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1 Introduction

Generative local names are ubiquitous: objects (as in Java), exceptions, refer-
ences (as in ML), channels (as in the π-calculus), cryptographic keys (as in the
spi-calculus or cryptographic lambda calculus) are all first-class things-with-
identity that can be generated freshly within some scope. The ν-calculus of
Pitts and Stark [10, 11] is a simply typed lambda calculus over the base types
of names, ν, and booleans, o, that captures the essence of this kind of situa-
tion in a deceptively minimal way. Names can be generated freshly, tested for
equality and passed around, but that is all; there are no other effects (not even
divergence) in the language. Though austere, the ν-calculus can express many
important aspects of generativity, locality and independence, and has proved to
have a remarkably complex theory. The central problem is to find models and
reasoning principles for establishing contextual equivalence of ν-calculus terms.
The interaction of generativity with higher-order functions and the restricted
nature of contexts lead to various subtle and hard-to-prove equivalences, of
which the canonical ‘hard’ example is the following:

νn.νn ′.λf :ν→ o.(f n=f n′) ∼= λf :ν→ o.true (1)

The LHS generates two fresh names, n and n′, and yields an abstraction that
accepts a function f from names to booleans and returns the result of comparing
f n with f n′. The intuition here is that the two names ‘leak’ into f but they
never escape its dynamic extent. The subtlety of the ν-calculus is indicated by
the following inequivalence, which similar intuitions might lead one to believe
to be an equivalence.

νn.λf :ν→ o.νn ′.(f n=f n′) 6∼= λf :ν→ o.true

Pitts and Stark have used logical relations to establish many equivalences, both
directly over the operational semantics and denotationally, refining a model in
the functor category SetI . Yang and Nowak [14] define a Kripke logical relation
over a similar functor category model. None of these techniques is complete,
however, failing in particular to prove equivalences such as (1) above. Jeffrey
and Rathke [5] define a sound and complete bisimulation for an extension of the
ν-calculus with assignment (for which (1) is not a valid equivalence) and observe
that their analysis “illuminates the difficulties involved in finding fully abstract
models for ν-calculus proper”. More recently, the problem has been attacked
using game semantics. Laird [9] constructs a game model using automorphisms
of names that is fully abstract for a language like that of Jeffrey and Rathke.
Abramsky et al [1] use games in the topos of FM-sets to construct the first fully
abstract model of ν-calculus proper (and the first to validate (1)).

In this paper we provide a sound and complete theory for reasoning about
contextual equivalence in the ν-calculus using bisimulation, which is rather
more elementary than games in nominal sets. The form of bisimulation we
use was introduced by Sumii and Pierce for proving equivalences in lambda
calculi with cryptographic operations [12] and existential and recursive types
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[13] and later developed by Koutavas and Wand for reasoning about untyped
imperative higher-order [7] and object [6] calculi. Instead of just being a binary
relation on terms, Sumii and Pierce’s bisimulations are sets of relations, each
element of which intuitively corresponds to a different ‘state of knowledge’ of
the surrounding context. We too will work with sets, X , of typed relations, R,
each of which is annotated by two sets of (generated) names, s and s′.

The theoretical development broadly follows that of previous work by Koutavas
and Wand [7, 6, 8]. We start by defining when a set of relations is adequate —
a restatement of the conditions for being contained in contextual equivalence
that is arranged to be establishable by induction. We then investigate the class
of all such inductive proofs by abstracting over the actual contents of the sets
and attempting a proof construction scheme. By this process we find proof obli-
gations that the sets should satisfy in order to be adequate. Our main theorem
says that if a set satisfies exactly these conditions, then it is adequate, and, by
soundness, all terms related under the empty stores in this set are contextually
equivalent.

Having a provably sound and complete reasoning principle is good, but we
also want something that is usable in practice. A further contribution, beyond
the development of the general metatheory, is that we show that our bisimulation
really does give an elementary method for establishing interesting equivalences,
including the tricky (1) above. The proof of (1) is particularly interesting in
making two uses of our technique: the adequacy of an initial relation is es-
tablished via that of another. The third contribution is a formalization of the
metatheory and of the examples in the Coq theorem prover. We discuss the
formalization in Section 7; the proof script is also available via the authors’
homepages.

2 The ν-calculus

The ν-calculus is a simply-typed lambda calculus over base types of names and
booleans, extended with a conditional construct and operations for generating
and comparing names. The expression new generates a fresh name, and (n1 =n2)
returns true when n1 and n2 are the same name. We often write νx .e as an
abbreviation of the expression (λx :ν.e) new,1 and (e=e′), when e and e′ have
type o, as syntactic sugar for

(λx :o.λy :o.if x then y else (if y then false else true)) e e′

Furthermore, we use an overbar to denote sequences.
Names are drawn from an infinite set Name, of which finite subsets are

called namesets. We write s⊕t for the disjoint union of namesets s and t. All
syntactic domains of the ν-calculus are shown in Figure 1.

1Pitts and Stark take νx . e as primitive and define new as νx . x—the presentations are
entirely equivalent.
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Type: T ::= o Boolean
| ν Name
| T →T Function

Expression: e, d ::= x Identifier
| n Name
| true | false Boolean Constants
| λx :T.e Abstraction
| e e Application
| new Fresh Name Generation
| (e=e) Name Equality
| if e then e else e Conditional

Value: u, v, w ::= n | true | false
| λx :T.e

Name: n

Nameset: s, t ∈ Pfin(Name)

Figure 1: Syntactic domains of the ν-calculus

The typing judgment s; E ` e :T says that the expression e has type T under
the nameset s and typing environment E. The typing rules are standard and
shown in Figure 2.

We write λx :T .e for the abstraction λx1 :T1. . . . λxn :Tn.e and T →T for the
type T1→ . . . →Tn→T .

The evaluation judgment s ` e ⇓k (t)w says that the closed, well-typed ex-
pression e, under the nameset s, terminates with the value w producing a set of
fresh names t. The size of the evaluation tree is less than k. We write s`e⇓(t)w
when there exists some k for which s ` e ⇓k (t)w, and s ` e⇓ when s ` e ⇓ (t)w,
for some t and w. Figure 3 shows the evaluation rules of the ν-calculus.

Evaluation preserves types, and is total and deterministic, modulo fresh
name generation. It is also stable under the addition and removal of unused
names.

Lemma 2.1 (Type Preservation) If s; · ` e :T and s` e⇓ (t) v then s⊕t; · `
v : T .

Lemma 2.2 (Strong Normalization) If s; · ` e : T then s ` e⇓.

Lemma 2.3 (Determinacy of Evaluation at o-Type) If s` e⇓ (t1) b1, s`
e ⇓ (t2) b2, and ∅; · ` bi : o (i = 1, 2) then b1 = b2.
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s; Γ ` e : T

Typ-Var
x : T ∈ Γ
s; Γ ` x : T

Typ-Name
n ∈ s

s; Γ ` n : ν

Typ-Bool
b ∈ {true, false}

s; Γ ` b : o

Typ-Abs
s; Γ, x : T1 ` e : T2

s; Γ ` λx :T1.e : T1→T2

Typ-App
s; Γ ` e0 : T1→T2 s; Γ ` e1 : T1

s; Γ ` e0 e1 : T2

Typ-Cond
s; Γ ` e0 : o s; Γ ` e1 : T s; Γ ` e2 : T

s; Γ ` if e0 then e1 else e2 : T

Typ-New

s; E ` new : ν

Typ-Eq

s; E ` e1 : ν s; E ` e2 : ν
s; E ` (e1 =e2) : o

Figure 2: Typing rules for the ν-calculus

Lemma 2.4 (Garbage Addition) If s ` e ⇓k (t)w and s ∩ s0 = t ∩ s0 = ∅
then:

s⊕s0 ` e ⇓k (t)w.

Lemma 2.5 (Garbage Collection) If s⊕s0`e⇓k (t)w and s0∩names(e) = ∅
then:

s ` e ⇓k (t)w.

3 Equivalence and Adequacy

Here we define contextual equivalence in the standard way and develop a theory
of adequate relations. We then show that the largest adequate relation coincides
with contextual equivalence.

3.1 Contextual Equivalence

Contextual Equivalence is a typed binary relation on open terms, indexed by a
nameset, type environment, and type:

(≡) ∈ Nameset×TypeEnv −→P(Expression×Expression×Type)

We write s; Γ ` e ≡ e′ : T when (e, e′, T ) ∈ ((≡) sΓ) and similarly for other
typed relations. We also leave implicit the assumption that both the terms do
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s ` e ⇓k (t)w

Eval-Val
k > 0

s ` v ⇓k (∅) v

Eval-New
n 6∈ s k > 0

s ` new ⇓k ({n})n

Eval-Cond
s ` e0 ⇓k0 (t0) b s⊕t0 ` ei ⇓k (t)w (i, b) ∈ {(1, true), (2, false)}

s ` if e0 then e1 else e2 ⇓1+k0+k (t0⊕t)w

Eval-Eq1

s ` e1 ⇓k1 (t1)n s⊕t1 ` e2 ⇓k2 (t2)n n ∈ s
s ` (e1 =e2) ⇓1+k1+k2 (t1⊕t2) true

Eval-Eq2

s ` e1 ⇓k1 (t1)n1 s⊕t1 ` e2 ⇓k2 (t2)n2 n1, n2 distinct

s ` (e1 =e2) ⇓1+k1+k2 (t1⊕t2) false

Eval-App
s ` e0 ⇓k0 (t0)λx :T1.e2 s⊕t0 ` e1 ⇓k1 (t1)w1

s⊕t0⊕t1 ` e2[w1/x] ⇓k2 (t2)w

s ` e0 e1 ⇓1+k0+k1+k2 (t0⊕t1⊕t2)w

Figure 3: Operational semantics for the ν-calculus

actually have the type at which they are related (i.e. s; Γ ` e : T , and similarly
for e′) in such judgements.

To define contextual equivalence we first need to define typed contexts: un-
der the nameset s and type environment Γ, C is a context of type T when it
contains a hole that can be filled with terms that, under the same nameset and
environment Γ′, have type T ′. We write s; Γ ` C [·]T ′Γ′ : T for such a context.

The ν-calculus is strongly normalizing, hence, as in [11], we take as our
notion of observation the (in-)equality of final values at type o.

Definition 3.1 (Contextual Equivalence (≡)) s; Γ ` e ≡ e′ : T if and only
if for all contexts C with s; · ` C [·]TΓ : o and boolean values b

(∃t. s ` C [e] ⇓ (t) b) ⇐⇒ (∃t. s ` C [e′] ⇓ (t) b)

Note that the generation of fresh names is not directly observable. Part of
the difficulty of reasoning about contextual equivalence is the capturing of the
free variables of terms by the context. We simplify this situation by making use
of the following theorem, which allows us to work only with closed values.
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Theorem 3.2 (Expression Closedness) For any two expressions e and e′

with s; x : T ` e, e′ : T

s;x : T ` e ≡ e′ : T ⇐⇒ s; · ` λx :T .e ≡ λx :T .e′ : T →T

To prove this theorem we define the relation (4) as the smallest congruence
on expressions that admits the following rules.

s; Γ, x : T0 ` e 4 e′ : T
s; Γ, x : T0 ` e 4 (λx :T0.e

′) x : T

s; Γ, x : T0 ` e 4 e′ : T s; · ` v 4 v′ : T0

s; Γ ` e[v/x] 4 e′[v′/x] : T

The theorem follows from the next bisimulation lemma for (4).

Lemma 3.3 If s;x : T ` e 4 e′ : T and s; · ` v 4 v′ : T and s ` e[v/x] ⇓ (t)w
then there exists w′ such that

s′ ` e′[v′/x] ⇓ (t)w′ s⊕t; · ` w 4 w′ : T

and vice versa.

Proof. Here we show the proof the forward direction; the proof of the converse is
similar. We proceed by induction on the height of the derivations s`e[v/x]⇓(t)w
and s;x : T ` e 4 e′ : T , ordered lexicographically. The induction hypothesis is
the following.

IH (k,m) def= ∀x, v, v′, e, e′, s, w, t.
(s;x : T ` e 4m e′ : T )) ∧ (s; · ` v 4 v′ : T ) ∧ (s ` e[v/x] ⇓k (t)w)
=⇒ ∃w′. (s ` e′[v′/x] ⇓ (t)w′) ∧ (s⊕t; · ` w 4 w′ : T )

We will prove that for all k and m, IH (k,m) holds by proving that for any
k and m

(∀j, n. (j, n) ≺lex (k,m) =⇒ IH (j, n)) =⇒ IH (k,m)

We assume
∀j, n. (j, n) ≺lex (k,m) =⇒ IH (j, n)

and s;x : T ` e 4m e′ : T , s; · ` v 4 v′ : T , and s ` e[v/x] ⇓k (t)w. We proceed
by cases on s;x : T ` e 4m e′ : T .

Most cases easily follow by the induction hypothesis. The interesting cases
are the ones for application, and the beta and substitution rules shown above.
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Case

s;x : T0 ` e1 4m1 e′1 : T2→T
s;x : T0 ` e2 4m2 e′2 : T2

s;x : T0 ` (e1 e2) 4m (e′1 e
′
2) : T

m1 < m, m2 < m

We have s` (e1 e2)[v/x]⇓k (t)w, thus for some s1, s2, s3, λy :T2.e3, w2, and
k < k

s ` e1[v/x] ⇓k1(s1)λy :T2.e3

s⊕s1 ` e2[v/x] ⇓k2(s2)w2

s⊕s1⊕s2 ` e3[w2/y] ⇓k3(s3)w

and t = s⊕s1⊕s2⊕s3. By IH (k1,m1) and IH (k2,m2), there exist λy :T2.e
′
3 and

w′2, such that

s ` e′1[v′/x] ⇓ (s1)λy :T2.e
′
3 s⊕s1; · ` λy .e3 4 λy .e′3 : T2→T

s1 ` e′2[v′/x] ⇓ (s2)w′2 s⊕s1⊕s2; · ` w2 4 w′2 : T2

By construction of (4) we get that s⊕s1⊕s2; · ` λy .e3 4 λy .e′3 : T2→T and
s⊕s1⊕s2; y : T2 ` e3 4 e′3 : T and s⊕s1⊕s2; · ` e3[w2/y] 4 e′3[w′2/y] : T . Thus,
by IH (k3,m3), for any m3, we get that there exist t′ and w′, such that:

s⊕s1⊕s2 ` e′3[w′2/y] ⇓ (s3)w′ s⊕s1⊕s2⊕s3; · ` w 4 w′ : T

and therefore, by the evaluation rule of application, s ` (e′1 e
′
2)[v′/z] ⇓ (t)w′.

Case
s;x : T , y : T0 ` e 4m−1 e′ : T

s;x : T , y : T0 ` e 4m (λy :T0.e
′) y : T

We have s`e[v/x, u/y]⇓k (t)w. By IH (k,m−1) we get that for any u′ with
s; · ` u 4 u′ : T0 there exists w′ such that

s ` e′[v′/x, u′/y] ⇓ (t)w′ s⊕t; · ` w 4 w′ : T

and therefore s ` (λy :T0.e
′ y)[v′/x, u′/y] ⇓ (t)w′.

Case

s;x : T , y : T0 ` e 4m1 e′ : T
s; · ` u 4m2 u′ : T0

s;x : T ` e[u/y] 4m e′[u′/y] : T
m1 < m, m2 < m

We have s ` e[v/x, u/y] ⇓k (t)w. By IH (k,m1) we get that there exists w′

such that
s ` e′[v′/x, u′/y] ⇓ (t)w′ s⊕t; · ` w 4 w′ : T

which concludes this proof. ut

It is immediate from the above lemma and the construction of (4) that
4-related expressions at type o evaluate to the same value.

Corollary 3.4 If s; · ` e 4 e′ : o, t is a nameset, and b a boolean value then

s ` e ⇓ (t) b ⇐⇒ s ` e′ ⇓ (t) b
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We can now give the proof of Theorem 3.2. Proof.[Theorem 3.2] The forward
direction follows directly by the definition of (≡).

For the converse direction we need to show that for all contexts C with
s; · ` C [·]TΓ : o and boolean values b,

(∃t. s ` C [e] ⇓ (t) b) ⇐⇒ (∃t. s ` C [e′] ⇓ (t) b)

assuming s; ` λx :T .e ≡ λx :T .e′ : T →T and x : T ∈ Γ.
By construction of (4),

s; · ` C [e] 4 C [(λx :T .e) x1 . . . xn] : o (2)

s; · ` C [e′] 4 C [(λx :T .e′) x1 . . . xn] : o (3)

Hence

∃t. s ` C [e] ⇓ (t) b

iff ∃t. s ` C [(λx :T .e) x1 . . . xn] ⇓ (t) b (by Lemma 3.4 and (2))

iff ∃t. s ` C [(λx :T .e′) x1 . . . xn] ⇓ (t) b (s; · ` λx :T .e ≡ λx :T .e′ : T →T )
iff ∃t. s ` C [e′] ⇓ (t) b (by Lemma 3.4 and (3))

ut

3.2 Pre-Adequacy

Reasoning about intermediate states of ν-calculus programs will require us to
consider relate values that allocate different sets of names. So, although the
definition of contextual equivalence only involves one nameset, our development
of the theory of (pre-) adequate relations is based on typed relations on closed
values, annotated by two namesets:

(s, s′, R) ∈ Nameset×Nameset×P(Value∅ ×Value∅ ×Type)

We write s, s′; · ` v R v′ : T when (v, v′, T ) ∈ R.
We reason about sets of such relations:

X ⊆ Nameset×Nameset×P(Value∅ ×Value∅ ×Type)

The inverse of a set of annotated relations is defined as follows.

Definition 3.5 If X is a set of annotated relations, the inverse of X , written
X−1, is defined as:

(s′, s, R−1) ∈ X−1 iff (s, s′, R) ∈ X

We close annotated relations under name-free, identical contexts. Therefore,
we allow contexts to access only related names that can be substituted in holes.
This is an important distinction between public (i.e. related) names and names
that are private to the terms.
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Definition 3.6 (Context Closure of Annotated Relations) If (s, s′, R) is
an annotated relation on closed values, then (s, s′, Rcxt) is the relation defined
by

∅; x : T ` d : T s, s′; · ` u R u′ : T

s, s′; · ` d[u/x] Rcxt d[u′/x] : T

Using the context closure of annotated relations we give our definition of
pre-adequacy for the ν-calculus, which closely resembles the standard definition
of contextual equivalence. In fact, we show that the open extension of pre-
adequacy coincides with contextual equivalence.

Definition 3.7 (Pre-Adequate Annotated Relations) An annotated rela-
tion, (s, s′, R), is pre-adequate if and only if for all expressions e and e′, such
that s, s′; · ` e Rcxt e′ : o, we have:

(∃t. s ` e ⇓ (t) b) ⇐⇒ (∃t′. s′ ` e′ ⇓ (t′) b)

Definition 3.8 (Pre-Adequacy (∼=)) (∼=) is the set of all pre-adequate anno-
tated relations.

To provide a connection between sets of annotated relations and contextual
equivalence, we extend such sets to indexed relations on open expressions.

Definition 3.9 (Open Extension of Sets of Annotated Relations) If X
is a set of annotated relations, then X ◦ is an indexed relation on open expres-
sions such that s;x : T ` e X ◦ e′ : T if and only if there exists R such that:

(s, s,R) ∈ X s, s; · ` λx :T .e R λx :T .e′ : T →T ∀n ∈ s. s, s; · ` n R n : ν

The contexts in the definition of contextual equivalence and the contexts in
the definition of pre-adequate relations are slightly different: the former may
contain any name in the corresponding nameset, while the latter are name-free
and have access only to related names via substitution. Hence, in the above
definition, we reconcile the two notions of contexts by requiring R to be the
identity on all names in the namesets.

Theorem 3.10 (Soundness and Completeness of (∼=)) (∼=)◦ = (≡)

Proof. Let x : T be a non-empty type environment, s a nameset with s = {n},
and e and e′ expressions with s; x : T ` e, e′ : T . Then:

s;x : T ` e ≡ e′ : T

if and only if, by Theorem 3.2,

s; · ` λx :T .e ≡ λx :T .e′ : T →T
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if and only if, by the definition of (≡),

∀C, b. s; · ` C [·]T →T
∅ : o

=⇒ (∃t. s ` C [λx :T .e] ⇓ (t) b) ⇐⇒ (∃t. s ` C [λx :T .e′] ⇓ (t) b)

if and only if, by choosing the appropriate d for the forward direction (and
the appropriate C for the reverse), such that ∅; y : ν, z : T ` d : o and s; z : T `
C [z] = d[n/y] : o, and because capturing substitution of a closed term coincides
with capture-avoiding substitution of the same term,

∀y, z, d. ∅; y : ν, z : T ` d : o
=⇒ (∃t. s ` d[n/y, λx :T .e/z] ⇓ (t) b) ⇐⇒ (∃t. s ` d[n/y, λx :T .e′/z] ⇓ (t) b)

if and only if, by choosing R = {(λx :T .e, λx :T .e′, T →T ), (n, n, o)} for the
forward direction,

∃R. s, s; · ` λx :T .e R λx :T .e′ : T →T
∧ ∀n ∈ s. s; · ` n R n : ν
∧ ∀ed, e

′
d. s; · ` ed R

cxt e′d : o =⇒ (∃t. s ` ed ⇓ (t) b) ⇐⇒ (∃t. s ` e′d ⇓ (t) b)

if and only if, by Definition 3.7 and the definition of (∼=),

∃R. s, s; · ` λx :T .e R λx :T .e′ : T →T
∧ ∀n ∈ s. s; · ` n R n : ν
∧ (s, s,R) ∈ (∼=)

if and only if, by Definition 3.9,

s;x : T ` e (∼=)◦ e′ : T ut

3.3 Adequacy

Our main technical tool for reasoning about equivalence in the ν-calculus is the
definition of adequate sets of annotated relations. This definition permits the
use of an induction in the proofs of equivalence.

Definition 3.11 (Adequate Sets of Annotated Relations) A set of anno-
tated relations X is adequate if an only if for all (s, s′, R) ∈ X we have:

∀e, e′, t, w. s, s′; · ` e Rcxt e′ : T
∧ s ` e ⇓ (t)w

=⇒ ∃t′, w′, Q. s′ ` e′ ⇓ (t′)w′

∧ (T = o) =⇒ (w = w′)
∧ s⊕t, s′⊕t′; · ` w Qcxt w′ : T
∧ (s⊕t, s′⊕t′, Q) ∈ X
∧ R ⊆ Q

and similarly for all (s, s′, R) ∈ X−1.
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It is easy to see that the union of adequate sets is an adequate set. Thus,
the union of all adequate sets is the largest adequate set.

Definition 3.12 (Adequacy (≈)) (≈) is the largest adequate set of annotated
relations.

We show that adequacy is sound and complete with respect to contextual
equivalence by showing that it coincides with pre-adequacy.

Theorem 3.13 (Soundness of Adequate Sets) If X is adequate then it is
included in pre-adequacy.

Proof. Trivial by the definitions of pre-adequate annotated relations and ade-
quate sets of annotated relations. ut

Theorem 3.14 (Completeness of Adequate Sets) (∼=) is adequate.

Proof. Let (s, s′, R) ∈ (∼=) and s, s′; · ` e Rcxt e′ : T . We will show that

∀t, w. s ` e ⇓ (t)w
=⇒ ∃t′, w′, Q. s′ ` e′ ⇓ (t′)w′

∧ (T = o) =⇒ (w = w′)
∧ s⊕t, s′⊕t′; · ` w Qcxt w′ : T
∧ (s⊕t, s′⊕t′, Q) ∈ X
∧ R ⊆ Q

By the definition of pre-adequate annotated relations (Definition 3.7) and
the determinacy of the semantics, it suffices to show that

∀t, t′, w, w′. 〈s, e〉 ⇓ 〈t, w〉
∧ 〈s′, e′〉 ⇓ 〈t′, w′〉

=⇒ ∃Q. s⊕t, s′⊕t′; · ` w Qcxt w′ : T
∧ (s⊕t, s′⊕t′, Q) ∈ X
∧ R ⊆ Q

Let s ` e ⇓ (t)w and s′ ` e′ ⇓ (t′)w′; we will show that

(s⊕t, s′⊕t′, R ∪ {(w,w′)}) ∈ (∼=)

For any x, T, v, v′, y, T0, b, and d such that

∅; x : T , y : T0 ` d : o s⊕t, s′⊕t′; · ` v R v′ : T

we have:

∃t1. s⊕t ` d[v/x,w/y] ⇓ (t1) b

⇐⇒ ∃t1. s ` λy :T.d[v/x] e ⇓ (t⊕t1) b (by the properties of evaluation)

⇐⇒ ∃t′1. s′ ` λy :T.d[v′/x] e′ ⇓ (t′⊕t′1) b ((s, s′, R) ∈ (∼=))

⇐⇒ ∃t′1. s′⊕t′ ` d[v′/x,w′/y] ⇓ (t′1) b (by the properties of evaluation)
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Therefore, by Definitions 3.7 and 3.8:

(s⊕t, s′⊕t′, R ∪ {(w,w′)}) ∈ (∼=) ut

Theorem 3.15 (∼=) = (≈).

Proof. By Theorem 3.13 we have (≈) ⊆ (∼=) and by Theorem 3.14 we have
(∼=) ⊆ (≈). Thus (∼=) = (≈). ut

From the above we conclude that the open extension of adequacy coincides
with the standard definition of contextual equivalence.

Theorem 3.16 (≈)◦ = (≡).

Proof. By Theorems 3.10 and 3.15. ut

4 Inductive Proofs of Equivalence

We now have a proof method for showing thats;x : T ` e ≡ e′ : T .

1. Find a set X containing (s, s,R) such that

s; · ` λx :T .e R λx :T .e′ : T →T

∀n ∈ s. s; · ` n R n : ν

2. show that X is adequate, and

3. invoke Theorem 3.16 to show s;x : T ` e ≡ e′ : T .

We can show a set X adequate by induction. The induction hypothesis we
use is the following.

Definition 4.1

IHX (k) def= ∀(s, s′, R) ∈ X .
∀e, e′, t, w. s, s′; · ` e Rcxt e′ : T

∧ s ` e ⇓k (t)w
=⇒ ∃t′, w′, Q. s′ ` e′ ⇓ (t′)w′

∧ (T = o) =⇒ (w = w′)
∧ s⊕t, s′⊕t′; · ` w Qcxt w′ : T
∧ (s⊕t, s′⊕t′, Q) ∈ X
∧ R ⊆ Q

12



The measure of the induction is the size k of the evaluation s ` e ⇓k (t)w.
Hence, proving a set of annotated relations X adequate amounts to proving that
for all k, IHX (k) and IHX−1(k) hold. For k = 0 it is trivial; for k > 0 it can be
shown by induction:

∀k. IHX (k − 1) =⇒ IHX (k)
∀k. IHX−1(k − 1) =⇒ IHX−1(k)

5 Deriving Smaller Proof Obligations for Ade-
quate Sets

By using a proof construction scheme, as in [7], we factor out the common parts
of the two inductions at the end of the previous section, and discover necessary
and sufficient proof obligations for adequacy. Thus, we arrive at the following
adequacy theorem.

Theorem 5.1 A set of annotated relations X is adequate if and only if for all k
and all (s, s′, R) ∈ X , assuming that IHX (k− 1) holds, the following conditions
hold:

1. For all s, s′; · ` b R b′ : o it must be that b = b′.

2. For all s, s′; · ` λx :T0.e R λx :T0.e
′ : T0→T , and all s, s′; · ` v Rcxt v′ : T0,

t, and w, such that s ` λx :T0.e v ⇓k (t)w, there exist t′, w′, and Q ⊇ R
such that:

s′ ` λx :T0.e
′ v′ ⇓ (t′)w′ s⊕t, s′⊕t′; · ` w Qcxt w′ : T

(s⊕t, s′⊕t′, Q) ∈ X

3. For all n 6∈ s there exist n′ 6∈ s′ and Q ⊇ R such that:

s⊕{n}, s′⊕{n′}; · ` n Q n′ : ν (s⊕{n}, s′⊕{n′}, Q) ∈ X

4. For all s, s′; · ` n1 R n′1 : o and s, s′; · ` n2 R n′2 : o:

n1 = n2 ⇐⇒ n′1 = n′2

Moreover, the same conditions hold for X−1.

Proof. We prove the forward direction by showing that if one of the conditions
is not satisfied, then X is not adequate. The converse direction is immediate by
the proof construction scheme. ut
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([], [], {(N,N ′, o→ ν→ o)}) ∈ X
X -1

(s, s′, R) ∈ X n 6∈ s n′ 6∈ s′

(s⊕{n}, s′⊕{n′}, R ∪ {(n, n′, ν)}) ∈ X
X -2

(s, s′, R) ∈ X n 6∈ s
(s⊕{n}, s′, R ∪ {(λx :ν.(x=n), λx :ν.false, ν→ o)}) ∈ X

X -3

Figure 4: Construction of adequate set of annotated relations for proving the
equivalence of a simple equivalence in the ν-calculus.

6 Examples

Using the preceding theorem, we are able to prove all equivalences in the ν-
calculus from [11]. In this section we start with the proof of a straightforward
equivalence and then show the proof of the most interesting of these equiva-
lences. The only other method for proving the latter equivalence is by using
game semantics [1].

6.1 A Simple Example: Local Names

This equivalence demonstrates that the context can not provide names that are
local to the terms.

M
def= νn.λx :ν.(x=n)

M ′
def= λx :ν.false

Proof.
From Theorem 3.2, it suffices to show that the following two values are

equivalent:

N
def= λy :o.νn.λx :ν.(x=n)

N ′
def= λy :o.λx :ν.false

To prove ∅; · ` N ≡ N ′ : o→ ν→ o we need to construct an adequate set of
annotated relations, X , such that there exists R with:

(∅, ∅, R) ∈ X ∅; · ` N R N ′ : o→ ν→ o

We start the construction of an adequate X by the first two rules of Figure 4.
Rule X -2 fulfills Condition 3 of Theorem 5.1. Conditions 1 and 4 are trivially
satisfied.

14



We need to prove Condition 2 of Theorem 5.1 for any (s, s′, R) ∈ X with
s, s′; · ` N R N ′ : o→ ν→ o. Let s, s′; · ` b Rcxt b : o. We have:

s `N b ⇓ ({n})λx :ν.(x=n) n 6∈ s
s′ `N ′ b ⇓ (∅)λx :ν.false

To prove this case we add Rule X -3 of Figure 4 in the construction of X .
Hence we have:

(s⊕{n}, s′, R ∪ {(λx :ν.(x=n), λx :ν.false, ν→ o)}) ∈ X

It remains to prove Condition 2 for any (s⊕{n}, s′, R) ∈ X with
s⊕{n}, s′; · ` λx :ν.(x=n) R λx :ν.false : ν→ o. Let:

s⊕{n}, s′; · ` n0 R
cxt n′0 : ν

By the definition of ( )cxt we have:

s⊕{n}, s′; · ` n0 R n′0 : ν

By construction of X we have that n 6= n0. Hence:

s⊕{n} ` (λx :ν.(x=n)) n0 ⇓(∅) false
s′ ` (λx :ν.false) n′0 ⇓(∅) false

s⊕{n}, s′; · ` false Rcxt false : o
(s⊕{n}, s′, R) ∈ X

This concludes the proof of adequacy of X , and by Theorem 3.16:

∅; · ` N ≡ N ′ : ν→ o ut

6.2 The ‘Hard’ Equivalence

Here we show the proof of what is considered the canonical hard-to-prove equiv-
alence of the ν-calculus. This has only been validated with the use of game
semantics [1]. Our proof here uses operational semantics and two adequate sets
of annotated relations.

M
def= νn1 .νn2 .U(n1, n2) U(n1, n2) def= λf :ν→ o.((f n1)=(f n2))

M ′
def= λf :ν→ o.true

The equivalence here means that although the names n1 and n2 are revealed
to the context (by passing them as arguments to f), they cannot be stored
between applications of f . Thus the outermost application of U(n1, n2) will

15



(∅, ∅, {(N,N ′, o→ (ν→ o)→ o)}) ∈ X
X -1

(s, s′, R) ∈ X n 6∈ s n′ 6∈ s′

(s⊕{n}, s′⊕{n′}, R ∪ {(n, n′, ν)}) ∈ X
X -2

(s, s′, R) ∈ X {n1, n2} ∩ s = ∅
(s⊕{n1, n2}, s′, R ∪ {(U(n1, n2),M ′, (ν→ o)→ o)}) ∈ X

X -3

(s, s′, R) ∈ X s0 ∩ s = 0
(s⊕s0, s

′, R) ∈ X
X -4

Figure 5: Construction of the primary adequate set of annotated relations for
proving the canonical ‘hard’ equivalence in the ν-calculus.

return true. While the body of f is evaluated, though, internal applications of
U(n1, n2) may return false.
Proof.

From Theorem 3.2, it suffices to show that the following two values are
equivalent:

N
def= λy :o.νn1 .νn2 .U(n1, n2)

N ′
def= λy :o.λf :ν→ o.true

To prove ∅; · ` N ≡ N ′ : o→ ν→ o we need to construct an adequate set of
annotated relations, X , such that there exists R with:

(∅, ∅, R) ∈ X ∅; · ` N R N ′ : o→ ν→ o

We start the construction of an adequate X by the first two rules of Figure 5.
Rule X -2 fulfills Condition 3 of Theorem 5.1. Conditions 1 and 4 are trivially
satisfied.

We need to prove Condition 2 of Theorem 5.1 for any (s, s′, R) ∈ X with
s, s′; · ` N R N ′ : o→ ν→ o. Let s, s′; · ` b Rcxt b : o. We have:

s `N b ⇓ ({n1, n2})U(n1, n2) {n1, n2} ∩ s = ∅
s′ `N ′ b ⇓ (∅)M ′

To prove this case we add Rule X -2 in the construction of X . Hence we
have:

(s⊕{n}, s′, R ∪ {(U(n1, n2),M ′, (ν→ o)→ o)}) ∈ X
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It remains to prove Condition 2 for any (s⊕{n1, n2}, s′, R) ∈ X with
s⊕{n1, n2}, s′; · ` U(n1, n2) R M ′ : (ν→ o)→ o. Let:

s⊕{n1, n2}, s′; · ` u Rcxt u′ : ν→ o s⊕{n1, n2} ` U(n1, n2) u ⇓k (t)w

We need to show that there exist Q, t′, and w′ such that:

s′ `M ′ u′ ⇓ (t′)w′ w = w′ (s⊕{n1, n2}⊕t, s′⊕t′, Q) ∈ X R ⊆ Q

But we have:
s′ `M ′ u′ ⇓ (∅) true

Thus t′ = ∅, w′ = true, and Q = R. We add Rule X -4 to the construction of
X in Figure 5 and get:

(s⊕{n1, n2}⊕t, s′, R) ∈ X

It only remains to show that the first application evaluates to true; i.e.:

s⊕{n1, n2} ` U(n1, n2) u ⇓ (t) true

To prove this we need to reason about the operational behavior of the applica-
tion. We do by re-using our method.

By the properties of evaluation, it suffices to show that there exist b, t1, and
t2 such that:

s⊕{n1, n2} ` u n1 ⇓ (t1) b
s⊕{n1, n2}⊕t1 ` u n2 ⇓ (t2) b

or, from Theorem 2.4, it suffices to show that there exist b, t1, and t2 such that:

s⊕{n1, n2} ` u n1 ⇓ (t1) b
s⊕{n1, n2} ` u n2 ⇓ (t2) b

We show this by constructing an auxiliary adequate set Y of annotated
relations such that there exists a relation P with:

s⊕{n1, n2}; · ` (u n1) P cxt (u n2) : o
(s⊕{n1, n2}, s⊕{n1, n2}, P ) ∈ Y

The construction of Y is shown in Figure 6.
We establish a correlation between the sets of annotated relations X and Y

by the following lemma and corollary.

Lemma 6.1 For all (s, s′, R) ∈ X , there exists P such that:

(s, s, P ) ∈ Y
∀v, v′. s, s′; · ` v R v′ : T =⇒ s; · ` v P v : T

Proof. We proceed by induction on the construction of X .
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(∅, ∅, {(N,N, o→ (ν→ o)→ o)}) ∈ Y
Y-1

(s, s,R) ∈ Y n 6∈ s
(s⊕{n}, s⊕{n}, R ∪ {(n, n, ν)}) ∈ Y

Y-2

(s, s,R) ∈ Y {n1, n2} ∩ s = ∅
Q = R ∪ {(n1, n2, ν), (n2, n1, ν), (U(n1, n2), U(n1, n2), (ν→ o)→ o)}

(s⊕{n1, n2}, s⊕{n1, n2}, Q) ∈ Y
Y-3

(s, s,R) ∈ Y s0 ∩ s = 0
(s⊕s0, s⊕s0, R) ∈ X

Y-4

Figure 6: Construction of the auxiliary adequate set of annotated relations for
proving the canonical ‘hard’ equivalence in the ν-calculus.

Case X -1

(∅, ∅, {(N,N ′, o→ (ν→ o)→ o)}) ∈ X
X -1

This case is trivial because by Y-1

(∅, ∅, {(N,N, o→ (ν→ o)→ o)}) ∈ Y

Case X -2
(s, s′, R) ∈ X n 6∈ s n′ 6∈ s′

(s⊕{n}, s′⊕{n′}, R ∪ {(n, n′, ν)}) ∈ X
X -2

By the induction hypothesis at (s, s′, R) ∈ X we get that there exists P such
that

(s, s, P ) ∈ Y (4)
∀v, v′. s, s′; · ` v R v′ : T =⇒ s; · ` v P v : T (5)

By Y-2 and (4) we get that

(s⊕{n}, s⊕{n}, P ∪ {(n, n, ν)}) ∈ Y

Let s⊕{n}, s′⊕{n′}; · ` v (R ∪ {(n, n′, ν)}) v′ : T . We have two cases:

1. s, s′; · ` v R v′ : T . By (5) we get s; · ` v P v : T , and thus

s⊕{n}; · ` v (P ∪ {(n, n, ν)}) v : T
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2. v = n, v = n′, T = ν. It is immediate that

s⊕{n}; · ` n (P ∪ {(n, n, ν)}) n : ν

Case X -3

(s, s′, R) ∈ X {n1, n2} ∩ s = ∅
(s⊕{n1, n2}, s′, R ∪ {(U(n1, n2),M ′, (ν→ o)→ o)}) ∈ X

X -3

By the induction hypothesis at (s, s′, R) ∈ X we get that there exists P such
that

(s, s, P ) ∈ Y (6)
∀v, v′. s, s′; · ` v R v′ : T =⇒ s; · ` v P v : T (7)

Let Q = P ∪{(n1, n2, ν), (n2, n1, ν), (U(n1, n2), U(n1, n2), (ν→ o)→ o)}. By
Y-3 and (6) we get that

(s⊕{n1, n2}, s⊕{n1, n2}, Q) ∈ Y

Let s⊕{n1, n2}, s′; · ` v (R ∪ {(U(n1, n2),M ′, (ν→ o)→ o)}) v′ : T . We
have two cases:

1. s, s′; · ` v R v′ : T . By (7) we get s; · ` v P v : T , and thus

s⊕{n1, n2}; · ` v Q v : T

2. v = U(n1, n2), v′ = M ′, T = (ν→ o)→ o. It is immediate that

s⊕{n1, n2}; · ` U(n1, n2) Q U(n1, n2) : (ν→ o)→ o

Case X -4
(s, s′, R) ∈ X s0 ∩ s = 0

(s⊕s0, s
′, R) ∈ X

X -4

Immediate by the induction hypothesis at (s, s′, R) ∈ X and Y-4. ut

Corollary 6.2 For all (s, s′, R) ∈ X , there exists P such that:

(s, s, P ) ∈ Y
s, s′; · ` v Rcxt v′ : T =⇒ s; · ` v P cxt v : T

(Continuing proof from page 17.) From the above corollary and because

(s⊕{n1, n2}, s′, R) ∈ X s⊕{n1, n2}, s′; · ` (U(n1, n2) u) Rcxt (M ′ u′) : o
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we have that there exists P such that:

(s⊕{n1, n2}, s⊕{n1, n2}, P ) ∈ X
s⊕{n1, n2}; · ` (U(n1, n2) u) P cxt (U(n1, n2) u) : o

By the definition of ( )cxt we get:

s⊕{n1, n2}; · ` U(n1, n2) P cxt U(n1, n2) : (ν→ ν)→ o

s⊕{n1, n2}; · ` u P cxt u : ν→ o

Because U(n1, n2) is related to itself only in rule X -3, we also have that:

s⊕{n1, n2}; · ` n1 P n2 : o

Therefore:
s⊕{n1, n2}; · ` (u n1) P cxt (u n2) : o

It remains to show that Y is adequate by showing that it satisfies the con-
ditions of Theorem 5.1.
Y trivially satisfies Conditions 1 and 4 of Theorem 5.1. Condition 3 of the

theorem is fulfilled by Rule Y-2. It remains to prove Condition 2 for all related
abstractions.

Let (s, s′, R) ∈ Y. It is the case that Y is the identity modulo the crosswise
renaming of some names. Thus s = s′ and for some names n1, n2 and values v
we have that R = {(v, v), (n1, n2), (n2, n1)}.

Therefore, we consider (s, s,R) ∈ Y, and prove Condition 2 for the following
cases:

Case s; · ` N R N : o→ (ν→ o)→ o
Let s; · ` b Rcxt b : o and s`N b⇓k ({n1, n2})U(n1, n2). By Rule Y-3, there

exists Q such that:

Q = R ∪ {(n1, n2, ν), (n2, n1, ν), (U(n1, n2), U(n1, n2), (ν→ o)→ o)}
s `N b ⇓ ({n1, n2})U(n1, n2)

s⊕{n1, n2}; · ` U(n1, n2) Qcxt U(n1, n2) : (ν→ o)→ o

(s⊕{n1, n2}, s⊕{n1, n2}, Q) ∈ Y

Case s; · ` U(n1, n2) R U(n1, n2) : (ν→ o)→ o
Let s; · ` v Rcxt v′ : ν→ o and s ` U(n1, n2) v ⇓k (t) b. By the properties of

evaluation we have t = s1⊕s2 and:

s ` v n1 ⇓k−1 (s1) b1 (8)

s⊕s1 ` v n2 ⇓k−1 (s2) b1 (9)

By Lemma 2.5:
s ` v n2 ⇓k−1 (s2) b1 (10)
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Because

s; · ` (v n1) Rcxt (v′ n2) : o s; · ` (v n2) Rcxt (v′ n1) : o

and by IH Y(k − 1), (8), and (10) we get that there exist Q1 and Q2 such that:

s ` v′ n2 ⇓ (s′1) b′1 s⊕s1, s⊕s′1; · ` b1 Q1
cxt b′1 : o (s⊕s1, s⊕s′1, Q1) ∈ Y

s ` v′ n1 ⇓ (s′2) b′2 s⊕s2, s⊕s′2; · ` b2 Q2
cxt b′2 : o (s⊕s2, s⊕s′2, Q2) ∈ Y

By the definition of ( )cxt we get that b1 = b′1 and b2 = b′2. Because each relation
in Y is annotated with identical stores, s1 = s′1 and s2 = s′2. Therefore:

s ` v′ n2 ⇓ (s1) b1
s ` v′ n1 ⇓ (s2) b2

By (9) we get that s1 ∩ s2 = s ∩ s2 = ∅. Thus, by Theorem 2.4 we get:

s⊕s2 ` v′ n2 ⇓ (s1) b1

and by the properties of evaluation:

s ` ((v′ n1)=(v′ n2)) ⇓ (s1⊕s2) b

Furthermore:

s⊕s1, s⊕s1; · ` b Rcxt b : o

and by Rule X -4 we get:

(s⊕s1, s⊕s1, R) ∈ Y

Therefore, Y is adequate. ut

7 The Formalization in Coq

We have formalized the semantics of the ν-calculus and our bisimulation theory
in the Coq theorem prover [4]. The mechanized development covers the sound-
ness of our method given in Section 3 and the examples given in Section 6.

There are still two axioms in our development, concerning well known basic
properties of ν-calculus evaluation that are proved in Stark’s thesis [11]. These
are the determinacy lemma (Lemma 2.3) and the totality lemma (Lemma 2.2).
These are entirely standard results and proofs, the mechanization of which is
not especially interesting.
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7.1 Semantics of the ν-calculus

There has been much recent research effort expended on reducing the pain of
doing mechanized reasoning about syntax involving binders, most notably under
the umbrella of the POPLmark challenge [3]. We were pleased to find that this
effort is paying off: our formalization uses a Coq framework for ‘locally nameless’
reasoning about binding due to Aydemir et al.[2], which worked very well.

The locally nameless style uses de Bruijin indices for bound identifiers and
names for free variables. The benefit of this representation is that each alpha
equivalence class has a unique representation. A further feature of the frame-
work is the use of cofinite quantification for free variables; the definitions and
tactics provided by Aydemir et al. make it very convenient to generate fresh
variable names whenever they are required in proofs.

Following this framework we define an inductive set of pre-terms that con-
tains the encodings of all valid terms of the ν-calculus, as well as some invalid
ones (e.g. terms with wrong de Bruijin indices). Due to space limitations we
show only part of this construction here:

Inductive trm : Set :=

...

| bvar : nat -> trm

| fvar : var -> trm

| abs : typ -> trm -> trm

This set of pre-terms is sufficient for many of our lemmas, usually the ones
that require induction over terms. For others, as well as for the definition of
the typing relation, one needs to exclude the illegal terms, which is done by the
following inductive predicate:

Inductive term : trm -> Prop :=

...

| term_var : forall x, term (fvar x)

| term_nam : forall (n : nam), term (name n)

| term_abs : forall L t1 U,

(forall x, x \notin L -> term (t1 ^ x))

-> term (abs U t1)

Top-level de Bruijin indices are not valid terms; they can only appear under
binders. Even then there should not be any dangling indices. The rule for
abstractions excludes such terms. It states that the abstraction is valid when
its body, with all references to the abstraction’s binder replaced with a fresh
variable (t1 ^ x), is a valid term. Freshness here is expressed by requiring to
provide a finite set of names, L, for which all names not in that set prove the
premise. This co-finite quantification establishes stronger induction hypotheses
than just requiring x to be disjoint from the free variables in t1.

A similar co-finite quantification is used at the typing relation.

Inductive typing : nameset -> env -> trm -> typ -> Prop :=

...

| typing_abs : forall L s E U T t1,

(forall x, x \notin L -> (typing s (E & x ~ U) (t1 ^ x) T))

-> typing s E (abs U t1) (arrow U T)
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Here E & E’ concatenates two environments (or substitutions), and x ~ U is
the unary environment that binds x to the type U.

For our formalization of bisimulations we needed multiple substitutions,
which we got by instantiating the polymorphic library for environments from
[2] to give finite maps from identifiers to trms and then defining a fold function
to actually apply the substitution.

7.2 Relations

We encode in Coq all definitions of Section 3. Most of them are straightforwardly
transcribed. The most interesting one is the context closure of Definition 3.6.
We encode it in two parts.

First we construct the [v/x] and [v′/x] of Definition 3.6 by defining an induc-
tive relation on ‘synchronized’ environments and substitutions containing closed
expressions from a value relation R.

Inductive InSync (R : GTRel) (s1 s2 : nameset)

: env -> substitution -> substitution -> Prop :=

| insync_empty :

nonempty R s1 s2 empty

-> InSync R s1 s2 empty empty empty

| insync_push :

forall E sub1 sub2 x T t1 t2,

InSync R s1 s2 E sub1 sub2

-> R s1 s2 empty t1 t2 T

-> closed_subst (sub1 & x ~ t1)

-> closed_subst (sub2 & x ~ t2)

-> InSync R s1 s2 (E & x ~ T) (sub1 & x ~ t1) (sub2 & x ~ t2).

For a non-empty R, containing namesets s and s′, the empty environment
and the empty substitutions are synchronized. When E, sub1, are sub2 are syn-
chronized under the relation R, and the stores s1 and s2, then their extension
with a single mapping from a variable x to, respectively, a type T, a term t1,
and a term t2 from R is also synchronized. The predicate closed subst ensures
that the resulting substitutions are valid. R is normally type-respecting, thus
the constructed sub1 and sub2 can be used to close any term typable under E.

We then define a constructor that combines two relations, using substitu-
tions. By giving the identity relation as the first argument and R as the second
we get the context closure Rcxt. This constructor is the following function that
accepts only the tuples that satisfy the predicate in it.

Definition substClosure (R : GTRel) (Q : GTRel) : GTRel :=

fun (s1 s2 : nameset) (E : env) (t1 t2 : trm) (T : typ) =>

(E = empty)

/\ (exists sr1, exists sr2, exists sq1, exists sq2,

s1 = (sr1 (U) sq1)

/\ s2 = (sr2 (U) sq2)

/\ (exists sub1, exists sub2, exists td1, exists td2, exists E,

R sr1 sr2 E td1 td2 T

/\ InSync Q sq1 sq2 E sub1 sub2

/\ t1 = <[ sub1 ]> td1

/\ t2 = <[ sub2 ]> td2)).
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where s1 (U) s2 is the syntax for union of namesets. This construction unions
the namesets from the two relations, but in the case of Rcxt, sr1 and sr2 are
always empty, thus all names come from the second relation.

The proof of soundness as well as the proofs for particular equivalences are
fairly long as they stand, but manageable. The approximate line counts of
different sections of the Coq development are currently as follows:

Section Lines
Library from UPenn 3500
Semantics, general lemmas, multiple substitutions 3500
Infrastructure about relations 1900
Soundness proof 2800
Simple example 1000
Hard example 3000
Total 15700

8 Conclusions

We have introduced a bisimulation for the ν-calculus that can be used to es-
tablish contextual equivalences that were previously only provable in rather
sophisticated game semantic models. Moreover we formalized its metatheory
and the proofs of these equivalences in Coq.

The Coq development is a little on the large side, perhaps leading one to
question the viability of this technology. However, there is no use of automation
beyond that in the library from UPenn and the majority of the development
was carried out in around 3 months by someone with no previous experience of
mechanical theorem proving. The framework and library for locally nameless
reasoning was extremely useful. We remain convinced of the value of mechaniz-
ing this style of reasoning, not just metatheory but also for specific examples,
which tend to involve long error-prone calculations that are inherently less in-
teresting than those required to establish general facts about the language.
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[2] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, and S. Weirich. En-
gineering formal metatheory. In Proceedings 35th Annual ACM Symposium
on Principles of Programming Languages (POPL), 2008.

[3] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce,
P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mech-
anized metatheory for the masses: The POPLmark Challenge. In Proceed-

24



ings of the 18th International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), volume 3603 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2005.
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