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ABSTRACT 

        In modern web-scale applications that collect data from 

different sources, entity conflation is a challenging task due 

to various data quality issues. In this paper, we propose a 

robust and distributed framework to perform conflation on 

noisy data in the Microsoft Academic Service dataset. Our 

framework contains two major components. In the offline 

component, we train a GBDT model to determine whether 

two papers from different sources should be conflated to the 

same paper entity.  In the online component, we propose a 

scalable shingling algorithm that can apply our offline model 

to over 100 million instances. The result shows that our 

algorithm can conflate noisy data robustly and efficiently. 
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1.  INTRODUCTION 
        Microsoft Academic Service (MAS) is a Microsoft’s 
effort on the scientific article vertical search area which has 
been publicly available since 2008. The service was originally 
deployed as a research prototype1, which was meant to study 
the relationship between different entity types such as authors, 
venues, affiliations, field-of-study, and so on. Recently, it has 
been integrated into Microsoft’s Web search engine Bing as a 
vertical to showcase the power of Bing’s dialog engine 
systems as well as the rich collection of scientific documents 
that can help academic researchers to facilitate their jobs on 
literature search and review. 
        MAS collects data primarily from three different sources. 
The large majority of the data comes from Web crawl of 
HTML meta tags. Most publishers (e.g., ACM, IEEE, 
ScienceDirect) follows Google Scholar’s inclusion 
guidelines2 to add specific meta tags on the paper’s summary 
pages. E.g., using “citation_title” and “citation_author” to 
indicate the title and (one) author name of the current paper. 
Secondly, the MAS pipeline parses meta data from PDF files 
using a proprietary extractor to get the header information as 
well as the reference section inside PDF documents. Finally, 
MAS periodically gets bulk updates from certain publishers 
that often includes the meta data as well as the abstract and 
full text information of the recently published papers. 
 

        Table 1 lists the overall statistics of MAS as of July 2015. 
With over 100 million collections of papers collected from 
heterogeneous data sources, it is inevitable that many papers 
are duplications of each other. For example, we discovered 
that the famous topic-modeling paper “Latent Dirichlet 
Allocation” has 50 different versions in our data, while the 
ground-truth should only be 2 (one published in JMLR and the 
other in NIPS). Therefore, correctly conflating these different 
versions into the right clusters of papers becomes one of the 
most important data quality task. 
 

Attribute Name Count 

Affiliation 3661025 

Author 41863978 

Conference 46757 

FOS 52530 

Journal 22794 

Keywords 35938281 

Title 118891522 

Paper 126333772 

 
Table 1: Statistics of different attributes in MAS. 

 
 
        Nevertheless, the variance of data quality from different 
publishers and domains are huge. We category the data quality 
issues into three aspects: missing data, ill-formatted data and 
bad data issues. 
(Missing data): Table 2 lists the fields of meta data that may 
appear in a paper. We can observe that except title, authors 
and year3 most other fields suffer from missing data. For 
example, DOI is the most important indicator of a unique 
paper, with only 56% percentage of DOI coverage, many of 
the papers cannot benefit from a simple DOI mapping-based 
conflation algorithm. 
 

Attribute Missing Rate 

Affiliation 77.08% 

Keyword 56.52% 

Doi 53.56% 

Venue 21.45% 

Date 12.70% 

Author 0.00% 

Title 0.00% 

Year 0.00% 

 
Table 2: Statistics of missing attributes in MAS. 



 

(Ill-formatted data): data can become ill-formatted if the 
publishers do not follow the inclusion guidelines correctly or 
by using tools that format data in arbitrary ways. For example, 
many publishers choose to aggregate author names into one 
meta tags using arbitrary string concatenators (semi-colon, 
comma, “and” etc.) rather than separating them into individual 
ones as told. Other issues including the encoding of the text, 
the format of the Date field, the succinctness of author’s 
affiliation and etc.  
(Bad data): this is by far the biggest issue MAS is facing 
when conflation papers. First of all, the assumption that the 
same papers should have exactly the same titles from different 
publishers is absolutely untrue. This mostly comes from typos 
or other bad separators in the paper titles. Given that, choosing 
a fuzzy string matching method and determining the correct 
cut-off threshold becomes quite important. Secondly, many of 
the crowd-sourced websites like researchgate and citeulike 
have no quality control of the user generated content. We 
discovered that on these websites, users can specify almost 
any meta tags at their own will: including specifying the year 
of the publication, the list and the order of authors in the 
papers, etc. These misleading information creates extra road-
blocks for MAS to correctly identify same papers. 
        Given all those data quality issues and the importance of 
near-dup detection (or paper conflation) in MAS pipeline, we 
spent a lot of effort cleaning and organizing the data into 
correct format. In this paper, we propose a robust framework 
to perform near-dup detection given noisy input data. In 
general, our framework can be separated into two stages. 
During the offline model generation stage, we propose a 
machine-learning algorithm with manually crafted features to 
optimize the conflation performance. Our model leverages a 
set of hand-labeled training data that is sampled randomly 
from MAS data collection to make binary decisions of 
whether two papers should be conflated. Secondly, in order 
for our model to scale to over 100 million instances, we 
partition our data into many small chunks using a novel 
shingle-based partition mechanism. For each chunk that 
contains potential near dups, we then run our machine-learnt 
models on each pair and generate the final conflated papers. 
This step was carried out in a map-reduce like environment 
inside Microsoft. 
 
2.  RELATED WORK 
        The problem we are addressing in this paper is highly 
correlated to near-dup detection. In this section, we briefly 
review some of the important literature work. 
        Andrei Border [1] proposed a set-based shingling 
algorithm to detect near-duplicated documents on the Web. 
The algorithm converts 4-grams into unique ids and uses 
Jaccard similarity to measure the resemblance of two 
documents. Each document is represented using a 50-bytes 
vector. 
        Moses Charikar [2] characterizes Border’s work as min-
wise independent permutations and shows that it is equivalent 
to locality sensitive hashing (lsh) scheme. In his work, 
Charikar proposed to construct lsh-based document signatures 
that contains only 0’s and 1’s. This method allows the 
documents to be summarized into a much succinct fashion: 

resulting roughly only 64 bits for each documents. The 
document signatures are then compared using hamming 
distances and treated as near-dup if the distances is less than k 
bits. 
        Manku et al. [3] leveraged Charikar’s simhash algorithm 
to detect near-duplicates in Google’s Web index of multi-
billion documents. They first show that using 64-bit simhash 
fingerprints, setting k-3 can effectively detect near-duplicates. 
The authors then proposed an algorithm to scale the algorithm 
which can efficiently compute the hamming distances among 
billions of documents. Their algorithm performs random 
permutation of the fingerprint blocks by splitting it into 
different sized blocks (10 bits, 16 bits…) and duplicating the 
process to create redundant tables for each setting. It was 
shown that this process can reduce the scanning time 
dramatically and thus makes the algorithm practically useful. 
        Our approach is similar to the previous work in the sense 
that we also leverage n-grams to construct document shingles. 
However, the biggest difference comes from the data 
processing architecture. Due to the nature of the near-
duplicate detection problem, most of the previous algorithms 
work on a non-distributed fashion, which means that none of 
them can be efficiently deployed to a map-reduce system 
which can process massive amount of the data in parallel. Our 
method, on the other hand, address the limitation and can be 
easily deployed to any map-reduce systems like Hadoop or 
Spark and deal with billions of documents efficiently. 
        Furthermore, previous algorithms work well when the 
full-text of the documents is accessible. When it comes to only 
short titles, the Jaccard similarity can be very low even if two 
titles differ in a single character, which may fail to detect the 
near duplicate. In comparison, our approach is more robust 
and capable of addressing short titles effectively even if full 
text is unavailable. 
 
3.  BASELINE APPROACH 
        A simple conflation approach is to leverage paper’s title 
and year for matching. However, due to different data quality 
issue, this will cause both over-conflation and under-
conflation. 
        Table 3 lists some example papers for better 
understanding this issue. The “Latent Dirichlet Allocation” 
paper was published in both NIPS (in 2002) and JMLR (in 
2003) with the same title. However, due to the Year error in 
the meta tag, paper ID 2 and 4 will be treated as the same paper 
despite of different venue, which causes over-conflation. On 
the other hand, paper 1 and 2 will be treated as different papers 
due to different years, so does paper 3 and 4. 
        One may argue that adding venue as an additional feature 
may solve the problem, which is unfortunately not the case for 
two major reasons: 

1. Many of the papers do not possess venue information 
as we shown in Table 3, which makes it difficult to 
be used as a grouping criteria. 

2. Besides year, other fields such as paper titles may 
also have issues, e.g., PDF parsing errors. In Table 3, 
paper 5 and 6 have the same year and venue 
information but the titles are slightly different due to 



 

the use of different parsers, which will cause them to 
be under-conflated. 

 
ID Title Year Venue 
1 Latent Dirichlet Allocation 2003 JMLR 

2 Latent Dirichlet Allocation 2001 JMLR 

3 Latent Dirichlet Allocation 2002 NIPS 

4 Latent Dirichlet Allocation 2001 NIPS 

5 
gapped blast and psi blast a new generation of 
protein database search programs 

1997 NAR 

6 
gapped blast and psi blast a new generation of 
protein database searchprograms 

1997 NAR 

 
Table 3: Some example papers with data quality issues. Underlined 
words and years are noisy data. 

 
 
4.  PROPOSED FRAMEWORK 
        In this section, we discuss how we train a model to 
determine whether two papers should be conflated together, 
and then introduce how we apply the model to a large 
collection of papers. 
4.1 A Machine Learning Framework 
        We formulate the near-dup detection problem as a 
binary-classification problem: given two papers, determine 
whether they are the same paper from different sources or not. 
To train a machine learning model, we first randomly sampled 
a set of paper pairs from the entire MAS data preserve the 
distribution of the original data set. We then manually labels 
each pair to be positive or negative. Overall, we generated 
1370 positive pairs and 8641 negative pairs for training.  
        We extract the following four kinds of feature from a pair 
of papers. Each feature value is between 0 and 1. 
(AuthorSimilarity SA): Name disambiguation has been a 
challenging question. We leverage a modified version of  
string matching algorithm proposed by Chin et al. [4], which 
considers Chinese and non-Chinese names separately because 
of their different naming conventions, to determine whether 
two authors share the same name. We then compute the 
Jaccard similarity between two author sets. 
(TitleSimilarity ST): this calculates the normalized 
Levenshtein distance by dividing the distance by the 
maximum length of two titles. 
(VenueSimilarity SV): this compares whether two papers 
share the same venue: 1 if venues are matched, 0 if not 
matched. Since many venues are missing in the raw data, we 
impute this feature to be 0.5 if either one of the venues is 
missing. 
(YearSimilarity SY): this computes the distance between the 
publication years of two papers. Since years are messy in our 
dataset, instead of expecting years to be exactly matched, we 
assign SY to be 1 if the year difference is within 3 years, 
otherwise 0. 
        We use the gradient boosted decision tree (GBDT) [5] as 
our classifier. GBDT has shown to be a powerful tool for 
classification and ranking in many tasks. Besides, the GBDT 
model is quite interpretable since each sub-model is a 
classification tree that can be visualized and understood 
easily.  
        For the model training, we first split the data randomly 
into 4-fold for cross validation. We then performed a grid 

search over the parameters of the model, including: the 
number of leaves N, the number of trees/iterations M, 
minimum number of documents in a node D and the learning 
rate L. The best performance was achieved with the parameter 
setting of N = 8, M = 50, D = 10, and L = 0.1. 
        For efficiency concern during online computation, we 
also computed the performance of a single-tree model. The 
results shown in Table 4 have indicated a slight worse 
accuracy but not significant. Therefore, we have decided to 
use the single-tree model for our map-reduce framework. The 
final model can be summarized as Figure 1. Note that SY 
doesn’t appear in our final model, which truly represents the 
noise of year extraction from our data. 
 

 
Figure 1: The single-tree model used in our map-reduce framework 

 
 

M Accuracy 
Positive 

Precision 
Positive 
Recall 

Negative 
Precision 

Negative 
Recall 

50 0.9805 0.9683 0.9821 0.9895 0.9794 

1 0.977 1 0.9387 0.9654 1 

 
Table 4: Comparison between the best GBDT model and the single-tree 
model 

 
 
4.2 Online (map-reduce) shingle algorithm 
        One of the biggest challenges in our pipeline is how to 
scale up our model to a large collection of papers. Instead of 
using brute-force approach to make pair-wise comparisons 
between all papers which is certain to cause performance 
issues, we propose a scalable shingling algorithm to partition 
the data into small near-dup chunks before applying the model.  
        Given a positive integer k and a sequence of words in a 
paper title, the k-shingles is the set of all consecutive 
sequences of k words in the title. The main assumption in our 
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shingling algorithm is that a noisy title and a correct title 
would have at least one common k-shingle. We describe this 
algorithm in detail using k = 5 and the following two titles as 
examples: a correct title T1 “gapped blast and psi blast a new 
generation of protein database search programs” and a noisy 
title T1’ “gapped blast and psi blast a new generation of 
protein database searchprograms”. 
Step 1: Add dummy words in titles 
        We first preprocess all paper titles by adding dummy 
words to titles that have less than 2 * k words. Consider the 
worst case that the noisy word occurs in the middle of the title, 
for example, the third word of a 5-word title such as “indexing 
by latent semantic analysis”. If we select k = 5, we should add 
3 dummy words at the beginning and the end of the title so 
that the noisy title and the correct one still have common 
shingles, for example, “# # # indexing by” and “semantic 
analysis # # #”. Table 5 shows the correspondence between 
the number of dummy words and the length of title. In our 
examples, since both T1 and T1’ have more than 9 words, we 
don’t need to add dummy words in the titles.  
 

Title length Number of dummy word 

2 4 

3 4 

4 3 

5 3 

6 2 

7 2 

8 1 

9 1 

>9 0 

 
Table 5: Correspondence between title length and number of dummy 
words. 

 
 
Step 2: Generate k-shingles for each paper 
        For each paper, we generate a set of k-shingles. For 
example, the 5-shingles of the correct title T1 and the noisy 
title T1’ are shown in table 5. We can observe that even T1’ 
has a noisy pattern “searchprogram”, T1 and T1’ still have 
common 5-shingles such as “gapped blast and psi blast”, 
“blast and psi blast a”, etc. 
 

Paper Shingle Common Shingle 

T1 

gapped blast and psi blast 

gapped blast and psi blast 
 
blast and psi blast a 
 
… 
 
new generation of protein 
database 

blast and psi blast a 

… 

new generation of protein 
database 

generation of protein database 
search 

of protein database search 
programs 

T1’ 

gapped blast and psi blast 

blast and psi blast a 

… 

new generation of protein 
database 

generation of protein database 
searchprograms 

 
Table 6: 5-shingles of the correct title T1 and the noisy title T1’ 

 

Step 3: Aggregate papers for each k-shingle 
        For each k-shingle, we then group all papers that possess 
such shingle into the same cluster. For example, if T1, T1’, T2, 
etc. have a common shingle “gapped blast and psi blast”, they 
should be grouped into the same cluster {T1, T1’, T2, …}. 
Papers within the same cluster are considered candidates to be 
conflated. Table 7 shows the paper cluster and the cluster size 
of each shingle. 
 

Paper Shingle Cluster Size 
Common 
Shingle 

T1 

gapped blast and psi 
blast 

{ T1, T1’, …} 68 

gapped blast 
and psi blast 
 
blast and psi 
blast a 
 
… 
 
new 
generation of 
protein 
database 

blast and psi blast a { T1, T1’, …} 68 

…    

new generation of 
protein database 

{ T1, T1’, …} 71 

generation of protein 
database search 

{ T1, …} 70 

of protein database 
search programs 

{ T1, …} 69 

T1’ 

gapped blast and psi 
blast 

{ T1, T1’, …} 68 

blast and psi blast a { T1, T1’, …} 68 

…    

new generation of 
protein database 

{ T1, T1’, …} 71 

generation of protein 
database 
searchprograms 

{ T1’} 1 

 
Table 7: Paper cluster for each shingle of the correct title T1 and the noisy 
title T1’ 

 
 
Step 4: Select the best cluster for each paper 
        The next challenge is to select the best cluster for each 
paper. There are two kinds of paper cluster that are considered 
as bad candidates: 
(General shingle cluster): a general shingle shared by a lot of 
titles, such as “to the study of the”, has a large paper cluster. 
If we select a cluster that is too large, it may results in 
comparing a lot of irrelevant papers and therefore decrease 
efficiency, which is an important factor especially in a large-
scale application like MAS. 
(Noisy shingle cluster): a shingle that contains noisy patterns, 
such as “generation of protein database searchprograms”, 
which usually only have a few papers in the cluster. If we 
select a cluster that is too small, the algorithm may fail to 
conflate noisy papers with the correct ones since the small 
cluster may only contains papers with noisy titles. 
        To prevent selecting these two kinds of paper clusters, 
we leverage DBSCAN algorithm proposed by Ester et al. [6] 
to filter out bad candidate. For example, we apply DBSCAN 
with the following parameter setting to T1 and T1’: 

1. Density distance eps = 20 
2. Minimum number of points to form a cluster = 2 

All paper clusters of T1 is in the same density region since 
they are all density-connected. Similarly, all paper clusters of 
T1’ are in the same density region except the paper cluster 
formed by the noisy shingle “generation of protein database 
searchprograms”, which only has one paper in the cluster and 
therefore is not density-connected with other paper clusters of 



 

T1’. As a result, the bad cluster associated with the noisy 
shingle can be filtered out by leveraging DBSCAN. 
        Since the clusters will serve as the keys for the reducers 
performing conflation, two papers in different clusters will 
never be compared with each other at the conflation stage. At 
this step, our goal is to assign all near-dup entities to the same 
cluster. To this end, we select the largest paper cluster (i.e. the 
cluster associated with “a new generation of protein” in our 
example) within the density-connected region since it is more 
likely to be shared by all near-dup entities. After selecting the 
best cluster for each paper, we can apply our GBDT model in 
a map-reduce framework using paper clusters as the keys for 
reducers. 
 

Paper Shingle Cluster Size 
Common 
Shingle 

T1 

a new generation of 
protein 

{ T1, T1’, …} 82 

a new 
generation of 
protein 
 
new 
generation of 
protein 
database 
 
gapped blast 
and psi blast 
 
… 

new generation of 
protein database 

{ T1, T1’, …} 71 

generation of protein 
database search 

{ T1, …} 70 

…   

blast a new 
generation of 

{ T1, T1’, …} 69 

T1’ 

a new generation of 
protein 

{ T1, T1’, …} 82 

new generation of 
protein database 

{ T1, T1’, …} 71 

gapped blast and psi 
blast 

{ T1, T1’, …} 68 

…   

generation of protein 
database 
searchprograms 

{ T1’} 1 

 
Table 8: Sorted paper cluster of the correct title T1 and the noisy title T1’ 

 
 

5.  RESULTS AND DISCUSSION 
        In our experiment, the running time of the baseline 
algorithm and the shingling algorithm is roughly 73 minutes 
and 169 minutes, respectively. The time gap is caused by the 
fact that the shingling algorithm first partitions all papers to 
different paper clusters and then uses paper clusters as the 
keys for reducers to perform conflation, while the baseline 
algorithm uses title and year directly as the keys for reducers.   
        With our shingling algorithm, we successfully reduce the 
under-conflation rate from 12% to 0.7%. We mainly address 
the under-conflation issue caused by the following two 
reasons: 
(Noisy titles): Our algorithm can conflate two papers even if 
their titles are noisy due to typos or other bad separators. Table 
9 shows some examples of under-conflated papers in the 
baseline approach can be correctly conflated together by our 
framework. 
(Different years): Due to noisy year extracted from different 
sources, it is unrealistic to expect that years are the same for 
the same paper. With the GBDT model that considers all 
attributes such as author and venue, our algorithm leverage the 
heterogeneous characteristics of MAS to conflate entity 
robustly. Table 10 lists the case, which we fail to conflate 
using the baseline approach due to different years, can be 

identified as two different entities by our framework (i.e., one 
entity published in JMLR, the other published in NIPS). 
        The main advantage of shingling algorithm is that we no 
longer rely on the correctness of data sources to perform entity 
conflation, which is a more robust and flexible framework in 
web-scale applications, such as MAS, that aggregate 
information from different sources. 
 
6.  CONCLUSION 
        In this paper, we presented an entity conflation 
framework that consists of two stages: a GBDT model that 
considers different attributes in the MAS dataset to perform 
conflation robustly, and a shingling algorithm to make the 
offline model scalable to millions of entities. Experiments 
showed that our proposed framework can address various data 
quality issues, such as noisy titles and incorrect years, which 
caused serious under-conflation in the baseline approach. 
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Baseline Approach Shingling Algorithm 

Title Year Venue Title Year Venue 

gapped blast and psi blast a new generation of protein 
database search programs 

1997 NAR 

gapped blast and psi blast a new generation of 

protein database search programs 
1997 NAR 

gapped blast and psi blast a new generation of protein 

database searchprograms 
1997 NAR 

gapped blast and psiblast a new generation of protein 
database search programs 

1997 NAR 

clustal w improving the sensitivity of progressive 

multiple sequence alignment through sequence 

weighting position specific gap penalties and weight 
matrix choice 

1994 NAR 

clustal w improving the sensitivity of progressive 

multiple sequence alignment through sequence 
weighting position specific gap penalties and weight 

matrix choice 

1994 NAR 

clustal w improving the sensitivity of progressive 

multiple sequence alignment through sequence 
weighting positions specific gap penalties and weight 

matrix choice 

1994 NAR 

clustal w improving the sensitivity of progressive 

multiple sequence alignment through sequence 
weighting position specific gap penalties and weigh t 

matric choice 

1994 NAR 

Table 9: Comparison of baseline approach and shingling algorithm on noisy titles. Underlined words are noisy data. 

  

 
Baseline Approach Shingling Algorithm 

Title Year Venue Title Year Venue 

Latent Dirichlet Allocation 2003 JMLR 
Latent Dirichlet Allocation 2003 JMLR 

Latent Dirichlet Allocation 2001 JMLR 

Latent Dirichlet Allocation 2002 NIPS 
Latent Dirichlet Allocation 2002 NIPS 

Latent Dirichlet Allocation 2001 NIPS 

 
Table 10: Comparison of baseline approach and shingling algorithm on different years. Underlined years are noisy data. 

 


