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Abstract

Occlusion is one of the challenging problems in stereo.
In this paper, we solve the problem in a segment-based style.
Both images are segmented, and we propose a novel patch-
based stereo algorithm that cuts the segments of one image
using the segments of the other, and handles occlusion ar-
eas in a proper way. A symmetric graph-cuts optimization
framework is used to find correspondence and occlusions si-
multaneously. The experimental results show superior per-
formance of the proposed algorithm, especially on occlu-
sions, untextured areas and discontinuities.

1. Introduction

Occlusion is one of the major challenges in stereo. For a
two-frame stereo system, a point in an image is occluded if
its corresponding point is invisible in the other image. Com-
puting of occlusion is ambiguous, so prior constraints need
to be imposed. Ordering and uniqueness are two constraints
typically used. Ordering constraint inhibits the change of
order between images. This constraint is often exploited in
a dynamic program framework [6], because it can greatly
reduce the search space and lead to an efficient matching.
But it is incorrect when there are thin objects in the scene
[6]. Uniqueness is effective constraint, which enforces at
most one correspondence for each element of both images.
Zinick and Kanade imposed it as the inhibitions in a coop-
erative frame [17]. Kolmogorov and Zabih [8] proposed an
graph-cuts based algorithm that searches a global optimal
unique configuration of assignments between pixels of im-
ages. Jian et al[13] modified the uniqueness constraint to
a weaker constraint, visibility constraint, so that the prob-
lem of uniqueness caused by sampling [11] can be avoided
when the scene contains horizontally slanted planes. More
early techniques for occlusion handling can be found in the
survey by Egnal and Wildes [6] and that by Brown et al[4].

Our new idea of handling occlusion originates from the
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observation that the occlusion border in one image corre-
sponds to a discontinuity in the other images [6], and the
discontinuity often makes strong texture on the other image
which can be achieved by color segmentation. Therefore,
we provide a framework that can use the segmentation of
one image to help compute the occlusion in the other.

Color segmentation information is used in several re-
cent stereo approaches [7, 16, 15, 14, 2]. They are called
segment-based methods. They use the assumption that dis-
continuity only happens at the boundaries of segmented re-
gions (we call it discontinuity assumption in this paper).
The performance of discontinuity and untextured area is im-
proved if the scene contains generally slanted plane. But
occlusion is not explicitly moded in Hong and cheng’s [7]
and Zhang and Kambhamettu’s [16] algorithms. So it is
hard to identify occlusions and they use a robust error cri-
teria before global matching or region growing. Bleyer and
Gelautz’s [2] formulate the problem in a two-level frame-
work. Uniqueness is used in the pixel level to infer occlu-
sion, and discontinuity assumption is imposed in segment-
level. However, their method only use segmentation infor-
mation of one image while the boundary information of
occlusion is actually in the other image from our analysis
above.

In this paper, we use segmentation of both images, and
propose a patch-based framework to explicitly handle oc-
clusions. Based on the observation that the observation that
the shared edge of a visible area and an occluded area cor-
responds to a discontinuity in the other image, we intro-
duce the concept of patch. We first segment both images,
and warp the segment of one image to the other by dispar-
ity. Then the warped segment is divided into several small
patches by the segment boundaries in the other image. We
constrain the boundary of occlusions to be the boundary of
patches. A symmetric global framework using graph cuts
is constructed to find the disparity and occlusions embodied
by the patch segmentation. The new correspondence ap-
proach gives a proper constraint for occlusions, which leads
to better results near occlusions, and inherits the advantage



of segment-based approaches on slanted plane, as well as
untextured and discontinuity areas.

The main contributions in this paper include: 1) By using
segmentation of both images, a novel matching unit patch is
introduced, which preserves the visibility consistency and
lead to a proper handling of occlusions; 2) A symmetric
graph-cuts framework on patches is proposed to find dis-
parities and occlusions simultaneously.

2. Problem formulation
2.1. Stereo problem

Let L and R be the set of pixels in the left and right im-
ages respectively, and let P = L U R. The pixel in the left
image will have coordinate (p,p,), and the pixel in the
right image will have coordinate (p/,, p;,). The stereo prob-
lem can be formulated as a labeling problem, in which each
pixel p € P must be assigned a label f,, within some label
set L. That is, the goal is to find a labeling configuration f
that assigns each pixel p € P alabel f, € L.

To describe the generally slanted plane, we use a 3-
parameter linear transform in this paper, and take the pa-
rameters of the linear transform as the definition of labels,
ie.

o=ty = (c1,c2,c3) &

(c1,¢2,¢3)
<" p', where p/,

1Pz + Capy + €3,D), = Dy

(c1,e2,¢3) ’ .
where p > p’ means p and p’ are corresponding
points if assigned a label (c1, ¢a, c3) to either of them. If
a point is occluded in the other image, its label is ¢.

2.2. Patch and visibility consistency

In order to find the labels for all the points that are mostly
accordant to the input stereo image pair, prior assumptions
are generally used, such as smoothness assumption and
uniqueness constraints. In segment-based algorithms, dis-
continuity assumption is used. However, the border of the
segments in one image is not always the border of occlu-
sion in that image, and the shared edge of a visible area
and an occluded area is corresponding to a discontinuity of
the other image. Therefore, we firstly separate the segment
of one image into patches by using the discontinuity of the
other, and impose a new constraint, which enforce the same
visibility for all the pixels within a patch. In the following
paragraphs, we will give definition of the patch and show
why this constraint is reasonable.

Suppose that a segment r is a region in the left image,
and its label is denoted as f,.. If f,. = ¢, r is fully oc-
cluded, we consider it as a whole. Otherwise, we warp all

Figure 1. Definition of patches. Region r in
the left image are warped to the right image
and the warped image is separated by shared
edge ¢ of s’ and ¢’ into ¢] and ¢,. Accordingly
r is separated into two patches ¢; and ¢.

the points in 7 into the right image by it. The warped seg-
ment 7’ may cross a number of segments in the right image,
e.g. two segments s’ and ¢’ in the right image in Figure 1.
Suppose that the shared edge between s’ and ¢’ is ¢’, there
should be a shared edge e correspondent to €’ in r. As a
result, the points in 7 are separated into two sets, ¢; and ¢
by e. We call them the patches of the region r. For a clear
description, we define ¢/" (i) as the i-th patch of segment
under label f,. or simply ¢, (7). By assuming the boundary
of segment in the right image to be the potential discon-
tinuity, the corresponding shared edge in the left image is
the potential occlusion boundary. So we enforce the same
visibility for all the points within a patch, and call it the
patch-consistency constraints. Different patches can have
different visibilities, but one patch cannot partly occluded.
In this way, we use the segmentation information in one im-
age to give a hard constraint to occlusion in the other image.
The partial visibility within a segment is allowed and guide
by segmentation information, which is advantageous over
previous segment-based approaches. Experimental results
will also show its advantage in later sections.

The definition of patch is symmetric, i.e. the patches
in the right image can be similarly defined. For example in
Figure 1, ¢} and ¢} in the right image are patches of segment
s’ and t’ respectively if they are assigned with the same label
with 7. In this situation, we call g1 ~ ¢} (and g2 ~ ¢}) a
patch pair, because if one of them is visible, the other should
be visible too. If f;; # f,., for each visible patch in ', a
corresponding patch within one segment of the left image
with the label f;- can be found. So all the visible patches in
the left and right images are paired.

Using the patch-consistency constraint, the label config-
uration can be reformulated in a segment-patch level. That
is, for each segment r in either image, we assign it a label
fr € L, and if f,. # ¢, we assigned equal number of vis-
ibilities v,-(2) (also denoted as v,.(g,- (7)) for each patch of
r. The i-th patch of r is visible if v,-(¢) = 1 and otherwise



occluded. Besides, we constrain the configuration to be reg-
ular, i.e. the visible patches in the configuration should be
in pair. For example in Figure 1, if f, # ¢ and v,.(q1) = 1,
we constrains that f/ = f, and vy (¢}) = 1.

The label of each point can be computed as

_ fr fr?éd)/\vr(i):
o

otherwise
By abuse of notations, we use f to denote the configuration
in a segment-patch level in the rest of the paper.

1 )
,Vp € ().

2.3. Energy function

We compute the optimal configuration under an energy
minimization framework:

fopt = argminf E(f)
= arg minf Eaata(f) + Esmootn(f) + Eocer(f)-

Ejata(f) is the energy of matching errors for each visi-
ble patches. It is defined as

Edata(f) = ZT(fT 7é (b) ZGpatch(qh fr)»

3

fr
Epatch(%a fw) = Z (fpoint (p,p/)ap = p/)
PEQq;

where T'(-) equals 1 if the argument holds and otherwise 0,
and €p0int (p, p') is the intensity difference between point p
in the one image and point p’ in the other image.

Esmootn(f) exploits smoothness assumptions. If two
connected patch with same label contains different visibil-
ity, we impose a penalty. The selection of this smooth-
ness term affects whether the energy can be minimized ef-
ficiently by graph-cuts, so we put its definition in next sec-
tion.

Eocei(f) gives penalties to occluded pixels (otherwise a
trivial configuration with all pixels occluded will take the
least energy). It is defined as:

Eoccl(f) = C'o Z Eoccl(’r’)a
Sa (7") fr=9¢
Yo,(1—w.(7)) otherwise

where C, is a occlusion constant controlling the weight of
occlusion energy in the whole energy.

Eocel (T) = {

3. Energy minimization

The patches is generated by warping the segment accord-
ing to its label, but we do not know the label of a segment
before matching. So a global framework is proposed to
compute labels of segments and the visibility of each patch
simultaneously.

3.1. Alpha expansion framework

We know that a segment can have |L£| possible labels
and the separation of the segment into patches is generally
different under each label. So the whole searching space
is huge, so it is impractical to directly search the optimal
result. We use the « expansion framework proposed by
Boykov et al[3] to solve the problem. By using it, the prob-
lem is solved in an iterative style, and a strong local mini-
mum is obtained in each iteration. After convergence, the
global minimum is achieved.

In our situation, we start from a configuration with all
segments occluded. Then in each iteration, a label « is cho-
sen, and a local minimum within one o expansion is com-
puted using graph-cuts. If no label can further decrease the
energy, we get the final minimized configuration. If a con-
figuration is within an « expansion of f, a segment can only
have one of the following 3 choices: keeping its current la-
bel in f, becoming occluded, or changing its label to «, and
the configuration should keep regular.

3.2. Binary-variable energy term

Now we convert the minimization of E(f) in each iter-
ation (o expansion move) into a minimization of a binary-
variable energy, so that the latter minimization can be per-
formed by graph-cuts.

We classify the the segments into two classes according
its labels before expansion:

1. For each segment r in either image, f, ¢ {¢,a}, we
allocate a labeling variable 1, to decide the label of r
after expansion, denoted as fT. The relation between
l-and f, is

" =\ajs =1

Whether f,. equals ¢ is determined by the visibility of
the patches. Suppose the number of r’s patches un-
der label £, and o are NO and N respectively. The
visibility of the patches are determined as follow:

; {fr/as I, =0

(a) If r is in the left image, we allocate N visi-
bility variables, b)(i), indicating visibilities of
patches under the label f, when [, = 0, and de-
fine 9,.(i) = 1 — b2(i). we also allocate N vis-
ibility variables, b% (i), indicating visibilities of
patches under the label @ when [, = 1, and de-
fine 0,.(¢) = b%(4).

(b) If r is in the right image, we need not allocate
new binary variables, and choose the correct bi-
nary variables allocated for segments in the left
image to indicate the visibility of the patches. We



use the same notation for those chosen visibility
variables.

2. For each segment r C P, f, € {¢, o}, labeling vari-
able is not necessary, only visibility variables b% () are
allocated.

The set of all binary variables is denoted as V =
{1, B0(6), b2 (0) ).

There are some other constraints for values of V. If [,. #
0, we require Vb2(i) # 0, and if [, # 1, Vb® # 1. If this
requirement is satisfied, we say V' is regular, and otherwise
irregular. When V is regular, we denote the corresponding
configuration as f (V).

The o expansion move can be performed by minimizing
the following energy function of binary variables:

f = argminy, E°(V),

00 otherwise

V is regular

E®(V) can be rewritten as the sum of the following
terms:

E'(V) = E}y(V)

reg

+ Edata(v) + Esmooth(v) + Eoccl (V)

E,.q(V) takes infinity value if V' is not regular, and 0
otherwise. It can be written from the definition of regular
V:

Ereq( ZZ Og (1, B2(0) Z oo (L D2 (0)),

I, =1A bO(i) =0
B (1, 03 =40 r ,
red ( () {0 otherwise

Twmw%»—{“ 0D =
0  otherwise

Egam and Egccl can be trivially derived from the def-
inition of Eg,y, and Eye;. We know give the definition
for E;’mooth and equivalent E,,00tn. Our visibility vari-
ables are assignment-like variables as in the approach by
Kolmogorov and Zabih [8]. So we take the similar smooth-
ness energy function as:

=C > > Se(a,qn) - T(bg = by,)

4 qn€Ny

smooth

where NV is the set of neighboring patches of ¢ with the
same label as ¢, S.(q, g, ) is the length of shared border of ¢
and gy, b, is the visibility variable corresponding to patch ¢

and Cj is a smoothness constant controlling the balance of
smoothness with other energy. The equivalent E,,00th 1S

Esmooth = Z Z Esmooth(Q7Qn)7
4 gneN?

0 fq = f‘In,
Esmooth(Qa Qn) = Sc(Qa Q’n) Cs fq 7£ ¢ \ fqn 7£ QS
2Cy otherwise

where N/ ;) is the set of neighboring patches of g.
3.3. Regularity of Energy Function

E®(V) can be trivially rewritten as the sum of energy
items up to 2 variables at a time, i.e:

ZE’ v; +ZE J( (vs,v5)
1<j
And for all E%J (v;,v;),
E%(0,0) = E“(1,1) = 0, E“/(0,1), E*(1,0) > 0

So it obeys the regularity inequality introduced by Kol-
mogorov and Zabih [9]. We then use the results of [9] to
compute the minimization of E°(V).

4. Algorithm implementation

Segmentation on
Right Image

Segmentation on
Left Image
[ ]

L]
Label Selection H Alpha Expansion Move

Energy Decreased?

| Computing Disparities l

Figure 2. Flowchart of our algorithm.

The flowchart of the whole algorithm is shown in Fig-
ure 2. The left image (Figure 3.a) is firstly segmented
into relatively large segments using mean-shift segmen-
tation algorithm [5] (Figure 3.c). A Sum-of-Absolute-
Difference(SAD) algorithm with Birthfield and Tomas’s
dissimilarity algorithm [1] plus cross-checking algorithm
is used to find disparities of reliable points. A plane fit-
ting similar to [7] is exploited to select the label set £ (Fig-
ure 3.d). Input images are then over-segmented into smaller
segments (Figure 3.e and Figure 3.f). The symmetric algo-
rithm proposed in Section 3 is exploited to compute labels
of each segment and visibilities of each patch. Disparities



and occlusion results are then obtained (Figure 3.g). An
occlusion filling operation is used to compute the disparity
map without occlusions (Figure 3.h).

(® (G))

Figure 3. Intermediate results for “venus”. (a)
and (b) are input left and right images. (c)
is segmentation result for disparity selection.
(d) is the result of label selection. (e) and (f)
are segmentation results for matching. (g) is
the result with occlusions (marked in black),
and (h) is the result after occlusion filling.

4.1. Parameter selection

There are two parameters in our algorithm the smooth-
ness constant C, and occlusion constant C,,. We find that
C is somehow sensitive to input images and propose a
method to select the value automatically so that our algo-
rithm can be more adaptive.

Our selecting strategy is designed according to the fol-
lowing analysis. The data error energy makes the correctly
matched patch pair, which contains least SAD error in noise
free situation, to be selected. Noise may cause a wrong
patch to have smaller errors than the correct one, but the
wrong patch is often inconsistent with neighbors. Smooth-
ness energy is used to punish the inconsistency and reject
the wrong match. Therefor we choose a larger constant for
greater noise level.

The noise level is estimated using the disparity map of
reliable points in the label selection step. For each reliable
point, we compute a matching error €, and take the average
of all matching errors € as the average noise level. C; is set
by a value proportional to €.

5. Experiments and discussion
5.1. Experimental results

In order to get the performance of detecting occlusion
and the effectiveness of modeling occlusion, we firstly com-

pare our occlusion result with several recent approaches:
“GC+occl” algorithm by Kolmogorov and Zabih [8] which
is a pixel-based approach using a symmetric graph-cut
framework to handle occlusion, “Seg+GC” algorithm by
Hong and Chen [7] which is a segment-based asymmetric
graph-cut approach that does not explicitly detect occlusion,
and “Layer” algorithm by Lin and Tomasi [10] which is a
combination of pixel-based and segment-based approaches.
Two image pairs are used, which are the “tsukuba” and
“venus” data sets from [12]. Same parameters are se-
lected for both data sets. We use the source code from
Kolmogorov’s homepage to compute results of “GC+occl”.
The non-occlusion results of “Seg.+GC” are downloaded
from [12]. The occlusion result is computed by checking
the visibility of each point in the non-occlusion result. Re-
sult of “Layer” is from the authors’ website. The results are
shown and compared in Figure 4. Table 1 gives the error
statistics for “tsukuba” and “venus” respectively. They are
quantitatively evaluated by 3 criteria, which are the percent-
ages of: false positive, false negative, bad points near occlu-
sion. A bad point is a point whose absolute disparity error
is greater than one [12]. We make a near occlusion model
by dilating the occlusion area to 10 pixels and excluding the
occlusion area.

Table 1. Occlusion evaluation for “tsukuba”
and “venus”. (Best of each group is in italic
and bold face)

tsukuba False pos False neg Near occl.
Our results 1.05% 30.16% 4.10%
GC+occl [8] 1.51% 32.91% 6.44%
Seg+GC [7] 1.19% 32.51% 7.72 %
Layered [10] | 2.28% 25.42% 8.87%
venus
Our results 0.19% 16.61% 0.54%
GC+occl [8] 1.88% 32.97% 12.24%
Seg+GC [7] 0.55% 17.73% 0.67%
Layered [10] | 0.37% 50.63% 0.90%

From Table 1 we can see that, using the uniqueness and
segmentation makes the ratio of false positive than all the
others for both images. The ratio of false negative is com-
parable with others. The boundary of our occlusion results
in Figure 4 is cleaner than others’, because they are bounded
by segmented regions. Our error near occlusion is also ob-
viously better the others. That proves that the performance
of visible areas can also benefit correctly detecting occlu-
sion. This experiment shows the power of our patch-based
approaches on occlusion handling.

We also summit our results to the standard test bed [12]
for dense two-frame stereo algorithms in order to compare
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Figure 4. Occlusion results for “tsukuba” (the upper row) and “venus” (the lower row) datasets.

sawtooth

tsukuba

venus map

Figure 5. Results of middlebury datasets with
automatically chosen parameters. The first
row is the left images, the second row is the
ground truth, and the third row is our results.

our over-all performance . Disparity maps are shown in Fig-
ure 5, and quantitative evaluations are shown in Table 2. Re-
sult of “tsukuba” is superior than others’ in the list, results
of “sawtooth” and “venus” are also on the top level. The
patch-based formulation inherits the advantage of segment-
based approaches on slanted plane and untextured area. The
over-all performance for scenery with only fronto planes
("tsukuba” dataset) is also better than others, because of the
well occlusion handling. But the result for “map” is not
enough good. We found that artifacts happen at the place
where the color foreground object there is very similar to
the color of background. The color segmentation failed to
segment them into two segment. Discontinuity assumption
is thus violated. Similar statistical data can be found in other
segment-based approaches. This reveals the limitation of all
current segment-based approaches that when discontinuity
assumption is not satisfied, disparities in those areas will
fail to be correctly computed.

5.2. Discussion

In this section, we give a comparison between our algo-
rithm and other correspondence approaches.

We firstly consider the labeling space. In most pixel-
based algorithms, the labeling space is equivalent to the
disparity space. Pairwise smoothness assumption (explic-
itly or implicitly imposed) gives a bias of same dispari-
ties for neighboring pixels. This affects the performance of
those algorithms when there are greatly slanted planes in the
scene. So Ogale and Aloimonos used a 2D linear parameter
space for horizontally slanted planes, and many segment-
based algorithms used a 3D linear parameter space which
can model generally slanted plane. In Table 2, we can find
that pixel-based algorithm can easily achieve sound results
in “tsukuba” and “map”, which only contains fronto or near-
fronto planes, while segment-based approaches performs
better in “sawtooth” and “venus” which contains horizon-
tally (in “venus”) and vertically (in both of them) slanted
planes. But the 3D linear space is much larger than 1D dis-
parity space, so a label selection algorithm is often used to
select all possible linear parameters before matching.

Another comparison is between the different levels of
using segmentation or texture information. In most pre-
vious pixel-based algorithms, texture information is used
to control the smoothness intention of neighboring points,
e.g. in [8], intensity difference between neighboring pixels
is used to adjust the smoothness constant. The segment-
based algorithms use the color segmentation results as a
hard constraint for labels. The points in a segment are con-
sidered as a single matching unit, and the number of match-
ing units greatly decreases. This is why they can use the
larger 3D linear parameter labeling space than pixel-based
approaches. But the segmentation error is also transmitted
to the disparity results, which causes the imperfect results
for “map”. Sun et al[13] used the segmentation information
in a soft style. The fitted plane information gives a bias to
the pixel-based matching, and the results on “sawtooth” and



Table 2. Evaluation results on Middlebury stereo test-bed

Algorithm Tsukuba Sawtooth Venus Map
all untex. disc. all untex. disc. all untex. disc. all disc.

Sym.BP+0ccl 0.97 2 0.28 3 5.45 2 0.19 1 0.00 1 2.09 1 0.16 4 0.02 3 2.77 6 0.16 1 2.20 1
OUR METHOD 0.88 ; 0.19 , 495, 0295 000, 3235 009, 0023 1502 0.30; 408
Segm.-based GC1.23 5 0.29 5 6.94 6 0.30 6 0.00 1 3.24 6 0.08 1 0.01 1 1.39 1 1.4924 154629
Graph+segm. 1394 028 3 7.17g 0254 0.00; 2563 O0.1135 0.025 2043 2355 20.8733
Segm.+glob.vis. 1.30 7 0.48 8 7.5010 0.20 2 0.00 1 2.30 2 0.79 7 0.81 8 6.3711 1.6326 16.0731
Layered 1.5812 1.0614 8.8213 0.34 7 0.00 1 3.35 7 1.5215 2.9625 2.62 5 0.3712 5.2412
Belief prop. 1.153 0424 6313 0984 03019 4.83;5 1.0090 076 ;7 9.13;7 0.849; 5.2713
MultiCam GC 1.8515 1.9420 6.99 7 0.6212 0.00 1 6.8617 1.2112 1.9615 5.71 9 0.31 9 4.3411
Region-Progress.1.4410 0.55 9 8.1811 0.24 3 0.00 1 2.64 4 0.99 9 1.3713 6.4012 1.4925 171132
2-pass DP 1.5311 0.6610 8.2512 0.6110 0.0210 52513 0.94 8 0.95 9 5.7210 0.7019 9.3220
GC+occl. 1.19 4 0.23 2 6.71 4 0.7313 0.1113 5.7115 1.6418 2.7523 5.41 8 0.6117 6.0515

“venus” are much better than other pixel-based algorithms.
Their approach does not suffer from segmentation error di-
rectly, but the plane fitting is in a local style and the fronto
bias still exists. Our approach belongs to the segment-based
category, but we use more segmentation information for oc-
clusion handling.

6. Conclusions

A patch-based corresponding algorithm using graph-cuts
handling occlusions is proposed. Unlike other segment-
based approaches, both images are segmented and segments
are further separated into patches during matching. More
information from segmentation is used. Occlusions are han-
dled in a proper way. The experimental results show perfor-
mance improvement on occlusion for scenes with slanted
planes.

Segmentation error is still a drawback of our approach as
other segment-based ones. So in our future work we con-
sider several new technique that can make the algorithm less
suffer from the segmentation error. Better results have been
obtained and will be reported in recent publications.
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