
1. http://academic.research.microsoft.com/

2. https://scholar.google.com/intl/en/scholar/inclusion.html#indexing
3. These three fields are required by the Google Scholar standard for publisher’s papers to be included.

Robust and Distributed Web-Scale Near-Dup Document Conflation in Microsoft

Academic Service

Chieh-Han Wu

Microsoft Research, Redmond

One Microsoft Way

Redmond, WA, USA

chiewu@microsoft.com

Yang Song

Microsoft Research, Redmond

One Microsoft Way

Redmond, WA, USA

yangsong@microsoft.com

ABSTRACT

 In modern web-scale applications that collect data from

different sources, entity conflation is a challenging task due

to various data quality issues. In this paper, we propose a

robust and distributed framework to perform conflation on

noisy data in the Microsoft Academic Service dataset. Our

framework contains two major components. In the offline

component, we train a GBDT model to determine whether

two papers from different sources should be conflated to the

same paper entity. In the online component, we propose a

scalable shingling algorithm that can apply our offline model

to over 100 million instances. The result shows that our

algorithm can conflate noisy data robustly and efficiently.

KEYWORDS

Near-duplicate detection, shingling algorithm, n-gram, entity

conflation

1. INTRODUCTION
 Microsoft Academic Service (MAS) is a Microsoft’s
effort on the scientific article vertical search area which has
been publicly available since 2008. The service was originally
deployed as a research prototype1, which was meant to study
the relationship between different entity types such as authors,
venues, affiliations, field-of-study, and so on. Recently, it has
been integrated into Microsoft’s Web search engine Bing as a
vertical to showcase the power of Bing’s dialog engine
systems as well as the rich collection of scientific documents
that can help academic researchers to facilitate their jobs on
literature search and review.
 MAS collects data primarily from three different sources.
The large majority of the data comes from Web crawl of
HTML meta tags. Most publishers (e.g., ACM, IEEE,
ScienceDirect) follows Google Scholar’s inclusion
guidelines2 to add specific meta tags on the paper’s summary
pages. E.g., using “citation_title” and “citation_author” to
indicate the title and (one) author name of the current paper.
Secondly, the MAS pipeline parses meta data from PDF files
using a proprietary extractor to get the header information as
well as the reference section inside PDF documents. Finally,
MAS periodically gets bulk updates from certain publishers
that often includes the meta data as well as the abstract and
full text information of the recently published papers.

 Table 1 lists the overall statistics of MAS as of July 2015.
With over 100 million collections of papers collected from
heterogeneous data sources, it is inevitable that many papers
are duplications of each other. For example, we discovered
that the famous topic-modeling paper “Latent Dirichlet
Allocation” has 50 different versions in our data, while the
ground-truth should only be 2 (one published in JMLR and the
other in NIPS). Therefore, correctly conflating these different
versions into the right clusters of papers becomes one of the
most important data quality task.

Attribute Name Count

Affiliation 3661025

Author 41863978

Conference 46757

FOS 52530

Journal 22794

Keywords 35938281

Title 118891522

Paper 126333772

Table 1: Statistics of different attributes in MAS.

 Nevertheless, the variance of data quality from different
publishers and domains are huge. We category the data quality
issues into three aspects: missing data, ill-formatted data and
bad data issues.
(Missing data): Table 2 lists the fields of meta data that may
appear in a paper. We can observe that except title, authors
and year3 most other fields suffer from missing data. For
example, DOI is the most important indicator of a unique
paper, with only 56% percentage of DOI coverage, many of
the papers cannot benefit from a simple DOI mapping-based
conflation algorithm.

Attribute Missing Rate

Affiliation 77.08%

Keyword 56.52%

Doi 53.56%

Venue 21.45%

Date 12.70%

Author 0.00%

Title 0.00%

Year 0.00%

Table 2: Statistics of missing attributes in MAS.

(Ill-formatted data): data can become ill-formatted if the
publishers do not follow the inclusion guidelines correctly or
by using tools that format data in arbitrary ways. For example,
many publishers choose to aggregate author names into one
meta tags using arbitrary string concatenators (semi-colon,
comma, “and” etc.) rather than separating them into individual
ones as told. Other issues including the encoding of the text,
the format of the Date field, the succinctness of author’s
affiliation and etc.
(Bad data): this is by far the biggest issue MAS is facing
when conflation papers. First of all, the assumption that the
same papers should have exactly the same titles from different
publishers is absolutely untrue. This mostly comes from typos
or other bad separators in the paper titles. Given that, choosing
a fuzzy string matching method and determining the correct
cut-off threshold becomes quite important. Secondly, many of
the crowd-sourced websites like researchgate and citeulike
have no quality control of the user generated content. We
discovered that on these websites, users can specify almost
any meta tags at their own will: including specifying the year
of the publication, the list and the order of authors in the
papers, etc. These misleading information creates extra road-
blocks for MAS to correctly identify same papers.
 Given all those data quality issues and the importance of
near-dup detection (or paper conflation) in MAS pipeline, we
spent a lot of effort cleaning and organizing the data into
correct format. In this paper, we propose a robust framework
to perform near-dup detection given noisy input data. In
general, our framework can be separated into two stages.
During the offline model generation stage, we propose a
machine-learning algorithm with manually crafted features to
optimize the conflation performance. Our model leverages a
set of hand-labeled training data that is sampled randomly
from MAS data collection to make binary decisions of
whether two papers should be conflated. Secondly, in order
for our model to scale to over 100 million instances, we
partition our data into many small chunks using a novel
shingle-based partition mechanism. For each chunk that
contains potential near dups, we then run our machine-learnt
models on each pair and generate the final conflated papers.
This step was carried out in a map-reduce like environment
inside Microsoft.

2. RELATED WORK
 The problem we are addressing in this paper is highly
correlated to near-dup detection. In this section, we briefly
review some of the important literature work.
 Andrei Border [1] proposed a set-based shingling
algorithm to detect near-duplicated documents on the Web.
The algorithm converts 4-grams into unique ids and uses
Jaccard similarity to measure the resemblance of two
documents. Each document is represented using a 50-bytes
vector.
 Moses Charikar [2] characterizes Border’s work as min-
wise independent permutations and shows that it is equivalent
to locality sensitive hashing (lsh) scheme. In his work,
Charikar proposed to construct lsh-based document signatures
that contains only 0’s and 1’s. This method allows the
documents to be summarized into a much succinct fashion:

resulting roughly only 64 bits for each documents. The
document signatures are then compared using hamming
distances and treated as near-dup if the distances is less than k
bits.
 Manku et al. [3] leveraged Charikar’s simhash algorithm
to detect near-duplicates in Google’s Web index of multi-
billion documents. They first show that using 64-bit simhash
fingerprints, setting k-3 can effectively detect near-duplicates.
The authors then proposed an algorithm to scale the algorithm
which can efficiently compute the hamming distances among
billions of documents. Their algorithm performs random
permutation of the fingerprint blocks by splitting it into
different sized blocks (10 bits, 16 bits…) and duplicating the
process to create redundant tables for each setting. It was
shown that this process can reduce the scanning time
dramatically and thus makes the algorithm practically useful.
 Our approach is similar to the previous work in the sense
that we also leverage n-grams to construct document shingles.
However, the biggest difference comes from the data
processing architecture. Due to the nature of the near-
duplicate detection problem, most of the previous algorithms
work on a non-distributed fashion, which means that none of
them can be efficiently deployed to a map-reduce system
which can process massive amount of the data in parallel. Our
method, on the other hand, address the limitation and can be
easily deployed to any map-reduce systems like Hadoop or
Spark and deal with billions of documents efficiently.
 Furthermore, previous algorithms work well when the
full-text of the documents is accessible. When it comes to only
short titles, the Jaccard similarity can be very low even if two
titles differ in a single character, which may fail to detect the
near duplicate. In comparison, our approach is more robust
and capable of addressing short titles effectively even if full
text is unavailable.

3. BASELINE APPROACH
 A simple conflation approach is to leverage paper’s title
and year for matching. However, due to different data quality
issue, this will cause both over-conflation and under-
conflation.
 Table 3 lists some example papers for better
understanding this issue. The “Latent Dirichlet Allocation”
paper was published in both NIPS (in 2002) and JMLR (in
2003) with the same title. However, due to the Year error in
the meta tag, paper ID 2 and 4 will be treated as the same paper
despite of different venue, which causes over-conflation. On
the other hand, paper 1 and 2 will be treated as different papers
due to different years, so does paper 3 and 4.
 One may argue that adding venue as an additional feature
may solve the problem, which is unfortunately not the case for
two major reasons:

1. Many of the papers do not possess venue information
as we shown in Table 3, which makes it difficult to
be used as a grouping criteria.

2. Besides year, other fields such as paper titles may
also have issues, e.g., PDF parsing errors. In Table 3,
paper 5 and 6 have the same year and venue
information but the titles are slightly different due to

the use of different parsers, which will cause them to
be under-conflated.

ID Title Year Venue
1 Latent Dirichlet Allocation 2003 JMLR

2 Latent Dirichlet Allocation 2001 JMLR

3 Latent Dirichlet Allocation 2002 NIPS

4 Latent Dirichlet Allocation 2001 NIPS

5
gapped blast and psi blast a new generation of
protein database search programs

1997 NAR

6
gapped blast and psi blast a new generation of
protein database searchprograms

1997 NAR

Table 3: Some example papers with data quality issues. Underlined
words and years are noisy data.

4. PROPOSED FRAMEWORK
 In this section, we discuss how we train a model to
determine whether two papers should be conflated together,
and then introduce how we apply the model to a large
collection of papers.
4.1 A Machine Learning Framework
 We formulate the near-dup detection problem as a
binary-classification problem: given two papers, determine
whether they are the same paper from different sources or not.
To train a machine learning model, we first randomly sampled
a set of paper pairs from the entire MAS data preserve the
distribution of the original data set. We then manually labels
each pair to be positive or negative. Overall, we generated
1370 positive pairs and 8641 negative pairs for training.
 We extract the following four kinds of feature from a pair
of papers. Each feature value is between 0 and 1.
(AuthorSimilarity SA): Name disambiguation has been a
challenging question. We leverage a modified version of
string matching algorithm proposed by Chin et al. [4], which
considers Chinese and non-Chinese names separately because
of their different naming conventions, to determine whether
two authors share the same name. We then compute the
Jaccard similarity between two author sets.
(TitleSimilarity ST): this calculates the normalized
Levenshtein distance by dividing the distance by the
maximum length of two titles.
(VenueSimilarity SV): this compares whether two papers
share the same venue: 1 if venues are matched, 0 if not
matched. Since many venues are missing in the raw data, we
impute this feature to be 0.5 if either one of the venues is
missing.
(YearSimilarity SY): this computes the distance between the
publication years of two papers. Since years are messy in our
dataset, instead of expecting years to be exactly matched, we
assign SY to be 1 if the year difference is within 3 years,
otherwise 0.
 We use the gradient boosted decision tree (GBDT) [5] as
our classifier. GBDT has shown to be a powerful tool for
classification and ranking in many tasks. Besides, the GBDT
model is quite interpretable since each sub-model is a
classification tree that can be visualized and understood
easily.
 For the model training, we first split the data randomly
into 4-fold for cross validation. We then performed a grid

search over the parameters of the model, including: the
number of leaves N, the number of trees/iterations M,
minimum number of documents in a node D and the learning
rate L. The best performance was achieved with the parameter
setting of N = 8, M = 50, D = 10, and L = 0.1.
 For efficiency concern during online computation, we
also computed the performance of a single-tree model. The
results shown in Table 4 have indicated a slight worse
accuracy but not significant. Therefore, we have decided to
use the single-tree model for our map-reduce framework. The
final model can be summarized as Figure 1. Note that SY
doesn’t appear in our final model, which truly represents the
noise of year extraction from our data.

Figure 1: The single-tree model used in our map-reduce framework

M Accuracy
Positive

Precision
Positive
Recall

Negative
Precision

Negative
Recall

50 0.9805 0.9683 0.9821 0.9895 0.9794

1 0.977 1 0.9387 0.9654 1

Table 4: Comparison between the best GBDT model and the single-tree
model

4.2 Online (map-reduce) shingle algorithm
 One of the biggest challenges in our pipeline is how to
scale up our model to a large collection of papers. Instead of
using brute-force approach to make pair-wise comparisons
between all papers which is certain to cause performance
issues, we propose a scalable shingling algorithm to partition
the data into small near-dup chunks before applying the model.
 Given a positive integer k and a sequence of words in a
paper title, the k-shingles is the set of all consecutive
sequences of k words in the title. The main assumption in our

Yes

Yes

No No

No

ST >

0.92

SA >

0.73

SV >

0.05

ST >

0.78

Y

Y

Y

Y

N

N

N

N

Paper 1 Paper 2

Compute SA, ST,

SV, and SY

shingling algorithm is that a noisy title and a correct title
would have at least one common k-shingle. We describe this
algorithm in detail using k = 5 and the following two titles as
examples: a correct title T1 “gapped blast and psi blast a new
generation of protein database search programs” and a noisy
title T1’ “gapped blast and psi blast a new generation of
protein database searchprograms”.
Step 1: Add dummy words in titles
 We first preprocess all paper titles by adding dummy
words to titles that have less than 2 * k words. Consider the
worst case that the noisy word occurs in the middle of the title,
for example, the third word of a 5-word title such as “indexing
by latent semantic analysis”. If we select k = 5, we should add
3 dummy words at the beginning and the end of the title so
that the noisy title and the correct one still have common
shingles, for example, “# # # indexing by” and “semantic
analysis # # #”. Table 5 shows the correspondence between
the number of dummy words and the length of title. In our
examples, since both T1 and T1’ have more than 9 words, we
don’t need to add dummy words in the titles.

Title length Number of dummy word

2 4

3 4

4 3

5 3

6 2

7 2

8 1

9 1

>9 0

Table 5: Correspondence between title length and number of dummy
words.

Step 2: Generate k-shingles for each paper
 For each paper, we generate a set of k-shingles. For
example, the 5-shingles of the correct title T1 and the noisy
title T1’ are shown in table 5. We can observe that even T1’
has a noisy pattern “searchprogram”, T1 and T1’ still have
common 5-shingles such as “gapped blast and psi blast”,
“blast and psi blast a”, etc.

Paper Shingle Common Shingle

T1

gapped blast and psi blast

gapped blast and psi blast

blast and psi blast a

…

new generation of protein
database

blast and psi blast a

…

new generation of protein
database

generation of protein database
search

of protein database search
programs

T1’

gapped blast and psi blast

blast and psi blast a

…

new generation of protein
database

generation of protein database
searchprograms

Table 6: 5-shingles of the correct title T1 and the noisy title T1’

Step 3: Aggregate papers for each k-shingle
 For each k-shingle, we then group all papers that possess
such shingle into the same cluster. For example, if T1, T1’, T2,
etc. have a common shingle “gapped blast and psi blast”, they
should be grouped into the same cluster {T1, T1’, T2, …}.
Papers within the same cluster are considered candidates to be
conflated. Table 7 shows the paper cluster and the cluster size
of each shingle.

Paper Shingle Cluster Size
Common
Shingle

T1

gapped blast and psi
blast

{ T1, T1’, …} 68

gapped blast
and psi blast

blast and psi
blast a

…

new
generation of
protein
database

blast and psi blast a { T1, T1’, …} 68

…

new generation of
protein database

{ T1, T1’, …} 71

generation of protein
database search

{ T1, …} 70

of protein database
search programs

{ T1, …} 69

T1’

gapped blast and psi
blast

{ T1, T1’, …} 68

blast and psi blast a { T1, T1’, …} 68

…

new generation of
protein database

{ T1, T1’, …} 71

generation of protein
database
searchprograms

{ T1’} 1

Table 7: Paper cluster for each shingle of the correct title T1 and the noisy
title T1’

Step 4: Select the best cluster for each paper
 The next challenge is to select the best cluster for each
paper. There are two kinds of paper cluster that are considered
as bad candidates:
(General shingle cluster): a general shingle shared by a lot of
titles, such as “to the study of the”, has a large paper cluster.
If we select a cluster that is too large, it may results in
comparing a lot of irrelevant papers and therefore decrease
efficiency, which is an important factor especially in a large-
scale application like MAS.
(Noisy shingle cluster): a shingle that contains noisy patterns,
such as “generation of protein database searchprograms”,
which usually only have a few papers in the cluster. If we
select a cluster that is too small, the algorithm may fail to
conflate noisy papers with the correct ones since the small
cluster may only contains papers with noisy titles.
 To prevent selecting these two kinds of paper clusters,
we leverage DBSCAN algorithm proposed by Ester et al. [6]
to filter out bad candidate. For example, we apply DBSCAN
with the following parameter setting to T1 and T1’:

1. Density distance eps = 20
2. Minimum number of points to form a cluster = 2

All paper clusters of T1 is in the same density region since
they are all density-connected. Similarly, all paper clusters of
T1’ are in the same density region except the paper cluster
formed by the noisy shingle “generation of protein database
searchprograms”, which only has one paper in the cluster and
therefore is not density-connected with other paper clusters of

T1’. As a result, the bad cluster associated with the noisy
shingle can be filtered out by leveraging DBSCAN.
 Since the clusters will serve as the keys for the reducers
performing conflation, two papers in different clusters will
never be compared with each other at the conflation stage. At
this step, our goal is to assign all near-dup entities to the same
cluster. To this end, we select the largest paper cluster (i.e. the
cluster associated with “a new generation of protein” in our
example) within the density-connected region since it is more
likely to be shared by all near-dup entities. After selecting the
best cluster for each paper, we can apply our GBDT model in
a map-reduce framework using paper clusters as the keys for
reducers.

Paper Shingle Cluster Size
Common
Shingle

T1

a new generation of
protein

{ T1, T1’, …} 82

a new
generation of
protein

new
generation of
protein
database

gapped blast
and psi blast

…

new generation of
protein database

{ T1, T1’, …} 71

generation of protein
database search

{ T1, …} 70

…

blast a new
generation of

{ T1, T1’, …} 69

T1’

a new generation of
protein

{ T1, T1’, …} 82

new generation of
protein database

{ T1, T1’, …} 71

gapped blast and psi
blast

{ T1, T1’, …} 68

…

generation of protein
database
searchprograms

{ T1’} 1

Table 8: Sorted paper cluster of the correct title T1 and the noisy title T1’

5. RESULTS AND DISCUSSION
 In our experiment, the running time of the baseline
algorithm and the shingling algorithm is roughly 73 minutes
and 169 minutes, respectively. The time gap is caused by the
fact that the shingling algorithm first partitions all papers to
different paper clusters and then uses paper clusters as the
keys for reducers to perform conflation, while the baseline
algorithm uses title and year directly as the keys for reducers.
 With our shingling algorithm, we successfully reduce the
under-conflation rate from 12% to 0.7%. We mainly address
the under-conflation issue caused by the following two
reasons:
(Noisy titles): Our algorithm can conflate two papers even if
their titles are noisy due to typos or other bad separators. Table
9 shows some examples of under-conflated papers in the
baseline approach can be correctly conflated together by our
framework.
(Different years): Due to noisy year extracted from different
sources, it is unrealistic to expect that years are the same for
the same paper. With the GBDT model that considers all
attributes such as author and venue, our algorithm leverage the
heterogeneous characteristics of MAS to conflate entity
robustly. Table 10 lists the case, which we fail to conflate
using the baseline approach due to different years, can be

identified as two different entities by our framework (i.e., one
entity published in JMLR, the other published in NIPS).
 The main advantage of shingling algorithm is that we no
longer rely on the correctness of data sources to perform entity
conflation, which is a more robust and flexible framework in
web-scale applications, such as MAS, that aggregate
information from different sources.

6. CONCLUSION
 In this paper, we presented an entity conflation
framework that consists of two stages: a GBDT model that
considers different attributes in the MAS dataset to perform
conflation robustly, and a shingling algorithm to make the
offline model scalable to millions of entities. Experiments
showed that our proposed framework can address various data
quality issues, such as noisy titles and incorrect years, which
caused serious under-conflation in the baseline approach.

REFERENCE
[1] Andrei Z. Broder, Identifying and Filtering Near-

Duplicate Documents, Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching, p.1-10,
June 21-23, 2000.

[2] Moses S. Charikar, Similarity estimation techniques
from rounding algorithms, Proceedings of the thiry-
fourth annual ACM symposium on Theory of
computing, May 19-21, 2002, Montreal, Quebec,
Canada.

[3] Gurmeet Singh Manku , Arvind Jain , Anish Das Sarma,
Detecting near-duplicates for web crawling, Proceedings
of the 16th international conference on World Wide
Web, May 08-12, 2007, Banff, Alberta, Canada.

[4] W.-S. Chin, Y.-C. Juan, Y. Zhuang, F. Wu, H.-Y. Tung,
T. Yu, J.-P. Wang, C.-X. Chang, C.-P. Yang, W.-C.
Chang, K.-H. Huang, T.-M. Kuo, S.-W. Lin, Y.-S. Lin,
Y.-C. Lu, Y.-C. Su, C.-K. Wei, T.-C. Yin, C.-L. Li, T.-
W. Lin, C.-H. Tsai, S.-D. Lin, H.-T. Lin, C.-J. Lin.
Effective String Processing and Matching for Author
Disambiguation, Proceedings of KDD Cup 2013
Workshop at KDD2013.

[5] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. The Annals of Statistics,
29(5):1189-1232, 2001.

[6] Martin Ester, Hans-Peter Kriegel, Jorg Sander, and
Xiaowei Xu. A density-based algorithm for discovering
clusters in large spatial database with noise. In Int'l
Conference on Knowledge Discovery in Databases and
Data Mining (KDD-96), Portland, Oregon, August 1996.

Baseline Approach Shingling Algorithm

Title Year Venue Title Year Venue

gapped blast and psi blast a new generation of protein
database search programs

1997 NAR

gapped blast and psi blast a new generation of

protein database search programs
1997 NAR

gapped blast and psi blast a new generation of protein

database searchprograms
1997 NAR

gapped blast and psiblast a new generation of protein
database search programs

1997 NAR

clustal w improving the sensitivity of progressive

multiple sequence alignment through sequence

weighting position specific gap penalties and weight
matrix choice

1994 NAR

clustal w improving the sensitivity of progressive

multiple sequence alignment through sequence
weighting position specific gap penalties and weight

matrix choice

1994 NAR

clustal w improving the sensitivity of progressive

multiple sequence alignment through sequence
weighting positions specific gap penalties and weight

matrix choice

1994 NAR

clustal w improving the sensitivity of progressive

multiple sequence alignment through sequence
weighting position specific gap penalties and weigh t

matric choice

1994 NAR

Table 9: Comparison of baseline approach and shingling algorithm on noisy titles. Underlined words are noisy data.

Baseline Approach Shingling Algorithm

Title Year Venue Title Year Venue

Latent Dirichlet Allocation 2003 JMLR
Latent Dirichlet Allocation 2003 JMLR

Latent Dirichlet Allocation 2001 JMLR

Latent Dirichlet Allocation 2002 NIPS
Latent Dirichlet Allocation 2002 NIPS

Latent Dirichlet Allocation 2001 NIPS

Table 10: Comparison of baseline approach and shingling algorithm on different years. Underlined years are noisy data.

