Datacast: A Scalable and Efficient Group Data Delivery
Service for Data Centers

Chuanxiong Guo, Guohan Lu, Yonggiang Xiong, Jiaxin Cao,
Yibo Zhu, Chen Chen, Yongguang Zhang
Microsoft Research Asia

ABSTRACT

Reliable group data delivery (RGDD) is a pervasive traffic
pattern in data centers. In an RGDD group, a sender needs
to reliably deliver a copy of data to all the receivers. Exist-
ing solutions either do not scale due to the large number of
RGDD groups (e.g., IP multicast) or cannot efficiently use
network bandwidth (e.g., end-host overlays).

We design Datacast for RGDD. Datacast turns group state
management to in-network packet caching by leveraging the
content centric networking (CCN) concept. It uses centrally
calculated multiple edge-disjoint trees for efficient and fast
data delivery. By introducing a robust rate-based congestion
control, which interprets duplicated CCN interest packets as
congestion signal, Datacast adapts well to varying network
conditions.

We have implemented Datacast using the ServerSwitch [[[3]
platform. Our implementation shows that all the features
needed in Datacast, including flexible packet filtering, source
routing, and in-network packet caching, can be implemented
using commodity devices. Our implementation can offload
packet forwarding to switching chip for 50% nodes in a typi-
cal group with 280 members and over 500 intermediate nodes.
Our testbed experiments demonstrate that Datacast achieves
1.74Gb/s goodput using two 1GbE Steiner trees, it uses net-
work bandwidth efficiently, adapts to changing traffic condi-
tions and reacts to network failures quickly.

1. INTRODUCTION

Driven by technology advances and economic forces,
data centers are being built around the world to pro-
vide various cloud computing services. These data cen-
ters may contain hundreds of thousands servers. The
servers together with the network devices, e.g., Eth-
ernet switches and IP routers, form huge networking
systems to support various infrastructure services (e.g.,
GFS and MapReduce) and applications (e.g., social net-
working, Search, scientific computing).

Reliable group data delivery (RGDD) is a pervasive
traffic pattern in these applications and services. In
RGDD, we have a group which contains one data source
and a set of receivers. We need to reliably deliver the
same copy of data from the source to all the receivers.

We describe several typical RGDD cases as follows.

Case 1: In data centers, servers are typically orga-
nized as physical clusters. During bootstrapping or OS
upgrading, the same copy of OS image needs to be
transferred to all the servers in the same cluster. A
physical cluster is further divided into sub-clusters of
different sizes. A sub-cluster then is allocated to a ser-
vice. All the servers in the same sub-cluster may need to
run the same set of applications. We need to distribute
the same set of program binaries and configuration data
to all the servers in the sub-cluster.

Case 2: In distributed file systems such as GFS [23],
a chunk of data is replicated to several (typically three)
servers to improve reliability. The senders and receivers
form a small replication group. A distributed file sys-
tem may contain tens of Peta bytes. Hence the number
of replication groups is huge. In distributed execution
engine (e.g., Dryad [25]), a copy of data may need to be
distributed to many servers for Join operations.

Case 3: In Amazon EC2 or Windows AZure, a ten-
ant may create a set of virtual machines. These virtual
machines form an isolated computing environment ded-
icated to that tenant. When setting up the virtual ma-
chines, customized virtual machine OS and application
images need be delivered to all the physical servers that
host these virtual machines.

There are several common characters in the above
RGDD cases. First, reliable data delivery is mandatory
and all the receivers need to receive the exact copy of
data. Second, though the group may be created stati-
cally (cases 1) or dynamically (cases 2 and 3), the group
membership is static. Due to the lack of support for
RGDD in the network, many current systems support
RGDD at application layer using unicast TCP. This so-
lution is undesirable due to its inefficiency and the fact
that many applications need to duplicate the same ef-
fort.

One solution category for RGDD is reliable IP multi-
cast.The design space of reliable IP multicast has been
nicely described in [I6]. TP multicast has scalability is-
sues for maintaining a large number of group state in the
network. And adding reliability to IP multicast is hard

due to the well known ACK implosion problem [I°7].
Furthermore, TP multicast uses a single multicast tree.
Many data center networks (DCN, e.g., BCube [[1] and
CamCube [(@]) have multiple edge-disjoint trees which
cannot be utilized by IP multicast.

Another solution category is end-host based overlays
(e.g. [@, B, §]). Overlays are scalable, since devices in
the network do not maintain group state. Reliability is
easily achieved by directly using TCP. Overlays, how-
ever, do not use network bandwidth efficiently. Both
link stress and network stress can be very high. For ex-
ample, the worst-case link stress of SplitStream can be
tens [B], and the average and worst-case network stresses
of ESM [@] are 1.9 and 9, respectively. See B for more
details.

In this paper, we propose a new design called Data-
cast, which achieves both scalability and efficiency. To
achieve scalability, Datacast turns one-to-many group
communication to in-network packet caching by lever-
aging the content centric networking (CCN) [M9] con-
cept. In order to receive a data packet, a receiver needs
to issue a pulling interest packet. The returned data
packet is then cached along the return path. Later in-
terest packets asking for the same data packet can be
served by the cached packets. By so doing, no group
hard state is maintained in intermediate network de-
vices. To achieve efficiency, Datacast calculates data
delivery trees for RGDD groups in a centralized way,
and uses source routing to enforce routing path. It fur-
ther uses multiple edge-disjoint trees for speedup when
these trees are available. We further design a Data-
cast transport protocol (DTP) for reliable data deliv-
ery. DTP splits traffic among multiple trees, and uses
a simple yet robust algorithm for rate-based congestion
control. By interpreting duplicate interest packets as
congestion signal, DTP reacts to varying network con-
ditions quickly.

In-network packet caching previously can only be im-
plemented using software routers [32, M9]. Datacast
makes a new contribution by implementing in-network
caching with the fully commodity ServerSwitch [I3] plat-
form. ServerSwitch integrates a commodity ASIC switch-
ing chip and a multi-core server system using a low la-
tency, high throughput PCI-E interface (we note similar
trend in recent products, e.g., [20, 2]). Using Server-
Switch, we can program the switching chip to perform
hardware-based source routing, and to filter only spe-
cific Datacast packets to CPU for further processing and
caching. Compared with pure software-based imple-
mentation, our ServerSwitch-based implementation can
offload packet forwarding to hardware for 50% nodes
in data deliver trees for a typical Datacast group with
280 members and 500+ intermediate nodes. Our ex-
periments further demonstrated that Datacast achieves
1.74Gb/s goodput using two 1GbE trees. It efficiently

09 F Group size distribution —— 4
0.8 | q
0.7 | q
L 06 4
O 05 B
O o4 1
03 B
02| q
0.1 | q
0 | | | |
1 10 100 1000 10000 100000

Group size (number of servers)
a

Sourrce traffic volume distribution —— '

=3

o 29
S o
S 2
T T

@
1)
S
&
T

1¢-006 L L L L L L
0.

001 0.01 0.1 1 10 100 1000 10000

Data size (MB)

(b)

Figure 1: (a) The group size distribution in a
large data center. (b) The source traffic volume
distribution for a large distributed execution en-
gine. Note the y-axis of (b) uses logarithmic
scale.

uses network bandwidth, handles network failures and
adapts to changing network conditions, as designed.

The rest of the paper is organized as follows. We
discuss design goals in Section B, and present Datacast
architecture in Section B. Section @ describes how to
calculate multiple edge-disjoint trees. Section B designs
DTP. Sections B and @ presents simulation, implemen-
tation, and experimental results. Section B discusses
related work and Section 8 concludes.

2. DESIGN GOALS

In this section, we discuss Datacast design goals and

the associated research challenges.
Scalable group state management. State manage-
ment in one-to-many communication is a well known
hard problem. It is even challenging for DCN for due
to the following reasons:

First, Datacast needs to support a large number of
groups. In Windows AZure or Amazon EC2, groups
are created on demand for different tenants. A large
data center needs to support hundreds of thousands or
even more tenants. For distributed file system, a chunk
of data may form its own Datacast group. For a dis-
tributed file system with hundreds PB storage, which is
not uncommon now, we may have millions of small data
delivery groups. These groups introduce huge amount
of group state, which are hard to manage and maintain
in the network.

Second, Datacast needs to support groups of various
group sizes. The size of a Datacast group can vary
from several servers to tens of thousands. Fig. D(a)

shows the group size distribution for a data delivery ser-
vice in a large production data center. There are many
small groups (20% groups with less than 10 servers),
and the majority group size is between 10 to 1000 with
mean size 280. But there are several extremely large
groups with tens of thousands servers. Fig. I(b) shows
the source traffic volume for group communications in a
platform similar to MapReduce. Though there are only
8% groups transmitting more than 550MB in size, these
groups contribute 99% source traffic volume. Hence in
this paper, we focus on groups with large data size.
Efficient and reliable data delivery. Previous stud-
ies showed that there seems to exist a tradeoff between
efficiency and reliability. IP multicast is very efficient in
using network bandwidth. But due to the ACK/NAK
implosion problem, achieving reliability in IP multicast
is hard. Achieving reliability in end-host overlays is easy
since end-hosts directly use TCP. But end-host over-
lays cannot use network bandwidth efficiently due to
their high link stress and the suboptimal transmission
topology. In Datacast, we try to achieve efficiency and
reliability simultaneously.

Data center network topology is specially designed
and many data center network structures [0, I, [I4]
contain multiple edge-disjoint trees. It is desirable to
accelerate data delivery by using these multiple Steiner
trees. But even calculating one single efficient Steiner
tree is NP-hard[22]. Furthermore, how to split data
among the multiple trees and how to perform congestion
control within every single tree are challenging tasks.
Commodity device based implementation. To
take advantage of the economics of scale, data center
networks use commodity devices and merchant ASIC
switching chips. It is commonly believed that these
ASICs are hard-coded and can hardly support new net-
work functions. Hence new designs and prototypes are
implemented using software routers, which suffer from
low performance. In this paper, we show that by lever-
aging the (limited) programmability of switching ASIC
and carefully splitting functions between hardware and
software, we can achieve high performance and at the
same time use only commodity devices.

3. DATACAST OVERVIEW

3.1 Datacast system

We introduce Datacast architecture and its key de-
sign choices in this section. Similar to [23, B, 02], we
assume there is a central controller, called Fabric Man-
ager. Fabric Manager is responsible for maintaining the
network topology. It can use an out-band or in-band
channel for such purpose. An in-band channel example
is the reliable spanning tree built in [T2]. As long as the
physical network is connected, Fabric Manager can use
that reliable spanning tree as the signaling channel to

SteinerTree A

Figure 2: An example to show how Datacast
works. The network we use is a two dimensional
torus. Server 00 is the source, and 12, 13, 21,
33 are receivers. The bold red links and dashed
green links form two edge-disjoint Steiner trees.

collect the network topology update.

In Datacast, Masters are responsible for creating Dat-
acast groups. They can be distributed file systems mas-
ter, or MapReduce/Dryad job scheduler, or Fabric Man-
ager itself. All the masters know the up-to-date network
topology from Fabric Manager. When creating a Dat-
acast group, a master calculates the data delivery trees
for the group. Since the algorithm for tree calculation
has low time complexity (as we will show in Sections),
a single master can perform the job.

Datacast groups are created by the masters dynami-
cally, though there may exist static groups such as the
one-to-all broadcast group. Once a group is created, the
group membership is static. This group model is based
on scenarios we have described in Section 0. The master
then distributes the data deliver trees together with the
set, of files to be fetched from the master to the source
and all the receivers. When the group size is small, the
master can use unicast to deliver the information to all
the receivers. When the group size is large, the master
can reliably broadcast the information across the whole
network using the signaling channel.

Datacast is designed as a service. End users simply
run a command datacast with a list of parameters to
create a Datacast group at a master node. The param-
eters include the set of files to be delivered, the source,
the set of the receivers, and the location to hold the re-
ceived files, etc. Once a receiver receives the Datacast
group related information from the master, it begins
to send request packets to the source server and data
transfer begins. In the next subsection, we use an ex-
ample to illustrate how data transfer works in Datacast.
We then explain the design choices after the example.

3.2 Anexample

We use an example to illustrate how data packets are

delivered in Datacast. Fig. B shows a two-dimensional
torus network with 16 servers. Suppose server 00 is
the source and servers 12, 13, 21, 33 are the receivers.
The source and receivers form a Datacast group. The
bold red lines show a Steiner tree with 00 as the root.
Servers {01, 02, 11, 32} are the Steiner nodes. Steiner
nodes are not Datacast group members, but they are
needed to relay data for the receivers. In step i, server
21 sends a request packet (or using the CCN terminol-
ogy, an interest packet), to the source server 00 through
the path {21, 11, 01, 00}. Server 00 sends back the re-
quested data packet along the reversed path. The data
packet is cached at server 01. In step ii, server 12 also
sends an interest packet along path {12, 02, 01, 00} ask-
ing for the same data packet. When the interest packet
arrives at server 01, server 01 finds that it has already
cached the packet, so it terminates the interest packet
and sends back the requested data packet. The data
packet is cached in 02 and 12. In step iii, server 13
sends its interest packet along path {13, 12, 02, 01, 00}.
Since 12 already has the data, it sends back the cached
packet to 13. In step iv, server 33 sends its interest
packet along path {33, 32, 02, 01, 00}, and server 02
returns the data packet.

We note that the execution order of steps i, ii, iii, and
iv is not important. They can be executed in arbitrary
order while still achieving the same result. This is be-
cause, in the end, all the steps together cover the same
Steiner tree by traversing every link of the tree exactly
once.

In this example, servers 01 and 02 are called branch-
ing Steiner nodes since they have multiple children in
the tree. Servers 11 and 32 are non-branching Steiner
nodes which have only one child. For brevity, we use
(non-)branching node for (non-)branching Steiner node
in the rest of the paper. In Datacast, only branch-
ing nodes and receivers cache data and non-branching
nodes do not cache data. This helps the whole sys-
tem save memory, and as we will show later, helps the
system to offload packet forwarding of non-branching
nodes to hardware.

Fig. & also shows a dashed green Steiner tree, which
has the same source server (00), and the same receivers
(12, 13, 21, 33). The two Steiner trees are edge-disjoint
in that no edge in one tree appears in the other tree.
Hence we can simultaneously use the two edge-disjoint
trees to speedup data delivery.

The example gives a high-level overview on how data
transfer works in Datacast. Next, we discuss various
design choices we made in Datacast.

3.3 Datacast design overview

Multiple trees. Traditional IP multicast can only
use one tree. Data center networks, however, provide
high network capacity by introducing advanced net-

work structures including fat-tree [1, 9], BCube [i1],
DCell [I0], and torus [I4]. Many of these structures
[0, [0, 0] inherently have multiple trees. Hence, if
we use only one tree for data delivery, we cannot fully
utilize the capacity of the network. But how to gener-
ate edge-disjoint trees is not easy. As we have shown
in Section B, Datacast groups have very different sizes.
Hence, in order to use multiple trees, we need to address
the following two problems: how to generate multiple
edge-disjoint trees for groups with arbitrary sizes, and
how to split data among these multiple trees, which
may have very different available bandwidths. We will
address these two problems in Section @ and Section B.
In-network packet caching. In Datacast, data pack-
ets are cached in intermediate devices when they tra-
verse the network. When a receiver asks for the same
piece of data packet, the device that has the cached data
can serve the request. Datacast therefore turns group
communication to in-network packet caching by adopt-
ing the content centric networking (CCN) [[9] concept.
The direct benefit of in-network caching is that the net-
work devices do not need to maintain hard group state.
The intermediate devices do not even know that they
are part of a group communication session. Hence Dat-
acast is inherently scalable. When a cached packet gets
dropped, e.g., due to cache replacement, Datacast can
still work (but less efficient). Back to the example we
use in Fig. B, when server 13 sends an interest packet
along path {13, 12, 02, 01, 00}, even if the cached packet
was dropped in the caching servers 12 and 02, server 13
can still get the packet from server 01. In the worst case,
server 13 can get the packet from the source server 00.

In Datacast, we easily achieve reliability by using a
receiver-driven pull model based on CCN. A receiver
always sends an interest packet to ask for a data packet.
If the receiver does not receive the requested data packet
in a time interval, it simply re-sends the interest packet.
The first node that has the packet along the path will
serve the re-sent interest packet. Hence the ACK/NAK
implosion problem does not exist in Datacast.

Due to its soft-state nature, Datacast works well when

only part of devices support in-network caching and can
be deployed incrementally.
Source routing. As we have shown in Fig. B, a receiver
needs to send an interest packet from itself to the source
along a specific path in the spanning tree. For example,
when server 12 sends an interest packet to the source
server 00 in the red spanning tree, the interest packet
should take path {12, 02, 01, 00}. When source 00 sends
back a data packet to server 12, the data packet needs
to follow the reverse path {00, 01, 02, 12}.

One way to pin routing path is to use virtual circuit
technologies, e.g., MPLS (multi-protocol label switch-
ing). But these approaches need a signaling proto-
col (e.g., LDP, label distribution protocol for MPLS)

to setup and release the virtual circuits, and all the
switches need to maintain hard state. Hence they face
similar scalability issues as IP multicast.

In Datacast, we use source routing to address the
problem. With source routing, the routing path is en-
coded into packets, and all the intermediate nodes along
the path do not need to maintain routing state. The
cost is that we need to carry the whole routing path in
every packet. Since the depths of the trees are small val-
ues (less than 10 hops), it is an affordable overhead. We
further demonstrate that source routing can be imple-
mented using current commodity network devices (Sec-
tion B).

Branching and non-branching nodes. As shown in
Fig. B, nodes 01 and 02 are branching nodes and nodes
11 and 32 are non-branching ones in Steiner tree A. In
Datacast, non-branching nodes do not cache data pack-
ets, since no receivers will ask for the data from them.

For Datacast groups that have many non-branching nodes

(which is the case as we will show in Section B=3), our de-
sign saves caching memory. Furthermore, we will show
in Section B that we can offload packet forwarding of
non-branching nodes to hardware by implementing Dat-
acast using the ServerSwitch [I3] platform, hence save
both CPU cycles, memory, and I/O bandwidth.
Rate-based congestion control. Within a single
Datacast tree, the sending rate of the source needs to
adapt to the receiving rate of the slowest receiver. The
source needs to slow down when congestions happen,
and speedup when no congestions. But both the slow-
est receiver and its receiving rate may change due to
varying network condition. Previous designs such as
pgmecc 28] need to track and select the slowest receiver,
which increases the complexity of the design.

In Datacast, we find a natural congestion signal: du-
plicate interest packets for the same data packet. Re-
ceiving a duplicate interest at the source indicates that
the original data packet has disappeared, and the cur-
rent sending rate is larger than the receiving rate of the
receiver that sends the duplicate interest. In this case,
the source should slow down so the slowest receiver can
catch up. When there is no duplicate interests received
during a period of time, the source infers that there is
no congestion, and it should increase the sending rate.
Datacast therefore naturally introduces a simple rate-
based congestion control. See Section B for the details.

In the subsequent sections, we will present techni-
cal details on multiple edge-disjoint Steiner trees cal-
culation, and the design of our reliable Datacast trans-
port protocol (DTP), which splits data among multiple
Steiner trees, and performs congestion control for every
single tree.

4. MULTIPLE EDGE-DISJOINT STEINER
TREES

4.1 The problem

The problem is, given a network G(V, E), where V
is the set of nodes and E is the set of edges, and a
Datacast group D, in which D has one source src and
a set of receivers {rg, r1, --+, "m—1}, we need to get
k edge-disjoint trees for D, where k is the maximum
number of edge-disjoint trees. The sum of the cost of
the trees should be minimized. For simplicity, the cost
of a tree is its number of links. This is the well known
multiple edge-disjoint Steiner trees problem. Even cal-
culating a single min-cost Steiner tree in a general graph
is NP-hard [22]. In fact, calculating Steiner tree for spe-
cific networks e.g., hypercube [24], BCube, and multi-
dimensional torus is still NP-hard.

We therefore turn our attention to find efficient heuris-
tics. There are efficient algorithms for calculating multi-
ple edge-disjoint spanning trees. Specifically, Edmonds [§]
showed that there exist k' edge-disjoint spanning trees
rooted at src, where £’ is the minimum number of edges
which can be deleted from G in order to make at least
one node unreachable from src. We can first find the &’
edge-disjoint spanning trees, then prune the unneeded
edges and nodes to get the Steiner trees.

But the generic multiple spanning tree algorithms do
not work well for us. First, the time complexity for
calculating the spanning trees is high. The best algo-
rithm we know is Po’s algorithm [30]. Its time com-
plexity is O((k")?|V||E|). We have run Po’s algorithm
on a powerful server. The time for calculating the 4
spanning trees for a BCube network (n =8 and k = 4)
with 4096 servers is 40+ seconds. With 1Gb/s network,
we can transmit more than 4GB data during that pe-
riod of time. Hence we cannot afford high complexity
for Steiner tree calculation. Second, the depths of the
spanning trees generated by the generic algorithm can
be very large. For example, in the previous example for
BCube, the average and worst-case depths of the trees
can be 1000+ and 2000+ hops, whereas the network di-
ameter is only 8. Large depth increases network latency
and the number of Steiner nodes, hence wastes network
bandwidth. We note that these are not the faults of
these algorithms: They simply were not designed for
our purpose.

Fortunately, data center networks, e.g., fat-tree [,
BCube [[1], multi-dimensional torus [I4], are well struc-
tured, and we know how to design fast algorithms for
calculating edge-disjoint spanning trees for these struc-
tures. These algorithms are not only fast, but also cre-
ate spanning trees with optimal depth. A disadvantage
of using structure specific algorithms is of course these
algorithms work only for specific structures. In prac-
tice, we believe it is not an issue since data center net-
work structures are well studied. Next, we describe our
algorithm for multiple edge-disjoint Steiner trees calcu-
lation.

/*%

* G is the DCN network, D is the datacast group.

*/

CalcSteinerTrees(G, D):
SPTSet =G.CalcSpanningTrees(D.src);
foreach (SPT; in SPTSet)
SteinerTree; = Prune(SPT;, D);
SteinerTreeSet.add(SteinerTree;);
repairing:
foreach (SteinerTree; in SteinerTreeSet)
if (SteinerTree; has broken links)
if(Repair(SteinerTree;, G)==false);
Release(SteinerTree;);
return SteinerTreeSet;

Figure 3: The algorithm for multiple Steiner
trees calculation.

4.2 The algorithm

Fig. B shows the algorithm. We first use network spe-
cific algorithm to calculate a set of edge-disjoint span-
ning trees. We then prune each spanning tree to get a
set of Steiner trees. For each Steiner tree, we see if it is
affected by network failures, i.e., broken links. We try
to repair the Steiner tree if it is affected. If we fail to
repair the tree, we release it. One key step in Fig. B is
to calculate the set of edge-disjoint spanning trees. See
Appendix @A for the detailed algorithms for calculating
the spanning trees for fat-tree, BCube, and torus. Fig. @
shows a BCube network and its spanning tree.

Steiner tree repairing. In order to minimize inter-
ruption and maximize the usage of the already cached
data, it is desirable that the repairing algorithm is of
low time complexity, and the repaired tree is recovered
from the original one with low depth. We can achieve
the above requirements with simple heuristic: When a
Steiner tree is broken, instead of trying to replace the
broken links, we first release the whole tree. We then try
to construct a new Steiner tree from the updated resid-
ual network using breadth first search (BFS). When we
perform BFS, we give search priority to the links that
are in the original tree. This trick maximizes the simi-
larity of the repaired and original trees.

If the repairing succeeds, we know the tree depth is
optimal due to the use of BFS. If it fails, we know that
repairing is not possible and we go on to repair the next
broken tree. It is easy to see that the repairing heuristic
can at least guarantee one tree as long as the source and
the receivers are connected.

Note that in the algorithm, for both spanning tree cal-
culation and Steiner tree repairing, we do not explicitly
try to reduce the number of Steiner nodes. Instead, we
minimize tree depth. Since if the tree depth is small,
the number of Steiner nodes should be small as well.

Level 1

‘ <1,1> | | <1,2> ‘ ‘ <1,3> | ‘ <0,1> | | <0,2> ‘ ‘ <0,3> |

s ’! RN
AN VAR s

@%@ @AO}@

’<0,3>‘ ’<1,l1’>" <1,2>‘ ’<1f3>‘
T

Figure 4: (a) A BCube(4,2) network with 16
servers and two layers of switches. Each layer
has 4 switches. (b) The two spanning trees of the
BCube(4,2) network with server 00 as the root.
In the two spanning trees, we show a Datacast
group with 00 as the source and servers {02, 10,
21, 23, 31, 33} as the receivers.

,

The repairing time is the time to run BFS. Suppose we
have k’ Steiner trees to repair, the worst-case repairing
time is O(k’|E|), where O(|E|) is the time to run BFS
once.

4.3 Performance

We use simulations to study the performance of the
algorithm. All the details can be found in Appendix
A=, We summarize the results as follows.

Time complexity. The running time of the algo-
rithm is small. For BCube(8,3) (with 4096 servers),
torus(16,3) (with 4096 servers), and fat-tree(48,3) (with
27k servers), when the group size is 280 and the link fail-
ure rate is 5%, the worst-case running times are only
4.4ms, 4.1ms, and 3.3ms, respectively. The running
time is less than 20ms when the group size is thousands
or more.

Steiner tree quality. Simulation results show that
the algorithm can always find the maximum number
of Steiner trees. We also have studied the number of
Steiner nodes in the generated Steiner trees. Our sim-
ulations show that the number of Steiner nodes gener-
ated from our algorithm is very close to that of Breadth

First Search (BFS). But Our algorithm generates mul-
tiple Steiner trees, whereas BFS can only generate one
tree when group size is larger than 30.

Branching versus non-branching nodes. We de-
fine non-branching ratio for a Datacast group as the
number of non-branching nodes divided by the num-
ber of Steiner nodes. The simulation shows that when
the group size is small to average, the number of non-
branching nodes contributes a significant portion of the
total Steiner nodes. For example, for a BCube(8,4) with
1% link failure rate, the non-branching ratio is 75% (or
407 non-branching nodes over 543 Steiner nodes) for
group size 280. (Note that 280 is the average group size
we got from real data centers, Fig. [{a]). In the above
example, 50% of the total nodes are non-branching ones
(or 407 out of 823). In Section B, we will show that by
using ServerSwitch, we can offload packet forwarding for
non-branching nodes to hardware. This is a significant
optimization due to the large number of non-branching
nodes.

S. DATACAST TRANSPORT PROTOCOL

We design a Datacast transport protocol (DTP). The
protocol provides reliable data delivery, handles conges-
tion control for data transmission in one single Steiner
tree, and distributes data among multiple, edge-disjoint
Steiner trees. In Datacast, reliability can be achieved
easily and efficiently, due to its pull-based design and
in-network packet caching. A receiver always sends an
interest packet asking for a data packet. When the re-
quested data packet is not received in a time interval,
the interest is re-sent. Since data packets are cached
along the intermediate nodes in the tree, a re-sent in-
terest packet can be served in the nearest intermediate
node. The source may not even see the re-sent interest
packet. In what follows, we address the rest two issues
sequentially.

5.1 Congestion control for single tree

For every single tree in a Datacast group, every re-
ceiver is given w credits, which means a receiver can
send at most w interests without getting back a data
packet. w is setup when the master creates the Dat-
acast group. When a receiver sends out an interest
packet, its credit is decremented by one; when it receives
a data packet, its credit is incremented by one. When
there is no data packet received during a period of time
RTO, the receiver considers that either the interest or
the data packet is lost, it then regenerates one credit and
re-sends the interest packet. Suppose the data packet
size is pkt_size bytes and the round trip time is rtt, the
maximum achievable data delivery rate for a single tree
is then rmax = YXPEESIZE The round trip time in data
center is small, typically several hundred microseconds.
Hence small w can generate high throughput. When

rtt = 300 us, w = 16, and pkt_size = 1.5 kB, the maxi-
mum data delivery rate is 640Mb/s. When 9kB Jambo
frame is used, for the same w and rtt, we can achieve
3.84Gb/s. Hence with w and pkt_size, we can control
the maximum bandwidth assigned to a Datacast group.

The source performs congestion control for every tree
independently. Datacast uses rate-based congestion con-
trol, and it uses an AIMD sending rate control scheme.
For each tree, the source maintains a token bucket for
rate control. The token bucket has two parameters, a
rate r and a depth . o controls the burstiness and r
controls sending rate. In the beginning, r is set to a
rate that maps well to w.

The source considers that there is congestion when
the following conditions are all met: it receives a du-
plicate interest for a same data packet; the duplicate
interest is from the same incoming interface of the orig-
inal interest packet; the sequence gap dup_d between
this duplicate interest and the previous duplicate inter-
est is at least w (dup_d > w). When the source detects
a congestion, it reduces its sending rate by half. The
sequence gap dup_d is to guarantee that there is only
one rate reduction during one round trip time.

When the source does not receive duplicate interest
packets in a small time interval T, it increases its send-
ing rate. In our design, the source increases the rate
by a constant value §. The sending rate adjustment
algorithm is therefore as follows.

r={

We have used extensive simulations to decide the pa-
rameters T', §, RTO, and the cache size. See B for more
details. We use T=1ms, 6=50Mb/s, RTO=20ms in the
paper. We will show the performance of the congestion
control protocol using real implementation in Section [.

55 when a congestion signal is detected;
r+ 6, when no congestion signal in T.

5.2 Data distribution among multiple trees

Suppose we have k edge-disjoint Steiner trees {Tp, 11,
-+, Tk—1}, the data we need to distribute has L bytes.
We divide the data into a set of blocks each of size B.
Hence the number of chunks is n = [£]. We number
the blocks {By, Bi, ---, Bp_1}. The source uses the
algorithm in Fig. B to distribute data blocks to multiple
Steiner trees.

Though Fig. B looks deceptively simple, there is sev-
eral tricky issues to be handled carefully: how to decide
if a tree becomes idle and how to decide the size of B.

One may consider that receivers should decide if a
tree is idle by themselves. For example, when a receiver
finds that it has received all the packets of a block using
T;, it can use T; for the next data block. This approach
cannot work well for our multiple Steiner trees case.
Suppose we have two trees T7 and T5, and two receivers
R, and Rp. In the beginning, the receivers use 73 for

By and T» for By. It is possible that R, first finishes

Data splitting algorithm:
for (i=0;i<n;i++)
BlockList.append(B;);
while(BlockList not empty)
if(T; becomes idle)
B; = BlockList.front();
use T} to distribute Bj;
piggyback the decision info to all receivers;
BlockList.pop_front();

Figure 5: The algorithm for the source to dis-
tribute data blocks among multiple trees.

receiving B; and uses T3 for the next block Bs, and Ry
first finishes receiving By and uses 15 for Bs. So R, uses
T, for B3 and T5 for By, and Ry, uses Ts for B and T7 for
Bjy. In more general case, receivers get de-synchronized.
Datacast cannot work well in de-synchronized situation
since cached packets in the intermediate nodes cannot
be fully utilized by the rest receivers.

In order to make synchronized decision, one may sug-
gest that receivers report back to the source when they
finish receiving the previous block. But this may cause
report packets implosion when the group size is large.
Further, how to provide reliable report is difficult.

To address this issue, in Datacast, source is the one
to make decision. It considers a tree becomes idle after
the last packet of the previous block has been sent. The
next issue is how to send the decision to all the receivers.
In our design, this piece of information is piggybacked
in the last packet of the previous block. Hence, all the
receivers can receive the source’s decision reliably, and
no additional notification mechanism is needed.

The block size B needs careful consideration too. When
the previous block finishes transmitting, the receivers
need to wait for the piggybacked decision information.
To mitigate the effect of this stop-and-wait, we should
use a reasonably large block size. But it cannot be too
large, or we may not have enough number of blocks to
fully utilize all the Steiner trees. In this paper, we set
B = 100MB. Data sources with size less than 100MB
therefore can use only one tree. In practice, this is not
an issue, since data sources with size larger than 550MB
contribute to more than 99% group communication traf-
fic as we have shown in Fig. [[b].

6. SERVERSWITCH BASED IMPLEMENTA-
TION

We have implemented both Datacast control and data
plane functions. In its control plane, we have proto-
typed Fabric Manager and Master. We rely on standard
replicated state machine (RSM) to provide the needed
reliability for these control plane functions. We focus
on data plane in this paper.

We use our ServerSwitch [I3] platform to implement

Datacast. ServerSwitch hardware is composed of an
ASIC switching chip and a commodity server. The
switching chip is connected to the server CPU and mem-
ory using PCI-E. ServerSwitch software includes a set of
APIs to program the switching chip and a set of kernel
modules for controlling the switching chip and process-
ing data and control packets. ServerSwitch is built from
all commodity components. See [[3] for details.

ServerSwitch is a desirable platform for implement-
ing Datacast for two reasons. First, with programmable
switching chip, we filter only Datacast packets at branch-
ing node to CPU for processing and caching. For all
the rest packets, we can offload packet forwarding to
hardware. Since data centers have non-Datacast traf-
fic, and, as we have shown in B3, Datacast groups have
many non-branching nodes, our implementation saves
CPU cycles and memory for these nodes as compared
with pure software based approaches. Second, the large
volume server memory and high computing ability of
server CPU can be used to implement packet caching
and processing.

In Datacast, we have interest and data packets. The
two packet types share similar packet format. Every
packet starts with a fixed length (8 bytes) source rout-
ing path, followed by the name of the packet. We use
the BCube source routing packet format to implement
source routing (see Fig.5 of [I3]). We use one byte to
identify one next hop, and further use the most signifi-
cant bit in that byte to denote if the corresponding node
is a non-branching node or not. We introduce two new
“BCube protocol” values to indicate if a packet is a Dat-
acast interest or data packet. The name part has one
byte flag (which is used to indicate if a data packet is
a retransmit packet) and one byte to indicate the name
length, followed by the name. Next, we describe our
ServerSwitch based Datacast implementation.

6.1 Key components

Our ServerSwitch based implementation has three com-
ponents: a Datacast daemon at user space, a kernel
driver module at OS kernel, and a ServerSwitch hard-
ware. Next, we describe these components one by one.
Datacast daemon. In every server, we run a Data-
cast daemon at user space. The daemon uses a Data-
cast agent to communicate with its masters for Datacast
configuration information. The configuration informa-
tion includes the source and receivers, the Steiner trees,
the set of files to distribute, the credit for the receivers,
etc. The daemon has a sending module and a receiving
module. The sending and receiving modules are for the
server to act as source and receiver, respectively.

In Datacast, a receiver needs to send an interest packet
to explicitly ask for a data packet. The pull based design
makes it easy to achieve reliable data delivery in Data-
cast. Every receiver can send out a number of interest

packets constrained by its credits. After that, it has to
wait for data packets. For one received data packet, one
more interest packet can be generated. After sending an
interest packet without receiving the asked data packet
in a period of time (default to 20ms), the receiver will
re-send the interest packet.

The sending module is responsible for sending out
data packets when it receives interest packets from the
kernel. When acting as the data source, the source runs
the DTP protocol. The sending module implements the
data splitting algorithm in Fig. B at user space, and
the Datacast kernel driver implements the rate-based
congestion control for each single tree at kernel space.
Datacast kernel driver. The Datacast kernel driver
maintains two key data structures. The first is a pend-
ing interest table (PIT) which maintains the name of
the requested data packet and the reversed paths from
which the interest packets are received. The second is a
content store (CStore), which stores all the cached data
packets. The data structure for both PIT and CStore
is a trie (or prefix tree) due to the hierarchical nature
of packet naming. In CStore, we use LRU (least re-
cently used) as the cache replacement algorithm. We
maintain two separate caches, one for retransmit pack-
ets and one for original packets. The retransmit cache
size is 10% of the total cache size. Later we will use
experiment to show the interaction between cache size
and the congestion control algorithm.

When acting as source, the kernel implements the
rate-based congestion control. For every data delivery
tree, the kernel maintains a token bucket. When a du-
plicated interest is received, the rate of the token bucket
is halved. When no duplicated interest is received in
interval T' (default to 1ms), the rate is increased by 4.
The two components of DTP: data splitting among mul-
tiple trees and rate-based congestion control for single
tree are therefore implemented in Datacast daemon and
kernel driver, respectively.

ServerSwitch hardware. The key data structure in
the hardware is a TCAM table in the switching chip.
By using the user defined lookup keys (UDLK), we
can configure the programmable parser of the switch-
ing chip only filter Datacast data packets at branching
node for caching and processing. We use the TCAM
table to implement our source routing. As we have de-
scribed, every packet includes a source routing path in
its header. There is a next-hop-index to indicate the
location of the next hop. Hence normal forwarding pro-
cedure is a two-steps approach: we first get the value
of the index, then use that value to get the next-hop
value. Using ServerSwitch, we can pre-build the TCAM
table, and use the whole source routing path together
with the next-hop-index as the key, and mark the index
and its pointed location as the care bits. By so doing,
we can simplify the two-steps approach into one table

lookup operation. The tradeoff is we now need a pre-
built the TCAM lookup table. In our implementation,
the source routing path length is 8 hops and each hop
needs 1 bytes. Hence we need 2048 entries in TCAM to
hold the lookup table, which is easy to put into current
merchandize switch chips.

6.2 Packet processing

Packet sending. After receiving an interest packet,
the sending module of the source sends the correspond-
ing data packet to the Datacast driver. The driver
caches the packet in CStore and delivers the packet to
the ServerSwitch hardware after the packet goes through
the token bucket. The switching chip then delivers the
data packet using the next hop contained in the packet
header. Similarly when the receiving module generates
an interest packet, it also sends the packet to the Dat-
acast driver. The driver then updates the PIT table
and delivers the packet to the ServerSwitch hardware,
which in turn forwards the packet to its next hop.
Packet receiving and forwarding. When an interest
packet is received by the ServerSwitch switching chip,
the switching chip checks if the current node is the re-
ceiver or branching node. If it is not, the switching chip
directly forwards the packet. Otherwise, the interest
packet is forwarded to server CPU. When the Datacast
kernel receives the interest packet, if the node is the
destination of the packet, the interest is delivered to the
sending module. Otherwise, the kernel uses the name
of the interest packet to lookup its CStore. If there is a
matching, the cached data packet is sent back to the re-
ceiver, and the interest packet is released. If there is no
matching in CStore, the kernel then looks up its PIT.
If there is a matching, the kernel updates the entry by
adding the reverse routing path of the interest packet
and terminates the packet. If there is no matching, the
kernel creates a new entry for the interest packet and
forwards the interest packet to the next hop.

When a data packet is received by the ServerSwitch
switching chip, similarly, it uses the next hop informa-
tion carried in the source routing path to decide its ac-
tion. If the current node is a non-branching node, the
switching chip directly forwards the data packet to the
next hop. Otherwise, the data packet is forwarded to
Datacast kernel driver. The driver then uses the name
of the data packet to lookup the PIT table. If there is a
matching, the data packet will be forwarded to all the
receivers recorded in the entry. We note that the re-
ceivers may include the current node itself. If the node
itself is the destination, the data packet is also delivered
to the receiving module. For every received data packet,
CStore is updated accordingly. We use LRU for cache
management and we differentiate if a data packet is a
retransmit packet or not. When the receiving module of
Datacast daemon receives the data packet, it deletes the

Cache size Total Tree A Tree_ B
(#pkt) [rate(Mb/s)| dup(%) | rate | dup | rate | dup
128 1093 1.48 197 | 2.97 | 870 | 0.0002
512 1091 1.16 196 | 2.33 | 869 | 0.0004
2048 1100 1.18 196 | 2.36 | 877 | 0.0000
8192 1095 1.23 196 | 2.45 | 873 | 0.0000
16384 1084 1.15 196 | 2.30 | 862 | 0.0002
Table 1: Datacast performance with different

cache sizes.

corresponding interest packet, generates a new credit,
and stores the data packet accordingly.

Our implementation includes 18k lines of C/C++
code for Fabric Manager, 3k for Master, 2k for Dat-
acast daemon, and 45k for ServerSwitch and Datacast
drivers.

7. EXPERIMENT

We have built a ServerSwitch based BCube(4,2) net-
work for our Datacast experiments. The network is
shown in Fig. A(a). It has 16 servers and 8 switches. All
the 24 devices are Dell PowerEdge R610 servers. Ev-
ery R610 has two E5520 Intel Xeon 2.26GHz CPU and
32GB RAM, and one ServerSwitch card. Every Server-
Switch card has four 1GbE ports. When an R610 acts
as a switch, all the 4 ports of its ServerSwitch card are
used; when it acts as a server, only 2 ServerSwitch ports
are in use. We run both Fabric Manager and a Datacast
master at server 00.

In the experiment, we create a Datacast group with

server 00 as the source, and servers {02, 10, 21, 23, 31,
33} as the receivers. The credit assigned to receivers
w = 16 packets. The congestion control parameters 4,
T, and RTO are 5Mb/s, 1ms, and 20ms, respectively.
The initial rate of a single tree is set to 500Mb/s. The
two Steiner trees Tree_A and Tree_B are shown in Fig. @
by pruning the two spanning trees. The group transmits
a 4GB file from the source to all the 6 receivers. We use
ramdisk to avoid disk I/O bottleneck.
Micro benchmark. We run the experiment with no
background traffic. We use 8kB Jambo Ethernet frame
for data packets. We first study the effect of cache size.
We set the link rate from switch <1,3> to server 23 to
200Mb/s. This is to limit the rate of Tree_A to 200Mb/s
and to create heterogenous receiving rates. We vary the
cache size in the intermediate nodes from 128 to 16384
packets. Table @ shows the results. In the table, dup
means duplicated interest ratio perceived at the source
side. Our testbed results align well with the simulation
results (see Appendix B) and demonstrate that the per-
formance of Datacast is not sensitive to the size of the
content store. Even when the cache size is only 128
packets, Datacast can still achieve high throughput.

The reason that why Datacast achieves almost zero
duplicate interests in Tree_B is because all the receivers
get synchronized very quickly. But when the receivers’s

10

receiving rates are different, the number of duplicate in-
terests is much larger. This is because the receivers can
be temporarily asynchronized, and the slowest receiver
23 needs duplicate interests to slow down the sender.
In the rest of experiments, we use cache size 2048.
We study the finish time, goodput, and efficiency of
Datacast. We restore all the links to 1Gb/s. All the re-
ceivers receive the 4GB data in 23 seconds. The source
achieves 1.74Gb/s goodput, which is very close to the
maximum 2Gb/s of the two 1GbE Steiner trees. The
source receives 512129 interest packets. The total num-
ber of bytes (including all data and interests packets)
transmitted on all the links is 53.9GB. We also have
studied the forwarding performance of the intermedi-
ate switches. Using switch <0,2> as an example, it is
a branching node with two children. It uses 50% cy-
cles for 2 CPU cores for forwarding. Server 32 is a
non-branching Steiner node, and packet forwarding is
offloaded to ServerSwitch hardware, hence its CPU us-
age for forwarding is 0%.
Comparison study. We compare Datacast with Bit-
torrent and the single-tree based approach. We use
three metrics: link stress, network stress, and finish

1
time. For a specific link [, link stress is g—g, where
Bl is the number of bytes transmitted on link [using

scheme z, and DS is the total data size. Network stress

%Tii, where B!, is the number of bytes
transmitted on link [using IP multicast.

For Bittorrent, we use ptorrent [27]. We setup a
tracker at server 00 and let the the source and receivers
be neighbors with each other. In this experiment, the
receivers finish downloading in 41-52 seconds. Datacast
is 2.3X faster. The source sends out 9.25GB data, or
with source link stress 2.3. We count the total bytes
transmitted on all the links. The value is 53.9GB for
datacast and 72.5GB for Bittorrent. The network stress
of Bittorrent is 1.35 times larger.

We use original CCN to represent single-tree based
approach. In this approach, receivers independently
send interests to the source using shortest-path rout-
ing, the source sends back data packets along the re-
verse path. Data packets are cached along the path.
Hence a data delivery tree is formed implicitly. In this
experiment, the tree is formed as follows. 00— <0,0>—
01— <1,1>— 21; <1,1>— 31; <0,0>— 02; <0,0>—
03 — <1,3>— 23; <1,3>— 33; 00— <1,0>— 10. We
can see the quality of the constructed tree is similar to
those of the two Steiner trees in Fig. B, with 6 Steiner
nodes. However, since the two links of 00 are used in
the tree, a second edge-disjoint tree is not possible. We
also use it to transmit 4GB, the finish time is 39.1 sec-
onds, which is 1.7X slower than Datacast. Furthermore,
non-branching nodes 01, 03, and <1,0> needs to cache
data in this approach.

Datacast performance. We use the same topology

is defined as

1000
900 []
800 ~ /Tree B \TreeA E
% 700 | e A]
Q.
Ke) H
S 600 . ; g
2 500 A 1
Ny [i
g 400 1
£ 300 1
200 f | ‘ i
—TCPO | —TCP1 |
100 - i : b
0 L L L L L : L L i L
0O 10 20 30 40 50 60 70 80

Time (seconds)

Figure 6: Datacast adapts to dynamically chang-
ing network conditions.

setup as in the micro benchmark. All the links are
1Gb/s. During time 23-43, we start a TCP connec-
tion TCP_0 between servers 20 and 13 with 64KB re-
ceive window. TCP_0 sends traffic along path {20,
<1,0>, 10, <0,1>, 13} as fast as possible. During time
53-73, we start another TCP connection TCP_1 with
128KB receive window along the same path. These
two TCP connections are set to compete with Data-
cast Tree_B. Fig. B shows the Datacast sending rates of
Tree_A and Tree_B together with those of TCP_0 and
TCP_1. We use different TCP window sizes to study
how TCP and Datacast share bottleneck bandwidth.
We found that the sharing ratios are 288Mb/s:709Mb/s
for TCP_0 and Datacast Tree_B and 535Mb/s:458Mb/s
for TCP_1 and Tree_B, respectively. The sharing ratio
is roughly equal to (TCP receive window size 64KB or
128KB):(Datacast credit 16*8KB=128KB). Meanwhile,
the sending rate of Tree_A is not affected since the two
TCP connections do not compete with Tree_A.

We further test Datacast’s failure handling ability.
After we recover from TCP interference, we manually
disable the link from switch <0,3> to server 32. Both
<0,3> and 32 report the link failure to Fabric Manager
after 3 seconds (3 is a configurable parameter to damp
oscillation). Fabric Manager sends topology update to
the master. The master then repairs Tree_B, by recon-
necting switch <1,2> to server 22 and notifies server 02
the updated routing path. All these operations finish
in 35ms. Since devices along the new path do not have
cached data for 02, source 00 begins to receive duplicate
interests from 02. Server 02 then begins catch up and
the rest receivers slow down. After 4 seconds, all the
receivers sync up.

To summarize, using real experiments, we have demon-
strated that Datacast works well under varying net-
work conditions and failures due to its robust conges-
tion control. Due to its ability of using multiple Steiner
trees, Datacast is around two times faster than both

11

Bittorrent and the single-tree approach. Datacast also
achieves higher efficiency than Bittorrent.

8. RELATED WORK

Active network [29, BZ] uses “capsules” to carry both
data and code. Network devices along the path run the
carried code to provide flexible, application specific pro-
cessing. Active network can be used to implement Dat-
acast (and other new applications). But due to the so-
phisticated processing involved, active network can only
be implemented with software routers. Datacast focuses
on RGDD in data center environment. We show that
by using ServerSwitch, we can implement Datacast us-
ing commodity network device. Furthermore, functions
such as Datacast packet filtering and source routing can
all be offloaded to hardware.

Active reliable multicast (ARM) [31] uses active net-
work concept. Switches also cache packets in ARM. But
the cached packet is used only for re-transmission, hence
most likely the cached packets will not be used even
once. Furthermore, re-transmitted packets are broad-
casted along the whole sub-tree in ARM, whereas they
are delivered only to the needed receivers in Datacast.

Content centric networking (CCN) [T9] uses named
data instead of named host for better networking ab-
straction. Datacast is built on top of CCN. By leverag-
ing DCN specific characteristics (single operator and
known topology), Datacast improves CCN for group
data delivery in several aspects: Datacast uses multi-
ple trees for data delivery speedup; it uses source rout-
ing to simplify unicast routing; it differentiates branch-
ing and non-branching nodes and uses hardware based
packet forwarding for non-branching nodes. Besides
these DCN specific improvements, Datacast further in-
troduces the DTP protocol for splitting traffic among
multiple trees and for congestion control in a single tree.

Reliable TP multicast has been studied extensively
(7, 06, 26, 28]. All these designs are based on the un-
reliable IP multicast [[7], hence need to maintain group
state in all the intermediate network devices. In order
to provide reliability, various designs have been intro-
duced. Due to space limitation, here we only review
two of them: SRM [I7] and pgmcc [2¥].

In SRM, when receivers detect a loss, they wait a ran-
dom time before multicast their repair requests. This
is to suppress requests from other members sharing the
same loss. Members that have the data use multicast
to reply, again use random timer to avoid collision. In
Datacast, data repairing is performed locally. When a
receiver detects a data packet loss, it simply re-sends the
interest packet without any coordination with others.
The re-sent interest packet is treated just as a normal
one by all the rest intermediate nodes.

In pgmecc, receivers report RT'T and loss rate to the
source, and source selects one receiver to act as the

acker, which is the one that has the lowest through-
put. Then the source and acker run congestion control
similar to TCP. Datacast differs from pgmcc in several
ways. First, receivers in Datacast do not need to send
feedback on packet loss rate and round trip time. Sec-
ond, source does not need to select an acker, hence does
not need to handle acker selection.

In order to solve the scalability and deployment is-
sues of IP multicast, end-host based overlays and P2P
systems have been designed (e.g., [@, B, 6] and citations
thereafter). These designs keep group state solely at
end hosts and use TCP unicast for data delivery. Hence
they easily achieve reliable data delivery and scale well.
But overlays introduces high link and network stresses.
Experiments in [@, B] showed that the average link and
network stresses are 1.9 and 1.9 for ESM, and 1.3 and
2.92 for Splitstream, respectively. And we have shown
in @ that the network stress of Bittorrent is 2.35.

9. CONCLUSION

We have presented the design, implementation, and
evaluation of Datacast for reliable group data deliv-
ery in data centers. Datacast eliminates group state
management in intermediate network devices by turn-
ing one-to-many communication to in-network packet
caching. It accelerates data delivery by using multiple
Steiner trees. By introducing a reliable Datacast trans-
port protocol (DTP), Datacast splits traffic among mul-
tiple trees, achieves reliable data delivery, and adapts
to varying network conditions by interpreting duplicate
interest packets as congestion signals.

We have implemented Datacast using ServerSwitch,
a programmable and high performance platform that
integrates a merchandize switching chip and a com-
modity server. With ServerSwitch, we can implement
source routing and offload packet forwarding for non-
branching nodes using hardware. We further leverage
server CPU for packet processing and server memory
for packet caching.

Our implementation, simulation, and real testbed eval-

uation demonstrate that Datacast achieves scalable group

state management and efficient and reliable data deliv-
ery, and that it can be implemented using commodity
network devices, as designed.

10. REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. In
SIGCOMM, 2008.
Arista Networks. Www_aristanetworks _ com.
Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony Rowstron, and Atul Singh.
SplitStream: High-Bandwidth Multicast in Cooperative
Environments. In SOSP, 2003.
[4] Y. Chu, S. Rao, S. Seshan, and H. Zhang. A Case for End

System Multicast. IEEE JSAC, Oct 2002.

g

2]
(3]

Bram Cohen. Incentives Build Robustness in BitTorrent. In
Workshop on Economics of Peer-to-Peer Systems, 2003.

12

(6] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, 2004.

[7] S. Deering. Host Extensions for IP Multicasting, August
1989. RFC1112.

[8] J. Edmonds. Edge-disjoint branchings. In R. Rustin, editor,

Combinatorial Algorithms, pages 91-96. Algorithmics

Press, New York, 1972.

A. Greenberg et al. VL2: A Scalable and Flexible Data

Center Network. In SIGCOMM, Aug 2009.

C. Guo et al. DCell: A Scalable and Fault Tolerant

Network Structure for Data Centers. In SIGCOMM, 2008.

C. Guo et al. BCube: A High Performance, Server-centric

Network Architecture for Modular Data Centers. In

SIGCOMM, 2009.

C. Guo et al. SecondNet: A Data Center Network

Virtualization Architecture with Bandwidth Guarantees. In

CONEXT, 2010.

G. Lu et al. ServerSwitch: A Programmable and High

Performance Platform for Data Center Networks. In NSDI,

2011.

H. Abu-Libdeh et al. Symbiotic Routing in Future Data

Centers. In SIGCOMM, 2010.

J.S. Yang et al. Parallel Construction of Optimal

Independent Spanning Trees on Hypercubes. Parallel

Computing, 33, 2007.

M. Handley et al. The Reliable Multicast Design Space for

Bulk Data Transfer, August 2000. RFC2887.

S. Floyd et al. A Reliable Multicast Framework for

Light-weight Sessions and Application Level Framing.

IEEE trans. Networking, Dec 1997.

S. Tang et al. Independent Spanning Trees on

Multidimensional Torus Networks. IEEE Trans.

Computers, January 2010.

V. Jacobson et al. Networking Named Content. In CoNext,

2009.

Forcel0 Networks. $7000 U next-generation 10/40 gbe

top-of-rack system.

www.forcelOnetworks.com/products/s7000.asp.

P. Fraigniaud and C.T. Ho. Arc-Disjoint Spanning Trees on

the Cube-Connected-Cycles Network. In ICPP, 1991.

M. Garey and D. S. Johnson. Computers and Intractability:

A Guide to the Theory of NP-Completeness. W. H.

Freeman, 1979.

S. Ghemawat, H. Gobioff, and S. Leung. The Google File

System. In SOSP, 2003.

R. L. Graham and L. R. Foulds. Unlikelihood That

Minimal Phylogenies for a Realistic Biological Study Can

Be Constructed in Reasonable Computational Time.

Mathematical Bioscience, 1982.

M. Isard, M. Budiu, and Y. Yu. Dryad: Distributed

Data-Parallel Programs from Sequential Building Blocks. In

FEuroSys, 2007.

Microsoft. Windows Deployment Services, 2009.

http://technet.microsoft.com/en-

us/library/cc772106(WS.10).aspx.

ptorrent. www.utorrent.com.

L. Rizzo. pgmcc: a TCP-friendly Single Rate Multicast

Congestion Control Scheme. In SIGCOMM, 2000.

David L. Tennenhouse and David J. Wetherall. Towards an

Active Network Architecture. SIGCOMM CCR, April 1996.

Po Tong and E. L. Lawler. A Fast Algorithm for Finding

Edge-disjoint Branchings. Information Processing Letters,

August 1983.

Li wei H. Lehman, Stephen J. Garland, and David L.

Tennenhouse. Active Reliable Multicast. In infocom, 1998.

David Wetherall. Active network vision and reality:

Lessons from a capsule-based system. In SOSP, 1999.

[9]
(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]
(23]
(24]
[25]
[26]
[27]
(28]

29]

(30]
(31]

32]

APPENDIX
A. SPANNING TREE ALGORITHMS

www.aristanetworks.com
www.force10networks.com/products/s7000.asp

Level 2

Figure 7: Spanning tree construction for fat-
tree. The figure shows a spanning tree with
server 0000 as the root for fat-tree(4,3).

A.1 Fat-tree

We denote a fat-tree [0] as fat-tree(n, k), where k is
the number of switch layers of the fat-tree and n is
the number of switch ports. There are 2(2)* servers
in a fat-tree(n, k). Fig. @ shows a fat-tree(4,3) with
16 servers. There is only one spanning tree since the
servers have only one network interface. The algorithm
for calculating the spanning tree for fat-tree is as fol-
lows. We divide the links as up-links and down-links. A
low level device uses its up-links to connect to high level
devices, and a high level device uses its down-links to
reach low level devices. When building a spanning tree
for a source server, the source server uses its up-link to
reach its switch. The switch in turn uses one of its up-
links to reach another high-level switch. The procedure
is repeated until one of the top-level switches is reached.
Then all the devices recursively use all their down-links
to reach all the rest devices. Fig. @ shows a spanning
tree using the thick red lines. The time complexity of
constructing such a spanning tree T is O(|T'|), where
|T'| is the number of devices in T'. The depth of the
tree is 2k. This algorithm can be applied to any generic
multi-rooted trees.

A.2 BCube

As shown in [1], a BCube network is denoted as
BCube(n, k), where n is the number of switch ports
and k is the number of switch layers. There are k edge-
disjoint spanning trees in a BCube(n, k). The span-
ning trees in [[[1] are constructed in a server-centric way.
Servers use switches as layer-2 crossbars and server-to-
server unicast is used to implement the spanning trees.
The disadvantage of the construction is that the tree
depth is 2(n — 1)k +2. When n = 8 and k = 4, the tree
depth is 58 hops! In Datacast, we assume switches can
perform packet caching, hence we can construct better
spanning trees. When a server needs to reach all the
rest n — 1 servers under the same switch, instead of us-
ing the pipeline as described in Fig.5 of [, we use the

13

Figure 8: The four spanning trees for a torus(4,
2) with server 00 as the root.

switch to directly reach the n — 1 servers. We can still
have k edge-disjoint spanning trees and the depth of
each tree is only 2(k + 1). The time complexity of con-
structing the k spanning trees is O(k|V]). Fig. @ shows
the two edge-disjoint spanning trees for a BCube(4,2)
network. The detailed algorithm is omitted due to space
limitation.

A.3 Torus

We use torus(n, k) to denote a torus network, where
n(n > 2) is the number of servers in one dimension and
k is the number of dimensions. For a k dimensional
torus, there are 2k edge-disjoint spanning trees. We
use the algorithm designed in [I8] to calculate the 2k
spanning trees. Fig. B shows the four spanning tress
constructed using the algorithm in [I¥]. The time com-
plexity of the algorithm is O(E). The tree depth is
(k+1)[2.

We note that there are fast algorithms for calculating
spanning trees for hypercube and other structures (e.g.,
[[5, 21]). We omit the discussions on these structures
due to space limitation. After we construct the span-
ning trees, by prunning them, we can get the Steiner
trees. But this approach cannot work when there are
link failures. For example, four broken links 01 — 02,
10 — 20, 30 — 31, and 03 — 13 in Fig. B can destroy all
the four spanning trees. Next, we show how we handle
link failures.

A4

We use simulation to study the performance of our
algorithm for multiple Steiner trees calculation. We
use a Dell PowerEdge R610 server for all the simula-
tions. It has two E5520 Intel Xeon 2.26GHz CPU and
32GB RAM. We use the following network structures:
a BCube(8, 4) with 4096 4-port servers and 2048 8-
port switches, a torus(16,3) with 4096 6-port servers,
a fat-tree(48, 3) with 27,648 servers and 2880 48-port
switches. To study the performance of our algorithm for

simulation

0.1

T T
BCube(8, 4), LFR = 106 —+—
BCube(8, 4), LFR = 3% -----
BCube(8, 4), LFR = 5% ---%---
torus(16, 3), LFR = 1% &
torus(16, 3), LFR = 3% ——#—
torus(16, 3), LFR =5% -
fat-tree(48, 3), LFR = 1% - -®- .
fat-tree(48, 3), LFR =3% —&-— 3
fat-tree(48, 3), LFR = 5% ---a--

Time(s)

. . . .
1 10 100 1000 10000
Group Size

(a) Results for BCube(8,4), torus(16,3), and fat-tree(48,3).

100000

1 T .
BCube(20, 4), LFR = 1% —+—

BCube(20, 4), LFR =3% ---x--- N
BCube(20, 4), LFR =5% ---%--- ;
fat-tree(96, 3), LFR = 1% &
fat-tree(96, 3), LFR = 3% ——#—
fat-tree(96, 3), LFR = 5% ---6--

08 -

0.6

Time(s)

0.4

02 - e e

.

[A
0 ! | i . .
1 10 100 1000 10000 100000

Group Size

(b) Results for BCube(20,4) and fat-tree(96,3).

1e+006

Figure 9: The running time of our multi-Steiner
trees calculation algorithm.

large networks, we further use a fat-tree(96,3) which
has 221,184 servers, and a BCube(20,4) with 160,000
servers.

We have compared our algorithm with the generic al-
gorithm which first calculates the spanning trees using
Po’s algorithm[30], then prunes the spanning trees to
get the Steiner trees. The time complexity of the generic
algorithm is dominated by the spanning tree calcula-
tion. The times needed for calculating spanning trees
for BCube(8,4), torus(16,3), and fat-tree(48,3) are 44,
38, 118 seconds. The average spanning tree depths are
1301, 816, and 98, respectively. The worst-cast depth
for BCube can be as large as 2099 hops. The generic
algorithm therefore cannot be used in Datacast due to
the low quality of the generated spanning trees and its
high time complexity. In the rest of the section, we
focus on the performance of our algorithm.

A.5 Running time

Fig. P(a) shows the running time of our algorithm
under various group sizes and link failure rates (LFR
for abbreviation) for BCube(8,4), torus(16,3), and fat-
tree(48,3). The link failures are randomly generated,
but the cases when the network is not connected are
ignored since it is impossible to generate spanning trees
in that case. We run each experiment 100 times and
show the worst-case running time. From the figure, we
can see that our algorithm can finish in 20ms for various
groups sizes for all the three network structures. Note
that the running time can be further reduced by pre-
calculating the spanning trees for all the sources.

Fig. further shows the running time of our al-

14

LFR = 106 ——
) LFR = 3% --x---

fol Ta]
o
o]

a

Steiner Tree Number
w
T

%

T
1} 3 |

0 L L L L L
100 1000 10000 100000

Group Size
(a) Number of Steiner trees.

R |

BCube(8, 4), LFR = 1% —+— |
BCube(8, 4), LFR = 3%
) LFR=5% % -

Steiner Node Number
®
I<S]
(<]
T

vreomD

, LFR=3% —
| LFR=5% —

100000

—
n
o
I
W
8

100 1000

Group Size

(b) Number of Steiner nodes.

10000

T
LFR = 1%
LFR = 3%
LFR = 5% ------
LFR = 1%
LFR =3% -
LFR=5% -
LFR=1% --
LFR=3% —
LFR =5% --

BCube(
BCube(
BCube(

8, 4),
8, 4),
8, 4),
6,3),
6,3),
6,3),
8, 3),
8, 3),
8, 3),

Ratio
o
o
LIS B S S B
2%
2
222800
yhéomD

L
100000

100 1000

Group Size
(¢) Non-branching ratio.

10000

Figure 10: Steiner tree quality for various group
sizes under different link failure rates.

gorithm for even larger networks fat-tree(96, 3) and
BCube(20, 4). Note that this experiment is to stress
test the performance of our algorithm. In practice, we
can allocate small groups in small sub-networks. For ex-
ample, for a small group with 10 members, we can allo-
cate the group into a BCube(20,2) instead of the whole
BCube(20,4). Nonetheless, our algorithm can still cal-
culate the Steiner trees in less than one second for both
networks. Note that our algorithm performs better for
fat-tree since it has only one tree and its spanning tree
algorithm has lower time complexity.

A.6 Steiner tree quality

In what follows, we study the Steiner tree quality
generated by our algorithm. Each experiment is per-
formed 100 times, and the average results are reported.
Fig. [0{a] shows the number of Steiner trees. As we
stated before, fat-tree has only one Steiner tree. For
BCube and torus, the number of Steiner trees decreases
as the group size increases. This is expected because a
large group may experience more link failures. To check
whether our algorithm is effective in repairing Steiner
trees, we have derived a bound, which is the minimum
value of the out-degree of the source and the in-degrees
of all the receivers. The Steiner tree number gotten
by our algorithm is only 0.8% less than the bound on
average.

Fig. [0(b] shows the number of Steiner nodes. We
can see that our algorithm uses only a small amount of
Steiner nodes for small groups. When the group size
grows up, the number of Steiner nodes increases. For
BCube and torus, after a threshold, the Steiner node
number drops down because many of the servers are
now receivers. For fat-tree, the number of Steiner nodes
becomes a constant since almost all the switches are
now Steiner nodes. We also study the depth of the
Steiner trees. The tree depths (10 for BCube(8,4), 6 for
fat-tree(48,3) and 32 for torus(16,3)) under various link
failure rates for all the structures are small and close to
the diameter of baseline networks.

To further study the Steiner tree quality, we have
compared our algorithm with BFS_Steiner, which uses
breadth first search (BFS) for Steiner tree calculation.
BFS_Steiner generates minimal tree depth and there-
fore is expected to have small number of Steiner nodes.
The results show that our algorithm and BFS_Steiner
generate Steiner trees of similar quality. For example,
for BCube(8,4) with 0% LFR, the numbers of Steiner
nodes for a single tree in a group with 280 members
are 525 and 493 using our algorithm and BFS_Steiner,
respectively. But we always get 4 Steiner trees whereas
BFS_Steiner can only get one Steiner tree when the
group size is larger than 32 for all the three networks.

A.7 Branching versus non-branching nodes

Fig. shows the non-branching ratio for differ-
ent networks under different link failure rates. The re-
sult shows that different networks have different non-
branching ratio curves. But the same network has simi-
lar non-branching ratio under different link failure rates.
The result also shows that when the group size is small
to average, the number of non-branching nodes con-
tributes a significant portion of the total Steiner nodes.
For example, for a BCube(8,4) with 1% link failure rate,
the non-branching ratios are 88% (56 non-branching
nodes over 64 Steiner nodes) and 75% (or 407 non-
branching nodes over 543 Steiner nodes) for group sizes
16 and 280, respectively.

B. DTP SIMULATION

We have implemented DTP in NS2. In this section,
we use comprehensive simulations to study the perfor-
mance of DTP under different parameter settings. All
of our experiments except the multi-tree one are per-
formed using the first Steiner tree (Tree_A) shown in
Figure B(b). The bandwidth and propagation delay of
every link are set to 10Gb/s and 10us, respectively. For
every switch, the size of PIT is 64k, which is enough to
hold all the flying interests. The header sizes of both
interest and data packets are 72 bytes. The interest
timeout value for a receiver or intermediate switch is
set to 20ms. The total size of data to be delivered is

15

Parameters Finish time Total transferred bytes
T = 100ms, § = 5Mb/s 62.407s 14.312GB
T = 1ms, § = 50Mb/s 42.017s 14.469GB
T = 0.1ms, 6 = 100Mb/s 42.018s 16.348GB

Table 2: Performance under different parame-
ters § and T.

1GB. For each experiment, we measure the finish time
and the total bytes transmitted in the network (which
is the sum of the bytes transmitted of every link).

In what follows, we study the parameters (J, T, and
the size of the content store) of the protocol, the per-
formance of DTP under different packet loss condition,
and speedup when multiple trees are available, and the
fairness between DTP and TCP.

B.1 DTP Parameters

In this simulation, we deliberately slow down the link
from switch <1,3> to server 23 to 200Mb/s to create
receiving rate heterogeneity. Ideally, the goodput is

200Mbps x 90=T2 = 190.4Mb/s, so the ideal finish
time is @%mﬁ = 425, and the data to be transmitted
is 13 x 1GB x 8942 — 14 311GB.

6 and T. We fix the size of the content store to be
2048 packets, and study the performance of the protocol
using different 6 and T combinations. The results are
shown in Table .

The results indicate that T' = 1ms and § = 50Mb/s
has the best performance. The rest two groups are used
to demonstrate the performance using aggressive and
conservative parameter settings. When we use conser-
vative parameters T = 100ms and § = 5Mb/s, the
sending rates of fast ones are not able to cache up with
the slow receiver after the source cuts the sending rate
by halve. As a result, the sending rate will be cut again.
So the total finish time is much larger than the ideal one.
When we use more aggressive parameters T = 0.1ms
and 6 = 100Mb/s, the sending rates of fast receivers
grow too fast and the slow receivers cannot cache up.
Hence the receivers become unsynchronized, which re-
sults in inefficient use of bandwidth.

In the rest of the paper, we use T'= 1lms and § =
50Mb/s. These parameters are comparable to the pa-
rameter setup in TCP. TCP increases its window by one
packet in one RTT. In data center networks, the RTT is
around 0.5ms. Hence in 1ms, the rate increase in TCP
is ZXMIU — A8Mb/s =~ 6.

Content store size. We vary the content store (CS)
size from 16 packets to 1M packets for each node. The
goodput and the transferred data size are shown in Fig-
ure .

From the results, we observe that the goodput of our
algorithm is quite stable with different CS size. Our
algorithm works well even with a very small CS. The
transferred data is also close to the theocratical bound.

43 T

T T T
Finish time —+—

Finish time (s)
IS
Y]
T

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M
CS size (packets)
(a) Finish time

L L L L L
16 32 64 128 256 512

To‘tal \ra‘nsfere‘d bytés I —

Data (GB)

T T T SR R S BT

14.3 L L L L L L L L L L

| | | | |
16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M
CS size (packets)

(b) Total transferred data

Figure 11: Performance under different cache
sizes.

The performance is slightly better when the cache size
is larger. This is because, when the CS size is smaller,
cache miss will increase and more duplicate interests
will be sent to the sender.

Loss Rates. To study how packet losses affect the
performance of our algorithm, we manually generate
losses when data packets are transmitted through the
link from switch <1,3> to server 23. In our simulation,
the loss rate ranges from 0.0001% to 10%. The results
is shown in Figure 2.

The results show that our algorithm is quite resilient
to data packet drops. The finish time is only 0.9%
larger, and the total transferred bytes are only 1.4%
larger than the optimal results when the loss rate is
1%. Our algorithm still performs reasonably well even
when the packet drop rate is as high as 3% (which is
not expected to happen in the real world).

B.2 Multiple Tree Performance

We also study the performance of DTP when multiple
trees are available. The group setup is the same as
the one in section @. Server 00 acts as the source, and
servers 02, 10, 21, 23, 31, 33 as the receivers. All the
links are 1Gb/s.

We start all the receivers simultaneously. The trans-
mission finishes at time 4.205s. The total bytes trans-
ferred in the network are 14.311GB.

These results are also very close to the optimal value.
Since the header size is 72 packets, the maximum pos-

sible goodput is 2 x 1Gbps X % = 1.904Gbps, so the
optimal finish time is #ghm = 4.202s. Our result

is only 0.1% larger than that. Our bandwidth uti-
lization is also efficient. Both Steiner trees contain 13
links, so the minimum possible data to be transferred is

16

160

140 |
_ 120
G
o 100
£ wf
=
g 60f
YoaF
20 '
o))) F\p\sh time —+—
16-006 16-005 0.0001 0.001 001 01
Packet loss rate
(a) Finish time
18000 ‘ T
= Total transfered bytes —+—
%8 17500 [
@ 17000 [
.% 16500 |
=
© 16000
2
@ 15500 |-
<
£ 15000 |
5}
E 14500
14000
1e-006 1e-005 0.0001 0.001 0.01 0.1
Packet loss rate
(b) Total transferred data
Figure 12: Performance under different data

packet loss rates.

1000 t
j Datacast —+—
TCP

800 - 1

Throughput (Mbps)

0 i . *
0 2 4 6 8 10
Simulation Time (s)

Figure 13: Inter-protocol fairness with TCP.

1572
13 x 1GB x EVoT
result.

B.3 TCP Friendliness

To study the inter-protocol fairness with TCP, we set
up a TCP connection between server 00 and server 01,
which starts at time 2s. The TCP connection transfers
200MB data. Figure 3 shows the result. Before TCP
starts, Datacast Tree_A transfers data at full speed.
After TCP starts, the throughput of Datacast Tree_A
drops down immediately. TCP achieves transmission
rate 425Mb/s, while Datacast gets 557M/ps. The re-
sult shows that our DTP achieves rough fairness with
TCP.

B.4 Receivers’ RTTs

We study the RTT distributions perceived at differ-
ent receivers. Since DTP synchronizes the receivers to
similar receiving rate, we expect that they experience

= 14.311G B, which is identical to our

1 pam
0.9
0.8
07
0.6
05
0.4
03
0.2
01

o -

0 100 200 300 400 500 600
RTT (us)

(a) RTT on the Steiner tree without congestion.

1o
Server 02 —+—

Server 23 -
Server 31 —-&—
Server 33 ---6--

CDF
LI S S S B B B
L

1 i i
0.9
0.8
0.7
0.6
05
0.4
0.3
0.2
01

0 L L L L L L
0 500 1000 1500 2000 2500 3000 3500 4000

-
Server 02 —+—

CDF

LI S s B s S S B
=t
TR R R R

RTT (us)

(b) RTT on the Steiner tree with congestion.

Figure 14: RTT distributions of different re-
ceivers.

similar RTT. The RTT distribution also can help us
choose the value of interest retransmission RTO. Fig-
ure M plots the CDFs of the RTTs. Figure shows
the CDF when there is no background traffic. Figure
[[4(b] shows the CDF when there are congestions. To
simulate congestion, we simply slow down the link from
switch <1,3> to server 23 to 200Mbps.

From Figure [[4(b}, we see that although the receivers
do not have identical RTT distributions, they are still
in the same order of magnitude. So it is feasible to use
a fixed timeout for all of them. We will study how to
use a dynamic RTO in our future work.

17

	Introduction
	Design Goals
	Datacast overview
	Datacast system
	An example
	Datacast design overview

	Multiple edge-disjoint Steiner trees
	The problem
	The algorithm
	Performance

	Datacast transport protocol
	Congestion control for single tree
	Data distribution among multiple trees

	ServerSwitch based Implementation
	Key components
	Packet processing

	Experiment
	Related work
	Conclusion
	References
	Spanning tree algorithms
	Fat-tree
	BCube
	Torus
	simulation
	Running time
	Steiner tree quality
	Branching versus non-branching nodes

	DTP Simulation
	DTP Parameters
	Multiple Tree Performance
	TCP Friendliness
	Receivers' RTTs

