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Abstract

Recent work by Krawczyk [13] and Menezes [17] has highlighted the importance of under-
standing well the guarantees and limitations of formal security models when using them to prove
the security of protocols. In this paper we focus on security models for two-round authentic
key exchange (AKE) protocols. We observe that there are several classes of attacks on AKE
protocols that lie outside the boundary of the current class of security models. In an attempt
to bring these attacks within the scope of analysis we extend the Canetti-Krawczyk model for
AKE security by providing significantly greater powers to the adversary. We then introduce a
new AKE protocol called NAXOS and prove that it is secure against these stronger adversaries.

1 Introduction

In this paper we extend the Canetti-Krawczyk [10, 13] security model for authenticated key ex-
change (AKE) to capture all possible attacks resulting from ephemeral and long-term data com-
promise. Our security model for authenticated key exchange is defined in the spirit of Bellare and
Rogaway [4] and Canetti and Krawczyk [10] by an experiment in which the adversary is given many
corruption powers for various key exchange sessions and must solve a challenge on a test session.
We extend adversarial capabilities to the following extent: the only corruption powers we do not
give an adversary in the experiment are those that would trivially break an AKE protocol. We also
define a new AKE protocol which is secure in our new model.

More specifically, in an authenticated key exchange protocol, two parties exchange information
and compute a secret key as a function of at least four pieces of secret information: their own
long-term and ephemeral secret keys and the other party’s static and ephemeral secret keys. Of
the four pieces of information, we allow an adversary to reveal any subset of the four which does
not contain both the long-term and ephemeral secrets of one of the parties. To explain this more
precisely, we divide AKE test sessions (sessions which are subject to attack by an adversary) into
two types. Let A and B be the participants of the test session. In sessions of the first type (“passive”
sessions), the adversary does not cancel or modify communications between the two parties. In
sessions of the second type (“active” sessions), the adversary may forge the communication of the
second party. Another way to phrase the distinction, as done by Krawczyk in the analysis of the
HMQV protocol [13], is whether the adversary actively intervenes in the key exchange session or is
a passive eavesdropper.

In addition to distinguishing between passive and active sessions, we identify which pieces of
secret information the adversary can reveal without being able to trivially break the AKE protocol



(compute the session key for any AKE protocol). In both types of sessions, if an adversary can
reveal the long-term and the ephemeral secret keys of one of the parties in the session, then the
adversary can trivially compute a session key as it has all the secret information of one of the
legitimate parties in the session.

For passive sessions, an adversary may reveal both ephemeral secret keys, both long-term se-
cret keys, or one of each from the two different parties without trivially breaking the protocol.
For example, Krawcyzk [13] defines weak Perfect Forward Secrecy (wPFS) to be security against
revelation of both long-term secret keys after the session is completed (without active adversarial
intervention in the session establishment).

For active sessions, the adversary may forge communications from one of the parties. Thus, if
the adversary can also reveal the long-term secret key of that same party, then the adversary can
trivially compute the session key. The same argument was used by Krawczyk [13] to show that
no 2-round AKE protocol can achieve full perfect forward secrecy (PFS). Still, an adversary can
reveal a long-term secret key or ephemeral secret key of the other party without trivially breaking
the session.

Considering attacks involving both types of sessions, it is natural to define a single security
model which captures all of them. In our model, in passive test sessions we allow the adversary
to reveal any subset of the four pieces of secret information which does not contain both the long-
term and ephemeral secrets of one of the parties. In active test sessions, we allow the adversary
to reveal only the long-term secret or the ephemeral secret key of the party which is executing the
test session.

One attack scenario not covered by the original Canetti-Krawczyk model is key-compromise
impersonation, where the adversary first reveals a long-term secret of a party and then impersonates
others to this party. Our extension to the Canetti-Krawczyk model implies weak perfect forward
secrecy, security against KCI attacks and security against a number of other attacks not covered
by the Canetti-Krawczyk model which were not considered before (see Section 2.2).

We stress that our extention of the security model allows the adversary to register arbitrary
public keys for adversary-controlled parties without any checks such as proof-of-possession done by
the certificate authority. In contrast, some of the protocols in the literature [14, 15] were proved
secure assuming that the key registration is done honestly. Namely, that initially a trusted party
generates keys for all, even adversary-controlled parties.

Also we clarify what constitutes the ephemeral secret key of a party in a session and what
information can be revealed by an adversary via a session-state reveal query. We require that the
ephemeral secret key contains all session-specific secret information of a party. We illustrate the
need for this requirement with the SIG-DH protocol [10], which provably satisfies Canetti-Krawczyk
security if only part of the session-specific secret is revealed and which is vulnerable to adversaries
who can reveal all session-specific secret information. Revelations of ephemeral data are motivated
by practical scenarios, such as if the state-specific secret information is stored in insecure memory
or if the random-number generator of a party is corrupted. In both of these cases, as a result of
the specific vulnerability, the adversary might be able to gain access to the ephemeral data.

Finally, we present a new AKE protocol, called NAXOS, which provably meets our definition
of AKE security. We prove the security of NAXOS either under the standard Gap Diffie-Hellman
assumption. We also improve the concrete security of NAXOS under the related Pairing Diffie-
Hellman assumption.

In Figure 1 we compare the efficiency and security of NAXOS with four other recent authen-



ticated key exchange protocols. Efficiency is given as the number of exponentiations executed by
one party. Communication in all these protocols (except for Katz-Jeong-Lee) is the same as in
the original Diffie-Hellman. The key registration column specifies whether adversary-controlled
parties can register arbitrary public keys or if honest key-registration is assumed. The ephemeral
column indicates whether an adversary is allowed to reveal ephemeral secret information of the
parties. CK denotes Canetti-Krawczyk security without perfect forward secrecy, assuming that
partnership is defined via matching conversations. The protocols of Jeong, Katz and Lee [14] and
Kudla and Paterson [15]! use the Bellare-Rogaway model [4] (BR), which appears to be equivalent
to the Canetti-Krawczyk model [9], where no ephemeral reveals are allowed and key-registration
is done honestly. KCI denotes security against key-compromise impersonation and wPFS denotes
weak perfect forward secrecy. Extended CK denotes our extension of the Canetti-Krawczyk model.
Security assumptions include: RO — random oracle model [5], DDH — Decisional Diffie-Hellman,
GDH - Gap Diffie-Hellman [19], PDH - Pairing Diffie-Hellman [16] and KEA1 — knowledge of
exponent assumption [2].

Protocol Effic. | Key Reg. | Ephemeral | Security Assumptions

NAXOS 4 Arbitrary yes Extended CK GDH (or PDH) + RO

HMQV 3 Arbitrary yes CK + wPFS + KCI | GDH + KEA1 + RO

KEA+ 3 Arbitrary yes CK + wPFS + KCI | GDH (or PDH) + RO
Jeong-Katz-Lee 3 Honest no BR + wPFS DDH + secure MACs
Kudla-Paterson 3 Honest no BR + KCI GDH + RO

Figure 1: Comparison of recent AKE protocols.

We begin with a brief review in Section 2 of the Canetti-Krawczyk security model and discuss
some attacks not covered by their definition. We introduce our extension of Canetti-Krawczyk in
Section 3. In Section 4 we describe the NAXOS protocol and prove its security in the extended
model.

2 Previous Models

2.1 Overview of the Canetti-Krawczyk model

The strongest security definition for AKE protocols was formalized by Canetti and Krawczyk [10].
We give a high-level overview of their model and introduce some notation which will be useful later
in the paper. We remark that the model we describe differs from the original definition in that
we use session identifiers defined via matching conversations. The same definition was used by
Krawczyk when analyzing the security of the HMQV protocol [13] and it is now a commonly used
variant of the Canetti-Krawczyk model.

The AKE security experiment involves multiple honest parties and an adversary M connected
via an unauthenticated network. The adversary selects parties to execute key-exchange sessions and
selects an order in which the sessions will be executed. Actions the adversary is allowed to perform
include taking full control of any party (a Corrupt query), revealing the session key of any session (a

'Kudla and Paterson [15] define partnership via matching session identifiers (computed by the parties), although
for their protocol this appears to be equivalent to matching conversations.



Reveal query), or revealing session-specific secret information of any session (a Session-State Reveal
query).

We stress that an AKE session is executed by a single party: since all communication is con-
trolled by an adversary, a party executing a session cannot know for sure with whom it is commu-
nicating. The party executing the session is called the owner of the session and the other party
is called the peer. The matching session to an AKE session (by the owner with the peer) is the
corresponding AKE session which is supposed to be executed by the peer with the owner. The
matching session might not exist if the communications were modified by the adversary. The ses-
sion identifier of an AKE session consists of the parties’ identities concatenated with messages
they exchanged in the session. A completed session is “clean” if the session as well as its matching
session (if it exists) is not corrupted (neither session key nor session state were revealed by M) and
if none of the participating parties were corrupted.

At some point in the experiment, the adversary is allowed to make one Test query: it can select
any clean completed session (called the test session) and it is given a challenge which consists either
of the session key for that session or a randomly selected string. The adversary’s goal is to guess
correctly which of the cases was selected.

Additionally, the Canetti-Krawczyk [10] definition has an optional perfect forward secrecy (PFS)
requirement. In the variant of Canetti-Krawczyk security with PFS, the adversary is allowed to
corrupt a participant of the test session (either owner or peer) after the test session is completed.
As noted by Krawczyk [13], the PFS requirement is not relevant for 2-round AKE protocols since
no 2-round protocol can achieve PFS.

The Canetti-Krawczyk security model is the strongest of a family of models that includes those
of Bellare and Rogaway [4, 6] and Bellare, Pointcheval and Rogaway [3]. We refer the reader to
Choo et al. [9] for a concise summary of the differences among these various models.

More recently, Krawczyk [13] introduced the notion of weak perfect forward secrecy (wPFS)
which can be achieved by 2-round protocols and which he demonstrated is achieved by HMQV [13].
Weak PFS guarantees perfect forward secrecy only for those AKE sessions where the adversary
didn’t modify communications between the parties. (Using the above terminology, the matching
session exists for the test session and both test and matching sessions are clean.)

2.2 Attacks not Covered by the Existing Definitions

We point out several attacks which are not captured by the previous definitions and explain which
components of the Canetti-Krawczyk model prohibit these attacks from being considered. First,
we observe that although the adversary is allowed to reveal the session state of the parties, he is
not allowed to make Session-State Reveal queries against the session he wants to attack (the test
session). That is, existing security models do not provide any security guarantees for a session if
the ephemeral secret key of either party has been leaked.

Second, when the adversary corrupts an honest party, he takes full control over this party and
reveals all its secret information. This definition of Corrupt query does not allow attacks where the
adversary reveals a long-term secret key of some party prior to the time when that party executes
the test session.

Here we summarize some attacks which are not allowed by the Canetti-Krawczyk model but
are permitted under our new definition:

e Key-compromise impersonation (KCI) attack [7, 13]: the adversary reveals a long-term secret



key of a party and then impersonates others to this party.

e An adversary reveals the ephemeral secret key of a party and impersonates others to this
party.

e Two honest parties execute matching sessions, and the adversary reveals the ephemeral secret
keys of both of the parties and tries to learn the session key.

e Two honest parties execute matching sessions, and the adversary reveals the ephemeral secret
key of one party, the long-term secret key of the other party and tries to learn the session
key.

e Two honest parties execute matching sessions, while the adversary reveals the long-term keys
of both of the parties prior to the execution of the session and tries to learn the session key.

2.3 State-reveal Queries

The Canetti-Krawczyk [10] model gives the adversary the power to reveal the state-specific infor-
mation of the parties (Session-State Reveal query) without revealing the long-term secret key. State
reveal queries are motivated by practical scenarios, such as if the state-specific secret information
is stored in insecure memory or if the random-number generator of a party is corrupted. In both
of these cases, as a result of the specific vulnerability, the adversary might be able to gain access
to the ephemeral data.

As an example of a protocol which is secure against state-reveal queries, Canetti and Krawczyk
present the SIG-DH protocol, depicted in Figure 2, which uses the Diffie-Hellman protocol and any
digital signature scheme. Both parties are assumed to have secret keys for this signature scheme
and know each other’s registered public keys and a session identifier sid. Denote by SIGA(M) a
signature of M under A’s private key. Canetti and Krawczyk [10] prove that SIG-DH is secure
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Figure 2: SIG-DH authenticated key-exchange protocol [10]

against an adversary who can reveal ephemeral secret keys (x or y from Figure 2) of the parties.
Note that the ephemeral secret keys x or y are not the only session-specific secret information
used by the parties — they also use secret random coins in the signature generation. We observe that
if the adversary reveals these random coins, it can break the security of the protocol. Specifically,
for certain signature schemes such as Elgamal[11], DSA[18], GQ[12] or Schnorr[20], by revealing
random coins used in the computation of any signature by any party the adversary can compute
the long-term secret key of that party. Thus, the adversary would be able to impersonate the



honest party indefinitely. A similar deficiency in the encryption-based MT-authenticator of Bellare-
Canetti-Krawczyk [1] was pointed out by Canetti and Krawczyk [10] and also discussed by Choo
et al. [8].

In the security analysis of SIG-DH, note that the adversary is only allowed to reveal the
ephemeral exponent but not random coins used in the signature generation. The reason for this
somewhat surprising limitation lies in the ambiguity of the definition of a state reveal query: the
Canetti-Krawczyk definition [10] leaves it up to a protocol to specify which information can be
revealed by a state reveal query. As an extreme example, note that one can specify that the
Session-State Reveal query does not reveal any information at all. Then any protocol secure against
a weak adversary (who makes no state reveal queries) will also be secure against a strong adversary
(who can make state reveal queries).

3 Definitions

3.1 DMotivation for Our Security Definition

We begin the presentation of the extended security model by clarifying the notion of what con-
stitutes the “ephemeral secret key”. Informally, we require that the ephemeral secret key contain
all the session-specific information used by a party in an AKE session. That is, all computations
by a party must depend deterministically on that party’s ephemeral key, long-term secret key, and
communication received from the other party. We observe that any AKE protocol can conform to
this specification by setting all random coins used by a party in an AKE session as the ephemeral
secret key of that session.

We modify the Canetti-Krawczyk model in the definition of adversarial power and in the no-
tion of cleanness of the test session. Specifically, we replace the Session-State Reveal query with
Ephemeral Key Reveal query which reveals the ephemeral secret key of the party. Additionally, we
give the adversary the power to reveal a long-term secret key without corrupting the party by
making a Long-Term Key Reveal query. We remove the Corrupt query as it is no longer necessary:
the adversary can achieve the same result as the Corrupt query by revealing all the secret informa-
tion of the party through Long-Term Key Reveal, Ephemeral Key Reveal and Reveal queries and by
computing everything on behalf of that party.

We also modify the definition of a “clean session” by allowing the adversary to reveal the
maximum possible amount of data. We disallow only those corruptions which allow the adversary
to break any AKE protocol.

As above, we classify the test sessions as either “passive” or “active” depending on whether
the adversary is able to cancel or modify the information sent between two honest participants.
Formally, passive sessions are those where the matching session was completed at some point in
the experiment (possibly after the test session), and active sessions are those where no matching
session was completed at any time in the experiment.

For passive sessions we allow the adversary to reveal any subset of the four secret keys (each
party’s ephemeral and long-term secret keys) which does not contain both the ephemeral and long-
term secret keys of a single party. Note that the knowledge of both the ephemeral and long-term
keys of one of the parties allows the adversary to compute the session key for any AKE protocol.

For active sessions the communication sent by the peer might be corrupted and thus we cannot
define the ephemeral key of the peer. In this case we only allow the adversary to reveal either



the ephemeral or the long-term secret key of the owner, as revealing both keys would trivially
compromise the protocol. Note that we cannot allow the adversary to reveal the long-term secret
of the peer (even after the test session is completed), since Krawczyk [13] shows that in this case
one can break any AKE protocol. (This is the same attack which shows the impossibility of the
full perfect forward secrecy requirement.)

3.2 Security Experiment for Extended Canetti-Krawczyk

Assume that the identities of the parties are binary strings (they can be derived from the actual
names of the parties). We will use letters A, B, C, ..., both for referring to the parties and for
their identities. The adversary is given the power to select each party’s identity (the binary string)
if it so chooses.

There are a number of honest parties which are connected to the certificate authority, CA, and
to the adversary, M. That is, the communication between the parties is fully controlled by M.
M is also connected to the certificate authority and can register fictitious parties. The adversary
plays a central role in the experiment and is responsible for activating all other parties.

We call a particular instantiation of the AKE protocol executed by one of the parties an AKFE
session. Since all communication is controlled by the adversary, a party can never know if the second
party actually exists and if the communication it receives was computed by an honest party or by
the adversary. Legitimate execution of an AKE protocol by two parties A and B consists of two
AKE sessions, matching sessions executed by A and by B respectively. Note that an instantiation of
the AKE protocol is different depending on whether the executor is the initiator or the responder.

We do not assume the existence of explicit session identifiers. Instead, we define a session
identifier to consist of the identities of the 2 participants and the information they exchanged.
Specifically, a session identifier

sid = (role,ID,ID*, commy, ..., commy),

where ID € {0,1}" is the identity of the party executing the session, role € {I,R} is its role
(initiator /responder) in the protocol, ID* is the identity of the other party and comm; € {0,1}" is
the ¢-th communication sent by the parties.

A party computes a communication comm; as a function of its own ephemeral and long-term
secret keys, its partner’s public key and previous messages exchanged. Once a party receives all
the communications, it computes a session key as a function of its own ephemeral and long-term
secret keys, its partner’s public key, and all communications, and completes the session.

The experiment proceeds as follows. Initially M selects the identities of all honest parties (which
can be arbitrary distinct binary strings) and honest parties generate and register their public keys
with the CA. The adversary can register arbitrary public keys (even the same as those of some
honest parties) on behalf of adversary-controlled parties. Then the adversary makes any sequence
of the following queries:

e Send(A, B,comm). Sends a message comm to A on behalf of B. Returns A’s response to this
message. This query allows M to order A to start an AKE session with B and to provide
communications from B to A.

e Long-Term Key Reveal(.A). Reveals a long-term key of a party A.



e Ephemeral Key Reveal(sid). Reveals an ephemeral key of a session sid (possibly incomplete).
e Reveal(sid). Reveals a session key of a completed session sid.

Eventually (at any time in the experiment), M selects a completed session sid, makes a query
Test(sid) and is given a challenge value C. M continues the experiment after the Test query.
The experiment terminates as soon as M makes the Guess(b') query. The experiment answers the
adversary’s queries as follows:

e Test(sid) // can be made only once.
Pick b & {0,1}. If b = 1, obtain C' « Reveal(sid); otherwise pick C' < {0,1}*. Return C.

e Guess(d') // M terminates after making this query.
If b/ = b, return 1, otherwise return 0.

An adversary M wins the experiment if the selected test session is clean and if he guesses the
challenge correctly (that is, if the Guess query returns 1).

We now define what it means for a test session to be clean. Let sid be an AKE session completed
by a party A with some other party B, and denote by sid* the matching session to sid, supposedly
executed by B (sid* may not exist in the experiment). Denote by sk4 and skp long-term secret
keys of A and B. Denote by esk 4 and eskp ephemeral secret keys generated by A and B in sid
and sid* (the latter is defined only if sid* exists). We say that an AKE session sid is not clean if
an adversary can trivially compute the session key. That is, a session sid is not clean if any of the
following conditions hold:

e A or B is an adversary-controlled party.

e M reveals the session key of sid or sid* (if the latter exists).

e Session sid* exists and M reveals either both sk 4 and esk 4, or both skg and eskg.
e Session sid* doesn’t exist and M reveals either skz or both sk 4 and esk 4.

A session sid is clean if none of these conditions hold. We remark that the cleanness of the test
session can be identified only after the experiment is completed: the third and fourth conditions
above can only be determined in the end of the experiment. That is, the adversary wins the
experiment if he correctly guesses the challenge for the test session and this session remains clean
until the end of the experiment.

Definition 1 (Extended Canetti-Krawczyk security) The advantage of the adversary M in
the AKE experiment with AKFE protocol I1 is defined as

AAVAEE(M) = PrlM wins] — %

We say that an AKE protocol is secure (in the extended Canetti-Krawczyk model) if no efficient
adversary M has more than a negligible advantage in winning the above experiment.



4 NAXOS AKE Protocol

4.1 Assumptions

All the arithmetic in this section is assumed to be in a mathematical group G of known prime order
q. We denote by g a generator of G and write the group operation multiplicatively.

The discrete logarithm function DLOG(-) in G takes input an element a € G and returns = € Z,
such that a = ¢g*. The computational Diffie-Hellman (CDH) function CDH(-,-) takes as input a
tuple of elements (a,b) € G? and returns gPLO¢()-PLOGO) - The Decisional Diffie-Hellman (DDH)
function DDHY(-, -, -) takes as input a triple of elements (a, b, c) € G® and returns 1 if c = CDH (a, b)
and 0 otherwise.

The advantage of an algorithm M in solving the Discrete Logarithm problem, AdvP 0% (M),

is the probability that, given a & G, M correctly returns DLOG (a). Similarly, the advantage of
an algorithm M in solving the Gap Diffie-Hellman (GDH) problem, Adv&PH(M), is the prob-

ability that, given as input (a,b) & G2 and oracle access to DDH(-,-,), M correctly outputs
CDH(a,b). We say that G satisfies the GDH assumption if no feasible adversary can solve the
GDH problem with non-negligible probability. The GDH assumption was introduced by Okamoto
and Pointcheval [19] and is now a standard cryptographic assumption used to establish the security
of many protocols.

Let G’ be another group of order ¢q. A function e : G x G — G’ is a bilinear pairing if it is non-
degenerate and if for any pair ¢%, ¢° € G, e(¢9% ¢°) = e(g, g)?°. The Pairing Diffie-Hellman (PDH)
problem recently introduced by Mityagin and Lauter [16] is to solve the CDH problem when given
access to the pairing oracle e. The advantage AdvFPH (M) of an algorithm M in solving the PDH
problem is the probability that M, given (a,b) £ G%and a pairing oracle e, computes CDH (a,b).
We say that G satisfies the PDH assumption if no feasible adversary solves the PDH problem with
non-negligible probability. In groups which have a bilinear pairing, the PDH problem is equivalent
to the original CDH problem, although one can also consider the PDH problem in groups where
no efficient pairing operation is known. We find the Pairing Diffie-Hellman assumption to be as
justified as the GDH assumption since the only known way to compute DDH in groups where CDH
is hard is via a pairing function.

4.2 Protocol Description

The NAXOS AKE protocol uses a mathematical group G and two hash functions, H; : {0,1}" — Z,
and Hy : {0,1}* — {0,1}* (for some constant \). A long-term secret key of a party A is an exponent
sk € Zg, and the corresponding long-term public key of A is the power pky = g**4 € G. In the
following description of an AKE session of NAXOS executed between the parties A and B we
assume that each party knows the other’s public key and that public keys are in the group G.

The session execution proceeds as follows. The parties pick ephemeral secret keys esk 4 and
eskp at random from {O,l}k. Then the parties exchange values gHi(eska,ska) gng gHi(esks,skp)
check if received values are in the group GG and only compute the session keys if the check succeeds.
The session key K € {0,1}" is computed as

H2(gH1(eskB,sk5)skA7ng(eskA,skA)skl;’ng(eskA,sk:A)H1(eskg,skg)’A, B)

The last two components in the hash are the identities of A and B, which we assume to be binary
strings. Figure 3 depicts the protocol.



A B

eska & {o,1}* X = gfh(eskaska)

$ A
Y — gh(eshskn) esks —{0,1}

B: I{(_I_]Q(pkﬁl(eslcg,slcg)7 ){sks7 X'H1(eskzg,skzs)7 A, B)
A: K Hy(YoRa, phhi(eshasha) yHeskaska) A B)

Figure 3: NAXOS AKE Protocol.

Theorem 1 NAXOS satisfies Extended Canetti-Krawczyk security if Hy and Ho are modeled by
independent random oracles.

For any AKE adversary M against NAXOS that runs in time at most t, involves at most n
honest parties and activates at most k sessions, we show that there exists a GDH solver S, a PDH
solver R and a DLOG solver T such that

I (2 1 K
AdvPH(S) = Adv™PH(R) > S min {152’ nk‘} - AdviiXos(M) — AdvPEOUT) — O <2A) 7

where S runs in time O(tk), R runs in time O(tlogt) and T runs in time O(t).

The outline of the security proof of Theorem 1 is given in Section 4.3.

4.3 Security Proof for NAXOS

Let A be any AKE adversary against NAXOS. We start by observing that since the session key of
the test session is computed as K = Hs(o) for some 5-tuple o, the adversary M has only two ways
to distinguish K from a random string:

1. Forging attack. At some point M queries Hs on the same 5-tuple o.

2. Key-replication attack. M succeeds in forcing the establishment of another session that has
the same session key as the test session.

If random oracles produce no collisions, the key-replication attack is impossible as equality of session
keys implies equality of the corresponding 5-tuples (which are hashed to produce session keys). In
turn, distinct AKE sessions must have distinct 5-tuples. Therefore, if random oracles produce no
collisions (collisions happen with probability O(k?/2)), M must perform a forging attack. Next we
show that if M can mount a successful forging attack, then we can construct a Gap Diffie-Hellman
solver & which uses M as a subroutine. Most of the remaining proof is devoted to the construction
of S.

S takes as input a GDH challenge (Xo,Yy). Then S executes the Extended Canetti-Krawczyk
(ECK) experiment with M the adversary against the NAXOS protocol, and modifies the data
returned by the honest parties in such a way that if M breaks the ECK security of NAXOS, then
S can reveal the solution to the GDH problem from M.
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Matching Session Exists

Assume that M always selects a test session for which the matching session exists. Then S modifies
the experiment as follows. S selects at random matching sessions executed by some honest parties A
and B (in fact, S selects two sessions at random and continues only if they are matching). Denote by
commy and commp the communications sent by the respective parties in these matching sessions.
When either of these sessions is activated, S does not follow the protocol. Instead, S generates
esk 4 and eskg normally but sets commy < Xy (in place of ng(Sk«“’ESkA)) and commp «— Yp (in
place of gf1(sks.esks)),

With probability 1/k? M picks one of the selected sessions as the test session and another as its
matching session. We claim that if M wins in the forging attack, S can solve the CDH challenge.
Indeed, the supposed session key for the selected session is Ha (o), where the 5-tuple o includes the
value CDH (X, Yp). To win, M must have queried o to the random oracle H,.

If the selected session is indeed the test session, M is allowed to reveal sk, skg, esk4 and
eskp but it is not allowed to reveal both (ska,eska) or both (skg,eskg). We observe that in
this case, the only way that M can distinguish this simulated ECK experiment from a true ECK
experiment is if M queries (sk, esk ) or (skp, eskg) to Hy (this way, M will find out that comm 4
and commpg were not computed correctly). However, M cannot do this unless he computes the
discrete logarithm of either g°*4 or ¢*¥8. This corresponds to a hypothetical discrete logarithm
adversary 7 in the security statement.

No Matching Session

Assume now that M always selects a test session such that the matching session doesn’t exist. In
this case S modifies the experiment as follows. S selects a random party B and sets pkp «— Xp.
Note that S doesn’t know the secret key corresponding to this public key and thus it cannot
properly simulate ECK sessions executed by B. S handles ECK sessions executed by B as follows
(assume that B is the initiator). S randomly selects eskg, picks h at random from Z, and sets
commg = g¢" instead of gH1(eshs,DLOG(X0)) S gets a session key K (which is supposed to be
Ho(CDH(Xg, comme), pkl, commg, B,C)) to be a random value. Note that S can handle session
key and ephemeral secret key reveals by revealing K and eskg, but cannot handle long-term secret
key reveals.

Note that if C is a fictitious party, M can compute the session key on its own, reveal K and
detect that it is fake. To address this issue, S watches M'’s random oracle queries and if M queries
(Z, pkl, comml, B,C) to Hy (for some Z € G), S checks if DDH (X, comme,Z) = 1 and if yes,
replies with the key K. Similarly, on the computation of K, S checks if K should equal any previous
response from the random oracle.

M cannot detect that it is in the simulated ECK experiment unless it either queries (eskp,
DLOG(Xy)) to Hy (by doing this, M can detect that commp is computed incorrectly) or tries to
reveal a long-term secret key of B. The first event will reveal DLOG(X() and will clearly allow S
to solve the CDH problem. As we note below, the second event is impossible if S correctly guesses
the test session.

Now S also randomly selects an ECK session in which B is the peer. Denote the owner of
this session by .A. When the selected session is activated, S follows the protocol only partially: S
generates esk 4 normally but sets comm «— Y (in place of gH1(skaeska)y,
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With probability at least 1/nk (1/n to pick the correct party B and 1/k to pick the correct
session), M picks the selected session as the test session, and if it wins, it solves the CDH problem.
The supposed session key for the selected session is Ha(o), where the 5-tuple o includes the value
CDH(Xy,Yy). To win, M must have queried o to the random oracle Hs.

If the selected session is indeed the test session, M is not allowed to reveal both sk4 and esk4
and is not allowed to corrupt B. In this case, the only way that M can distinguish this simulated
ECK experiment from a true ECK experiment is if M queries (ska,esk4) to H;. However, M
cannot do this unless he computes the discrete logarithm of g**4.

Analysis

We observe that the running time of S is O(kt). For each session key computation done by B
(let Y be the incoming communication in that session) the solver S has to go over all previous Ho
queries and for each Hy query of the form (..., Z,...) check if DDH(X,Y,Z) = 1. Similarly, on
each DDH query of the form (..., Z,...) S has to go over all previous session key computations
done by B and for each such computation (let Y the incoming communication in that session) S
checks if DDH(X,Y, Z). Since M can activate at most k sessions and make at most ¢ Ho queries,
total running time is O(tk).

The running time of the solver can be improved if the solver has access to the pairing oracle
instead of to the DDH oracle. We construct the PDH solver R in the same way as S with the only
difference being that R must also handle the checks discussed above. Note that DDH(Xy,Y, Z) =1
if and only if e(Z, g) = e(Xp,Y). Therefore R can store corresponding values e(Z, g) in a balanced
binary tree and on each session executed by B check for X, Y by computing e(Xy,Y) and searching
for this value in the binary tree (which can be done in logt steps). Therefore, R has the same
advantage as S and runs in time O(tlogt).
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