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Abstract

Learning to rank has become an important research topic in machine learning.
While most learning-to-rank methods learn the ranking functions by minimizing
the loss functions, it is the ranking measures (such as NDCG and MAP) that are
used to evaluate the performance of the learned ranking functions. In this work, we
reveal the relationship between ranking measures and loss functions in learning-
to-rank methods, such as Ranking SVM, RankBoost, RankNet, and ListMLE. We
show that the loss functions of these methods are upper bounds of the measure-
based ranking errors. As a result, the minimization of theseloss functions will lead
to the maximization of the ranking measures. The key to obtaining this result is to
model ranking as a sequence of classification tasks, and define a so-calledessen-
tial loss for ranking as the weighted sum of the classification errors of individual
tasks in the sequence. We have proved that the essential lossis both an upper
bound of the measure-based ranking errors, and a lower boundof the loss func-
tions in the aforementioned methods. Our proof technique also suggests a way to
modify existing loss functions to make them tighter bounds of the measure-based
ranking errors. Experimental results on benchmark datasets show that the modifi-
cations can lead to better ranking performances, demonstrating the correctness of
our theoretical analysis.

1 Introduction

Learning to rank has become an important research topic in many fields, such as machine learning
and information retrieval. The process of learning to rank is as follows. In training, a set of objects
and labels representing their rankings (e.g., in terms of multi-level ratings1) is given. Then a ranking
function is constructed by minimizing a certain loss function on the training data. In testing, given a
new set of objects, the ranking function is applied to produce a ranked list of the objects.

Many learning-to-rank methods have been proposed in the literature, with different motivations and
formulations. In general, these methods can be divided intothree categories [3]. Thepointwise
approach, such as subset regression [4] and McRank [10], considers each single object the learn-
ing instance. Thepairwiseapproach, such as Ranking SVM [7], RankBoost [5], and RankNet [2],
regards a pair of objects as the learning instance. Thelistwiseapproach, such as ListNet [3] and
ListMLE [16], takes the entire ranked list of objects as the learning instance. Almost all these

∗The work was performed when the first and the third authors were interns at Microsoft Research Asia.
1In information retrieval, such a label represents the relevance of a document to the given query.
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methods learn their ranking functions by minimizing certain loss functions, namely the pointwise,
pairwise, and listwise losses. On the other hand, however, it is the ranking measures that are used
to evaluate the performance of the learned ranking functions. Taking information retrieval as an ex-
ample, measures such as Normalized Discounted Cumulative Gain (NDCG) [8] and Mean Average
Precision (MAP) [1] are widely used, which obviously differfrom the loss functions used in the
aforementioned methods. In such a situation, a natural question to ask iswhether the minimization
of the loss functions can really lead to the optimization of the ranking measures.2

Actually people have tried to answer this question. It has been proved in [4] and [10] that the regres-
sion and classification based losses used in the pointwise approach are upper bounds of (1−NDCG).
However, for the pairwise and listwise approaches, which are regarded as the state-of-the-art of
learning to rank [3, 11], limited results have been obtained. The motivation of this work is just to
reveal the relationship between ranking measures and the pairwise/listwise losses.

It is non-trivial to achieve this goal, however. Note that ranking measures like NDCG and MAP
are defined with the labels of objects (i.e., in terms of multi-level ratings). Therefore it is relatively
easy to establish the connection between the pointwise losses and the ranking measures, since the
pointwise losses are also defined with the labels of objects.In contrast, the pairwise and listwise
losses are defined with the partial or total order relations among objects, rather than their individual
labels. As a result, it is much more difficult to bridge the gapbetween the pairwise/listwise losses
and the ranking measures.

To tackle the challenge, we propose making a transformationof the labels on objects to a permutation
set. All the permutations in the set are consistent with the labels, in the sense that an object with a
higher rating is ranked in the permutation before another object with a lower rating. We then define
an essential lossfor ranking on the permutation set as follows. First, for each permutation, we
construct a sequence of classification tasks, with the goal of each task being to distinguish an object
from the objects ranked below it in the permutation. Second,the weighted sum of the classification
errors of individual tasks in the sequence is computed. Third, the essential loss is defined as the
minimum value of the weighted sum over all the permutations in the set.

Our study shows that the essential loss has several nice properties, which help us reveal the rela-
tionship between ranking measures and the pairwise/listwise losses. First, it can be proved that the
essential loss is an upper bound of measure-based ranking errors such as (1−NDCG) and (1−MAP).
Furthermore, the zero value of the essential loss is asufficientandnecessarycondition for the zero
values of (1−NDCG) and (1−MAP). Second, it can be proved that the pairwise losses in Ranking
SVM, RankBoost, and RankNet, and the listwise loss in ListMLE are all upper bounds of the essen-
tial loss. As a consequence, we come to the conclusion that the loss functions used in these methods
can bound (1−NDCG) and (1−MAP) from above. In other words, the minimization of these loss
functions can effectively maximize NDCG and MAP.

The proofs of the above results suggest a way to modify existing pairwise/listwise losses so as
to make them tighter bounds of (1−NDCG). We hypothesize that tighter bounds will lead to better
ranking performances; we tested this hypothesis using benchmark datasets. The experimental results
show that the methods minimizing the modified losses can outperform the original methods, as well
as many other baseline methods. This seems to validate the correctness of our theoretical analysis.

2 Related work

In this section, we review the widely-used loss functions inlearning to rank, ranking measures in
information retrieval, and previous work on the relationship between loss functions and ranking
measures.

2Note that recently people try to directly optimize ranking measures [6, 12, 14, 17]. The relationship be-
tween ranking measures and the loss functions in such work isexplicitly known. However, for other methods,
the relationship is unclear.
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2.1 Loss functions in learning to rank

Let x = {x1, · · · , xn} be the objects be to ranked.3 Suppose the labels of the objects are given
as multi-level ratingsL = {l(1), ..., l(n)}, wherel(i) ∈ {r1, ..., rK} denotes the label ofxi [11].
Without loss of generality, we assumel(i) ∈ {0, 1, ..., K − 1} and name the corresponding labels
asK-level ratings. Ifl(i) > l(j), thenxi should be ranked beforexj . LetF be the function class
andf ∈ F be a ranking function. The optimal ranking function is learned from the training data
by minimizing a certain loss function defined on the objects,their labels, and the ranking function.
Several approaches have been proposed to learn the optimal ranking function.

In thepointwise approach, the loss function is defined on the basis of single objects. For example,
in subset regression [4], the loss function is as follows,

L
r(f ;x,L) =

n
∑

i=1

(

f(xi) − l(i)
)2

. (1)

In thepairwise approach, the loss function is defined on the basis of pairs of objects whose labels
are different. For example, the loss functions of Ranking SVM [7], RankBoost [5], and RankNet [2]
all have the following form,

L
p(f ;x,L) =

n−1
∑

s=1

n
∑

i=1,l(i)<l(s)

φ
(

f(xs) − f(xi)
)

, (2)

where theφ functions are hinge function (φ(z) = (1 − z)+), exponential function (φ(z) = e−z),
and logistic function (φ(z) = log(1 + e−z)) respectively, for the three algorithms.

In the listwise approach, the loss function is defined on the basis of all then objects. For example,
in ListMLE [16], the following loss function is used,

L
l(f ;x, y) =

n−1
∑

s=1

(

− f(xy(s)) + ln
(

n
∑

i=s

exp(f(xy(i)))
)

)

, (3)

wherey is a randomly selected permutation (i.e., ranked list) thatsatisfies the following condition:
for any two objectsxi andxj , if l(i) > l(j), thenxi is ranked beforexj in y. Notationy(i)
represents the index of the object ranked at thei-th position iny.

2.2 Ranking measures

Several ranking measures have been proposed in the literature to evaluate the performance of a
ranking function. Here we introduce two of them, NDCG [8] andMAP[1], which are popularly
used in information retrieval.

NDCG is defined with respect toK-level ratingsL,

NDCG(f ;x,L) =
1

Nn

n
∑

r=1

G
(

l(πf (r))
)

D(r),

whereπf is the ranked list produced by ranking functionf , G is an increasing function (named
the gain function),D is a decreasing function (named the position discount function), andNn =
maxπ

∑n

r=1 G
(

l(π(r))
)

D(r). In practice, one usually setsG(z) = 2z − 1; D(z) = 1
log2(1+z) if

z ≤ C, andD(z) = 0 if z > C (C is a fixed integer).

MAP is defined with respect to 2-level ratings as follows,

MAP (f ;x,L) =
1

n1

∑

s:l(πf (s))=1

∑

i≤s I{l(πf (i))=1}

s
. (4)

whereI{·} is the indicator function, andn1 is the number of objects with label1. When the labels
are given in terms ofK-level ratings (K > 2), a common practice of using MAP is to fix a level
k∗, and regard all the objects whose ratings are lower thank∗ as having label0, and regard the other
objects as having label1 [11].

From the definitions of NDCG and MAP, we can see that their maximum values are both one.
Therefore, we can consider (1−NDCG) and (1−MAP) as ranking errors. For ease of reference, we
call themmeasure-based ranking errors.

3For example, for information retrieval,x represents the documents associated with a given query.
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2.3 Previous bounds

For the pointwise approach, the following results have beenobtained in [4] and [10].4

The regression based pointwise loss is an upper bound of (1−NDCG),

1 − NDCG(f ; x,L) ≤ 1

Nn

(

2
n
∑

i=1

D(i)2
)1/2

L
r(f ;x,L)1/2

.

The classification based pointwise loss is also an upper bound of (1−NDCG),

1 − NDCG(f ;x,L) ≤ 15
√

2

Nn

(

n
∑

i=1

D(i)2 − n

n
∏

i=1

D(i)2/n
)1/2(

n
∑

i=1

I{l̂(i) 6=l(i)}

)1/2

,

wherel̂(i) is the label of objectxi predicted by the classifier, in the setting of 5-level ratings.
For the pairwise approach, the following result has been obtained [9],

1 − MAP (f ;x,L) ≤ 1 − 1

n1
(Lp(f ;x,L) + C

2
n1+1)

−1(

n1
∑

i=1

√
i)2.

According to the above results, minimizing the regression and classification based pointwise losses
will minimize (1−NDCG). Note that the zero values of these two losses are sufficient but not nec-
essary conditions for the zero value of (1−NDCG). That is, when (1−NDCG) is zero, the loss
functions may still be very large [10]. For the pairwise losses, the result is even weaker: their zero
values are even not sufficient for the zero value of (1-MAP).

To the best of our knowledge, there was no other theoretical result for the pairwise/listwise losses.
Given that the pairwise and listwise approaches are regarded as the state-of-the-art in learning to
rank [3, 11], it is very meaningful and important to perform more comprehensive analysis on these
two approaches.

3 Main results

In this section, we present our main results on the relationship between ranking measures and the
pairwise/listwise losses. The basic conclusion is that many pairwise and listwise losses are upper
bounds of a quantity which we call the essential loss, and theessential loss is an upper bound of
both (1−NDCG) and (1−MAP). Furthermore, the zero value of the essential loss is asufficientand
necessarycondition for the zero values of (1−NDCG) and (1−MAP).

3.1 Essential loss: ranking as a sequence of classifications

In this subsection, we describe theessential lossfor ranking.

First, we propose an alternative representation of the labels of objects (i.e., multi-level ratings). The
basic idea is to construct a permutation set, with all the permutations in the set beingconsistentwith
the labels. The definition that a permutation isconsistentwith multi-level ratings is given as below.
Furthermore,

Definition 1. Given multi-level ratingsL and permutationy, we sayy is consistent with L, if for
∀i, s ∈ {1, ..., n} satisfyingi < s, we always havel(y(i)) ≥ l(y(s)), wherey(i) represents the index
of the object that is ranked at thei-th position iny. We denoteYL = {y|y is consistent with L}.

According to the definition, it is clear that the NDCG and MAP of a ranking function equal one, if
and only if the ranked list (permutation) given by the ranking function is consistent with the labels.

Second, given each permutationy ∈ YL, we decompose the ranking of objectsx into several se-
quential steps. For each steps, we distinguishxy(s), the object ranked at thes-th position iny, from
all the other objects ranked below thes-th position iny, using ranking functionf .5 Specifically, we

4Note that the bounds given in the original papers of [4] and [10] are with respect to DCG. Here we give their
equivalent forms in terms of NDCG, and setP (·|xi, S) = δl(i)(·) in the bound of [4], for ease of comparison.

5Here we assumef(xi) 6= f(xj) for ∀i 6= j, i, j ∈ {1, 2, ..., n}, such that the classifier will have a unique
output. Theorem 3 shows that the main results still hold without this assumption.
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denotex(s) = {xy(s), · · · , xy(n)} and define a classifier based onf , whose target output isy(s),

Tf (x(s)) = arg max
j∈{y(s),··· ,y(n)}

f(xj). (5)

It is clear that there aren − s possible outputs of this classifier, i.e.,{y(s), · · · , y(n)}. The 0-1
loss for this classification task can be written as follows, where the second equality is based on the
definition ofTf ,

ls
(

f ;x(s), y(s)
)

= I{Tf (x(s)) 6=y(s)} = 1 −
n
∏

i=s+1

I{f(xy(s))>f(xy(i))}
.

We give a simple example in Figure 1 to illustrate the aforementioned process of decomposition.
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Figure 1: Modeling ranking as a sequence of classifications

Suppose there are three objects,A, B, andC, and a permutationy = (A, B, C). Suppose the output
of the ranking function for these objects is(2, 3, 1), and accordingly the predicted ranked list is
π = (B, A, C). At step one of the decomposition, the ranking function predicts objectB to be on
the top of the list. However,A should be on the top according toy. Therefore, a prediction error
occurs. For step two, we removeA from bothy andπ. Then the ranking function predicts objectB
to be on the top of the remaining list. This is in accordance with y and there is no prediction error.
After that, we further remove objectB, and it is easy to verify there is no prediction error in step
three either. Overall, the ranking function makes one errorin this sequence of classification tasks.

Third, we assign a non-negative weightβ(s)(s = 1, · · · , n − 1) to the classification task at the
s-th step, representing its importance to the entire sequence. We compute the weighted sum of the
classification errors of all individual tasks,

Lβ(f ;x, y) ,

n−1
∑

s=1

β(s)
(

1 −
n
∏

i=s+1

I{f(xy(s))>f(xy(i))}

)

, (6)

and then define the minimum value of the weighted sum over all the permutations inYL as the
essential loss for ranking.

Lβ(f ;x,L) = min
y∈YL

Lβ(f ;x, y). (7)

According to the above definition of the essential loss, we can obtain its following nice property.
Denote the ranked list produced byf asπf . Then it is easy to verify that,

Lβ(f ;x,L) = 0 ⇐⇒ ∃y ∈ YL satisfyingLβ(f ;x, y) = 0 ⇐⇒ πf = y ∈ YL.

In other words, the essential loss is zero if and only if the permutation given by the ranking function
is consistent with the labels. Further considering the discussions on the consistent permutation at
the begining of this subsection, we can come to the conclusion that the zero value of the essential
loss is a sufficient and necessary condition for the zero values of (1-NDCG) and (1-MAP).

3.2 Essential loss: upper bound of measure-based ranking errors

In this subsection, we show that the essential loss is an upper bound of (1−NDCG) and (1−MAP),
when specific weightsβ(s) are used.

Lemma 1. Given 2-level rating data(x,L), for ∀f , we have,

Lβ2(f ;x,L) = n1 − i0 + 1,

wherei0 denotes the position of the first object with label0 in πf andβ2(s) ≡ 1.
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Proof. We consider the modeling of ranking as a sequence of classifications.

First of all, it is easy to see thati0 ≤ n1 + 1. For ∀y ∈ YL, sincel(πf (i0)) = 0, we have
y(s) 6= πf (i0) for ∀s ∈ {1, ..., n1}. That is, the objectxπf (i0) will not be removed in the firstn1

steps.

Then, we conduct discussions oni0 case by case.

(1) If i0 ≤ n1, according to the construction of{x(s)}, ∃s′ ∈ {1, 2, ..., n1}, satisfiesTf(x(s)) =
πf (i0) for ∀s ∈ {s′, ..., n1}.

• For steps ∈ {1, ..., s′−1}: for ∀y ∈ YL, since there arei0−1 objects before positioni0 in
πf , there are at mosti0 − 1 nonrecurring elements in{Tf(x(1)), ..., Tf (x(s′−1))}. In other
words, at leasts′ − i0 elements are recurring. Thus, by the definition of{x(s)}, from step
1 to steps′ − 1, there are at leasts′ − i0 steps are incorrect.

• For steps ∈ {s′, ..., n1}: y(s) 6= πf (i0) for ∀y ∈ YL. So, from steps′ to stepn1, none
step is correct.

To sum up, there is at least a classification error of(s′ − i0) + (n1 − s′ + 1) = n1 − i0 + 1 in the
first n1 steps. In other words,

Lβ2(f ;x,L) ≥ n1 − i0 + 1. (8)

We denoteyπf
∈ YL as the permutation in which objects are sorted according to their positions in

πf . It is not difficult to see thats′ = i0 and there is no loss before stepi0 and after stepn1. In other
words,Lβ2(f ;x, yπf

) = n1 − i0 + 1. Considering Eq.(8), we have,

Lβ2(f ;x,L) = n1 − i0 + 1.

(2) If i0 = n1 + 1, we haveπf ∈ YL, and thusLβ2(f ;x,L) ≤ Lβ2(f ;x, πf ) = 0 = n1 − i0 + 1.
Considering that the essential loss is non-negative, we haveLβ2(f ;x,L) = 0 = n1 − i0 + 1.

Theorem 1. GivenK-level rating data(x,L) with nk objects having labelk and
∑K

i=k∗ ni > 0,
then for ∀f , the following inequalities hold,

(1) 1 − NDCG(f ;x,L) ≤ 1

Nn
Lβ1(f ;x,L), where β1(s) = G

(

l(y(s))
)

D(s),∀y ∈ YL;

(2) 1 − MAP (f ;x,L) ≤ 1
∑K

i=k∗ ni

Lβ2(f ;x,L), where β2(s) ≡ 1.

Proof. (1) We now prove the inequality for (1−NDCG).

First, we reformulate NDCG using the permutation setYL. This can be done by changing the index
of the sum in NDCG from the rank positionr in πf to the rank positions in ∀y ∈ YL. Considering
thats = y−1

(

πf (r)
)

andr = π−1
f

(

y(s)
)

, it is easy to obtain,

NDCG(f ; x,L) =
1

Nn

n
∑

s=1

G
(

l
(

πf (π−1
f y(s))

)

)

D
(

π
−1
f (y(s))

)

=
1

Nn

n
∑

s=1

G
(

l(y(s))
)

D
(

π
−1
f (y(s))

)

.

Second, we consider the essential loss case by case. Note that

Lβ1(f ;x,L) = min
y∈YL

n−1
∑

s=1

G
(

l(y(s))
)

D(s)
(

1 −
n
∏

i=s+1

I
{π−1

f
(y(s))<π−1

f
(y(i))}

)

.

For ∀y ∈ YL, if position s satisfies
∏n

i=s+1 I{π
−1
f

(y(s))<π
−1
f

(y(i))} = 1 (i.e.,∀i > s, π−1
f (y(s)) <

π−1
f (y(i))), we haveπ−1

f (y(s)) ≤ s. As a consequence,D(s)
∏n

i=s+1 I{π
−1
f

(y(s))<π
−1
f

(y(i))} =

6



D(s) ≤ D
(

π−1
f (y(s))

)

. Otherwise, if
∏n

i=s+1 I{π
−1
f

(y(s))<π
−1
f

(y(i))} = 0, it is easy to see that

D(s)
∏n

i=s+1 I{π
−1
f

(y(s))<π
−1
f

(y(i))} = 0 ≤ D
(

π−1
f (y(s))

)

. To sum up,∀s ∈ {1, 2, ..., n − 1},

D(s)
∏n

i=s+1 I{π
−1
f

(y(s))<π
−1
f

(y(i))} ≤ D
(

π−1
f (y(s))

)

. Further consideringπ−1
f (y(n)) ≤ n and

D(·) is a decreasing function, we haveD(n) ≤ D
(

π−1
f (y(n))

)

. As a result, we obtain,

1 − NDCG(f ;x,L) =
1

Nn

n
∑

s=1

G
(

l(y(s))
)

(

D(s) − D
(

π
−1
f (y(s))

)

)

≤ 1

Nn
Lβ1(f ;x,L).

(2) We then prove the inequality for (1−MAP).

First, we prove the result for 2-level ratings. Given 2-level rating data(x,L), by Lemma
1, Lβ2(f ;x,L) = n1 − i0 + 1. We then considern1

(

1 − MAP (f ;x,L)
)

= n1 −
∑

s: l(πf (s))=1

∑

i≤s
I{l(πf (i))=1}

s
case by case. Ifi0 > n1 (i.e., the first object with label0 is

ranked after positionn1 in πf ), then all the objects with label1 are ranked before the objects
with label 0. Thusn1(1 − MAP (f ;x,L)) = n1 − n1 = 0 = Lβ2(f ;x,L). If i0(πf ) ≤ n1,
there arei0(πf ) − 1 objects with label1 ranked before all the objects with label0. Thus
n1(1−MAP (f ;x,L)) ≤ n1− i0(πf )+1 = Lβ2(f ;x,L). Therefore, we have proved the theorem
for 2-level ratings.

Second, givenK-level rating data(x,L), we denote the 2-level ratings induced byL asL′. Then it
is easy to verifyYL ⊆ YL′ . As a result, we have,

Lβ2(f ;x,L′) = min
y∈YL′

Lβ2(f ;x, y) ≤ min
y∈YL

Lβ2(f ;x, y) = Lβ2(f ;x,L).

Recalling the result for 2-level ratings, we obtain

1 − MAP (f ;x,L) = 1 − MAP (f ;x,L′) ≤ 1
∑K−1

i=k∗ ni

Lβ2(f ;x,L′) ≤ 1
∑K−1

i=k∗ ni

Lβ2(f ;x,L).

3.3 Essential loss: lower bound of loss functions

In this section, we show that many pairwise/listwise lossesare upper bounds of the essential loss.
Lemma 2. Given K-level rating data(x,L), for ∀f , we have,

Lβ(f ;x,L) ≤ max
y∈YL

n−1
∑

s=1

β(s)a
(

Tf (x(s)), y(s)
)

.

Proof. We defineyπf
∈ YL as the permutation in which the objects with the same label are sorted

according to their positions inπf . We denotesK−1 as the position of the first object whose label is
notK − 1. It is easy to see thatsK−1 ≤ nK−1 +1, andl(yπf

(s)) = K − 1 for ∀s ∈ {1, ..., nK−1}.

• If sK−1 ≤ nK−1,

– For 1 ≤ s < sK−1, by the definition ofyπf
, we haveyπf

(s) = Tf (x(s)) = πf (s)
for ∀s ∈ {1, ..., sK−1 − 1}. Consideringl(πf (s)) = K − 1, the following equations
hold,

I{Tf (x(s)) 6=yπf
(s)} = 0 = I{l(Tf (x(s))) 6=K−1} = I{l(Tf (x(s))) 6=l(yπf

(s))}.

– For sK−1 ≤ s ≤ nK−1,Tf(x(s)) ≡ πf (sK−1) for ∀s ∈ {sK−1, ..., nK−1}. There-
fore, l(Tf (x(s))) = l(πf (sK−1)) 6= K − 1 andTf(x(s)) 6= yπf

(s). Considering all
of this, we have,

I{Tf (x(s)) 6=yπf
(s)} = 1 = I{l(Tf (x(s))) 6=K−1} = I{l(Tf (x(s))) 6=l(yπf

(s))}.

• If sK−1 = nK−1 + 1, for ∀s ∈ {1, 2, ..., nK−1}, all the indicator functions will take value
zero by the definition ofyπf

.
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Now, all the objects which ratings are higher thanl(π(sK−1)) are removed from bothπf andyπf
.

Then we denotesl(π(sK−1)) as the position of the first object after positionsK−1 whose label is not
l(π(sK−1)) in the remaining list ofπf . With similar discussions as above, we can get the same
results with those regarding the labelK−1. The above process can be iterated until only the objects
with label0 are left in bothπf andyπf

. In that case, all the indicator functions will take value zero.

To sum up, the above discussions show that∀ s ∈ {1, 2, ..., n− 1},

I{Tf (x(s)) 6=yπf
(s)} = I{l(Tf (x(s))) 6=l(yπf

(s))}.

And we can obtain the result as below,

Lβ(f ;x,L) =
n−1
∑

s=1

β(s)I{Tf (x(s)) 6=yπf
(s)} =

n−1
∑

s=1

β(s)I{l(Tf (x(s))) 6=l(yπf
(s))}

≤ max
y∈YL

n−1
∑

s=1

β(s)I{l(Tf (x(s))) 6=l(y(s))} = max
y∈YL

n−1
∑

s=1

β(s)a
(

Tf (x(s)), y(s)
)

.

Theorem 2. The pairwise losses in Ranking SVM, RankBoost, and RankNet,and the listwise loss
in ListMLE are all upper bounds of the essential loss, i.e.,

(1) Lβ(f ;x,L) ≤
(

max
1≤s≤n−1

β(s)
)

L
p(f ;x,L);

(2) Lβ(f ;x,L) ≤ 1

ln 2

(

max
1≤s≤n−1

β(s)
)

L
l(f ;x, y),∀y ∈ YL.

Proof. (1) We now prove the inequality for the pairwise losses.

First, we reformulate the pairwise losses using permutation setYL,

L
p(f ;x,L) =

n−1
∑

s=1

n
∑

i=s+1,
l(y(s)) 6=l(y(i))

φ
(

f(xy(s)) − f(xy(i))
)

=

n−1
∑

s=1

n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

,

wherey is an arbitrary permutation inYL, a(i, j) = 1 if l(i) 6= l(j); a(i, j) = 0 otherwise. Note that
only those pairs whose first object has a larger label than thesecond one are counted in the pairwise
loss. Thus, the value of the pairwise loss is equal for∀y ∈ YL.

Second, we consider the value ofa
(

Tf (x(s)), y(s)
)

case by case. For∀y and∀s ∈ {1, 2, ..., n− 1},
if a
(

Tf (x(s)), y(s)
)

= 1 (i.e., ∃i0 > s, satisfyingl(y(i0)) 6= l(y(s)) andf(xy(i0)) > f(xy(s))),
considering that functionφ in Ranking SVM, RankBoost and RankNet are all non-negative,non-
increasing, andφ(0) = 1, we have,

n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≥ a
(

y(i0), y(s)
)

φ
(

f(xy(s)) − f(xy(i0))
)

= φ
(

f(xy(s)) − f(xy(i0))
)

> 1 = a
(

Tf (x(s)), y(s)
)

.

If a
(

Tf (x(s)), y(s)
)

= 0, it is clear that
∑n

i=s+1 a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≥ 0 =

a
(

Tf(x(s)), y(s)
)

. Therefore,

n−1
∑

s=1

β(s)

n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≥
n−1
∑

s=1

β(s)a
(

Tf (x(s)), y(s)
)

. (9)

Third, by Lemma 2 the following inequality holds,

Lβ(f ;x,L) ≤ max
y∈YL

n−1
∑

s=1

β(s)a
(

Tf (x(s)), y(s)
)

.

Considering inequality (10) and noticing that the pairwiselosses are equal for∀y ∈ YL, we have

Lβ(f ;x,L) ≤ max
y∈YL

n−1
∑

s=1

β(s)
n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≤
(

max
1≤s≤n−1

β(s)
)

L
p(f ;x,L).
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(2) We then prove the inequality for the loss function of ListMLE. Again, we prove the result case by
case. Consider the loss of ListMLE in Eq.(3). For∀y and∀s ∈ {1, 2, ..., n−1}, if I{Tf (x(s)) 6=y(s)} =

1 (i.e.,∃i0 > s satisfyingf(xy(i0)) > f(xy(s))), thenef(xy(s)) < 1
2

∑n

i=s ef(xy(s)). Therefore, we

have− ln e
f(xy(s))

∑

n
i=s e

f(xy(i))
> ln 2 = ln 2 I{Tf (x(s)) 6=y(s)}. If I{Tf (x(s)) 6=y(s)} = 0, then it is clear

− ln e
f(xy(s))

∑

n
i=s

e
f(xy(i) ) > 0 = ln 2 I{Tf (x(s)) 6=y(s)}. To sum up, we have,

n−1
∑

s=1

β(s)
(

− ln
ef(xy(s))

∑n
i=s ef(xy(i))

)

>

n−1
∑

s=1

β(s) ln 2 I{Tf (x(s)) 6=y(s)} ≥ ln 2 min
y∈YL

Lβ(πf , y) = ln 2 Lβ(πf ,L).

By further relaxing the inequality, we obtain the followingresult,

Lβ(f ;x,L) ≤ 1

ln 2

(

max
1≤s≤n−1

β(s)
)

L
l(f ;x, y),∀y ∈ YL.

3.4 Summary

We have the following inequalities by combining the resultsobtained in the previous subsections.

(1) The pairwise losses in Ranking SVM, RankBoost, and RankNet are upper bounds of (1−NDCG)
and (1−MAP).

1 − NDCG(f ;x,L) ≤ G(K − 1)D(1)

Nn
L

p(f ;x,L);

1 − MAP (f ;x,L) ≤ 1
∑K

i=k∗ ni

L
p(f ;x,L).

(2) The listwise loss in ListMLE is an upper bound of (1−NDCG) and (1−MAP).

1 − NDCG(f ; x,L) ≤ G(K − 1)D(1)

Nn ln 2
L

l(f ;x, y),∀y ∈ YL;

1 − MAP (f ;x,L) ≤ 1

ln 2
∑K

i=k∗ ni

L
l(f ;x, y),∀y ∈ YL.

For clarity and simplicity, we assume there is no tie in the predicted rank list in the previous sections.
The following theorem shows that the main results still holdwithout this assumption.
Theorem 3. Given K-level rating data(x,L), for ∀f , and arbitraryπ which is randomly selected
from the permutations produced byf , the following inequalities hold.

1 − NDCG(π,L) ≤ G(K − 1)D(1)

Nn
L

p(f ;x,L).

1 − MAP (π,L) ≤ 1
∑K

i=k∗ ni

L
p(f ;x,L).

1 − NDCG(π,L) ≤ G(K − 1)D(1)

Nn ln 2
L

l(f ;x, y),∀y ∈ YL.

1 − MAP (π,L) ≤ 1

ln 2
∑K

i=k∗ ni

L
l(f ;x, y),∀y ∈ YL.

Proof. The proof is similar with the proofs in the paper. Here we justgive the sketch.

Firstly, we give some notations.

• Πf = {π|π is consistent with the ranking score f(x)}.

• Tπ(x(s)) = arg maxj∈{y(s),··· ,y(n)}(n − π−1(j))

and it is clear that,n − π−1(i) 6= n − π−1(j) for ∀i 6= j.

9



• ls(π, y(s)) = I{Tπ(x(s)) 6=y(s)}. It is clear that,

ls(π, y(s)) = 1 −
n
∏

i=s+1

I{n−π−1(s)>n−π−1(i)} = 1 −
n
∏

i=s+1

I{f(xy(s))≥f(xy(i))}
.

• Lβ(π,L) = miny∈YL Lβ(π, y) where

Lβ(π, y) =

n−1
∑

s=1

β(s)ls(π, y(s)) =

n−1
∑

s=1

β(s)
(

1 −
n
∏

i=s+1

I{f(xy(s))≥f(xy(i))}

)

Secondly, we can obtain the following by replacingπf with ∀π ∈ Πf in Theorem 1.

1 − NDCG(π,L) ≤ max
π∈Πf

(1 − NDCG(π,L)) ≤ max
π∈Πf

1

Nn
Lβ1(π,L)

1 − MAP (π,L) ≤ max
π∈Πf

(1 − MAP (π,L)) ≤ max
π∈Πf

1
∑K

i=k∗ ni

Lβ2(π,L)

whereβ1(s) = G
(

l(y(s))
)

D(s), ∀y ∈ YL, andβ2(s) ≡ 1.

Thirdly, we prove the following hold for∀π ∈ Πf .

Lβ(π,L) ≤
(

max
1≤s≤n−1

β(s)
)

L
p(f ;x,L);

Lβ(π,L) ≤ 1

ln 2

(

max
1≤s≤n−1

β(s)
)

L
l(f ;x, y),∀y ∈ YL.

We prove it in detail just as the proof of Theorem 2 in the paper. The differences lie in that some
”>” turn into ”≥”. We give the whole proof for integrity. Please pay attention to the differences.

• For the pairwise losses, we consider the value ofa
(

Tπ(x(s)), y(s)
)

case by case.

For∀y and∀s ∈ {1, 2, ..., n − 1}, if a
(

Tπ(x(s)), y(s)
)

= 1 (i.e.,∃i0 > s, s.t. l(y(i0)) 6=
l(y(s)) and f(xy(i0)) ≥ f(xy(s))), consideringφ in Ranking SVM, RankBoost and
RankNet are all non-negative, non-increasing andφ(0) = 1, we have,

n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≥ a
(

y(i0), y(s)
)

φ
(

f(xy(s)) − f(xy(i0))
)

= φ
(

f(xy(s)) − f(xy(i0))
)

≥ 1 = a
(

Tπ(x(s)), y(s)
)

.

If a
(

Tπ(x(s)), y(s)
)

= 0, it is clear that
∑n

i=s+1 a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≥

0 = a
(

Tπ(x(s)), y(s)
)

. Therefore,

n−1
∑

s=1

β(s)
n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≥
n−1
∑

s=1

β(s)a
(

Tpi(x(s)), y(s)
)

. (10)

The following inequality can be proved by replacingπf by π in Proposition 2,

Lβ(π,L) ≤ max
y∈YL

n−1
∑

s=1

β(s)a
(

Tπ(x(s)), y(s)
)

.

Considering inequality (10) and noticing that the pairwiselosses are equal for∀y ∈ YL,
we have

Lβ(π,L) ≤ max
y∈YL

n−1
∑

s=1

β(s)
n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

≤
(

max
1≤s≤n−1

β(s)
)

L
p(f ;x,L).

10



• For ListMLE loss, we prove the result case by case again. For∀y and∀s ∈ {1, 2, ..., n−1},
if I{Tπ(x(s)) 6=y(s)} = 1 (i.e.,∃i0 > s that satisfiesf(xy(i0)) ≥ f(xy(s))), thenef(xy(s)) ≥

1
2

∑n

i=s ef(xy(s)). Therefore, we have− ln e
f(xy(s))

∑

n
i=s

e
f(xy(i))

≥ ln 2 = ln 2 I{Tπ(x(s)) 6=y(s)}. If

I{Tπ(x(s)) 6=y(s)} = 0, then it is clear− ln e
f(xy(s))

∑

n
i=s

e
f(xy(i) ) > 0 = ln 2 I{Tπ(x(s)) 6=y(s)}. To

sum up, we have,
n−1
∑

s=1

β(s)
(

− ln
ef(xy(s))

∑n
i=s ef(xy(i))

)

≥
n−1
∑

s=1

β(s) ln 2 I{Tπ(x(s)) 6=y(s)} ≥ ln 2 Lβ(π,L).

By further relaxing the inequality, we obtain the followingresults,

Lβ(π,L) ≤ 1

ln 2

(

max
1≤s≤n−1

β(s)
)

L
l(f ;x, y),∀y ∈ YL.

Finally, we sum all the results up and obtain this theorem.

4 Discussion

The proofs of Theorems 1 and 2 actually suggest a way to improve existing loss functions. The key
idea is to introduce weights related toβ1(s) to the loss functions so as to make them tighter bounds
of (1−NDCG).

Specifically, we introduce weights to the pairwise and listwise losses in the following way,

L̃
p(f ;x,L) =

n−1
∑

s=1

G
(

l(y(s))
)

D
(

1 +
K−1
∑

k=l(y(s))+1

nk

)

n
∑

i=s+1

a
(

y(i), y(s)
)

φ
(

f(xy(s)) − f(xy(i))
)

,∀y ∈ YL;

L̃
l(f ;x, y) =

n−1
∑

s=1

G
(

l(y(s))
)

D(s)
(

− f(xy(s)) + ln
(

n
∑

i=s

exp(f(xy(i)))
)

)

.

The following Proposition shows that the above weighted losses are still upper bounds of
(1−NDCG) and they are lower bounds of the original pairwise and listwise losses. In other words,
the above weighted loss functions are tighter bounds of (1−NDCG) than existing loss functions.
Proposition 1. Given K-level rating data(x,L), for ∀f , we have,

(1) 1 − NDCG(f ; x,L) ≤ 1

Nn
L̃

p(f ;x,L) ≤ G(K − 1)D(1)

Nn
L

p(f ;x,L).

(2) 1 − NDCG(f ; x,L) ≤ 1

Nn ln 2
L̃

l(f ;x, y) ≤ G(K − 1)D(1)

Nn ln 2
L

l(f ;x, y),∀y ∈ YL.

Proof. It is easy to understand the second “≤” in inequalities (1) and (2), since the gain function
G(z) is an increasing function and the discount functionD(z) is a decreasing function.

Now we mainly give the proof for the first ”≤” in the inequalities.

First, for the loss function of ListMLE, according to Theorem 1 and the proof of Theorem 2, we
have,

1 − NDCG(f ;x,L) ≤ 1

Nn
Lβ1(f ;x,L)

≤ 1

Nn

n−1
∑

s=1

β1(s)

(

− ln
ef(xy(s))

∑n
i=s ef(xy(i))

)

=
1

Nn
L̃

l(f ;x, y).

whereβ1(s) = G(l(y(s)))D(s), ∀y ∈ YL.

Second, for the pairwise losses, according to Theorem 1 and the proof of Theorem 2, we have,

1 − NDCG(f ; x,L) ≤ 1

Nn
Lβ1(f ;x,L)

≤ max
y∈YL

1

Nn

n−1
∑

s=1

β1(s)
n
∑

i=s+1

a(y(i), y(s))φ
(

f(xy(s)) − f(xy(i))
)

.
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Table 1: Ranking accuracy on OHSUMED

Methods RankNet W-RankNet ListMLE W-ListMLE
NDCG@5 0.4568 0.4868 0.4471 0.4588
NDCG@10 0.4414 0.4604 0.4347 0.4453

Methods Regression Ranking SVM RankBoost FRank ListNet SVMMAP
NDCG@5 0.4278 0.4164 0.4494 0.4588 0.4432 0.4516
NDCG@10 0.4110 0.414 0.4302 0.4433 0.441 0.4319

Note that for∀y ∈ YL and∀s ∈ {1, 2, ..., n−1}, all the objects whose ratings are higher thanl(y(s))

are ranked before objecty(s) in y. Therefore,s ≥ 1 +
∑K−1

k=l(y(s))+1 nk. Considering thatD(z) is

a decreasing function, we haveD(s) ≤ D(1 +
∑K−1

k=l(y(s))+1 nk) andβ1(s) = G(l(y(s)))D(s) ≤

G(l(y(s)))D(1 +
∑

k=l(y(s))+1).

Therefore, the following inequality holds,
1 − NDCG(f ;x,L)

≤ max
y∈YL

1

Nn

n−1
∑

s=1

G(l(y(s)))D(1 +
K−1
∑

k=l(y(s))+1

nk)
n
∑

i=s+1

a(y(i), y(s))φ
(

f(xy(s)) − f(xy(i))
)

=
1

Nn
L̃

p(f ;x,L).

Note that the “=” holds since the value ofL̃p is equal for∀y ∈ YL. This is because only those
pairs whose first object has a larger label than the second oneare counted and the weights are only
determined by the label of the first object.

We tested the effectiveness of the weighted loss functions on the OHSUMED dataset in LETOR 3.0.6

We took RankNet and ListMLE as example algorithms. The methods that minimize the weighted
loss functions are referred to as W-RankNet and W-ListMLE. From Table 1, we can see that (1)
W-RankNet and W-ListMLE significantly outperform RankNet and ListMLE. (2) W-RankNet and
W-ListMLE also outperform other baselines on LETOR such as Regression, Ranking SVM, Rank-
Boost, FRank [15], ListNet and SVMMAP [17]. These experimental results seem to indicate that
optimizing tighter bounds of the ranking measures can lead to better ranking performances.

5 Conclusion and future work

In this work, we have proved that many pairwise/listwise losses in learning to rank are actually upper
bounds of measure-based ranking errors. We have also shown away to improve existing methods
by introducing appropriate weights to their loss functions. Experimental results have validated our
theoretical analysis. As for the future work, we plan to consider the following issues.

(1) We have modeled ranking as a sequence of classifications,when defining the essential loss. We
believe this modeling has its general implication for ranking, and will explore its other usages.

(2) We have taken NDCG and MAP as two examples in this work. We will study whether the
essential loss is an upper bound of other measure-based ranking errors.

(3) We have taken the loss functions in Ranking SVM, RankBoost, RankNet and ListMLE as ex-
amples in this study. We plan to investigate the loss functions in other pairwise and listwise ranking
methods, such as RankCosine [13], ListNet [3], FRank [15] and QBRank [18].

(4) While we have mainly discussed the upper-bound relationship in this work, we will study
whether loss functions in existing learning-to-rank methods are statistically consistent with the es-
sential loss and the measure-based ranking errors.

6http://research.microsoft.com/ ˜ letor
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