
Delayed and Controlled Failures in
Tamper-Resistant Software

Gang Tan1, Yuqun Chen2, and Mariusz H. Jakubowski2

1 Computer Science Department, Boston College. gtan@cs.bc.edu
2 Microsoft Corporation. {yuqunc,mariuszj}@microsoft.com

Abstract. Tamper-resistant software (TRS) consists of two functional
components: tamper detection and tamper response. Although both are
equally critical to the effectiveness of a TRS system, past research has
focused primarily on the former, while giving little thought to the lat-
ter. Not surprisingly, many successful breaks of commercial TRS systems
found their first breaches at the relatively näıve tamper-response mod-
ules. In this paper, we describe a novel tamper-response system that
evades hacker detection by introducing delayed, probabilistic failures in
a program. This is accomplished by corrupting the program’s internal
state at well-chosen locations. Our tamper-response system smoothly
blends in with the program and leaves no noticeable traces behind, mak-
ing it very difficult for a hacker to detect its existence. The paper also
presents empirical results to demonstrate the efficacy of our system.

1 Introduction

Software tampering continues to be a major threat to software vendors and con-
sumers: Billions of dollars are lost every year to piracy3; tampered software,
appearing legitimate to untrained consumers, also threatens their financial secu-
rity and privacy. As the main countermeasure, the software industry has invested
heavily in Tamper-Resistant Software (TRS) with varying degree of success. This
paper focuses on a neglected aspect of tamper resistance, namely how the TRS
should respond to tampering.

Software tampering is often conducted on a malicious host that is under a
hacker’s complete control: the hacker is free to monitor the hardware, as well as
modify and observe the system software (i.e., OS). On current PC platform, with-
out dedicated hardware support such as provided by NGSCB [6, 17], TRS must
rely on software obfuscation to evade detection and defeat hacking attempts [8–
11, 19]. Stealth, or the art of hiding code in the host program, is the first and
the primary defense that most TRS systems deploy against hackers. Ideally, the
code pertaining to tamper resistance should be seamlessly intertwined with the
host program’s code, so that a hacker cannot discover its location(s) by either
inspecting the program’s code or monitoring its runtime behavior [7].
3 According to studies [1] by Business Software Alliance (BSA) and International

Data Corporation (IDC), the retail value of pirated software globally is 29 billions,
33 billions, and 34 billions, in 2003, 2004, and 2005, respectively.

A TRS system consists of two functional components: tamper detection and
tamper response; each can be made of multiple distinct modules. Both compo-
nents are equally important to the effectiveness of a TRS system. In practice,
however, most R&D work has gone into hiding the tamper-detection code, which
verifies the host program’s integrity [5, 7, 13]; surprisingly little has been done
to improve the stealth of the tamper-response component. Since hackers tend
to look for the weakest link to crack the defense perimeter of a TRS system,
inadequate tamper-response mechanisms have often become the Achilles’ heel of
commercial TRS systems [4].

While some TRS systems can be effective if properly applied, software au-
thors have often used only simple or default TRS features. For example, certain
dongle- and CD-based copy protections perform just one or a few boolean checks,
which may be easily patched out [14]. Thus, it is highly useful to automate the
process of separating checks from responses.

In this paper, we describe a novel tamper-response system that evades hacker
detection by introducing delayed, probabilistic failures in a program. The main
technique is to corrupt certain parts of the host program’s internal state at well-
chosen locations so that the program either fails or exhibits degraded perfor-
mance. One can also plug other failure-inducing techniques into our framework;
some of them can be found in Section 6. Our tamper-response system smoothly
blends in with the program and leaves no noticeable traces behind, making it
very difficult for a hacker to detect its existence.

The rest of this paper is organized as follows. We describe some prior art
and related work in Section 2. In Section 3, we introduce principles for effective
tamper-resistant software. We describe our tamper-response system in Section 4.
Implementation details and system evaluation are presented in Section 5. We
discuss interesting extensions in Section 6, and conclude in Section 7.

2 Related work

As informal advice, the idea of separating tamper detection from response has
long been familiar to programmers of software-protection schemes [4]. The con-
cept of “graceful degradation”, or slow decay of a program’s functionality af-
ter tamper detection, is a closely related technique, which has been widely re-
ported to be used commercially [16]. Software authors typically have not re-
vealed how specific implementations achieve these effects; in general, manual and
application-specific techniques have been used. Our work provides systematic,
automated methods of separating detection from response in general programs.

Commercial copy protection, licensing, and DRM systems have employed
many unpublished techniques, which have been described by hackers on a large
number of Internet sites and discussion boards. Such methods have often relied
on “security by obscurity,” which may be a valid tactic when only limited pro-
tection strength is desired or expected, as in the case of certain copy protections.

This work belongs to the general category of tamper-resistance, software ob-
fuscation, and software watermarking. Representative examples in this category

include runtime code encryption and decryption based on a visibility schedule [2];
taxonomies of generic obfuscating transformations and opaque predicates [9–11];
complication of pointer-aliasing and control-flow analysis [8, 19]; and integrity
verification of both static program code [5, 13] and dynamic execution traces [7].

Theoretical treatment of obfuscation [3] has revealed that a general obfusca-
tor cannot exist for arbitrary software under a specific model. This shows only
the existence of certain contrived programs that cannot be obfuscated against a
polynomial-time adversary, and thus does not necessarily block practical solu-
tions. Furthermore, some forms of secret hiding, which include Unix-style pass-
word hashing, have been proven secure even in this framework [15, 20]. An earlier,
somewhat different model [12] showed that obfuscation is possible in the sense
of randomizing memory accesses of certain programs, albeit at a performance
cost impractical for typical applications.

3 Tamper-resistant software model and principles

Before describing our system, we first define a simple model of tamper-resistant
software and lay out a set of principles to which an effective TRS system must
adhere. In the following discussion, we consider a threat model with these partici-
pants: software vendors, legitimate users, and software pirates. Software vendors
produce software, have the source code, and sell software in the form of exe-
cutable code. Legitimate users and software pirates buy software (in the form
of executable code) from the vendors. Software pirates try to tamper with the
software to bypass its copyright-protection system.

In its simplest incarnation, a tamper-resistant software module resides in
and protects another software module. The module being protected (or the host
module) can be an application program, a library (either statically linked or
dynamically loaded), an operating system or a device driver. In practice, multiple
TRS modules are spread amongst several modules to create a complex web of
defenses; in this paper, however, we concentrate on the simplified case of a single
host module. This is to simplify the discussion without loss of generality.

The TRS module can be functionally decomposed into two components: tam-
per detection and tamper response. As the names imply, the former is responsible
for detecting whether the host module, including the TRS module itself, has been
(or is being) tampered with; the latter generates an appropriate response to ei-
ther thwart such tampering or render the tampered host module unusable. More
specifically,

Detection. We assume one or more detection-code instances exist in the host
module. They communicate with the response code via covert flags: upon
detecting tampering, the detection code sets one or more flags to inform the
response module as opposed to calling the latter directly. A covert flag need
not (and should not) be a normal boolean variable. It can take the form of
a complex data structure, such as advocated by Collberg et al. [9–11].
Researchers have been putting a fair amount of effort into building detection
systems. A static checksum based on either the static program code [5, 13] or

dynamic execution traces [7] of the code is computed and stored in a secret
place. The detection system computes the new checksum when programs are
running in malicious hosts, and check whether the new checksum is identical
to the old one.

Response. When tampering is detected, an unusual event must happen to ei-
ther stop the program from functioning (in the case of standalone applica-
tions) or informing the appropriate authority (in the case of network-centric
applications). In this work, we restrict our attention to standalone appli-
cations in which a program failure is often a desirable event post tamper-
detection.
We expect the TRS module to have multiple response code instances in
place. Ideally they should be mutually independent so that uncovering of
one does not easily lead to uncovering of others. In theory, the responses
should be so crafted that the hacker cannot easily locate the code and dis-
able it, nor backtrack to the detection code from it. However, in practice the
detection mechanism can often be located by inspecting the code statically
or back-tracing from the response that the tamper-resistant code generates.

We note that our work is about separating tamper response from detection,
but not about choosing the detection sites in the first place. We assume that
some list of detection locations is provided to our algorithm. For example, a pro-
grammer may choose such locations manually; alternately, a tool may generate
a list of sites semi-randomly, possibly influenced by performance and security
requirements, as well as by static and dynamic analysis. Related to the checking
mechanisms themselves, such methods are beyond the scope of this paper.

3.1 Principles of effective tamper-response mechanisms

Let us first look at a näıve response system (an example also used by Collberg
and Thomborson [10]) and see what kind of attacks adversaries can apply:

if tampered_with() then i=1/0

Upon detecting tampering, the above response code causes a divide-by-zero
error and then the program stops. Since the program fails right at the place
where detection happens, an adversary, with the ability to locate the failure
point4, can trivially trace back to the detection code and remove it. Alternatively,
since divide-by-zero is an unusual operation, an adversary can statically scan the
program to locate the detection code fragments and then remove it.

The näıve response reveals many information of the TRS module to an ad-
versary. An ideal response system, in contrast, should not reveal information of
the TRS module. Based on this guideline, we next propose a set of principles5

for effective tamper-response mechanisms.
4 A debugger is sufficient.
5 The principle of spatial/temporal separation has also been briefly discussed by Coll-

berg and Thomborson [10].

Spatial separation. Tamper responses and the corresponding failures should
be widely separated in space: While the response is performed in one part of
the program, its effect (failure) becomes only apparent in other parts. This
way, even an adversary can identify the failure point, he cannot trace back
to the response point.
One question is that what is a good metric for spatial separation. One metric
is the number of function calls invoked between tamper responses and pro-
gram failures. By increasing the number of function calls, we hope that little
trace has been left for an adversary to perform any analysis. In addition,
the function where the response code resides is better not in the current call
stack when the failure happens, because debuggers can give adversaries the
information of the current call stack.

Temporal separation. If a response system can cause enough amount of delay
before failure, it can effectively thwart the process of tampering. Imagine
an attack whereby an adversary tries a number of tampering options. The
adversary tries one option and starts to observe the program’s behavior to
see if the tampering works. Suppose our response system will not fail the
program until after a large amount of time, say one day. Then only after one
day, the poor adversary will discover that his trick is not working and he
needs to spend another night to try another option. This is psychologically
frustrating for the adversary and will certainly slow down the tampering
process. The strategy of delayed failure is analogous to injecting extra delay
between two consecutive password tries in a password protection system.
The metric for temporal separation is obviously the time or the number of
instructions executed between response and failure.

Stealth. The code in a tamper-response system should blend in with the pro-
gram being protected so that an automatic scanning tool will not identify the
tamper-response code easily. A response system involving division-by-zero is
definitely not a good idea.
Stealth is a highly context-sensitive quality. Response code that is stealthy
in one program may not be so in another. Any metric for stealth has to
be with respect to the context, or the program. One possible metric is the
statistical similarity6 between the program being protected and the response
code.

Predictability. A program that has been tampered with should eventually fail,
with high probability. We also want to control when and where the failure
(damage) can happen. A failure that happens during sensitive operations is
probably undesirable.

In addition, any available obfuscation should be used to protect the tamper-
detection and response code. Ideally, neither observation nor tampering should

6 E.g., the percentage of each kind of machine instructions.

easily reveal patterns useful for determining where detection and response occur.
In practice, both generic and application-specific obfuscation methods should be
devised to maximize an attacker’s workload.

4 System description

We now describe a response mechanism we have built following the principles in
Section 3.1. Our starting insight is that by corrupting a program’s internal state,
a response system can cause the program to fail. If we carefully choose which part
of state to corrupt and when to corrupt, we may achieve the aforementioned spa-
tial and temporal separation. This deliberate injection of “programming bugs”
also satisfies our stealth principle because these bugs look just like normal pro-
gramming bugs and are thus hard to pick out by static scanning.7 Bugs due to
programming errors are hard to locate. Some of these bugs cause delayed failure.
As an example, an early system called HUW [18] appeared to run successfully,
but crashed after about one hour. This was due to an elusive bug in its string
handling module, which corrupted the system’s global buffer. The data struc-
tures inside the corrupted buffer, however, were not used until about an hour
later. Therefore, the system ran OK until the corrupted data structures were
accessed.

As we can see from this example, corrupting programs’ internal state might
produce the effect of delayed failure. For clarity, we assume there are three
kinds of sites: detection sites (where tamper detection happens), response sites
(where corrupting the internal state happens), and failure sites (where failure
happens). Response sites are also called corruption sites in our system. In the
rest of this paper, for simplicity, we will identify detection sites with corruption
sites. In practice, detection sites and corruption sites should be separated (and
communicate via covert flags), and the techniques and implementation that we
will introduce applies as well.

There are many ways to corrupt a program’s internal state. Our system
chooses the straightforward way: corrupt the program’ own variables. By de-
liberately corrupting the program’ variables, we hope to achieve the following
results:

– Predictable failure of the program, due to the corruption of the program’s
internal state.

– Stealthy response code, since the response code is just an ordinary variable
assignment.

– Spatial and temporal separation, if we carefully choose when and where to
corrupt the variables.

Not all variables are good candidates. Suppose the value of an integer variable
ranges between 3 and 10. Then what would be the behavior of the program when

7 If there is regularity in the type of bugs we introduce, an attacker may be able to
employ static analysis to increase his/her likelihood of locating them.

the variable is changed to 100? Would the program fail? Where and when would
it fail? We have to answer these questions to achieve some predictability in
our response system. We suspect that for an arbitrary program variable, the
result of any analysis is highly imprecise. However, one observation can be made
about pointer variables, which are ubiquitous in C-style programs. If a pointer is
corrupted by setting it to a NULL pointer or a value out of the program’s address
space, dereference of this pointer definitely crashes the program. Moreover, if the
next dereference happens only after some time, we achieve the effect of delayed
failure.

Corruption of local pointers (declared in a function body) is unlikely to
achieve much delay. The corruption of local pointers has to happen locally, be-
cause their storage is in the run-time stack, Their values are also used locally,
which means the corruption and usage would be very close if we had chosen to
corrupt a local pointer.

int * p

Module A Module B

Module C

Fig. 1. Global pointers.

For global pointers, the scenario is different and one example is depicted in
Figure 1. Suppose there is a global pointer p which is used by modules B and C,
but not touched by module A. If we choose to corrupt this pointer in module A,
then the program will keep running until module A has finished and the program
switches to module B or C. Based on this example, intuition is there that delayed
failure can be achieved by corrupting a global pointer.

But what if the program has not many global pointers? Our solution is to
perform transformations on the program to create new global pointers. One way
to achieve this is to add a level of indirection to the existing global variables.
The idea is illustrated by the example in Figure 2.

On the left of Figure 2 is the original program; the code after transformation
is on the right. For the global variable a, we create a new pointer variable p a,
whose value is initialized to the address of a. Then we replace all uses, or some
uses, of variable a by the dereference of the newly created pointer variable p a.

Below are the benefits of the extra level of indirection to global variables:

– Any global variables can be used to create new pointers, alleviating the
possible shortage of global pointers.

– The failure behavior of the new program is easily predictable. After p a is
corrupted, any subsequent use of the variable, p a, would be a failure site.

int a;

void f() {

a = 3;

}

void main() {

f();

printf(‘‘a = %i\n’’, a);

}

int a;

int *p_a = &a;

void f() {

*p_a = 3;

}

void main() {

f();

printf(‘‘a = %i\n’’, *p_a);

}

Fig. 2. Example: Creating a layer of indirection to global pointers.

– We can also control where the program fails. For example, if we do not want
the program to fail inside the main function, we just do not replace a with
p a in main.

Note that the extra level of indirection to global variables does slow down
the program because of the cost of extra dereferences. On the other hand, this
performance hit is controllable since we can control how many uses of global
variables are replaced by their pointer counterparts.

4.1 Choosing corruption sites

As we have explained, global pointer variables are the targets to corrupt in our
system. The remaining question is where to corrupt those pointers? Since we
could corrupt a global pointer anywhere in the program, the search space is the
whole program.

To make our search algorithm scalable for large programs, we use functions
as the basic search units instead of, say, statements. Based on this, we state the
searching problem more rigorously. Corruption of global pointer variables can
happen inside any function body; thus a function body is a possible corruption
site. A failure site is a function where the program fails when the program reaches
the function after pointer corruption. In our setting, failure sites correspond to
those places where corrupted pointers are dereferenced. To find good corruption
sites, we want to search for functions to embed pointer corruptions, to achieve
wide spatial and temporal separation between corruption and failure.

First, we should make sure the function where corruption happens is not in
the current call stack when the program fails. Otherwise, attacker could use a
debugger to back-trace from the failure site to the corruption site. To avoid such
attacks, we use a static-analysis tool called call graphs. Below is an example
program and its call graph.

int a;

int *p_a = &a;

void g1();

void g2();

void h ();

void f() {

g1(); g2();

*p_a = 3;

}

void main() {

f(); h();

}

g2

main

f h

g1

In the example, the main function calls the f function; thus there is a directed
edge from main to f in its call graph. Similarly, since f calls g1 and g2, the call
graph has the directed edges from f to g1, and from f to g2.

In the example program, suppose our system decides to corrupt the pointer
variable p a. Then the function f is a failure site since it dereferences p a. Obvi-
ously, the corruption should not happen inside f because otherwise the program
would fail in the function where the corruption happened. Furthermore, the main
function should not be the corruption site since otherwise the main function
would be in the current call stack when the program fails in the function f. In
general, our system excludes all functions where the corrupted pointer variable
is dereferenced; furthermore, it excludes all functions who in the call graph are
ancestors of those functions where failure can happen. This heuristic guarantees
that when the program fails the corruption site is not in the call stack.

Additionally, we want to achieve wide spatial and temporal separation be-
tween corruption and failure. We first present some experimental numbers, which
show the spectrum of spatial and temporal separation. We conducted the exper-
iment on a C program called Winboard. We picked 800 functions in Winboard,
planted the corruption of a selected pointer variable into each function, and
recorded the temporal and spatial separation between corruption and failure.
Figure 3 shows the temporal separation, and Figure 4 shows the spatial separa-
tion. In both figures, the horizontal axis is the function ID where the corruption
happens. In Figure 3, the vertical axis is the elapsing time between corruption
and failure in microseconds. In the Figure 4, the vertical axis is the number of
function calls happened between corruption and failure.

As we can see from the figures, the spread is over several orders of magnitude.
The functions in the upper portion are the ones we want to search for. However,
a static heuristic may be hard to succeed because essentially an estimate of time
between two function calls is needed; we are not aware of any static-analysis
techniques that can give us this information.

Our solution is to measure the average distance between two function calls
in a dynamic function-call and time trace. This information estimates how far a
function is from the nearest failure sites (functions that dereferences the pointer)
in terms of both the number of function calls and time. Only functions that are
far from failure sites will be selected as corruption sites. We experimented this

Fig. 3. Temporal separation between corruption and failure. The horizontal axis repre-
sents function IDs, and the vertical axis represents the elapsing time between corruption
and failure in microseconds.

heuristic on the Winboard program and the results showed that those functions
in the upper portion of Figure 3 and 4 are most likely to be selected. The
shortcoming of this approach is that it depends on dynamic traces, which may
be correlated to user inputs and other random events.

To make it more precise, we outline our algorithm for selecting good corrup-
tion sites in Figure 5. For a simple presentation, the algorithm processes a single
C file, called example.c (Our implementation can process multiple files at once).

The algorithm takes three inputs. The first is the source file. The second is a
function-distance matrix T , which tells distances between functions. The value
T [f1, f2] is the distance between functions f1 and f2. In our system, the matrix
is computed from a typical dynamic trace of the program. The last input is a
threshold parameter δ to dictate the minimal distance between corruption sites
and failure sites.

For each global variable gi, the algorithm first identifies those functions that
use the value of gi (line 4). A function f in this set is a failure site for gi, because
if we had created an indirect pointer to gi, say pgi , and replaced the use of gi in
f by ∗(pgi), then the program would fail inside f after pgi had been corrupted.
The algorithm then proceeds to rule out all functions that are ancestors of the
failure sites in the call graph (line 6), so that when program fails, the function
where corruption happens will not be in the call stack. Finally, the algorithm
rules out those functions that are too close to failure sites (line 8 and 9).

Fig. 4. Spatial separation between corruption and failure. The horizontal axis repre-
sents function IDs, and the vertical axis represents the number of function calls between
corruption and failure.

5 Implementation and evaluation

We have built a prototype system, which takes C programs as inputs and auto-
matically inserts tamper-response code. The system identifies good global vari-
ables as target variables to corrupt when tampering is detected; it also selects
good corruption sites according to the heuristics we explained in section 4.

The flow of our implemented system is depicted in Figure 6. In the figure and
also in the following paragraphs, we use the Winboard program as the example
application to explain our system. Winboard is a chess program written in C. It
has totally 27,000 lines of C code, and contains 297 global variables, which are
potential target variables to corrupt.

Winboard consists of a bunch of C files: winboard.c, backend.c, etc. In our
system, these files are first fed into a varusage module. For each source file,
the varusage module produces a .use file, which identifies places that global
variables are used. Separate .use files are linked by the uselink module to
produce the global .use file. Source C files are also fed into the callgraph
module, which produces .cg files, or call graph files. Separate .cg files are linked
together by the cglink to produce a global call graph.

We also run profiling tools on the program to produce a dynamic trace. The
trace records the order of entering and exiting functions and also the correspond-
ing timestamps. This trace is the input to the trmatrix module. The module

Input: a) example.c, with global variables g1, g2, . . . , gn;
b) Function-distance matrix T;
c) δ: Threshold for the distance between corruption and failure sites.

Output: The set of good corruption sites Ci, for each gi.

1: Compute the call graph G of example.c
2: for each global variable gi, 1 ≤ i ≤ n do
3: Ci ← the set of all functions in example.c
4: Identify the set of functions where the value of gi is used, say {fi1, . . . , fim}
5: for each fij , 1 ≤ j ≤ m do
6: Remove from Ci all the ancestors of fij in the call graph G.
7: for each f remaining in Ci do
8: if T [f, fij] < δ then
9: remove f from Ci

10: end if
11: end for
12: end for
13: Output Ci for the global variable gi

14: end for

Fig. 5. Algorithm for selecting good corruption sites

measures the average distance between two functions in terms of both elapsing
time and the number of function calls, records the information into a matrix,
and writes the matrix into a .tr file.

At this point, we have winboard.use (recording where global variables are
used), winboard.cg (the global call graph), and winboard.tr (the trace matrix).
These files are inputs to the delayedfailure module. The module first computes
the set of good corruption sites for each global variable, following the algorithm
in Figure 5, and then randomly selects some global variables and good corruption
sites. Finally, the corrupt module performs source-to-source transformation to
first create a layer of indirection to selected global variables, and then plant the
corruption of the newly-created pointers into selected corruption sites (on the
condition that tampering is detected).

5.1 System evaluation/threat analysis

Overall, our system protects software by making them exhibit the effect of de-
layed failure after tampering is detected. To remove our tamper-response code,
the attacker has to trace back from the crash site to analyze what is corrupted
and where the corruption happens. Since we corrupt pointer variables, the at-
tacker essentially has to debug programs with elusive pointer-related bugs, which
many programmers know can be extremely hard; the situation is actually worse
for the attacker, because he has no source code. Next, we evaluate our system
in more detail in terms of the principles we laid out in section 3.1.

Spatial separation. Our system can guarantee wide spatial separation be-
tween the corruption site and the failure site. We achieved the separation

...winboard.c backend.c

varusage varusage callgraph callgraph

.use .use .cg .cg a typical
trace

uselink cglink trmatrix

winboard.use winboard.cg winboard.tr

delayedfailure

selected vars & functions

winboard.c,
backend.c, ...

corrupt

winboard.exe

Fig. 6. System Implementation.

on the order of 104 functions calls in our experiment. With the help of call
graphs, it can further guarantee that the corruption site will not be in the
call stack when failure happens.

Temporal separation. Using the dynamic-trace approach, we achieved sec-
onds of delay in our experiment, which is much better than immediate fail-
ure. Further delay can be achieved with the following techniques. First, our
experiments were conducted by setting the pointer variable to NULL. Our
system can be easily configured so that pointer corruption means adding
random offsets to the pointer. In this case, the cumulative effect of several
consecutive corruptions will most likely crash the program, and the delay will
be boosted by this technique. Second, since we wanted automatic testing in
our experiment, we avoided those functions which need human interaction
to invoke, e.g., the functions that will be invoked only if certain buttons
are clicked. User-behavior models can inform us of those functions that are
called occasionally. For example, if we know that a certain function is called
only once in an hour, then we can plant the corruption into that function to
achieve long delay.

Stealth. Since our response system only manipulates pointers, it should be
fairly stealthy in programs that have lots of pointer manipulations. For pro-
grams in which pointers are scarce, one possible attack for an adversary is to
track the pointers of a program dynamically, identify the instructions that
make pointers nonsensical, and then remove those instructions.
To counter this attack, our system should be combined with various types
of obfuscation and integrity checks. For example, dynamic computation of
global-variable pointers, including techniques such as temporary pointer cor-
ruption and runtime relocation of global data, should complicate attacks
that track pointer usage via breakpoints or traces. We also embed multi-
ple pointer corruptions, so that even one has been removed, others can still
work. Finally, we are experimenting with the idea of corrupting data struc-
tures through pointers. In these kinds of corruption, pointer values always
stay meaningful; only certain invariants of the data structure are destroyed.

Predictability. Our response system is predictable and controllable. Pointer
dereferences after its corruption will surely fail the program. Any dereference
becomes a failure site and we can control where failure happens.

6 Extensions

Safe languages. In safe, strongly typed languages such as C# and Java, pointers
and global variables may be either unavailable or limited to atypical usage.
While our pointer-corruption method does not have an immediate analogue in
safe code, various other techniques can achieve similar results. In general, the
main idea of separating tamper response from detection applies just as well to
safe languages as to C/C++.

Below are some examples of delayed corruption possible via a safe language:

– Array out-of-bounds errors: Set up an array index to fall beyond the array’s
limits.

– Infinite loops: Change a variable in a loop-condition test to result in an
infinite (or at least very time-consuming) loop.

Such techniques require implicit data-based links between the code at cor-
ruption and failure sites. While global variables in C/C++ serve to create such
connections, proper object-oriented design stipulates object isolation and tightly
controlled dataflow. Nonetheless, some object fields (e.g., public static members
in C#) serve essentially as global variables. Some applications also use dedicated
namespaces and classes that encapsulate global data, which can also substitute
for true global variables.

To increase the number of opportunities for delayed responses, we can per-
form various semantically-equivalent code transformations that break object iso-
lation, similar to how we create global pointer variables. As an example, we can
convert a constant loop endpoint or API-function argument to a public static

variable that can be modified to effect a tamper response. If a good response
location contains no suitable code, we can inject new code that references such
variables (e.g., a new loop or system-API call). Randomly generated and tightly
integrated, such code should have no operational effects if tampering is not de-
tected.

Graceful degradation. Some of the above techniques do not cause failures as
predictably as pointer corruption. However, graceful degradation can be more
stealthy and difficult to analyze than definite failures. Any particular response
might not terminate the program, but if one or more checks continue to fail,
the cumulative effect should eventually make the program unusable. Both the
checks and responses can also be made probabilistic in terms of spatial/temporal
separation and response action.

A program run could degrade its functioning via slowdown, high resource
usage, and arbitrary incorrect operation (e.g., file corruption or graphics dis-
tortion). Such techniques may be generic and automated; for example, we can
transform program loops to include conditions that take increasingly longer time
to satisfy (e.g., via gradually incremented counters). While application-specific
techniques require manual design and implementation, these could be quite ef-
fective (e.g., a game where the player’s movements and aim become increasingly
erratic [16]).

7 Conclusions

A tamper-resistant system consists of tamper detection and tamper response. In-
adequate tamper response can become the weakest link of the whole system. In
this paper, we have proposed a tamper-response mechanism that evades hacker
removal by introducing delayed and controlled failures, accomplished by corrupt-
ing the program’s internal state at well-chosen locations.

Acknowledgment

We thank Stephen Adams and Manuvir Das for providing some static-analysis
tools, and Matthew Cary for helpful conversations.

References

1. Business Software Alliance and International Data Corporation. Annual BSA and
IDC global software piracy study. http://www.bsa.org/globalstudy, 2004-2006.

2. David Aucsmith. Tamper resistant software: An implementation. In First Infor-
mation Hiding Workshop, pages 317–333, 1996.

3. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Ad-
vances in Cryptology - CRYPTO ’01, Lecture Notes in Computer Science, 2139:1–
18, 2001.

4. Pavol Cerven. Crackproof Your Software. No Starch Press, Inc., 2002.
5. Hoi Chang and Mikhail J. Atallah. Protecting software code by guards. In Digital

Rights Management Workshop, pages 160–175, 2001.
6. Yuqun Chen, Paul England, Marcus Peinado, and Bryan Willman. High assurance

computing on open hardware architectures. Research Report MSR-TR-2003-20,
Microsoft Research, Microsoft Corporation, Redmond, Washington, USA, March
2003.

7. Yuqun Chen, Ramarathnam Venkatesan, Matthew Cary, Ruoming Pang, Saurabh
Sinha, and Mariusz H. Jakubowski. Oblivious hashing: A stealthy software integrity
verification primitive. In Information Hiding Workshop, pages 400–414, 2002.

8. Stanley Chow, Yuan Gu, Harold Johnson, and Vladimir A. Zakharov. An approach
to the obfuscation of control-flow of sequential computer programs. In Information
Security, 4th International Conference, pages 144–155, 2001.

9. Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfus-
cating transformations. Technical Report 148, Department of Computer Science,
University of Auckland, July 1997.

10. Christian S. Collberg and Clark D. Thomborson. Watermarking, tamper-proofing,
and obfuscation-tools for software protection. IEEE Trans. Software Eng.,
28(8):735–746, 2002.

11. Christian S. Collberg, Clark D. Thomborson, and Douglas Low. Manufacturing
cheap, resilient, and stealthy opaque constructs. In ACM Symposium on Principles
of Programming Languages (POPL), pages 184–196, 1998.

12. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious RAMs. Journal of the ACM, 43(3):431–473, 1996.

13. Bill Horne, Lesley R. Matheson, Casey Sheehan, and Robert Endre Tarjan. Dy-
namic self-checking techniques for improved tamper resistance. In Digital Rights
Management Workshop, pages 141–159, 2001.

14. http://cdfreaks.com, 2006.
15. Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and tech-

niques for obfuscation. In EUROCRYPT 2004, pages 20–39, 2004.
16. Macrovision. FADE, SafeDisc and SafeDVD copy protection, 2002.
17. Marcus Peinado, Yuqun Chen, Paul England, and John Manferdelli. NGSCB: A

trusted open system. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan,
editors, ACISP, volume 3108 of Lecture Notes in Computer Science, pages 86–97.
Springer, 2004.

18. I. C. Pyle, R. C. F. McLatchie, and B. Grandage. A second-order bug with delayed
effect. Software – Practice and Experience, 1(3):231–233, 1971.

19. Chenxi Wang, Jonathan Hill, John Knight, and Jack Davidson. Software tamper
resistance: Obstructing static analysis of programs. Technical Report CS-2000-12,
University of Virginia, December 2000.

20. Hoeteck Wee. On obfuscating point functions. Cryptology ePrint Archive, Report
2005/001, 2005. http://eprint.iacr.org/.

