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Abstract
Information retrieval methods are frequently used for in-

dexing and retrieving spoken documents, and more recently
have been proposed for voice-search amongst a pre-defined set
of business entries. In this paper, we show that these methods
can be used in an even more fundamental way, as the core com-
ponent in a continuous speech recognizer. Speech is initially
processed and represented as a sequence of discrete symbols,
specifically phoneme or multi-phone units. Recognition then
operates on this sequence. The recognizer is segment-based,
and the acoustic score for labeling a segment with a word is
based on the TF-IDF similarity between the subword units de-
tected in the segment, and those typically seen in association
with the word. We present promising results on both a voice
search task and the Wall Street Journal task. The development
of this method brings us one step closer to being able to do
speech recognition based on the detection of sub-word audio
attributes.
Index Terms: speech recognition, information retrieval, TF-
IDF

1. Introduction
In their simplest form, vector-space models represent an ob-
ject as a vector of weighted indexing terms, and define object
similarity in terms of those vectors. For example, literarydoc-
uments may be represented as vectors of word-terms, or web
pages as vectors of word n-grams. When the terms are weighted
according to the term-frequency inverse-document-frequency
(TF-IDF) quantity, and the similarity of two vectors is defined
as the cosine of the angle between them, we arrive at the classi-
cal vector space model [1]. This and a variety of modifications
are now widely used in document retrieval [2].

Recently, researchers have begun to apply vector space
models to speech applications as well, for example speech in-
dexing [3], mobile voice search [4, 5], voicemail retrieval[6],
and language identification [7]. In [3, 6, 4, 5], speech is de-
coded and indexed either at the word or subword (e.g. phoneme
or syllable) level, and entire documents are retrieved. Thead-
vantages of the vector space approach include a very simple
training process - essentially just computing the term weights -
and the potential to scale well with data availability.

This paper explores the feasibility of using information re-
trieval at a more fundamental level, specifically as the acoustic
model of a continuous speech recognizer. In this approach, the
decoding process is broken into two stages. In the first, a se-
quence of indexing tokens is extracted. For example, the speech
may be processed into a phoneme or syllable stream. In the
second stage, a segmental decoding process is applied: the in-
put stream is segmented, each segment is assigned a word label
and an acoustic-match score, and a word-level language model
is applied. The best-scoring segmentation and word labeling
is output. Information retrieval is used in this process to find

candidate word labels for each segment, and to assign acoustic
scores: words are represented in a TF-IDF index, and to mea-
sure the consistency between the acoustics in a segment and the
hypothesized word, we use a variant of the TF-IDF cosine dis-
tance score as the acoustic score.

Our motivation for exploring this approach is to develop
a fast initial decoding process for detector based recognition
[10], the output of which can be further refined with a Seg-
mental CRF [8]. A key advantage of the proposed method is
that the index can be created from actual realizations of words,
in addition to the dictionary pronunciations. Thus pronuncia-
tion variability, accents, and systematic errors in the detector
streams are automatically modeled. Further, by operating on a
bag of subword terms, the approach may be relatively robust to
bursty errors. Operationally, the method is similar to the Seg-
mental CRF approach recently proposed in [8], with the excep-
tion that only one acoustic feature - the TF-IDF score - is used
in the model. It is also similar in spirit to transduction-based
methods for converting subword streams to words [9]. The al-
gorithms we have developed are publically available as partof
the SCARF Segmental CRF toolkit [11, 12].

The remainder of this paper is organized as follows. In Sec-
tion 2 we present the basic TF-IDF based acoustic score and
several extensions to improve accuracy. Section 3 describes the
overall recognizer structure. In the experimental results, Sec-
tion 4, we present error-rate and run-time results on both a voice
search task [13] and Wall Street Journal data [14], and compare
with a transducer-based approach.

2. TF-IDF Acoustic Model
2.1. TF-IDF Definition

A vector space model measures the similarity between two data
objects as represented by vectors of terms. In our case, the data
objects are segments of speech as represented by sequences of
subword units, and the terms are n-grams of subword units. For
example, if we use bigrams of phonemes as terms, each seg-
ment will be represented by a vector of lengthk2 wherek is
the number of phonemes in the dictionary. Each positionj in
this vector contains the TF-IDF weight of termtj . We present
the computation of the TF-IDF vector in the context of creating
an index in which each word is represented by a single vector.
At decode time, a similar process is used to compute TF-IDF
vectors for each hypothesized segment.

The TF-IDF term weight consists of two parts: the IDF part,
which is computed with respect to some training data, and the
TF part, which is a function of just the one word or segment
which is being considered. For speech recognition, the training
data consists of one count vectorCi for each wordi. Positionci

j

in this vector contains the number of times termtj has been seen
in association with wordi (e.g. in forced alignments of audio
data). To compute the IDF score fortj , we count the number



of words in the training data that containtj . Call this number
dj , and the total number of words (i.e. the vocabulary size)W .
The IDF score oftj is given bylog(W/dj). Intuitively, a term
is more useful when it occurs in a small number of words. The
TF part is simply the relative frequency oftj in word i. If a
word hasN terms andnj of these are occurrences oftj , the TF
weight isnj/N . Altogether, the TF-IDF weight of termtj in a
word is:

nj

N
log

W

dj

Term weights are similarly defined for segments in general, with
the TF part being the term frequency within the segment; the
IDF part is fixed as before.

Given the vector representation of two objects, in our case
words, one widely used method for defining similarity is as the
cosine of the angle between the vectors. If we have vectorsva

andvb, their similarity is defined as

S(a, b) =
va · vb

|va||vb|

This results in quantity which varies between0 and1, similar
to probability, and the basis for our acoustic model will be the
logarithm of this quantity, analogous to log-probability.We will
refer to this as thelog-TF-IDF score. We note that TF-IDF
and cosine distance are heuristic rather than statistical in nature;
nevertheless, their use in information retrieval has been very
successful, and we proceed despite their heuristic quality.

2.2. Indexing Units

In our experiments, we have worked with both phoneme and
multi-phone based representations. As with [5], we find that
representations based on plain phonetic decoding are inferior to
those based on multi-phone decoding. To select a set of sub-
word units with which to represent the data, we use the Max-
imum Mutual Information (MMI) Multi-phone units of [15].
These are units which are empirically found to have a large
amount of mutual information with respect to the words. MMI
multi-phone units have proved useful in a variety of contexts
[15, 5, 8]. A phonemic representation of the data may be ob-
tained simply by breaking apart the subword representation. In
our work, n-grams of units are used as terms; bigrams or tri-
grams of phonemes and unigrams of multi-phone units have
proved effective.

2.3. Creating an Inverted Index

In the decoding process, it will be necessary to quickly de-
termine the set of words that are a reasonable match to the
phonemes (or units generally) in a particular segment of speech.
To do this, we follow a two-step process:

1. First, we create a single vector representation for every
word in the dictionary.

2. Second, we create an inverted index that indicates, for a
particular term, all the words which contain it.

These steps are described in turn.
The TF-IDF index is based on an unconstrained decoding of

the training data in terms of subword units: we create a trigram
language model at the multi-phone unit level, and then use itto
decode the audio in terms of multi-phone units. This is com-
bined with a forced alignment of the audio to the transcriptions
to identify theactual realization of every word occurrence in
the training data. For each word, we then tabulate all the ways

blake b l ey k 11 p l ey k
blake b l ey k 10 b l ey k
blake b l ey k 3 l ey k
blake b l ey k 2 t ax l ey k
blake b l ey k 2 p ax l ey k
blake b l ey k 1 p l ey

Figure 1: Realizations of the word “blake.” The second column
is the expected dictionary pronunciation; the last column is the
observed realization.

it has been spoken, along with counts of these events. This is
illustrated in Figure 1 for the word “blake.” This indicatesthat
“blake,” with dictionary pronunciation “b l ey k,” has been seen
eleven times as “p l ey k,” ten times in expected form, twice
as “t ax l ey k,” and so forth. Note that since we base the in-
dex on actual realizations, unexpected pronunciation variability
(and system error) is modeled: in this case, we will learn that
“p l ey k” is a pretty good indicator of “blake.”

From the set of realizations, we create a single vector rep-
resentation for each word. The terms (e.g. bi-phone pairs)
for each realization are extracted, weighted with the realization
count, and accumulated. Then, the term-frequencies are com-
puted for the word, along with the IDF weights of the terms.
Finally, a TF-IDF vector is created for each word.

The reverse index is straightforwardly created, with one
modification for efficiency: a wordw will not occur in the re-
verse index (short-list) for termt if fewer that k% (typically
10%) of the realizations of the word containt. In the example
above, “blake” would not be placed on the short-list of “t ax,”
since they have been seen together just twice out of29 occur-
rences of “blake”. Without this type of restriction, the reverse
index becomes unmanageably large.

2.4. Extensions

We have found that two modifications to the log-TF-IDF score
have a beneficial effect on accuracy.

2.4.1. Length Cost

The presence of terms with very low IDF values will have lit-
tle effect on the cosine distance; they are essentially invisible.
However, they do represent the presence of acoustic units ina
hypothesized word, and we have found it beneficial to model
this. If we denote the number of units within a segment by
n, one way of doing this is to explicitly tabulateP (n|wi) for
each wordwi. This probability can then be weighted and com-
bined with the log-TF-IDF score. We have found a simpler and
equally effective method is to simply assume that the lengths
are distributed according to a gaussian distribution. Ifli is the
average number of units in a realization of wordwi, andns

the number actually observed in a hypothesized segments, the
length score is then defined asα(li − ns)

2 with some constant
α.

2.4.2. Exact Match Score

A linear combination of log-TF-IDF score and the length score
can be used as a surrogate for the acoustic score to produce
good word lattices. The one-best accuracy is improved, how-
ever, by making the following modification. LetAC(s, i) be
the acoustic score associated with postulating wordwi as the



label for segments. Let seq(s) ∈ pron(i) denote the event
that the unit sequence present in the segment is an exact match
to a dictionary pronunciation ofwi. We now define:

AC(s, i) =



0 if seq(s) ∈ pron(wi)
log-TF-IDF(s, i)− α(li − ns)

2 otherwise

In other words, an exact match to a dictionary pronunciationis
allowed zero cost. If a word is always realized in its dictionary
form (and has just one pronunciation), this will happen anyway;
but typically it is seen in a variety of realizations, so the TF-
IDF vector will be “diffuse” and the log-IF-IDF score would
not otherwise be zero.

3. Recognizer Structure
In this section we describe how the TF-IDF acoustic model is
used in the recognizer. Note that the TF-IDF scores are in-
herently segmental, and unlike standard GMM-based scores,
they cannot be accumulated frame-by-frame or unit-by-unit.
Thus the recognition process is segmental rather than frame-
synchronous.

Recognition is done as an offline process, and proceeds in
two steps. First, for every possible segment within the utter-
ance, a shortlist of words is created. Theoretically, if there
are k units detected in the utterance, there areO(k2) possi-
ble segments. In practice, words are almost never more than
15 phonemes long, and so by restricting the segment length, the
computational complexity becomes linear. After the set of can-
didate segment/word combinations is created, a dynamic pro-
gramming search is performed to find the best scoring word se-
quence, including the application of an n-gram language model.
These steps are now described in more detail.

3.1. Finding Word Candidates

Let cand(i, j) be the set of words which are deemed to be rea-
sonable matches to the segment starting with the unit at posi-
tion i and ending at positionj, inclusive. Denote the expected
length of wordw by len(w). Denote the length of the segment
by len(s) = j − i + 1. We computecand(i, j) for all i andj
as follows:

1. Create the term vector from the units present in the seg-
ment.

2. For each termt in the vector, add wordw to cand(i, j) if
w is on the inverse index fort, and|(len(w)−len(s)| <
δ. For phoneme units,δ = 4 works well.

3. Let LM(w) be the log of the unigram language model
probability of w. Assign a score to wordw equal to
AC(s,w) + βLM(s), i.e. a weighted combination of
the unigram LM score with the TF-IDF based acoustic
score.

4. Sort the word candidates on the assigned scores.

5. Keep the N-best words (e.g. 50) as candidate labels for
the segment.

3.2. Finding the Best Word Sequence

After the sets of candidate words for each possible segment are
collected, a simple dynamic programming search is made; this
applies a general n-gram language model, and finds the best
word sequence. It is essentially identical to that presented in
[8], with just two features defined for each segment: the log-
TF-IDF score and the language model score.

Index Oracle Outdegree Runtime 1-best
Biphone 31.4% 2.2 0.09 xRT 36.7%
Triphone 31.1 2.3 0.11 36.4
Multi-phone 36.1 2.4 0.0005 38.1

Table 1: Decoding results with TF-IDF AM and trigram LM.
Sentence error rate (SER) is reported for the oracle and 1-best
lattice paths. The average outdegree for lattice nodes is pro-
vided as a measure of lattice complexity.

FM/DM Beam Oracle Outdegree Runtime 1-best
10/5 31.1 % 2.3 0.09 xRT 36.4%
50/50 27.5 19 0.20 36.4
50/100 26.2 44 0.27 36.4
50/150 25.6 79 0.35 36.4
Transducer 29.4 2.1 0.008 36.4
HMM Decoder 25.4 1.5 1 35.2

Table 2: Sentence error rate with TF-IDF AM, trigram LM and
empirical pronunciations as a function of beams, and compari-
son with Transduction and HMM baseline.

4. Experimental Results
4.1. Voice Search Data

Our first set of experimental results concerns mobile voice
search data, collected from the Bing Mobile cell-phone client
[13]. This is a mobile phone application with which users
can request business information by voice. Typical queriesare
“Leo’s Bar & Grill” or “Mexican Restaurants.” When there
is uncertainty in the speech recognition results, the n-best re-
sults are presented to the user to choose between or reject. To
test the TF-IDF acoustic model, we used about 1200 hours of
speech and the corresponding user selections to build a basic
ML-trained speech recognition system with about11k acous-
tic states and260k gaussians. Multi-phone acoustic units were
identified using the procedure of [15]. To build the TF-IDF in-
dex, we used two sources of data:

• A phonetic dictionary

• The actual acoustic realizations of a held-out set of 1200
hours of data. To get these realizations, we trained
a multi-phone based trigram LM, and decoded using
multi-phone units as “words.”

Whereas the dictionary pronunciation of a word conveys our
prior knowledge, the actual realizations will reflect pronuncia-
tion variability, as well as the error characteristics of the multi-
phone detection process. The dictionary pronunciations are
simply added to the set of realizations (with count 1) prior to
building the index. Following [5], we split the multi-phonede-
tections back to phonemes, and then built phoneme based in-
dexes. This results in a smaller number of basic indexing units,
and has proven better than both using the multi-phone units di-
rectly and detecting phonemes directly. Our test set consists of
8777 utterances with hand-transcribed references.

In Table 1, we show the effect of using different index-
ing units on sentence accuracy. A trigram word-level language
model is used in these experiments. We see that a triphone based
index produces slightly better accuracy, though with slightly
larger lattices. Note that the biphone and triphone representa-
tions are actually formed by taking multi-phone output, break-



Method Oracle Outdegree Runtime 1-best
biphone, 10/20 9.1 6.5 0.14 xRT 16.7%
triphone, 10/20 8.8 7.5 0.17 16.3
triphone, 30/90 7.3 35 0.66 16.3
triphone, 30/150 6.8 66 1.0 16.3
Transducer 9.8 1.1 0.092 14.4
HMM Decoder 3.7 2.2 1 9.7

Table 3: Wall Street Journal results. Lattice oracle and 1-best
results are reported as word error rate (WER).

Method Oracle WER 1-best WER
Transduction 2.9% 3.2%
TF-IDF AM 1.9 3.2

Table 4: Word error rates using the correct phonetic sequences.

ing it down to the phoneme level, and then using phoneme
n-grams. Using the multi-phone units directly is significantly
worse, though because there are many fewer per utterance, and
the index is smaller, the decoding time is very fast.

In Table 2, we show the effect of adjusting the decoding
beams, and compare results with phone-to-word transduction
with an error model [9], and the HMM baseline. The FM (fast-
match) beam is the number of word candidates returned for each
segment (c.f. Section 3.1). The DM (detailed-match) beam is
the number of hypotheses propagated from any time step in the
secondary dynamic programming search. The transducer pro-
duces n-best lists which we then converted into lattices; native
lattice generation would likely produce somewhat better results.
We see that with the TF-IDF approach, while 1-best accuracy
plateaus even at tight beams, the oracle accuracy steadily in-
creases.

4.2. Wall Street Journal Data

The experimental results of the last section indicate that the
TF-IDF acoustic model performs well with voice-search data.
However, the average length of such utterances is just over two
words, raising the question of how well the approach will work
for longer utterances. To answer this question, we have applied
the method to Wall Street Journal data. To make the acoustic-
unit decodings, we trained a conventional HMM system on
the WSJ SI-284 data, comprising about 72 hours of data taken
from 284 speakers in both the WSJ0 and WSJ1 distributions
(LDC93S6B,LDC94S13B). Results are reported for the open
vocabulary 20k development set, and we used the distributed
ARPA trigram language model. We have not yet applied MMI
multi-phone unit decoding to the WSJ data, and instead have
used pronlex syllable inventory (LDC97L20). After decoding at
the syllable level, we broke the syllables down into phonemes to
create the TF-IDF index. Both dictionary and realized pronun-
ciations were used to make the index. Using this same acoustic
model and language model in a conventional HMM decoding
produces a 9.7% word error rate.

Table 3 presents results on this task. We see that while the
TF-IDF acoustic model does not produce 1-best results at the
level of a HMM decoding, the lattice oracle error rate is reason-
able, and the process is suitable for its intended purpose asa fast
match for subsequent processing. To understand whether this is
due to any inherent limitations in the modeling process, we per-
formed an experiment with oracle input, in which the input pho-

netic sequence corresponded to that expected on the basis ofthe
dictionary. The results are shown in Table 4; both transduction
and TF-IDF decoding produce a 1-best 3.2% WER. Further, the
TF-IDF approach achieves an oracle error rate of 1.9%, whichis
the best possible since the out-of-vocabulary rate is also 1.9%.
Thus, it appears that the limiting factor is the quality of the in-
put, rather than a fundamental limit on possible model perfor-
mance.

5. Conclusion
In this paper, we have extended the TF-IDF modeling of [5]
for use in continuous speech recognition. The model is used to
produce a segment level acoustic score which is combined with
a standard n-gram language model. The search for the best word
sequence is done with a segment-level dynamic programming
algorithm. We find that this procedure produces good resultsin
a voice-search task, and lattices with a reasonable oracle error
rate on the Wall Street Journal task. The development of this
method brings us one step closer to being able to do speech
recognition based on the detection of sub-word audio attributes.
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