
Shape Analysis by Graph Decomposition

R. Manevich1,⋆, J. Berdine3, B. Cook3, G. Ramalingam2, and M. Sagiv1

1 Tel Aviv University, {rumster,msagiv}@post.tau.ac.il
2 Microsoft Research India, grama@microsoft.com

3 Microsoft Research Cambridge, {bycook,jjb}@microsoft.com

Abstract. Programs commonly maintain multiple linked data struc-
tures. Correlations between multiple data structures may often be non-
existent or irrelevant to verifying that the program satisfies certain safety
properties or invariants. In this paper, we show how this independence
between different (singly-linked) data structures can be utilized to per-
form shape analysis and verification more efficiently. We present a new
abstraction based on decomposing graphs into sets of subgraphs, and
show that, in practice, this new abstraction leads to very little loss of
precision, while yielding substantial improvements to efficiency.

1 Introduction

We are interested in verifying that programs satisfy various safety properties
(such as the absence of null dereferences, memory leaks, dangling pointer deref-
erences, etc.) and that they preserve various data structure invariants.

Many programs, such as web-servers, operating systems, network routers,
etc., commonly maintain multiple linked data-structures in which data is added
and removed throughout the program’s execution. The Windows IEEE 1394
(firewire) device driver, for example, maintains separate cyclic linked lists that
respectively store bus-reset request packets, data regarding CROM calls, data re-
garding addresses, and data regarding ISOCH transfers. These lists are updated
throughout the driver’s execution based on events that occur in the machine.
Correlations between multiple data-structures in a program, such as those illus-
trated above, may often be non-existent or irrelevant to the verification task of
interest. In this paper, we show how this independence between different data-
structures can be utilized to perform verification more efficiently.

Many scalable heap abstractions typically maintain no correlation between
different points-to facts (and can be loosely described as independent attribute
abstractions in the sense of [7]). Such abstractions are, however, not precise
enough to prove that programs preserve data structure invariants. More precise
abstractions for the heap that use shape graphs to represent complete heaps [17],
however, lead to exponential blowups in the state space.

In this paper, we focus on (possibly cyclic) singly-linked lists and introduce
an approximation of the full heap abstraction presented in [13]. The new graph

⋆ This research was partially supported by the Clore Fellowship Programme. Part of
this research was done during an internship at Microsoft Research India.

decomposition abstraction is based on a decomposition of (shape) graphs into sets
of (shape) subgraphs (without maintaining correlations between different shape
subgraphs). In our initial empirical evaluation, this abstraction produced results
almost as precise as the full heap abstraction (producing just one false positive),
while reducing the state space significantly, sometimes by exponential factors,
leading to dramatic improvements to the performance of the analysis. We also
hope that this abstraction will be amenable to abstraction refinement techniques
(to handle the cases where correlations between subgraphs are necessary for
verification), though that topic is beyond the scope of this paper.

One of the challenges in using a subgraph abstraction is the design of safe and
precise transformers for statements. We show in this paper that the computation
of the most precise transformer for the graph decomposition abstraction is FNP-
complete.

We derive efficient, polynomial-time, transformers for our abstraction in sev-
eral steps. We first use an observation by Distefano et al. [3] and show how
the most precise transformer can be computed more efficiently (than the naive
approach) by: (a) identifying feasible combinations of subgraphs referred to by a
statement, (b) composing only them, (c) transforming the composed subgraphs,
and (d) decomposing the resulting subgraphs. Next, we show that the trans-
formers can be computed in polynomial time by omitting the feasibility check
(which entails a possible loss in precision). Finally, we show that the resulting
transformer can be implemented in an incremental fashion (i.e., in every iter-
ation of the fixed point computation, the transformer reuses the results of the
previous iteration).

We have developed a prototype implementation of the algorithm and com-
pared the precision and efficiency (in terms of both time and space) of our new
abstraction with that of the full heap abstraction over a standard suite of shape
analysis benchmarks as well as on models of a couple of Windows device drivers.
Our results show that the new analysis produces results as precise as the full
heap-based analysis in almost all cases, but much more efficiently.

A full version of this paper contains extra details and proofs [11].

2 Overview

In this section, we provide an informal overview of our approach. Later sections
provide the formal details.

Fig. 1 shows a simple program that adds elements into independent lists: a
list with a head object referenced by a variable h1 and a tail object referenced
by a variable t1, and a list with a head object referenced by a variable h2 and
a tail object referenced by a variable t2. This example is used as the running
example throughout the paper. The goal of the analysis is to prove that the data
structure invariants are preserved in every iteration, i.e., at label L1 variables h1
and t1 and variables h2 and t2 point to disjoint acyclic lists, and that the head
and tail pointers point to the first and last objects in every list, respectively.

//@assume h1!=null && h1==t1 && h1.n==null && h2!=null && h2==t2 && h2.n==null
//@invariant Reach(h1,t1) && Reach(h2,t2) && DisjointLists(h1,h2)
EnqueueEvents() {
L1: while (...) {

List temp = new List(getEvent());
if (nondet()) {

L2: t1.n = temp;
L3: t1 = temp;

} else {
t2.n = temp;
t2 = temp;

} } }

Fig. 1. A program that enqueues events into one of two lists. nondet() returns either true or false
non-deterministically

The shape analysis presented in [13] is able to verify the invariants by gen-
erating, at program label L1, the 9 abstract states shown in Fig. 2. These states
represent the 3 possible states that each list can have: a) a list with one element,
b) a list with two elements; and c) a list with more than two elements. This
analysis uses a full heap abstraction: it does not take advantage of the fact that
there is no interaction between the lists, and explores a state-space that contains
all 9 possible combinations of cases {a, b, c} for the two lists.

h1 t1

null

1

h2 t2

1

h1 t1

null

1

h2 t2

1 1

h1 t1

null

1

h2 t2

>1 1
nullh2 t2

1

h1 t1

1 1

h1 t1

1

nullh2 t2

1 1

1

S1 S2 S3 S4 S5

h1 t1

1

h2 t2

>1

1

null

1

nullh2 t2

1

h1 t1

>1 1
h1 t1

>1

h2 t2

1

1

null

1

h1 t1

>1

h2 t2

>1

1

null

1

S6 S7 S8 S9

Fig. 2. Abstract states at program label L1, generated by an analysis of the program
in Fig. 1 using a powerset abstraction. Edges labeled 1 indicate list segments of length
1, whereas edges labeled with >1 indicate list segments of lengths greater than 1

The shape analysis using a graph decomposition abstraction presented in this
paper, represents the properties of each list separately and generates, at program
label L1, the 6 abstract states shown in Fig. 3. For a generalization of this
program to k lists, the number of states generated at label L1 by using a graph
decomposition abstraction is 3 × k, compared to 3k for an analysis using a full
heap abstraction, which tracks correlations between properties of all k lists. In
many programs, this exponential factor can be significant. Note that in cases
where there is no correlation between the different lists, the new abstraction of

h1 t1

null1

h1 t1

1 null1

h1 t1

>1 null1

h2 t2

null1

h2 t2

1 null1

h2 t2

>1 null1

M1 M2 M3 M4 M5 M6

Fig. 3. Abstract states at program label L1, generated by an analysis of the program
in Fig. 1 using the graph decomposition abstraction

the set of states is as precise as the full heap abstraction: e.g., Fig. 3 and Fig. 2
represent the same set of concrete states.

We note that in the presence of pointers, it is not easy to decompose the
verification problem into a set of sub-problems to achieve similar benefits. For
example, current (flow-insensitive) alias analyses would not be able to identify
that the two lists are disjoint.

3 A Full Heap Abstraction for Lists

In this section, we describe the concrete semantics of programs manipulating
singly-linked lists and a full heap abstraction for singly-linked lists.

A Simple Programming Language for Singly-Linked Lists. We now de-
fine a simple language and its concrete semantics. Our language has a single
data type List (representing a singly-linked list) with a single reference field n

and a data field, which we conservatively ignore.
There are five types of heap-manipulating statements: (1) x=new List(),

(2) x=null, (3) x=y, (4) x=y.n, and (5) x.n=y. Control flow is achieved by
using goto statements and assume statements of the form assume(x==y) and
assume(x!=y). For simplicity, we do not present a deallocation, free(x), state-
ment and use garbage collection instead. Our implementation supports memory
deallocation, assertions, and detects (mis)use of dangling pointers.

Concrete States. Let PVar be a set of variables of type List . A concrete program
state is a triple C

·

= (UC , envC , nC) where UC is the set of heap objects, an
environment envC : PVar ∪ {null} → UC maps program variables (and null)
to heap objects, and nC : UC → UC , which represents the n field, maps heap
objects to heap objects. Every concrete state includes a special object vnull such
that env(null) = vnull.We denote the set of all concrete states by States.

Concrete Semantics. We associate a transition function [[st]] with every statement
st in the program. Each statement st takes a concrete state C, and transforms
it to a state C ′ = [[st]](C). The semantics of a statement is given by a pair
(condition, update) such that when the condition specified by condition holds the
state is updated according to the assignments specified by update. The concrete
semantics of program statements is shown in Tab. 1.

Table 1. Concrete semantics of program statements. Primed symbols denote post-
execution values. We write x,y, and x′ to mean env(x), env(y), and env′(x), respectively

Statement Condition Update

x=new List() x′ = vnew, where vnew is a fresh List object
n′ = λ v . (v = vnew ? null : n(v))

x=null x′ = null

x=y x′ = y

x=y.n y 6= null x′ = n(y)

x.n=y x 6= null n′ = λ v . (v = x ? y : n(v))

assume(x!=y) x 6= y

assume(x==y) x = y

3.1 Abstracting List Segments

The abstraction is based on previous work on analysis of singly-linked lists [13].
The core concepts of the abstraction are interruptions and uninterrupted list.
An object is an interruption if it is referenced by a variable (or null) or shared
(i.e., has two or more predecessors). An uninterrupted list is a path delimited by
two interruptions that does not contain interruptions other than the delimiters.

Definition 1 (Shape Graphs). A shape graph G
·

= (V G, EG, envG, lenG) is
a quadruple where V G is a set of nodes, EG is a set of edges, envG : PVar ∪
{null} → V G maps variables (and null) to nodes, and lenG : EG → pathlen
assigns labels to edges. In this paper, we use pathlen

·

= {1, >1}.4

We denote the set of shape graphs by SGPVar, omitting the subscript if no
confusion is likely, and define equality between shape graphs by isomorphism.
We say that a variable x points to a node v ∈ V G if envG(x) = v.

We now describe how a concrete state C
·

= (UC , envC , nC) is abstracted into
a shape graph G

·

= (V G, EG, envG, lenG) by the function βFH : States → SG.
First, we remove any node in UC that is not reachable from a (node pointed-
to by a) program variable. Let PtVar(C) be the set of objects pointed-to by
some variable, and let Shared(C) the set of heap-shared objects. We create a
shape graph βFH(C)

·

= (V G, EG, envG, lenG) where V G ·

= PtVar(C)∪Shared(C),
EG ·

= {(u, v) | (u, . . . , v) is an uninterrupted list}, envG restricts envC to V G,
and lenG(u, v) is 1 if the uninterrupted list from u to v has one edge and >1

otherwise. The abstraction function αFH is the point-wise extension of βFH to
sets of concrete states5. We say that a shape graph is admissible if it is in the
image of βFH.

4 The abstraction in [13] is more precise, since it uses the abstract lengths {1, 2, > 2}.
We use the lengths {1, > 1}, which we found to be sufficiently precise, in practice.

5 In general, the point-wise extension of a function f : D → D is a function f :
2D → 2D, defined by f(S)

·

= {f(s) | s ∈ S}. Similarly, the extension of a function
f : D → 2D is a function f : 2D → 2D, defined by f(S)

·

=
S

s∈S
f(s).

h1 t1

null

h2t2
n n n n n n

h1 t1

null

h2t2

>1 1 1 1

(a) (b)

Fig. 4. (a) A concrete state, and (b) The abstraction of the state in (a)

Proposition 1. A shape graph is admissible iff the following properties hold:
(i) Every node has a single successor; (ii) Every node is pointed-to by a variable
(or null) or is a shared node, and (iii) Every node is reachable from (a node
pointed-to by) a variable.

We use Prop. 1 to determine if a given graph is admissible in linear time
and to conduct an efficient isomorphism test for two shape graphs in the image
of the abstraction. It also provides a bound on the number of admissible shape
graphs: 25n2+10n+8, where n

·

= |PVar|.

Example 1. Fig. 4(a) shows a concrete state that arises at program label L1 and
Fig. 4(b) shows the shape graph that represents it. ⊓⊔

Concretization. The function γFH : SG → 2States returns the set of concrete
states that a shape graph represents: γFH(G)

·

= {C | βFH(C) = G}. We define
the concretization of sets of shape graphs by using its point-wise extension. We
now have the Galois Connection 〈2States , αFH, γFH, 2SG〉.

Abstract Semantics. The most precise, a.k.a best, abstract transformer [2] of
a statement is given by [[st]]#

·

= αFH ◦ [[st]] ◦ γFH. An efficient implementation
of the most precise abstract transformer is shown in the full version [11].

4 A Graph Decomposition Abstraction for Lists

In this section, we introduce the abstraction that is the basis of our approach
as an approximation of the abstraction shown in the previous section. We define
the domain we use—2ASSG, the powerset of atomic shape subgraphs—as well as
the abstraction and concretization functions between 2SG and 2ASSG.

4.1 The Abstract Domain of Shape Subgraphs

Intuitively, the graph decomposition abstraction works by decomposing a shape
graph into a set of shape subgraphs. In principle, different graph decomposi-
tion strategies can be used to get different abstractions. However, in this paper,
we focus on decomposing a shape graph into a set of subgraphs induced by
its (weakly-)connected components. The motivation is that different weakly con-
nected components mostly represent different “logical” lists (though a single list

may occasionally be broken into multiple weakly connected components during
a sequence of pointer manipulations) and we would like to use an abstraction
that decouples the different logical lists. We will refer to an element of SGPVar

as a shape graph, and an element of SGVars for any Vars ⊆ PVar as a shape
subgraph. We denote the set of shape subgraphs by SSG and define Vars(G) to
be the set of variables that appear in G, i.e., mapped by envG to some node.

4.2 Abstraction by Graph Decomposition

We now define the decomposition operation. Since our definition of shape graphs
represents null using a special node, we identify connected components after
excluding the null node. (Otherwise, all null -terminated lists, i.e. all acyclic lists,
will end up in the same connected component.)

Definition 2 (Projection). Given a shape subgraph G
·

= (V,E, env, len) and
a set of nodes W ⊆ V , the subgraph of G induced by W , denoted by G|W ,
is the shape subgraph (W,E′, env′, len′), where E′ ·

= E ∩ (W × W), env′
·

=
env ∩ (Vars(G) × W), and len′ ·

= len ∩ (E′ × pathlen).

Definition 3 (Connected Component Decomposition). For a shape sub-
graph G

·

= (V,E, env, len), let R
·

= E′∗ be the reflexive, symmetric, transitive
closure of the relation E′ ·

= E \ {(vnull, v), (v, vnull) | v ∈ V }. That is, R does
not represent paths going through null. Let [R] be the set of equivalence classes
of R. The connected component decomposition of G is given by

Components(G)
·

= {G|C′ | C ′ = C ∪ {vnull}, C ∈ [R]} .

Example 2. Referring to Fig. 2 and Fig. 3, we have Components(S2) = {M1,M5}.

Abstracting Away Null-value Correlations. The decomposition Components
manages to decouple distinct lists in a shape graph. However, it fails to decouple
lists from null-valued variables.

if (?) x = new List() else x = null;

y = new List();
null1

y

null1
xy

null1

x

M1 M2 M3

(a) (b)

Fig. 5. (a) A code fragment; and (b) Shape subgraphs arising after executing y=new

List(). M1: y points to a list and x is not null, M2: y points to a list and x is null;
and M3: x points to a list and y is not null

Example 3. Consider the code fragment shown in Fig. 5(a) and the shape sub-
graphs arising after y=new List(). y points to a list (with one cell), while x is

null or points to another list (with one cell). Unfortunately, the y list will be
represented by two shape subgraphs in the abstraction, one corresponding to
the case that x is null (M2) and one corresponding to the case that x is not
null (M1). If a number of variables can be optionally null, this can lead to an
exponential blowup in the representation of other lists! Our preliminary investi-
gations show that this kind of exponential blow-up can happen in practice. ⊓⊔

The problem is the occurrence of shape subgraphs that are isomorphic except
for the null variables. We therefore define a coarser abstraction by decompos-
ing the set of variables that point to the null node. To perform this further
decomposition, we define the following operations:

– nullvars : SSG → 2PVar returns the set of variables that point to null in a
shape subgraph.

– unmap : SSG×2PVar → SSG removes the mapping of the specified variables
from the environment of a shape subgraph.

– DecomposeNullVars : SSG → 2SSG takes a shape subgraph and returns: (a)
the given subgraph without the null variables, and (b) one shape subgraph
for every null variable, which contains just the null node and the variable:

DecomposeNullVars(G)
·

= {unmap(G,nullvars(G))}∪
{unmap(G|vnull

,Vars(G) \ {var} | var ∈ nullvars(G)} .

In the sequel, we use the point-wise extension of DecomposeNullVars.

We define the set ASSG of atomic shape subgraphs to be the set of subgraphs
that consist of either a single connected component or a single null -variable fact
(i.e., a single variable pointing to the null node). Non-atomic shape subgraphs
correspond to conjunctions of atomic shape subgraphs and are useful intermedi-
aries during concretization and while computing transformers.

The abstraction function βGD : SG → 2ASSG is given by

βGD(G)
·

= DecomposeNullVars(Components(G)) .

The function αGD : 2SG → 2ASSG is the point-wise extension of βGD. Thus,
ASSG = αGD(SG) is the set of shape subgraphs in the image of the abstraction.

Note: We can extend the decomposition to avoid exponential blowups created
by different sets of variables pointing to the same (non-null) node. However, we
believe that such correlations are significant for shape analysis (as they capture
different states of a single list) and abstracting them away can lead to a significant
loss of precision. Hence, we do not explore this possibility in this paper.

4.3 Concretization by Composition of Shape Subgraphs

Intuitively, a shape subgraph represents the set of its super shape graphs. Con-
cretization consists of connecting shape subgraphs such that the intersection of
the sets of shape graphs that they represent is non-empty. To formalize this, we
define the following binary relation on shape subgraphs.

Definition 4 (Subgraph Embedding). We say that a shape subgraph G′ ·

=
(V ′, E′, env′, len′) is embedded in a shape subgraph G

·

= (V,E, env, len), denoted
G′ ⊑ G, if there exists a function f : V → V ′ such that: (i) (u, v) ∈ E iff
(f(u), f(v)) ∈ E′; (ii) f(env(x)) = env′(x) for every x ∈ Vars(G); and (iii) for
every x ∈ Vars(G′) \ Vars(G), f−1(env′(x)) ∩ V = ∅ or env′(x) = env′(null).6

Thus, for any two atomic shape subgraphs G and G′, G′ ⊑ G iff G = G′.
We make 〈SSG,⊑〉 a complete partial order by adding a special element ⊥ to

represent infeasible shape subgraphs, and define ⊥ ⊑ G for every shape subgraph
G. We define the operation compose : SSG×SSG → SSG that accepts two shape
subgraphs and returns their greatest lower bound (w.r.t. to the ⊑ ordering). The
operation naturally extends to sets of shape subgraphs.

Example 4. Referring to Fig. 2 and Fig. 3, we have S1 ⊑ M1 and S1 ⊑ M4, and
compose(M1,M4) = S1. ⊓⊔

The concretization function γGD : 2ASSG → 2SG is defined by

γGD(XG)
·

= {G | G = compose(Y), Y ⊆ XG, G is admissible} .

This gives us the Galois Connection 〈2SG, αGD, γGD, 2ASSG〉.

Properties of the Abstraction. Note that there is neither a loss of precision
nor a gain in efficiency (e.g., such as a reduction in the size of the represen-
tation) when we decompose a single shape graph, i.e., γGD(βGD(G)) = {G}.
Both potentially appear when we abstract a set of shape graphs by decomposing
each graph in a set. However, when there is no logical correlation between the
different subgraphs (in the graph decomposition), we will gain efficiency without
compromising precision.

Example 5. Consider the graphs in Fig. 2 and Fig. 3. Abstracting S1 gives
βGD(S1) = {M1,M4}. Concretizing back, gives γGD({M1,M4}) = {S1}. Ab-
stracting S5 yields βGD(S5) = {M2,M5}. Concretizing {M1,M2,M4,M5} re-
sults in {S1, S2, S4, S5}, which overapproximates {S1, S5}. ⊓⊔

5 Developing Efficient Abstract Transformers

for the Graph Decomposition Abstraction

In this section, we show that it is hard to compute the most precise trans-
former for the graph decomposition abstraction in polynomial time and develop
sound and efficient transformers. We demonstrate our ideas using the statement
t1.n=temp in the running example and the subgraphs in Fig. 6 and Fig. 3.

An abstract transformer Tst : 2ASSG → 2ASSG is sound for a statement st if
for every set of shape subgraphs XG the following holds:

(αGD ◦ [[st]]# ◦ γGD)(XG) ⊆ Tst(XG) . (1)

6 We define f−1(x)
·

= {y ∈ V . f(y) = x}.

null1
temp

M7

h1

t1
1 null1
temp h1 t1

1 1 null1
temp h1 t1

>1 1 null1
temp

M8 M9 M10

(a) (b)

Fig. 6. (a) A subgraph at label L2 in Fig. 1, and (b) Subgraphs at L3 in Fig. 1

5.1 The Most Precise Abstract Transformer

We first show how the most precise transformer [[st]]GD ·

= αGD ◦ [[st]]# ◦ γGD can
be computed locally, without concretizing complete shape graphs. As observed by
Distefano et al. [3], the full heap abstraction transformer [[st]]# can be computed
by considering only the relevant part of an abstract heap. We use this observation
to create a local transformer for our graph decomposition abstraction.

The first step is to identify the subgraphs “referred” to by the statement st.
Let Vars(st) denote the variables that occur in statement st. We define:

– The function modcompsst : 2SSG → 2SSG returns the shape subgraphs that
have a variable in Vars(st): modcompsst(XG)

·

= {G ∈ XG | Vars(G) ∩
Vars(st) 6= ∅} .

– The function samecompsst : 2SSG → 2SSG returns the complementary subset:
samecompsst(XG)

·

= XG \ modcompsst(XG) .

Example 6. modcompst1.n=temp({M1, . . . ,M7}) = {M1,M2,M3,M7} and
samecompst1.n=temp({M1, . . . ,M7}) = {M4,M5,M6}. ⊓⊔

Note that the transformer [[st]]# operates on complete shape graphs. How-
ever, the transformer can be applied, in a straightforward fashion, to any shape
subgraph G as long as G contains all variables mentioned in st (i.e., Vars(G) ⊇
Vars(st)). Thus, our next step is to compose subgraphs in modcompsst(XG) to
generate subgraphs that contain all variables of st. However, not every set of
subgraphs in modcompsst(XG) is a candidate for this composition step.

Given a set of subgraphs XG, a set XG′ ⊆ XG, is defined to be weakly feasible
in XG if compose(XG′) 6=⊥. Further, we say that XG′ is feasible in XG if there
exists a subset XR ⊆ XG such that compose(XG′ ∪ XR) is an admissible shape
graph (i.e., ∃G ∈ SG : XG′ ⊆ αGD(G) ⊆ XG).

Example 7. The subgraphs M1 and M7 are feasible in {M1, . . . ,M7}, since they
can be composed with M4 to yield an admissible shape graph. However, M1 and
M2 contain common variables and thus {M1,M2} is not (even weakly) feasible
in {M1, . . . ,M7}. In Fig. 7, the shape subgraphs M1 and M4 are weakly-feasible
but not feasible in {M1, . . . ,M5} (there is no way to compose subgraphs to
include w, since M1 and M2 and M3 and M4 are not weakly-feasible.). ⊓⊔

Let st be a statement with k
·

= |Vars(st)| variables (k ≤ 2 in our language).
Let M (≤k) denote all subsets of size k or less of a set M . We define the trans-

x z

null1

w x

null1

y w

null1
y

null1
z

null1

M1 M2 M3 M4 M5

Fig. 7. A set of shape subgraphs over the set of program variables {x,y,z,w}

former for a heap-mutating statement st by:

TGD
st (XG)

·

= let Y = {[[st]]#(G) | M = modcompsst(XG), R ∈ M (≤k),

G = compose(R),Vars(st) ⊆ Vars(G),
R is feasible in XG}

in samecompsst(XG) ∪ αGD(Y) .

The transformer for an assume statement st is slightly different. An assume
statement does not modify incoming subgraphs, but filters out some subgraphs
that are not consistent with the condition specified in the assume statement. Note
that it is possible for even subgraphs in samecompsst(XG) to be filtered out by
the assume statement, as shown by the following definition of the transformer:

TGD
st (XG)

·

= let Y = {[[st]]#(G) | R ∈ XG(≤k+1),

G = compose(R),Vars(st) ⊆ Vars(G),
R is feasible in XG}

in αGD(Y) .

Example 8. The transformer TGD
t1.n=temp: (a) composes subgraphs: compose(M1,M7),

compose(M2,M7), and compose(M3,M7); (b) finds that the three pairs of sub-
graphs are feasible in {M1, . . . ,M7}; (c) applies the local full heap abstraction
transformer [[t1.n=temp]]#, producing M8, M9, and M10, respectively; and (d)
returns the final result: TGD

t1.n=temp({M1, . . . ,M7}) = {M4,M5,M6}∪{M8,M9,M10}.
⊓⊔

Theorem 1. The transformer TGD
st is the most precise abstract transformer.

Although TGD
st applies [[st]]# to a polynomial number of shape subgraphs and

[[st]]# itself can be computed in polynomial time, the above transformer is still
exponential in the worst-case, because of the difficulty of checking the feasibility
of R in XG. In fact, as we now show, it is impossible to compute the most precise
transformer in polynomial time, unless P=NP.

Definition 5 (Most Precise Transformer Decision Problem). The deci-
sion version of the most precise transformer problem is as follows: for a set of
atomic shape subgraphs XG, a statement st, and an atomic shape subgraph G,
does G belong to [[st]]GD(XG)?

Theorem 2. The most precise transformer decision problem, for the graph de-
composition abstraction presented above, is NP-complete (even when the input
set of subgraphs is restricted to be in the image of αGD). Similarly, checking if
XG′ is feasible in XG is NP-complete.

Proof (sketch). By reduction from the EXACT COVER problem: given a uni-
verse U = {u1, . . . , un} of elements and a collection of subsets A ⊆ 2U , decide
whether there exists a subset B ⊆ A such that every element u ∈ U is contained
in exactly one set in B. EXACT COVER is known to be NP-complete [4]. ⊓⊔

5.2 Sound and Efficient Transformers

We safely replace the check for whether R is feasible in XG by a check for
whether R is weakly-feasible (i.e., whether compose(R) 6=⊥) and obtain the
following transformer. (Note that a set of subgraphs is weakly-feasible iff no two
of the subgraphs have a common variable; hence, the check for weak feasibility
is easy.) For a heap-manipulating statement st, we define the transformer by:

T̂GD
st (XG)

·

= let Y = {[[st]]#(G) | M = modcompsst(XG), R ∈ M (≤k),

G = compose(R) 6=⊥,Vars(st) ⊆ Vars(G)}
in samecompsst(XG) ∪ αGD(Y) .

For an assume statement st, we define the transformer by:

T̂GD
st (XG)

·

= let Y = {[[st]]#(G) | R ∈ XG(≤k+1),

G = compose(R) 6=⊥,Vars(st) ⊆ Vars(G)}
in αGD(Y) .

By definition, (1) holds for T̂GD
st . Thus, T̂GD

st is a sound transformer.

We apply several engineering optimizations to make the transformer T̂GD
st

efficient in practice: (i) by preceding statements of the form x=y and x=y.n

with an assignment x=null, we specialize the transformer to achieve linear time
complexity; (ii) we avoid unnecessary compositions of shape subgraphs for state-
ments of the form x.n=y and assume(x==y), when a shape subgraph contains
both x and y; and (iii) assume statements do not change subgraphs, therefore
we avoid performing explicit compositions and propagate atomic subgraphs.

5.3 An Incremental Transformer

The goal of an incremental transformer is to compute T̂GD
st (XG∪{D}) by reusing

T̂GD
st (XG). We define the transformer for a heap-manipulating statement st by:

T̂GD
st (XG ∪ {D})

·

= if D ∈ modcompsst({D})
let Y = {[[st]]#(G) | M = modcompsst(XG ∪ {D}),

R ∈ M (≤k),D ∈ R,

G = compose(R) 6=⊥,Vars(st) ⊆ Vars(G)}

in T̂GD
st (XG) ∪ αGD(Y)

else

T̂GD
st (XG) ∪ {D} .

Here, if the new subgraph D is not affected by the statement, we simply add
it to the result. Otherwise, we apply the local full heap abstraction transformer
only to subgraphs composed from the new subgraph (for sets of subgraphs not
containing D, the result has been computed in the previous iteration).

For an assume statement st, we define the transformer by:

T̂GD
st (XG ∪ {D})

·

= let Y = {[[st]]#(G) | R ∈ (XG ∪ {D})(≤k+1),

D ∈ R,G = compose(R) 6=⊥,Vars(st) ⊆ Vars(G)}

in T̂GD
st (XG) ∪ αGD(Y) .

Again, we apply the transformer only to (composed) subgraphs containing D.

6 Prototype Implementation and Empirical Results

Implementation. We implemented the analyses based on the full heap abstrac-
tion and the graph decomposition abstraction described in previous sections
in a system that supports memory deallocation and assertions of the form
assertAcyclicList(x), assertCyclicList(x), assertDisjointLists(x,y),
and assertReach(x,y). The analysis checks null dereferences, memory leakage,
misuse of dangling pointers, and assertions. The system supports non-recursive
procedure calls via call strings and unmaps variables as they become dead.

Example Programs. We use a set of examples to compare the full heap abstraction-
based analysis with the graph decomposition-based analysis. The first set of ex-
amples consists of standard list manipulating algorithms operating on a single
list (except for merge). The second set of examples consists of programs ma-
nipulating multiple lists: the running example, testing an implementation of a
queue by two stacks7, joining 5 lists, splitting a list into 5 lists, and two programs
that model aspects of device drivers. We created the serial port driver example
incrementally, first modeling 4 of the lists used by the device and then 5.

Precision. The results of running the analyses appear in Tab. 2. The graph
decomposition-based analysis failed to prove that the pointer returned by getLast

is non-null8, and that a dequeue operation is not applied to an empty queue in
queue 2 stacks. On all other examples, the graph decomposition-based analysis
has the same precision as the analysis based on the full heap abstraction.

Performance. The graph decomposition-based analysis is slightly less efficient
than the analysis based on the full heap abstraction on the standard list ex-
amples. For the examples manipulating multiple lists, the graph decomposition-
based analysis is faster by up to a factor of 212 (in the serial 5 lists example)

7 queue 2 stacks was constructed to show a case where the graph decomposition-
based analysis loses precision—determining that a queue is empty requires main-
taining a correlation between the two (empty) lists.

8 A simple feasibility check while applying the transformer of the assertion would have
eliminated the subgraph containing the null pointer.

and consumes considerably less space. These results are also consistent with the
number of states generated by the two analyses.

Table 2. Time, space, number of states (shape graphs for the analysis based on full
heap abstraction and subgraphs for the graph decomposition-based analysis), and num-
ber of errors reported. Rep. Err. and Act. Err. are the number of errors reported, and
the number of errors that indicate real problems, respectively. #Loc indicates the
number of CFG locations. F.H. and G.D. stand for full heap and graph decomposition,
respectively

Benchmark Time (sec.) Space (Mb.) #States R. Err./A. Err.
(#Loc) F.H. G.D. F.H. G.D. F.H. G.D. F.H. G.D.

create (11) 0.03 0.19 0.3 0.3 27 36 0/0 0/0

delete (25) 0.17 0.27 0.8 0.9 202 260 0/0 0/0

deleteAll (12) 0.05 0.09 0.32 0.36 35 64 0/0 0/0

getLast (13) 0.06 0.13 0.42 0.47 67 99 0/0 1/0

getLast cyclic (13) 0.08 0.09 0.39 0.41 53 59 0/0 0/0

insert (23) 0.14 0.28 0.75 0.82 167 222 0/0 0/0

merge (37) 0.34 0.58 2.2 1.7 517 542 0/0 0/0

removeSeg (23) 0.19 0.33 0.96 1.0 253 283 0/0 0/0

reverse (13) 0.09 0.12 0.47 0.46 82 117 0/0 0/0

reverse cyclic (14) 0.14 0.36 0.6 1.4 129 392 0/0 0/0

reverse pan (12) 0.2 0.6 0.9 2.2 198 561 0/0 0/0

rotate (17) 0.05 0.08 0.3 0.4 33 50 0/0 0/0

search nulldref (7) 0.06 0.1 0.4 0.4 48 62 1/1 1/1

swap (13) 0.05 0.09 0.3 0.4 35 62 0/0 0/0

enqueueEvents (49) 0.2 0.2 1.2 0.7 248 178 0/0 0/0

queue 2 stacks (61) 0.1 0.2 0.6 0.7 110 216 0/0 1/0

join 5 (68) 12.5 0.5 67.0 2.4 14,704 1,227 0/0 0/0

split 5 (47) 28.5 0.3 126.2 1.7 27,701 827 0/0 0/0

1394diag (180) 26.2 1.8 64.7 8.5 10,737 4,493 0/0 0/0

serial 4 lists (248) 36.9 1.7 230.1 11.7 27,851 6,020 0/0 0/0

serial 5 lists (278) 552.6 2.6 849.2 16.4 89,430 7,733 0/0 0/0

7 Related Work

Single-graph Abstractions. Some early shape analyses used a single shape graph
to represent the set of concrete states [8, 1, 16]. As noted earlier, it is possible to
generalize our approach and consider different strategies for decomposing shape
graphs. Interestingly, the single shape graph abstractions can be seen as one
extreme point of such a generalized approach, which relies on a decomposition
of a graph into its set of edges. The decomposition strategy we presented in this
paper leads to a more precise analysis.

Partially Disjunctive Heap Abstraction. In previous work [12], we described a
heap abstraction based on merging sets of graphs with the same set of nodes
into one (approximate) graph. The abstraction in the current paper is based
on decomposing a graph into a set of subgraphs. The abstraction in [12] suffers
from the same exponential blow-ups as the full heap abstraction for our running
example and examples containing multiple independent data structures.

Heap Analysis by Separation. Yahav et al. [18] and Hackett et al. [6] decompose
heap abstractions to separately analyze different parts of the heap (e.g., to estab-
lish the invariants of different objects). A central aspect of the separation-based
approach is that the analysis/verification problem is itself decomposed into a set
of problem instances, and the heap abstraction is specialized for each problem
instance and consists of one sub-heap consisting of the part of the heap relevant
to the problem instance, and a coarser abstraction of the remaining part of the
heap ([6] uses a points-to graph). In contrast, we simultaneously maintain ab-
stractions of different parts of the heap and also consider the interaction between
these parts. (E.g., it is possible for our decomposition to dynamically change as
components get connected and disconnected.)

Application to Other Shape Abstractions. Lev-Ami et al. [9] present an abstrac-
tion that could be seen as an extension of the full heap abstraction in this paper
to more complex data structures, e.g., doubly-linked lists and trees. We believe
that applying the techniques in this paper to their analysis is quite natural and
can yield a more scalable analysis for more complex data structures. Distefano
et al. [3] present a full heap abstraction based on separation logic, which is sim-
ilar to the full heap abstraction presented in this paper. We therefore believe
that it is possible to apply the techniques in this paper to their analysis as well.
TVLA[10] is a generic shape analysis system that uses canonical abstraction.
We believe it is possible to decompose logical structures in a similar way to
decomposing shape subgraphs and extend the ideas in this paper to TVLA.

Decomposing Heap Abstractions for Interprocedural Analysis. Gotsman et al. [5]
and Rinetzky et al. [14, 15] decompose heap abstractions to create procedure
summaries for full heap+ abstractions. This kind of decomposition, which does
not lead to loss of precision (except when cutpoints are abstracted), is orthogonal
to our decomposition of heaps, which is used to reduce the number of abstract
states generated by the analysis. We believe it is possible to combine the two
techniques to achieve a more efficient interprocedural shape analysis.

Acknowledgements. We thank Joseph Joy from MSR India for helpful dis-
cussions on Windows device drivers.

References

1. D. R. Chase, M. Wegman, and F. Zadeck. Analysis of pointers and structures. In
Proc. Conf. on Prog. Lang. Design and Impl., New York, NY, 1990. ACM Press.

2. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Los Angeles, California, 1977. ACM Press, New York,
NY.

3. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In In Proc. 13th Intern. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’06), 2006.

4. M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

5. A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis with sepa-
rated heap abstractions. In Proceedings of the 13th International Static Analysis
Symposium (SAS’06), 2006.

6. B. Hackett and R. Rugina. Region-based shape analysis with tracked locations. In
Proc. Symp. on Principles of Prog. Languages, 2005.

7. N. D. Jones and S. S. Muchnick. Complexity of flow analysis, inductive assertion
synthesis, and a language due to dijkstra. In Program Flow Analysis: Theory and
Applications, chapter 12. Prentice-Hall, Englewood Cliffs, NJ, 1981.

8. N. D. Jones and S. S. Muchnick. Flow analysis and optimization of Lisp-like
structures. In S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 4. Prentice-Hall, Englewood Cliffs, NJ, 1981.

9. T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction for shape analysis with fast
and precise transformers. In CAV, 2006.

10. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
Proc. Static Analysis Symp., 2000.

11. R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv. Shape analysis
by graph decomposition. 2006. Full version.

12. R. Manevich, M. Sagiv, G. Ramalingam, and J. Field. Partially disjunctive heap
abstraction. In Proceedings of the 11th International Symposium, SAS 2004, Lec-
ture Notes in Computer Science. Springer, August 2004.

13. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and
canonical abstraction for singly-linked lists. In Proceedings of the 6th International
Conference on Verification, Model Checking and Abstract Interpretation, VMCAI
2005. Springer, January 2005.

14. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In 32nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’05), 2005.

15. N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In 12th International Static Analysis Symposium (SAS), 2005.

16. M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages
with destructive updating. ACM Transactions on Programming Languages and
Systems, 20(1), January 1998.

17. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems, 2002.

18. E. Yahav and G. Ramalingam. Verifying safety properties using separation and
heterogeneous abstractions. In Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation, 2004.

