microsoft

StreamInsight Event Flow Debugger (Figure 8) connects to

the DSMS and visualizes all running query plans

graphically. Meanwhile, for manageability purposes,

Microsoft StreamInsight Event Flow Debugger (Figure 8)

serves as a vehicle for exposing operator-level, query-level

and server-level statistics to the user. These statistics are

referred to as “diagnostic views” given the fact that these

statistics are used to diagnose the state of the system and its

running queries.

Figure 8: Microsoft StreamInsight Event Flow Debugger.

As an example, Microsoft StreamInsight provides an output

adapter that continuously sends the output stream events to a

Microsoft Excel sheet. Excel-based output adapters leverage

all the visualization tools offered by Microsoft Excel.

Moreover, Microsoft StreamInsight provides a Silverlight-

based output adapter that enables output streams to be

visualized from a web browser as shown in Figure 9. In the

figure, streams of stock prices of various stock symbols are

being visualized in real time. The combined value of

programmability, manageability and visualization tools

enable developers and administrators to take full advantage

of the capabilities of DSMSs.

X. CONCLUSIONS

In this report, we motivated the need for considering a new

form of continuous data processing for computational

finance. We introduced data stream management systems

(DSMSs) as a general middleware for processing and

Microsoft StreamInsight

Figure 9: Microsoft StreamInsight Sliverlight based output adapter.

issuing long-running queries over temporal data streams.

We detailed the unique challenges that DSMSs need to

tackle, and showed how these challenges are addressed in

the context of a running end-to-end example application in

the financial domain. Given the inherent temporal nature of

data in computational finance, our belief is that DSMSs are

a perfect fit for many applications over both streaming data

as well as offline data archived for historical analysis.

XI. ACKNOWLEDGMENTS

We would like to thank the Microsoft StreamInsight team

for nominating us to represent the team and supporting us in

preparing this report.

REFERENCES

[1] Mohamed Ali et al.: Microsoft CEP Server and Online Behavioral
Targeting. In VLDB 2009.

[2] B. Chandramouli, J. Goldstein, and D. Maier. High-Performance
Dynamic Pattern Matching over Disordered Streams. In VLDB 2010.

[3] Roger S. Barga, Jonathan Goldstein, Mohamed Ali, and Mingsheng
Hong. Consistent Streaming Through Time: A Vision for Event
Stream Processing. In CIDR, 2007.

[4] StreamBase. http://www.streambase.com/

[5] D. Abadi et al. The design of the Borealis stream processing engine.

[6] In CIDR, 2005.Arvind Arasu, Shivnath Babu, Jennifer Widom: CQL:
A Language for Continuous Queries over Streams and Relations.
DBPL 2003: 1-19

[7] Pattern Detection with StreamInsight. http://tinyurl.com/2afzbhd.

[8] IBM InfoSphere Streams. http://www.ibm.com/software/data/
infosphere/streams/

[9] N. Jain et al. Towards a streaming SQL standard. In VLDB, 2008.

[10] Oracle. http://www.oracle.com/

[11] Language Integrated Query (LINQ). http://msdn.microsoft.com/en-
us/netframework/aa904594.aspx

[12] I. Botan et al. SECRET: A Model for Analysis of the Execution
Semantics of Stream Processing Systems. In VLDB 2010.

[13] A. Raizman et al. An Extensible Test Framework for the Microsoft
StreamInsight Query Processor. In DBTest 2010.

