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Abstract

Learning to rank has become an important research topic thima learning.
While most learning-to-rank methods learn the ranking fioms by minimizing
the loss functions, it is the ranking measures (such as ND@IMAP) that are
used to evaluate the performance of the learned rankingdiéunsc In this work, we
reveal the relationship between ranking measures anduossiéns in learning-
to-rank methods, such as Ranking SVM, RankBoost, RankNdtlstMLE. We
show that the loss functions of these methods are upper safritie measure-
based ranking errors. As a result, the minimization of thesefunctions will lead
to the maximization of the ranking measures. The key to abtgithis result is to
model ranking as a sequence of classification tasks, ancedefin-calledssen-
tial lossfor ranking as the weighted sum of the classification errbisdividual
tasks in the sequence. We have proved that the essentidklosth an upper
bound of the measure-based ranking errors, and a lower bafuthé loss func-
tions in the aforementioned methods. Our proof technigse sliggests a way to
modify existing loss functions to make them tighter bounfithe measure-based
ranking errors. Experimental results on benchmark daasetw that the modifi-

cations can lead to better ranking performances, demdingfthe correctness of
our theoretical analysis.

1 Introduction

Learning to rank has become an important research topic nyiids, such as machine learning
and information retrieval. The process of learning to ran&s follows. In training, a set of objects
and labels representing their rankings (e.g., in terms dfisiavel ratings) is given. Then a ranking
function is constructed by minimizing a certain loss fuanton the training data. In testing, given a
new set of objects, the ranking function is applied to predaicanked list of the objects.

Many learning-to-rank methods have been proposed in #m@tiire, with different motivations and
formulations. In general, these methods can be dividedtimee categories [3]. Thpointwise
approach, such as subset regression [4] and McRank [10$idens each single object the learn-
ing instance. Theairwiseapproach, such as Ranking SVM [7], RankBoost [5], and Rahk}e
regards a pair of objects as the learning instance. liBhgise approach, such as ListNet [3] and
ListMLE [16], takes the entire ranked list of objects as tharhing instance. Almost all these

*The work was performed when the first and the third authorgweerns at Microsoft Research Asia.
In information retrieval, such a label represents the aiee of a document to the given query.



methods learn their ranking functions by minimizing certiiss functions, namely the pointwise,
pairwise, and listwise losses. On the other hand, howevisrthe ranking measures that are used
to evaluate the performance of the learned ranking funstidaking information retrieval as an ex-
ample, measures such as Normalized Discounted Cumulative(@DCG) [8] and Mean Average
Precision (MAP) [1] are widely used, which obviously diffieom the loss functions used in the
aforementioned methods. In such a situation, a naturatigue® ask iswhether the minimization
of the loss functions can really lead to the optimizatiorheftanking measures

Actually people have tried to answer this question. It hanlgoved in [4] and [10] that the regres-
sion and classification based losses used in the pointwmeagph are upper bounds of{NDCG).
However, for the pairwise and listwise approaches, whiehragarded as the state-of-the-art of
learning to rank [3, 11], limited results have been obtainElde motivation of this work is just to
reveal the relationship between ranking measures and theiga/listwise losses.

It is non-trivial to achieve this goal, however. Note thatkimg measures like NDCG and MAP
are defined with the labels of objects (i.e., in terms of rAelel ratings). Therefore it is relatively
easy to establish the connection between the pointwisedaamsd the ranking measures, since the
pointwise losses are also defined with the labels of objdatgontrast, the pairwise and listwise
losses are defined with the partial or total order relationeray objects, rather than their individual
labels. As a result, it is much more difficult to bridge the deatween the pairwise/listwise losses
and the ranking measures.

To tackle the challenge, we propose making a transformafitire labels on objects to a permutation
set. All the permutations in the set are consistent with éifsells, in the sense that an object with a
higher rating is ranked in the permutation before anoth@atlwith a lower rating. We then define
an essential losdor ranking on the permutation set as follows. First, forregermutation, we
construct a sequence of classification tasks, with the gaadach task being to distinguish an object
from the objects ranked below it in the permutation. Sectimelweighted sum of the classification
errors of individual tasks in the sequence is computed. dThire essential loss is defined as the
minimum value of the weighted sum over all the permutationbé set.

Our study shows that the essential loss has several nicemiex) which help us reveal the rela-
tionship between ranking measures and the pairwise/istioisses. First, it can be proved that the
essential loss is an upper bound of measure-based rankarg such as (ANDCG) and (:-MAP).
Furthermore, the zero value of the essential losssisficientandnecessargondition for the zero
values of (:-NDCG) and (:-MAP). Second, it can be proved that the pairwise losses irkiRgn
SVM, RankBoost, and RankNet, and the listwise loss in LisBVire all upper bounds of the essen-
tial loss. As a consequence, we come to the conclusion thébs$is functions used in these methods
can bound (:NDCG) and (:-MAP) from above. In other words, the minimization of thessslo
functions can effectively maximize NDCG and MAP.

The proofs of the above results suggest a way to modify egjgiairwise/listwise losses so as
to make them tighter bounds of {NDCG). We hypothesize that tighter bounds will lead to lrette
ranking performances; we tested this hypothesis usingtmeark datasets. The experimental results
show that the methods minimizing the modified losses canesfapm the original methods, as well
as many other baseline methods. This seems to validate trextreess of our theoretical analysis.

2 Related work

In this section, we review the widely-used loss functiontemrning to rank, ranking measures in
information retrieval, and previous work on the relatiapshetween loss functions and ranking
measures.

Note that recently people try to directly optimize rankingasures [6, 12, 14, 17]. The relationship be-
tween ranking measures and the loss functions in such wankpigcitly known. However, for other methods,
the relationship is unclear.



2.1 Loss functions in learning to rank

Letx = {z1,---,z,} be the objects be to rankédSuppose the labels of the objects are given
as multi-level ratingsC = {i(1), ...,1(n)}, wherel(i) € {ry,...,rx } denotes the label of; [11].
Without loss of generality, we assuriig) € {0,1, ..., K — 1} and name the corresponding labels
asK-level ratings. Ifl(¢) > I(j), thenz; should be ranked befote;. Let F be the function class
and f € F be a ranking function. The optimal ranking function is lesdrirom the training data
by minimizing a certain loss function defined on the objeittsir labels, and the ranking function.
Several approaches have been proposed to learn the opdinkéthg function.

In the pointwise approachthe loss function is defined on the basis of single objeas.ekample,
in subset regression [4], the loss function is as follows,

L'(fix,£) =Y (fla:) —1(5))*. (1)
=1
In the pairwise approachthe loss function is defined on the basis of pairs of objettsse labels
are different. For example, the loss functions of Ranking/gV], RankBoost [5], and RankNet [2]
all have the following form,

P(fix, L) Z Z O(f(xs) = f(22)), @)
s=14i=1,1(3)<l(s)
where theyp functions are hinge functions(z) = (1 — z).), exponential functiond(z) = e~*),
and logistic function§(z) = log(1 + e~ *)) respectively, for the three algorithms.

In thelistwise approachthe loss function is defined on the basis of all thebjects. For example,
in ListMLE [16], the following loss function is used,

n—1

L(fix) =D (= faye) +0 (D expl(f(@y0))) ), 3)

s=1 i=s
wherey is a randomly selected permutation (i.e., ranked list) sagisfies the following condition:
for any two objectsr; andx;, if 1(i) > I(j), thenz; is ranked beforer; in y. Notationy(i)
represents the index of the object ranked atittteposition iny.

2.2 Ranking measures

Several ranking measures have been proposed in the literatievaluate the performance of a
ranking function. Here we introduce two of them, NDCG [8] avé\P[1], which are popularly
used in information retrieval.

NDCG is defined with respect t& -level ratingsC

NDCG(f;x,L) = ZG (75 (r)))D(r),

wherer is the ranked list produced by ranklng functigh G is an increasing function (named
the gain function),D is a decreasing function (named the position discount fangtandN,, =

max, y_._, G(I(w(r))) D(r). In practice, one usually ses(z) = 2% — 1; D(z) = m if
z < C,andD(z) =0if z > C (C'is afixed integer).
MAP is defined with respect to 2-level ratings as follows,
i I wr(i))=
MAP(f;%,£) = — Ligo Tty @)= 4)
ni S

sil(my(s))=1
wherel, , is the indicator function, and, is the number of objects with lab&l When the labels
are given in terms of{-level ratings & > 2), a common practice of using MAP is to fix a level
k*, and regard all the objects whose ratings are lower kfaas having labed, and regard the other
objects as having labél[11].

From the definitions of NDCG and MAP, we can see that their maxn values are both one.
Therefore, we can consider{{NDCG) and (:-MAP) as ranking errors. For ease of reference, we
call themmeasure-based ranking errors

3For example, for information retrievat, represents the documents associated with a given query.



2.3 Previous bounds

For the pointwise approach, the following results have ldsained in [4] and [101.
The regression based pointwise loss is an upper bound-diQRICG),

1 — NDCG(f;x, £) <—( ZD ) P, 0)2.

The classification based pointwise loss is also an upperdoiifl—NDCG),

1/2

1 — NDCG(f; x, L) <M(ZD —nHD(z’)2/”)1/2<Zl{i(i)¢l(i)}> ,
=1 i=1

Wherei(i) is the label of object; predicted by the classifier, in the setting of 5-level rating
For the pairwise approach, the following result has beeainbt [9],

1— MAP(f;x,£) <1— —(Lp(f,x L)+Ch )" Z\f

According to the above results, minimizing the regressimh@assification based pointwise losses
will minimize (1-NDCG). Note that the zero values of these two losses are iguffibut not nec-
essary conditions for the zero value of(NIDCG). That is, when (ANDCG) is zero, the loss
functions may still be very large [10]. For the pairwise lessthe result is even weaker: their zero
values are even not sufficient for the zero value of (1-MAP).

To the best of our knowledge, there was no other theoregsailt for the pairwise/listwise losses.
Given that the pairwise and listwise approaches are redaasé¢he state-of-the-art in learning to
rank [3, 11], it is very meaningful and important to performama comprehensive analysis on these
two approaches.

3 Main results

In this section, we present our main results on the relatipnisetween ranking measures and the
pairwise/listwise losses. The basic conclusion is thatyngirwise and listwise losses are upper
bounds of a quantity which we call the essential loss, andefisential loss is an upper bound of
both (1-NDCG) and (:-MAP). Furthermore, the zero value of the essential losssistiicientand
necessargondition for the zero values of INDCG) and (1:-MAP).

3.1 Essential loss: ranking as a sequence of classifications

In this subsection, we describe tegsential losor ranking.

First, we propose an alternative representation of thddadj@bjects (i.e., multi-level ratings). The
basic idea is to construct a permutation set, with all thenpgations in the set beirmpnsistentvith
the labels. The definition that a permutatio@sistentvith multi-level ratings is given as below.
Furthermore,

Definition 1. Given multi-level ratingsC and permutatiory, we sayy is consistent with £, if for
Vi, s € {1,...,n} satisfyingi < s, we always haviy(i)) > I(y(s)), wherey(i) represents the index
of the object that is ranked at thieth position iny. We denot&’; = {y|y is consistent with L}.

According to the definition, it is clear that the NDCG and MARaaanking function equal one, if
and only if the ranked list (permutation) given by the ramgkinnction is consistent with the labels.

Second, given each permutatigre Y., we decompose the ranking of objeatsnto several se-
quential steps. For each stepwe distinguishe, (), the object ranked at theth position iny, from

all the other objects ranked below th¢h position iny, using ranking functiorf.® Specifically, we

“Note that the bounds given in the original papers of [4] affid fte with respect to DCG. Here we give their
equivalent forms in terms of NDCG, and g&f:|z;, S) = d,;)(+) in the bound of [4], for ease of comparison.

®Here we assumg(z;) # f(x;) for Vi # 5,4,5 € {1,2,...,n}, such that the classifier will have a unique
output. Theorem 3 shows that the main results still hold eittthis assumption.



denotex ) = {zy(s), -, Ty(n) } and define a classifier based rwhose target output ig(s),

Ty(x(s)) = arg f ;). ()

max
Je{y (), y(n)}

It is clear that there are — s possible outputs of this classifier, i.dy(s),--- ,y(n)}. The 0-1
loss for this classification task can be written as followkeve the second equality is based on the
definition of T,

n
L (£ %) 9(5)) = Iy eiop2uey = 1= [ Tiryns eyt
1=s+1

We give a simple example in Figure 1 to illustrate the afonetio@ed process of decomposition.

Y T Y 7r Yy 7r
A B ) B B
B A incorrect correct ( C ) ( C )
remove A C C remove B
C C
Figure 1: Modeling ranking as a sequence of classifications

Suppose there are three objects B, andC, and a permutation = (A, B, C'). Suppose the output
of the ranking function for these objects(ig, 3, 1), and accordingly the predicted ranked list is
7 = (B, A, C). At step one of the decomposition, the ranking function mtsdbjectB to be on
the top of the list. Howeverd should be on the top according 40 Therefore, a prediction error
occurs. For step two, we remoyefrom bothy andx. Then the ranking function predicts objdgt

to be on the top of the remaining list. This is in accordandé wiand there is no prediction error.
After that, we further remove obje®, and it is easy to verify there is no prediction error in step
three either. Overall, the ranking function makes one emrtiiis sequence of classification tasks.

Third, we assign a non-negative weights)(s = 1,--- ,n — 1) to the classification task at the
s-th step, representing its importance to the entire sequée compute the weighted sum of the
classification errors of all individual tasks,

n—1 n
Ls(f;%,y) £ Z B(s)(1 - H Lty )= F ey} ) (6)
s=1

1=s+1

and then define the minimum value of the weighted sum ovethallpermutations irt; as the
essential loss for ranking

Ls(f;x, L) =y1“feli}pc Ls(f;x,y). (7

According to the above definition of the essential loss, we @atain its following nice property.
Denote the ranked list produced liyasw¢. Then it is easy to verify that,

Ls(f;x,L) =0<«= Ty € Y satisfyingLg(f; x,y) =0 <=y =y € Y.

In other words, the essential loss is zero if and only if therpeation given by the ranking function
is consistent with the labels. Further considering thewtismns on the consistent permutation at
the begining of this subsection, we can come to the conaiusbiat the zero value of the essential
loss is a sufficient and necessary condition for the zercegatd (1-NDCG) and (1-MAP).

3.2 Essential loss: upper bound of measure-based ranking rrs

In this subsection, we show that the essential loss is anrdgzpand of (:-NDCG) and (:-MAP),
when specific weight§(s) are used.

Lemma 1. Given 2-level rating datéx, £), for Vf, we have,
Lg,(f;x,L) =n1 —io+ 1,

wherei, denotes the position of the first object with labéh 7, and82(s) = 1.



Proof. We consider the modeling of ranking as a sequence of classifis.

First of all, it is easy to see thay < n; + 1. ForVy € Y, sincel(r(ig)) = 0, we have
y(s) # ms(io) for vs € {1,...,n1}. Thatis, the object, (;,) will not be removed in the first;
steps.

Then, we conduct discussions fyncase by case.

(1) If ig < ng, according to the construction ¢k}, 35" € {1,2,...,n1}, satisfiesT’;(x(,)) =
7y(io) forvs e {s',...,n1}.

e Forsteps € {1,...,s'—1}: for Vy € Y, since there ar& — 1 objects before positioty in
7y, there are at mosh — 1 nonrecurring elements i’y (x(1)), ..., Tr(x(s—1)) }. In other
words, at least’ — io elements are recurring. Thus, by the definitio{®f,)}, from step
1to steps’ — 1, there are at least — i steps are incorrect.

o Forsteps € {s,...,n1}: y(s) # ny(io) for Vy € Y. So, from steps’ to stepny, none
step is correct.

To sum up, there is at least a classification errofsof- ig) + (n1 — s’ + 1) = ny —ip + 1 in the
first n, steps. In other words,
Lg,(f;%x,£) 2 —io + 1. ®)

We denotey, € Y. as the permutation in which objects are sorted accordinigetio positions in
7y. Itis not difficult to see that’ = i¢ and there is no loss before stgpand after stem;. In other
words, Lg, (f; X, yx,;) = n1 — io + 1. Considering Eq.(8), we have,

Lp, (f;x, L) =n1 —io + 1.

(2) If ip = n1 + 1, we haver; € Y, and thusLg, (f;x,£) < Lg,(f;x, 7 ) = 0 =n; —ip+ 1.
Considering that the essential loss is non-negative, we bay(f; x, £) = 0 =ny — ip + 1.

O

Theorem 1. Given K -level rating data(x, £) with n; objects having labet andz i >0,
then for Vf, the following inequalities hold,

(1) 1= NDOG(fx,£) < 3L, (fs%, £), where fi(s) = G(U(y(s)) D(s), ¥y € Vs
(2) 1-MAP(f;x,L) < %Lm(f;x,[,), where B2(s) = 1.
D i T

Proof. (1) We now prove the inequality for ANDCG).

First, we reformulate NDCG using the permutationsgt This can be done by changing the index
of the sum in NDCG from the rank positionin 7 to the rank positiors in Vy € Y. Considering

thats = y =" (m(r)) andr = 7' (y(s)), it is easy to obtain,

NDCG(f;x,£) = Z(memWMWwwzﬁzamwwwww»

Second, we consider the essential loss case by case. Nbte tha

n—1 n
Lo, (f3%, L) = e . GyNDE = TT Lot yyans wan):
=1 i=s+1

ForVy € Yy, if position s satisfies[ ", T (yspy<ns iy = 1 (€Y > 5, 7 (y(s)) <
T Ly(i))), we havenf (y(s)) < s. Asa consequencé)(s) T s+1I{ Lyl <r i)} =



D(s) < D(x;'(y(s))). Otherwise, if]'[?:sﬂl{ﬂf (wsn<r; Wiy = O it is easy to see that
1

(
($)ITisin It <nt ooy =0 S D(m; ' (y(s))). TosumupV¥s € {1,2,..,n — 1},
(
(

o o

s) T S+1I{ﬁ71( (<r i)y D(x;'(y(s))). Further considering " (y(n)) < n and
D(-) is a decreasing function, we haiEn) < D( '(y(n))). As aresult, we obtain,

1

1— NDCG(f;x, L) = — ZG ) (D) = D(e w(s))) < 5L (3%, )

N

(2) We then prove the inequality for (IMAP).

First, we prove the result for 2-level ratings. Given 2-levating data(x, £), by Lemma
1, Lg,(f;x,£) = ny —ip + 1. We then considem;(1 — MAP(f;x,L£)) = ni —

i<s L{1(r 4 (i))= . . . . .
> s (s))=1 M case by case. Ify > n; (i.e., the first object with labe is

ranked after positiom, in ), then all the objects with label are ranked before the objects
with label0. Thusni(1 — MAP(f;x,L£)) = n1 —n1 = 0 = Lg,(f;x,L£). If ip(my) < na,
there areio(my) — 1 objects with labell ranked before all the objects with labeél Thus
n1(l—=MAP(f;x,L)) <nyg—io(ny)+1= Lg,(f;x, L). Therefore, we have proved the theorem
for 2-level ratings.

Second, giveri-level rating datdx, £), we denote the 2-level ratings inducedbws£’. Then it
is easy to verify¥; C Y... As aresult, we have,

Lg, (f5%, [',) = min Lg,(f;x,y) < min Lg, (f;%,y) = Lg, (f; %, L).
YEY o/ yeY,
Recalling the result for 2-level ratings, we obtain

1 — MAP(f;x,£) = 1 - MAP(f;x, L) < ZK%Lﬁz(f; x, L) < ZK%L@U; X, L).

i=kx Thi =k TV

3.3 Essential loss: lower bound of loss functions

In this section, we show that many pairwise/listwise losgesupper bounds of the essential loss.
Lemma 2. Given K-level rating datdx, £), for ¥V f, we have,

n—1

Ls(f;x,L) < maxZﬁ Tf(x(é))7y( ))

yEYL

Proof. We definey,, € Y. as the permutation in which the objects with the same laleesarted
according to their positions if¢. We denotesx_; as the position of the first object whose label is
notK —1. Itiseasytoseethaty 1 <ng_1+1,andl(y.,(s)) = K —1forvs € {1,....,nx_1}.

o If sg1 <ng_1,

- Forl < s < sg_1, by the definition ofy. ., we havey,,(s) = Ty(x(s)) = 7y(s)
forVs € {1,...,sxk—1 — 1}. Considering(m¢(s)) = K — 1, the following equations
hold,

Lty ) e (0 = 0 = LUy ey #E -1} = L{(Ty () Ay ()}
— Forsg_1 <s< nK_l,Tf(x(s)) = 7Tf(SK_1) forVs e {sK_l,...,nK_l}. There-

fore, [(T(x(s))) = l(mp(sk—1)) # K — 1 andT¢(x(s)) # yx,(s). Considering all
of this, we have,

Lty o) #ue (0 = 1= L0 ey )#E 13 = L{(Ty (x(0)) A ym ()}

o If sk 1 =ng_1+1,forvs e {1,2,....nx_1}, all the indicator functions will take value
zero by the definition of, .



Now, all the objects which ratings are higher thém(sx 1)) are removed from both; andys, .
Then we denotg; (s, _,)) as the position of the first object after positiog_; whose label is not
I(m(sk—1)) in the remaining list ofr;. With similar discussions as above, we can get the same
results with those regarding the lali€él- 1. The above process can be iterated until only the objects
with label0 are left in bothr; andy.,. In that case, all the indicator functions will take valuexze

To sum up, the above discussions show thatc {1,2,...,n — 1},
L0y (o) #um (90} = LTy (x00) £  (9)))

And we can obtain the result as below,
n—1 n—1
Lo(fix,L) = Y By (o)) um ()} = > BTy (xo))#1(wn ()}
s=1 s=1

n—1

max Zﬂ )Ty (x(oy ) #U(u(s)} = MaX Z B(s)a (Ty(x(s)),y(s)) -

IA

O

Theorem 2. The pairwise losses in Ranking SVM, RankBoost, and Ran&hthe listwise loss
in ListMLE are all upper bounds of the essential loss, i.e.,

(1) Lo(fix L) < (| max  B(s)) L7 (f3x, £);

() Lo(fix,£) < s ( max ()L (fix,9), Yy € Vz.

2ls<n1

Proof. (1) We now prove the inequality for the pairwise losses.
First, we reformulate the pairwise losses using permuiatatY,

"(f;%, L) Z Z O(F(2y(s) — Fl@y(i))) Z Z Vo (F(@y(s) — Fl@y)),
s=1 i=s+1, s=11=s+1
l(y(s))#l(y( )

wherey is an arbitrary permutation iYiz, a (s, j) = 1if 1(¢) # 1(j); a(i, ) = 0 otherwise. Note that
only those pairs whose first object has a larger label thaedgbend one are counted in the pairwise
loss. Thus, the value of the pairwise loss is equalfpe Y.

Second, we consider the value(fT’s (x ), y(s)) case by case. Foty andvs € {1,2,...,n—1},

if a(Tf(x(S)),y(s)) = 1 (i.e., Jip > s, satisfyingi(y(io)) # l(y(s)) and f(zyey)) > f(@ys))):
considering that functiog in Ranking SVM, RankBoost and RankNet are all non-negatioe-
increasing, and(0) = 1, we have,

> a(y(@),y(5))6(f(y(s) = f (@)

i=s+1
> a(y(io),y(s)¢(f(xy(s) = [(@yaio))) = O(F(@y(s) — F(@y(ig)) > 1= a(Tf(Xu) ),4(s))-
If a(Tf(x(s)),y(s)) = 0, itis clear thaty " ., a(y(@),y(s))o(f(zy(s) (Ty))) = 0 =
a(Ts(x(s)), y(s)). Therefore,
Z B(s) > a(y(i),y(s))o(f(zys) — FlXym)) > Zﬁ a(Tr(x(s)), y(s)). 9)
i=s+1

Third, by Lemma 2 the following inequality holds,

n—1

Lg(f;x,L) < maX Zﬂ Tf(x(é))7y( ))

Considering inequality (10) and noticing that the pairwisses are equal fofy € Y, we have

Ls(f;x, L) <maXZﬂ Z y(0),y(8))d(f (wy(e)) — flaym)) < (_max ()L (f;%, L),

yeEY 1<s<n—1



(2) We then prove the inequality for the loss function of M&E. Again, we prove the result case by
case. Consider the loss of ListMLE in Eq.(3). Farandvs € {1,2,...,n—1},if Ly (x ) #u(s)} =

1 (i.e.,Jip > s satisfyingf(z,(y)) > f(2y(s))), thenel @ue) < L3571 e/ (@), Therefore, we
ef(’ty(s)) ..
have—lnm > In2 = 2 Iiry )2y} I Ly x)#us)y = 0, then it is clear

efCu(s)

-1 7 > 0=1In2 I, (x,))2y(s)}- TOSUMUP, We have,

ST
n—1 n—1

I &/ 27 > In2 min L —In2 Ls(ms, £
;5(3)<— HW) > ;5(3) N2 LTy (x(g))Ay(s)} 2 11 yneli}lﬁ s(ms,y) =In2 Lp(my, L).

By further relaxing the inequality, we obtain the followingsult,

Lo(fix. L) < —

Lig.
> ln2(1§r§1§§715(8))L (f,x7y),Vy €Y.

3.4 Summary

We have the following inequalities by combining the resalitained in the previous subsections.

(1) The pairwise losses in Ranking SVM, RankBoost, and Ratkike upper bounds of fINDCG)
and (L-MAP).

1— NDCG(f;x,L) < GE—1)D{) ;Vl)D(l) LP(f;x, L);
1= MAP(f;x, £) < ———L7(f;x, £).
i=kx Th

(2) The listwise loss in ListMLE is an upper bound of{liDCG) and (:-MAP).

G(K-1)D(1) ,,
< N,1In2 L

1— MAP(f;x,L) < ;Ll(f;x,ywy €Ye.

“In2 Z;K:k* n;

1 - NDCG(f;x, L) fi%,y),Vy € Yr;

For clarity and simplicity, we assume there is no tie in thedicted rank list in the previous sections.
The following theorem shows that the main results still heithout this assumption.

Theorem 3. Given K-level rating datdx, £), for Vf, and arbitrary= which is randomly selected
from the permutations produced lfythe following inequalities hold.

|- NDCG(m, L) < M[/p(ﬂx,ﬁ).
1

1— MAP(r,L) < ———ILP(f;x,L).

GK-1)D() ., ,

1- NDCG(m, L) < NoIn2 L' (f;x,y),Yy € Y¢.
1 !

1— MAP(r, L — IMfix,y),Vy € Yr.

( ) IHQZZK:]C*TM (f y) Y L

Proof. The proofis similar with the proofs in the paper. Here we fiige the sketch.

Firstly, we give some notations.

o Il = {w|m is consistent with the ranking score f(x)}.
f g

o Tr(X(s)) = ArgMAX;c (), y(n)} (0 — 7' (j))
and itis clear thatp — 7—1(i) # n — 7= 1(j) for Vi # j.



o 1s(m,y(5)) = {1, (x)) ()} - LIS Clear that,

L(my() =1— [[ Tnen-1snm1ap=1— ][] T p @y )= F @y}
i=s+1 i=s+1

o Lg(m, L) = minyey, Lag(m,y) where

n—1 n—1 n
Lo(m,y) = Y B&)s(my(s) = D> B) (1= T Tireyepzrepiy)
s=1 s=1 i=s+1

Secondly, we can obtain the following by replacingwith vz € II; in Theorem 1.

— < _
1- NDCG(m, L) < 71;%%5(1 NDCG(m, L)) < max N (m, L)
1
1—- MAP(m, L) < 7{2%1;(1 — MAP(m, L)) < 71;%%}; S Lg,(m, L)

wheref: (s) = G(I(y(s))) D(s), Vy € Yz, andfa(s) =
Thirdly, we prove the following hold foyr € I1¢.

Ly(m, L) < (| max  B(s))L7(f;x, L);

1<

1 .
Lg(m, L) < ﬁ(lé?i’f BE)L(fix,y),Vy € Ye.

We prove it in detail just as the proof of Theorem 2 in the papée differences lie in that some
”>"turn into ”>". We give the whole proof for integrity. Please pay attentio the differences.

e For the pairwise losses, we consider the value (@t (xs)), y(s)) case by case.

Forvy andVs € {1,2,...,n — 1}, if a(Tx(x(s)), y(s)) = 1 (i.e., Fig > s,s.t. l(y(io)) #
l(y(s)) and f(xyaiy)) > f(xys))), consideringg in Ranking SVM, RankBoost and
RankNet are aII non-negative, non-increasing af@ = 1, we have,

n

D a(y(®),y(9)d(f(@ys) = f@ym))

i=s+1

Z a(y(i0)7y(5))¢(f(my(s)) - f(:cy(io))) = qb(f(my(s)) - f(:cy(io))) Z 1= a(Tﬂ'(x(S))v y(S)).

If a( (X(s)) ) = (, itis clear thatZ?:S+1 a(y(z’), y(s))¢(f(xy(s)) — f(:vy(i))) >
0= a(Tx(x( )),y(s)). Therefore,
Z B(s Z y(@),y(5) o (f(wy(s)) — (@y(i))) Z B(s)a(Tpi(x(s)),y(s)).  (10)

i=s+1

The following inequality can be proved by replacimg by 7 in Proposition 2,

) < max Z B(s e (X)), Y(8))-

yeEYL

Considering inequality (10) and noticing that the pairwlizeses are equal fofy € Y,

we have
Lﬁ(ﬂ—vﬁ) < ;Ié%}é i B(S) Z a(y(i)vy(s))d)(f(xy(S)) - f(xy(z))) < (1<1§1<a$715(s))Lp(f;x, ‘C)
s=1 i=s+1 - =

10



e For ListMLE loss, we prove the result case by case againvfandvs € {1,2,...,n—1},
if I{TW(X(S))iy(s)} =1 (i.e.,Jip > s that satisfiegf(a:y(io)) > f(Iy(s))), thene/ (*v() >

efTu(s)

13" ef@ue). Therefore, we have In 7 2 M2 =12 I () )y()3- If

- 1‘63:1'"5(’J"3,(s))
I{Tﬂ(x(s));éy(s)} = 0, then it is clear— In 727}: micamy >0=1In2 I{Tﬂ(x(s));éy(s)}. To

sum up, we have,

n-l ef @y(s))

n—1
; Bs)(~n W> > ; B(s)In2 Iz (x )y 2u(ey > 02 Ly, L),

By further relaxing the inequality, we obtain the followingsults,

1
Ly(m, £) < = ( lgrgggflﬁ(S))L (f;x,9),Vy € Ye.
Finally, we sum all the results up and obtain this theorem. O

4 Discussion

The proofs of Theorems 1 and 2 actually suggest a way to inggeristing loss functions. The key
idea is to introduce weights relatedfg(s) to the loss functions so as to make them tighter bounds
of (1-NDCG).

Specifically, we introduce weights to the pairwise and lisenosses in the following way,

K-1 n
f’ X, ‘c Z G ( Z nk) Z a(y(i)vy(s))d)(f(xy(S)) - f(xy(i)))vvy € YC;
k=l(y(s))+1 i=s+1
L'(fix,y) ZG D(s) (= flayo) +1n (3 exp(f(@y00)))-

The following Proposition shows that the above weightedsdgsare still upper bounds of
(1—NDCG) and they are lower bounds of the original pairwise astaise losses. In other words,
the above weighted loss functions are tighter bounds-eNDCG) than existing loss functions.

Proposition 1. Given K-level rating datdx, £), for Vf, we have,

(1) 1= NDOG(fx,£) < -17(fx, £) <« SEDPW oo gy,
~ G(K —-1)D
(2) 1= NDOG(fix£) < 3y B (i) < CEEDPA L i vy e v,

Proof. It is easy to understand the second™in mequalmes (1) and (2), since the gain function
G(z) is an increasing function and the discount functidfr) is a decreasing function.

Now we mainly give the proof for the firstd” in the inequalities.

First, for the loss function of ListMLE, according to Theorel and the proof of Theorem 2, we
have,

1= NDCG(f; %, £) < 5L, (/5% £)

n-l ef @y(s)) 1 -,
: T e ) TR E i)

wheref, (s) = G(I(y(s))) D (s),vy €Y.
Second, for the pairwise losses, according to Theorem 1renprbof of Theorem 2, we have,

1= NDOG(fix,£) < 5-Lo (i, £)

IN

yEYg . Z 51 Z )7y(8))¢ (f(xy(S)) - f($y(i))) .

1=s+1
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Table 1: Ranking accuracy on OHSUMED

Methods RankNet W-RankNet ListMLE W-ListMLE
NDCG@5 0.4568 0.4868 0.4471 0.4588
NDCG@10 0.4414 0.4604 0.4347 0.4453

Methods Regression Ranking SVM RankBoost FRank ListNet S\AR
NDCG@5 0.4278 0.4164 0.4494 0.4588 0.4432 0.4516
NDCG@10 0.4110 0.414 0.4302 0.4433 0.441 0.4319

Note that foivy € Y. andvs € {1,2,...,n—1}, all the objects whose ratings are higher thais))
are ranked before objegts) in y. Therefores > 1 + ZkK:j(ly(s))H nk. Considering thaD(z) is
a decreasing function, we hav#(s) < D(1 + 3, (s))41 ™) adB1(s) = G(U(y(s)))D(s) <
G(l(y(s)))D(1 + Zk:l(y(s))Jrl)'
Therefore, the following inequality holds,

1—-NDCG(f;x,L)

n—1 K-1 n

max DGUEHNDA+ > ) Y a(y(i)y(s)e (fwye) = flayw))

ey, N,
yete An 2 k=l(y(s)+1  i=stl

IN

- DU D).

Note that the “=" holds since the value &P is equal forvy € Y. This is because only those
pairs whose first object has a larger label than the secondreneounted and the weights are only
determined by the label of the first object. O

We tested the effectiveness of the weighted loss functints@OHSUMED datasetin LETOR 3°0.
We took RankNet and ListMLE as example algorithms. The naghtbat minimize the weighted
loss functions are referred to as W-RankNet and W-ListMLEnk Table 1, we can see that (1)
W-RankNet and W-ListMLE significantly outperform RankNetdaListMLE. (2) W-RankNet and
W-ListMLE also outperform other baselines on LETOR such egrgssion, Ranking SVM, Rank-
Boost, FRank [15], ListNet and SVMMAP [17]. These experitatnesults seem to indicate that
optimizing tighter bounds of the ranking measures can ledtter ranking performances.

5 Conclusion and future work

In this work, we have proved that many pairwise/listwisestssin learning to rank are actually upper
bounds of measure-based ranking errors. We have also shawy 8 improve existing methods
by introducing appropriate weights to their loss functioBgperimental results have validated our
theoretical analysis. As for the future work, we plan to édesthe following issues.

(1) We have modeled ranking as a sequence of classificatidres) defining the essential loss. We
believe this modeling has its general implication for raugkiand will explore its other usages.

(2) We have taken NDCG and MAP as two examples in this work. Westudy whether the
essential loss is an upper bound of other measure-baseidgakors.

(3) We have taken the loss functions in Ranking SVM, RankBd®ankNet and ListMLE as ex-
amples in this study. We plan to investigate the loss funstia other pairwise and listwise ranking
methods, such as RankCosine [13], ListNet [3], FRank [18]@BRank [18].

(4) While we have mainly discussed the upper-bound relakigmin this work, we will study
whether loss functions in existing learning-to-rank melhare statistically consistent with the es-
sential loss and the measure-based ranking errors.

®http://research.microsoft.com/ ~letor
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