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ABSTRACT

Components that process state, rather than immutable data, are important because

they make programs more usable with their ability to process continuously changing

data. For example, a compiler built out of state-processing components can detect pro-

gramming errors as soon as programmers write them. Unfortunately, state-processing

components are difficult to assemble because existing languages depend on awkward

event handling mechanisms to communicate changes in state. Because the encoding of

event handling details is not very modular, glue code that assembles state-processing

components is often excessively large.

This dissertation describes how state-processing components can be glued together

with less code through time-varying values known as signals. Signals are state ab-

stractions that hide event handling details from glue code by standardizing how state

changes are communicated. We explore how signals can be used to assemble components

in our language SuperGlue. Although signals have been explored in other languages,

SuperGlue is unique in its use of simple wire-like connections to express component

assemblies. To support components that process graph-like state, such as trees, Super-

Glue has object-oriented abstractions that can be used to express an unbounded number

of signal connections. With signals and objects, programmers can build complicated

state-processing programs with reasonable amounts of glue code.

SuperGlue is a pragmatic language that supports the reuse of existing Java com-

ponents. For example, SuperGlue code can reuse user-interface components in Java’s

Swing library. We have found that SuperGlue is beneficial in programs that involve

significant amounts of state processing, such as many user-interface programs. For

example, the SuperGlue implementation of an email client is about half the size of an

equivalent Java implementation.
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PREFACE

Programming languages have advanced little in the last thirty years: the languages

of today are only slightly better than the languages of yesterday. Although much of this

has to do with the abilities and foresight of early computing pioneers, we are reaching a

breaking point where we will require significantly better programming languages in the

future. For this reason, in addition to exploring incremental improvements in existing

languages, we must also explore new kinds of languages that radically change how

programs are written. The research in this dissertation is my effort to do the latter.

I thank the many people on my committee, in the Flux Group, in Utah’s PLT, and

elsewhere who have helped me out through my years in graduate school. Specific thanks

go to Patrick Tullman, Matthew Flatt, and Richard Cardone, who significantly inspired

me with their arguments, ideas, and conversations in the early course of my research. I

would especially like to thank my advisor, Wilson C. Hsieh, for his patience and focus,

which made this dissertation possible.



CHAPTER 1

INTRODUCTION

Many kinds of components, such as user-interface widgets, continuously recompute

their output data as their input data changes over time. State-processing components

enhance program usability when compared to other kinds of components that must be

re-executed manually whenever their input data changes. For example, compiler com-

ponents can often only provide syntax and type errors for source code frozen at the

time of a compiler execution. However, the compiler components of many development

environments such as Eclipse [21] can recompute compiler errors for source code as it

is being edited. In these compilers, programmers can be notified of compiler errors as

soon as they type them. Because state-processing components automatically adapt to

changing data inputs, they are valuable building blocks of programs that continuously

aid users without requiring disruptive user attention.

The glue code that assembles state-processing components together is often difficult

to write because existing programming languages lack good abstractions for communi-

cating changes in state. Although many programming languages have good abstractions,

such as fields, for storing and retrieving values in state, abstractions for communicating

changes in the values of state often involve event-handling mechanisms. Writing glue

code that deals with event handling involves managing how events are transmitted be-

tween components. This event-handling glue code is often difficult to write because it

suffers from the following modularity problems:

– Compatibility: interfaces for handling events are often not standardized between

components. As a result, glue code must often implement custom event handlers

that adapt how events are handled between components. For example, in the Java

implementation of an email client, the way an email folder transmits events about
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new email messages must be adapted to how a user-interface table receives events

about row insertions.

– Redundancy: dealing with event handling often involves encoding the same logic

more than once. For example, in an email client, the logic of what email messages

are being viewed must often be encoded twice: first to access the current email

messages of a folder and second to detect when messages are added to or removed

from the email folder.

– Conditional use: programs often refer to state in conditions that guard when and

how components use state in other components. These conditions are often im-

plemented as custom event handlers with a significant amount of redundant logic.

For example, in an email client, a custom event handler must be implemented to

express the condition of an email folder that is selected in a user-interface tree.

1.1 Example
We use the implementation of a user-interface program to demonstrate how state-

processing components are difficult to glue together. A user-interface program in an

object-oriented language is often organized according to a model-view controller [19]

(MVC) architecture. Components in an MVC architecture process state by playing one

of the following roles in a user-interface program:

– models, which encapsulate data stores such as databases or email mailboxes;

– views, which view state in models for the purpose of producing user output; and

– controllers, which view user input for the purpose of either updating models or

modifying how user output is produced in views.

The MVC architecture promotes loose coupling between model, view, and controller

components. Dependencies between MVC components can be configured externally in

glue code, which deals with event handling to ensure that model, view, and controller

components process each others’ state correctly. For this reason, components in MVC
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architectures are good examples of state-processing components whose glue code are

difficult to write.

The specific user-interface program that we consider is an email client that glues

together the following user interface and email components:

– A mailbox model component, which contains a hierarchy of email folders. Each

folder contains a list of email messages.

– A tree-view component, which displays a hierarchy of nodes as output to users.

This hierarchy of nodes is obtained from model components. Tree-view compo-

nents also provide controller functionality: they support user input in the form of

tree node selection.

– A table-view component, which displays a matrix of rows and columns as output

to users.

Although the above list does not completely describe all components that are used in

an email client, it is sufficient for our example. Our example focuses on how two

requirements of the email client are implemented:

– A folder view, which is a tree-view component, should display as its nodes mail-

boxes and email folders. A list of mailboxes is viewed as the root nodes of

the folder view. The children of a mailbox node are the top-level folders of the

mailbox. The children of a folder node are the subfolders of the folder. The folder

view of an email program is shown as the left tree widget in Figure 1.1.

– A message view, which is a table-view component, should display as its rows the

email messages of an email folder that is selected in the folder view. If it is not

the case that exactly one node is selected in the folder view, or if the selected node

is not a folder, then the message view should be empty.1 The message view of

an email program is shown as the right table widget in Figure 1.1. Because the

1We use this behavior for example purposes only. Many email clients will merge the messages of
multiple email folders that are selected in a folder view.



4

Figure 1.1. A screenshot of an email program; the folder view is the left tree widget in
this screen; the message view is shown as the right table widget in this screen.

School mailbox is selected in the folder view of Figure 1.1, the email messages

of this folder are viewed in the message view.

In the rest of this section, we show how the glue code needed to implement these two

requirements is complicated when Java Swing user-interface [40] and JavaMail [39]

components are used. For simplicity, the following example uses APIs that are idealized

versions of the APIs these libraries actually provide. If idealized APIs were not used, the

examples shown here would be more complicated than is necessary to make our point.

Figure 1.2 and Figure 1.3 show Java glue code that implements the display behavior

requirement of the folder view. The Java code in Figure 1.2 configures how current values

of mailbox and email folder state are communicated to the folder view. The Java code in

Figure 1.3 configures how changes in mailbox and email folder state are communicated

to the folder view.

According to how the MVC architecture is implemented in Swing, tree views access

current state by calling methods in XXXModel objects. In Figure 1.2, the model object

of the folder view, folderViewModel, is an instance of the AbstractTreeModel

class. The getRoot(), getChild(), and getChildCount() methods imple-

mented inside this model object are called by the folder view when it views the current

values of the state it is displaying. These methods are called when the folder view tree is

repainted during program execution.
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ArrayList<Mailbox> mailboxes = ...;
JTree folderView = new JTree();
AbstractTreeModel folderViewModel = new AbstractTreeModel() {
Object getRoot() { return mailboxes; }
Object getChildCount(Object node) {
if (node instanceof List)
return ((List) node).size();

if (node instanceof Mailbox)
return ((Mailbox) node).getFolderCount();

if (node instanceof Folder)
return ((Folder) node).getSubFolderCount();

}
Object getChild(Object node, int index) {
if (node instanceof List)
return ((List) node).get(index);

if (node instanceof Mailbox)
return ((Mailbox) node).getFolder(index);

if (node instanceof Folder)
return ((Folder) node).getSubFolder(index);

}
};
folderView.setModel(folderViewModel);

Figure 1.2. Java glue code that implements and installs an email folder model object of
a folder view component.

Swing and JavaMail both use the observer design pattern [18] to represent event

handlers as objects that are managed flexibly in lists. According to how the MVC

architecture is implemented in both Swing and JavaMail, observers that are used to view

changes in state are objects of XXXListener() classes. Observer objects are installed

and uninstalled by glue code with calls to addXXXListener() and removeXXX-

Listener() methods on components that are being viewed. In Swing, components

are notified of changes in state through calls to notifyXXX() methods on their model

objects. The glue code in Figure 1.3 implements two observers: a folder observer,

which views when folders are added to or removed from a mailbox or folder, and a

tree expansion listener, which views when nodes are expanded and collapsed in a tree

view component. In this code, the folder observer notifies the folder view of new child
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FolderListener folderObserver =
new FolderListener() {
void folderAdded(Folder folder) {
folderViewModel.notifyChildAdded
(folder.getParent(), folder.getIndex());

}
void folderRemoved(Folder folder) {
folderViewModel.notifyChildRemoved
(folder.getParent(), folder.getIndex());

}
};
folderView.addExpansionListener(
new TreeExpansionListener() {
void expanded(Object node) {
if (node instanceof Folder)
((Folder) node).addFolderListener(folderObserver);

/* Consider nodes of list and mailbox types. */
else (node instanceof ...) ...;

}
void collapsed(Object node) {
if (node instanceof Folder)
((Folder) node).removeFolderListener(folderObserver);

else (node instanceof ...) ...;
}

});

Figure 1.3. Java glue code that implements and installs the email folder observer objects
of a folder view component.

nodes, and the tree expansion observer ensures that the folder observer is only installed

on folders that are expanded nodes in the folder view.

The glue code in Figure 1.3 suffers from the following modularity problems:

– Compatibility: a custom folder observer must be implemented by the glue code

in Figure 1.3 to translate email folder addition and removal events into tree view

child addition and removal events. Swing, JavaMail, and many other popular Java

libraries do not provide for any kind of event handling compatibility between

components–they do not even provide reusable observer objects. Instead, event

handling interfaces are very diverse and observer objects are always implemented

in glue code.
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– Mode redundancy: the glue code in Figure 1.3 encodes the same logic, which

specifies what mailbox state is being displayed by the folder view, as the glue code

in Figure 1.2: Figure 1.2 implements the logic for viewing current values, while

Figure 1.3 implements the logic for viewing changes.

– Transition redundancy: the glue code in Figure 1.3 encodes twice the logic to

deal with each of the following requirements:

- When an email folder is added to or removed from a mailbox or folder, notify

the folder view that a child node has been added or removed.

- When a tree node that is a folder is expanded or collapsed, a folder observer

is installed or uninstalled on this folder.

Different interfaces are needed to accommodate both the beginning and end of a

state configuration. For example, one set of interfaces is needed to express adding

an element to a list, expanding a node, and installing an event handler on an event

source, while another separate set of interfaces is needed to express removing an

element from a list, collapsing a node, and uninstalling an event handler on an event

source. Because these sets of interfaces are separated, glue code must encode the

logic for each behavior twice.

– Condition: to minimize event-handling overhead, folder events are only handled

on folders that are expanded in the folder view. As a result, the tree expansion

listener in Figure 1.3 is implemented to install and uninstall the folder observer on

folder nodes as they are expanded and collapsed.

The modularity problems demonstrated in Figure 1.3 are not uncommon in the glue

code of an email client. Consider the Java code in Figure 1.4 and Figure 1.5, which

implement the message view’s model object and observer objects, respectively. As with

the glue code in Figure 1.3, the glue code in Figure 1.4 and Figure 1.5 suffers from

compatibility and redundancy modularity problems. These modularity problems are

exacerbated by how the following two conditions are encoded: first, that only one node
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JTable messageView = new JTable();
AbstractTableModel messageViewModel = new AbstractTableModel() {
Folder active() {
if (folderView.getSelectedCount() != 1) return null;
if (!(folderView.getSelected(0) instanceof Folder))
return null;

return (Folder) folderView.getSelected(0);
}
int getRowCount() {
if (active() != null)
return active().getMessageCount();

else return 0;
}
Object getDataAt(int row, int column) {
Message msg = active().getMessage(row);
... // get column of msg as row.

} ...
};
messageView.setModel(messageViewModel);

Figure 1.4. Java glue code that implements and installs the model object of a message
view component.

of the folder view is selected, and second, that the only selected node is a folder. The

glue code in Figure 1.4 can query the current value of these two conditions with only

two if statements. However, as shown by the tree selection observer implementation in

Figure 1.5, detecting changes in the values of these two conditions is very complicated.

This object’s implementation is complicated because it must detect and react to three

boundary cases:

– When a node is added to or removed from the selection, and only one node that is

a folder is selected, install the message observer on that selected node. This case

actually combines two boundary cases, because there is only one minor syntactic

difference between the implementations of these cases.

– When a node is added to the selection, the first selected node is a folder, and two

nodes are selected, uninstall the message observer from the first selected node.
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MessageCountListener messageObserver =
new MessageCountListener() {
void messageAdded(Message message) {
messageViewModel.notifyRowInserted(message);

}
void messageRemoved(Message message) {
messageViewModel.notifyRowDeleted(message);

}
};
TreeSelectionListener selectionObserver =
new TreeSelectionListener() {
void selectionAdded (Object node) {
if (folderView.getSelected(0) instanceof Folder) {
if (folderView.getSelectedCount() == 2) {
((Folder) folderView.getSelected(0)).
removeMessageCountListener(messageObserver);

messageViewModel.notifyRowsChanged();
} else if (messageViewModel.active() != null) {
messageViewModel.active().
addMessageCountListener(messageObserver);

messageViewModel.notifyRowsChanged();
}

}
}
void selectionRemoved(Object node) {
if (folderView.getSelectedCount() == 0 &&

node instanceof Folder) {
((Folder) node).
removeMessageCountListener(messageObserver);

messageViewModel.notifyRowsChanged();
} else if (messageViewModel.active() != null) {

messageViewModel.active().
addMessageCountListener(messageObserver);

messageViewModel.notifyRowsChanged();
}

}
}

};
folderView.addSelectionListener(selectionObserver);

Figure 1.5. Java glue code that implements and installs the observer objects of a message
view component.
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– When a node is removed from the selection, the removed node is a folder, and no

nodes are selected, uninstall the message observer from the removed node.

The implementations of these boundary cases exhibit a combination of the transition

redundancy and condition modularity problems. As discussed in Section 1.2, this kind

of problem is not dealt with very well using existing solutions.

1.2 Existing Solutions
Because modularity problems related to gluing state-processing components together

are well known, various solutions have been designed to deal with these problems. Some

of the modularity problems described in Section 1.1 can be dealt with through better

component interfaces. Although the Swing and JavaMail libraries have professionally

designed interfaces, perhaps not enough emphasis was placed on making these libraries

easy to use. One potential area of improvement is in the use of shared interfaces to

standardize how state is communicated between different kinds of components. Interface

reuse is already encouraged in object-oriented languages. For example, Java’s Collec-

tions Framework [37] provides standard interfaces for representing and manipulating

collections. The List interface in the java.util package is a standard representation

of a list, which can be used by different components to provide or receive lists. When one

component provides a list through the List interface while another component receives

a list through the List interface, these components are easier to glue together.

Unfortunately, Java’s core libraries do not currently provide a List interface that

standardizes how changes in list state are viewed. The ObservableList interface,

which is declared in Figure 1.6, has been proposed [1] as an interface that can make user

interfaces easier to write. The ObservableList interface supports the installation of

list observers that can handle list element addition and removal events. Although custom

list observers can be implemented in glue code to view changes in a list, the power

of the ObservableList interface is only realized when different state-processing

components use this interface. When components use observable lists, glue code does

not need to implement list observers. Instead, glue code can exchange observable lists
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interface ObservableList {
int size();
Object get(int index);
void addListObserver(ListObserver listener);
void removeListObserver(ListObserver listener);
interface ListObserver {
void elementAdded (Object element, int index);
void elementRemoved(Object element, int index);

}
}

Figure 1.6. The ObservableList Java interface, which describes a list with observ-
able changes in membership.

between components, which lets components install their own list observers to view

changes in these lists.

Figure 1.7 shows how the use of the ObservableList interface in Swing user-

interface and JavaMail classes would eliminate more than two thirds of the code in

Figure 1.2 and Figure 1.3. The model object of a user-interface tree component can im-

plement the getChildren() method to returns node children as ObservableList

objects. The Folder class can also contain a method getSubFolders() that returns

the subfolders of a folder as an ObservableList object. With these enhancements,

the glue code in Figure 1.7 only needs to call the getSubFolders() method on

a folder object in the implementation of the folder-view model’s getChildren()

method. Using the generic ObservableList interface, all details of the necessary

event handling can be dealt with through nonrepetitive component implementation code

in the mailbox and user-interface tree components.

The standardized use of interfaces such as the ObservableList interface only

sometimes solves the modularity problems described here. Standardized interfaces are

only effective when data structures or behavior are generic enough to be used in multiple

components. Also, standardized interfaces cannot by themselves solve the condition-

modularity problem. For example in Figure 1.5, the implementation of the tree-selection

observer cannot be replaced with the use of a standardized interface because tree node

selection state is used conditionally. Standardized interfaces only reduce the amount
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ObservableList mailboxes = ...;
JTree folderView = new JTree();
AbstractTreeModel folderViewModel = new AbstractTreeModel() {
Object getRoot() { return mailboxes; }
ObservableList getChildren(Object node) {
if (node instanceof ObservableList)
return ((ObservableList) node);

if (node instanceof Mailbox)
return ((Mailbox) node).getFolders();

if (node instanceof Folder)
return ((Folder) node).getSubFolders();

}
};
folderView.setModel(folderViewModel);

Figure 1.7. Glue code rewritten from Figure 1.2 to use the ObservableList inter-
face.

of code needed to view state between components, and are not effective in expressing

conditions that refer to state.

Interfaces can also be designed to eliminate some forms of boundary redundancy in

glue code. Rather than support begin and end-style events and operations with differ-

ent interfaces, components can support events and operations with one interface that

expresses the begin and end contexts as a parameter. For example, list add() and

remove() methods can be replaced with a single changed() method that takes as

an argument whether an element is added or removed as an argument. Although this

technique can be effective, it suffers from three problems. First, programming to such

an interface is unnatural for most programmers. For example, most programmers prefer

having separate add and remove methods in an interface rather than a single change

method with an extra boolean argument. Second, fewer methods with more arguments

can make interfaces more difficult to use because programmers may have to understand

arguments that handle cases not important to them. Third, this technique cannot elim-

inate kinds of boundary redundancies that do not completely share the same structure.

For example, the code in Figure 1.5 that deals with tree selection and event handling

would not benefit from this technique because handling selection and deselection events

requires code with different structures.
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Beyond better interface design, language design has also been used to address mod-

ularity problems in glue code. Many programming languages support callback proce-

dures with a very verbose syntax. For example, expressing callbacks in Java is overly

verbose because they are expressed as methods in classes. Code that glues together

state-processing components often looks better in languages such as Smalltalk [19] or

Python because they support callbacks with syntax that is less verbose. Although brief

callback syntax can encourage reuse of small pieces of code through quickly defined

high-order functions, it does not solve the modularity problems presented in this chapter.

Because the task of gluing together state-processing components often involves event

handling, we could try enhancing programming languages with first-class event han-

dling abstractions. Proposed event handling abstractions [31] provide a better syntax

for expressing event handlers and firing events, but they do not address the modularity

problems that we have discussed. Instead, to solve these problems, we must completely

hide event handling details completely from glue code.

1.3 SuperGlue
This dissertation describes a methodology for building state-processing components

that can be assembled together with less glue code. Components in our methodology are

assembled together through signals [13], which represent state as time-varying values.

Unlike conventional abstractions that represent state, such as fields, signals can be used

directly in computations rather than their current values. A computation that refers

to a signal is also a signal whose value changes automatically when the referred-to

signal’s value changes. For example, if x and y are signals, then x + y is a signal

expression whose current value is always the sum of the current values for the x and

y signals. Signals are abstractions that standardize how state is communicated between

components. Although event handling can still be used to communicate changes in state

through signals, the details of this event handling are no longer a concern of the glue

code programmer.

We have designed and implemented a language known as SuperGlue where com-

ponents are assembled together through signals. SuperGlue is based on a port and
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connection paradigm. A component provides and receives data through ports that exist

between the component’s implementation and other components. Programmers then

write glue code to connect the provided ports (exports) to the required ports (imports)

of a program’s components. The port-connection paradigm is often the basis for module

systems [15, 27, 34] and architecture-description languages [2, 28] because connections

allow for explicit and configurable component dependencies. For component assembly

tasks, connections are often preferable to more powerful procedure abstractions, which

obscure component relationships through recursion and indirection [24]. Because the

emphasis of this dissertation is on glue code, signals in SuperGlue are manipulated

through connections. SuperGlue’s use of connections is in contrast to function ap-

plications, which are used to manipulate signals in functional-reactive programming

languages [6, 13, 20].

Our design of SuperGlue overcomes the following two limitations of the basic con-

nection-port paradigm:

– Connections are static relationships that cannot be changed during program execu-

tion.

– Expressing each connection individually does not scale, meaning a large or un-

bounded number of connections cannot be encoded effectively.

For many module systems and architecture-description languages, these two limitations

are acceptable because connections in these languages are static and of a coarse grain.

For example, connections in Jiazzi [27], which is a module system for Java, are static and

manipulate packages that contain many classes. These two limitations must be addressed

in SuperGlue because connections between state-processing components are often dy-

namic and of a fine granularity. For example, what is connected to a user-interface table’s

rows can change dynamically according to user selection, and user-interface trees contain

a hierarchy of nodes that must be connected from another hierarchy of signals. To address

these two limitations, connections in SuperGlue are augmented with two features:
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– Connections in SuperGlue can be guarded by conditions whose truth values can

change at run-time. Connections to the same port are prioritized in a circuit that

switches how the port is connected at run-time based on connection conditions.

– Object-oriented abstractions are used to abstract over signal connections so con-

nection graphs of large or unbounded sizes can be encoded in SuperGlue with

nonrepetitive code.

These two features make SuperGlue code effective in gluing together state-processing

components without the use of more powerful control flow and procedure constructs that

obscure component relationships.

Circuits in SuperGlue are heavily related to signals: only signal expressions can

guard a connection because dynamic switching depends on the encapsulated commu-

nication of changes in state. Circuits encode dynamic switching behavior in a static

connection graph and enable the direct encoding of conditions that refer to state. For

example, in the email client of Section 1.1, a circuit can change what email folder’s

messages are viewed in a message view table. Although circuits are not powerful enough

to express arbitrary kinds of dynamic behavior, they can express the dynamic behavior

that is commonly needed to assemble state-processing components together.

SuperGlue’s object-oriented abstractions are used to construct a program’s connec-

tion graph, which can be unbounded in size. Our approach uses extensible types in a way

that is analogous to how virtual methods are dispatched in conventional object-oriented

languages. An unbounded-sized connection graph is constructed through type-based

pattern matching: new connections can be created relative to existing connections in

the graph that match specified type patterns. Nodes in the connection graph are either

objects or inner objects, which are the public members of objects that represent entities

contained in these objects. For example, inner objects can represent the email folders

of a mailbox and the nodes of a user-interface tree. An object can create an unbounded

number of inner objects, and therefore inner objects can only be identified in connections

by their types and by the types of the values that are connected to them. For example, a
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connection can match each email folder that is connected to a tree node and then connect

the folder’s subfolders to the node’s children.

Our object-oriented approach is based on how state-processing components are cur-

rently assembled in object-oriented languages such as Java, where run-time connection

matching serves the same purpose as run-time type queries. Besides inner objects,

SuperGlue supports class extension and interfaces, which are common abstractions in

other object-oriented languages. These abstractions have been modified to work with

connections rather than method calls. For example, class extension in SuperGlue is used

to prioritize connections in circuits, which serves the same purpose as method overriding.

As a concrete example of how SuperGlue can reduce the amount of code needed to

glue state-processing components together, consider the SuperGlue code in Figure 1.8.

This code glues together the following state-processing components in an email client: a

folder view (folderView), which is a user-interface tree component; an email mailbox

(mailbox), which contains a hierarchy of email folders and messages; and a message

view (messageView), which is a user-interface table component. The code in Fig-

ure 1.8 implements the following behavior: the messages of a folder are viewed as rows

in a message view when only one folder is selected in a folder view. This code involves

two conditions. The first line of Figure 1.8 checks that only one node is selected in the

folder view. The second line of Figure 1.8 checks that the first and only node selected

in the folder view is an email folder. This condition is expressed as a connection query,

which checks if a value of a specified type is connected by a signal connection to the

target value of the query. If both of these conditions are true, a connection on the third

line of Figure 1.8 connects the messages signal of the email folder to the rows signal

of the message view.

if (folderView.selected.size == 1 &&
folder = <mailbox.Folder> folderView.selected.get(0))

messageView.rows = folder.messages;

Figure 1.8. SuperGlue code that implements the following email client behavior: the
messages of a folder are viewed as rows in a message view table when only one node is
selected in a folder view tree, and this node is an email folder.
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Because the SuperGlue code in Figure 1.8 is evaluated continuously, the two con-

ditions in this code and the rows of the message view can change their values during

program execution. The user could select more than one node in a folder view tree, which

causes the first condition to become false, and then deselect nodes until only one node is

selected, which causes the first condition to become true. The user can select a node in a

folder view tree that is not an email folder, which causes the second condition to become

false. When a new email message is added to the folder whose messages are connected

to the message view table’s rows, a new row is added to the message view table. All of

this behavior occurs in SuperGlue because of three lines of code. By comparison, more

than thirty lines of code are required in Figure 1.4 and Figure 1.5 to implement the same

behavior in Java using Java’s Swing and JavaMail libraries.

In addition to signals and object-oriented abstractions, SuperGlue has two pragmatic

features. First, in addition to signals, SuperGlue supports imperative event and command

streams, which can handle discrete states and operations, such as when a user-interface

button is pushed or an email message is deleted. Streams in SuperGlue are designed to

work with signals, e.g., signals can be used in conditions that guard stream connections

and uses. Second, SuperGlue signals and streams can be used and implemented in Java

code, which is useful for two reasons:

– SuperGlue lacks abstractions, such as recursive functions, for expressing algo-

rithms that are often used in component implementations. Therefore, it is often

easier to implement components in a full-featured language such as Java rather

than SuperGlue.

– Existing Java class libraries can be wrapped by new SuperGlue class libraries. For

example, we have implemented the GlueUI class library, which wraps classes in

Java’s Swing library.

The use of SuperGlue is beneficial in programs that involve significant amounts of

continuous processing behavior. For example, we have found that the SuperGlue imple-

mentation of an email client contains about half as much code as the Java implementation

of a similar client. The implementation of an email client benefits from SuperGlue
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because it has navigation and viewing features that continuously process changing user

input and email state. Using SuperGlue is not very beneficial for programming tasks that

do not reuse state-processing components, such as in building user-interfaces that only

produce output in response to explicit user commands. Instead, SuperGlue enables pro-

grammers to build highly usable programs out of state-processing components without

having to deal with the complexity of event-handling.

1.4 Dissertation Overview
This dissertation describes SuperGlue and how it solves the glue code problems

described in this chapter. The rest of this dissertation is organized as follows. Chapter 2

introduces SuperGlue with its signal, object-oriented, stream, and class implementation

abstractions. Chapter 3 evaluates how SuperGlue improves on how state-processing

components are glued together. This evaluation involves three case studies: the first

study explores how a library is designed in SuperGlue, the second study compares the

SuperGlue implementation of a email client with an implementation and Java, and the

third study shows how SuperGlue can be used to build language-aware editors. Chap-

ter 4 describes SuperGlue’s semantics, syntax, and implementation. Chapter 5 discusses

related work in the areas of functional-reactive, object-oriented, logic, constraint, and

component programming languages. Chapter 6 summarizes our conclusions and de-

scribes future work.



CHAPTER 2

SUPERGLUE

The modularity problems that are described in Chapter 1 occur when glue code

is exposed to event handling details that communicate state changes between compo-

nents. When event handling is hidden from glue code with standardized interfaces, these

modularity problems disappear and glue code is much easier to write. Unfortunately,

standardized interfaces cannot hide event handling in many situations, such as when

state is used in conditions.

This dissertation explores how language abstractions known as signals can be used

as component connectors that hide event handling from glue code. Signals represent

state directly as time-varying values. Our exploration involves designing a new language

called SuperGlue with signals as its core abstraction. A SuperGlue program is assembled

out of objects, which interact by viewing each others’ state through signals. An object

views state through its imported signals, and provides state for viewing through its

exported signals. SuperGlue code defines program behavior by connecting the signals

of the program’s objects together.

SuperGlue code is organized into rule-like connections whose whose antecedents

are conditions. Conditions can refer to signals and are recomputed when the values of

these signals change. As a result, the use of state in conditions is directly expressible in

SuperGlue code. Connections to the same signal are prioritized in a circuit, where only

the highest priority connection whose conditions are currently true connects the signal.

Because conditions can refer to signals, the connection chosen to connect a signal can

change during program execution. This continuous switching behavior allows state to

control program behavior without exposing glue code to event handling details.

SuperGlue has object-oriented abstractions to deal with state that is organized into

graph-like structures of potentially unbounded sizes, such as lists and trees. Object-
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oriented abstractions also enable the reuse of connection patterns in the same program

and in multiple programs. Because circuit construction depends on being able to identify

what signal is being connected, signals in SuperGlue can only be connected when their

containing values can be statically identified. Object-oriented abstractions deal with this

restriction by allowing glue code to abstract over signal-containing values by their types.

As a result, these abstractions enable SuperGlue code to compactly express programs

that can connect an unbounded number of signals. For example, object-oriented ab-

straction enables SuperGlue code to express the example in Section 1.1, where an email

client’s folder view tree has an unbounded number of mailbox and email folder nodes.

SuperGlue’s object-oriented abstractions are as follows:

– Inner objects have object-like declarations and are the public members of normal

top-level objects. Inner objects are used to represent public entities that are created

inside an object and can be unbounded in number.

– Connection variables abstract over signal connections according to the run-time

types of inner objects and objects that are targeted by the connections. Connection

variables allow multiple objects and inner objects to be connected based on their

types, which is analogous to type-based method dispatch in object-oriented lan-

guages. Because inner objects are not created by the glue code that connects them,

their ports can only be connected through connection variables.

– Connection queries can distinguish between inner objects based on what values

are connected to them. The connection of other values to inner objects and the

use of connection queries to query these values reifies existing connections to

glue code. When inner objects, connection variables, and connection queries are

used together, glue code can express new connections according to the structure

of existing connections, which enables the construction of unbounded connection

graphs.

– Interfaces are types that declare ports without implementing them. As in other

object-oriented languages, when objects implement the same interfaces, they are
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easier to glue together. Interfaces can also be used with connection variables to

express mixin-like enhancements to existing objects and inner objects.

– Extension enables the reuse of object, inner object, and interface types. Connec-

tion overriding, which is analogous to method overriding, is supported through

the use of type extension to prioritize signal connections in circuits. Extension in

classes also enables the reuse of object implementations.

SuperGlue’s abstractions are designed to help programmers deal with the complexity

of program connection graphs in a way that is compatible with existing object-oriented

programming styles and components. With SuperGlue’s object-oriented abstractions,

programmers can build explicit connection graphs of unbounded sizes in a way that is

similar to how implicit connection graphs are constructed in existing object-oriented

languages. For example, the use of email folders as user-interface tree nodes are often

expressed in Java through model objects that dynamically associate tree node behavior

with email folder values. In SuperGlue, this behavior can be directly expressed through

email folder inner objects that are connected to tree node inner objects and are imple-

mented with the same Java-based components.

Signals hide event-handling details from glue code by completely hiding control-flow

details from glue code programmers. However, there are many situations where glue

code programmers cannot avoid dealing with event-handling or control-flow details. For

example, glue code might need to intercept an event where a user interface button is

pushed, iterate over a list of email messages, or perform a command that deletes an

email message. Because these events and commands involve discrete behavior, they

cannot be effectively represented as signals. Instead, they are supported in SuperGlue

through abstractions known as streams. Streams are designed to work effectively with

signals so programmers do not need to sacrifice the benefit of using signals when they

deal with discrete behavior.

Objects are instantiated from classes that are implemented in one of two ways. First,

a class can be implemented by SuperGlue code that assembles other objects together.

Class implementations in SuperGlue enable the reuse of glue code, so function-like
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abstractions are not needed. Second, a class can be implemented in another programming

language with a driver that maps between the language’s abstractions and SuperGlue’s

abstractions. In our prototype of SuperGlue, classes can be implemented in Java ac-

cording to a program architecture illustrated in Figure 2.1. In this illustration, two

objects are instantiated from classes that are implemented in Java, and interact through

circuits defined in SuperGlue code. Because of SuperGlue’s object-oriented abstractions,

SuperGlue classes can effectively represent many existing Java classes. For example, it is

possible to use many widget classes in Java’s Swing user-interface library as SuperGlue

classes.

The rest of this chapter describes SuperGlue’s design in detail. Section 2.1 describes

SuperGlue’s basic signal abstractions. Section 2.2 describes how SuperGlue signals

are organized into objects with object-oriented abstractions. Section 2.3 describes how

SuperGlue supports event and command stream abstractions. Section 2.4 describes how

SuperGlue classes are implemented with SuperGlue and Java code. Section 2.5 discusses

how SuperGlue’s various language features are related.

2.1 Basic Signals
Signals [13] are abstractions that represent state as time-varying values. Conceptu-

ally, signals are evaluated continuously during a program’s execution. In SuperGlue, con-

tinuous evaluation semantics are implemented with two mechanisms: a discrete mecha-

nism that computes the signal’s current value on request and a continuous mechanism that

notifies viewers of changes in the signal’s current value via event handling. Because these

Circuits
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Code
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implement

Object
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Figure 2.1. An illustration of a SuperGlue program’s run-time architecture; “use” means
the Java code is using imported signals through a special Java interface; “implement”
means Java code is providing exported signals by implementing objects of a special Java
interface.
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two mechanisms are encapsulated inside signal abstractions, glue code programmers do

not need to deal with control flow details such as event handling.

Objects, which are SuperGlue’s units of assembly, interact by viewing each others’

state through signals. Objects export signals to provide state that is viewed by other

objects, and import signals to view state that is provided by other objects. An object

is created from a class whose declaration specifies the object’s imported and exported

signals. Two example class declarations are shown in Figure 2.2. Class declarations in

SuperGlue contain imported and exported signal declarations, where the type of a signal

is expressed to the right of a colon. The Thermometer class declares an exported

temperature signal that represents the temperature that thermometer objects mea-

sure. The Label class declares an imported text signal that represents the text that

label objects display. The Label class also declares an imported color signal that

represents the foreground color of a label object.

Two objects can interact in a program when an exported signal of one object is

connected to an imported signal of the other object. SuperGlue’s statement language,

some of which is described in Figure 2.3, is designed to support the concise expression

of signal connections between objects. SuperGlue code is contained inside class imple-

mentations, which are described in Section 2.4. For now, we assume that all SuperGlue

code is expressed in one class with no imports or exports. Before objects are connected

in SuperGlue, they must be declared with their instantiated classes. As an example of

how objects are declared, consider the following object declaration:

let model = new Thermometer;

class Thermometer {
export temperature : int;

}
class Label {
import text : String;
import color : Color;

}

Figure 2.2. The declarations of the Thermometer and Label components.
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statement : new | connection | if | block
new : let object-id = new class-id;
connection: port-ref = port-ref;
port-ref : object-id . port-id (args)?
if : if ( condition ) statement |

if ( condition ) statement else statement
condition : expression | condition && condition
expression: port-ref | object-id |

constant | binary | ...
binary : expression bin-op expression | ...
bin-op : < | > | == | || | && | ...
block : { statement* }
args : ( expression (, expression)* )

Figure 2.3. The syntax of SuperGlue’s statement language as described in this section;
keywords and other terminals (except identifiers) are in bold; identifiers are in italics.

This code declares the model object as an instantiation of the Thermometer class.

Connections in SuperGlue are rules whose consequents are port connections and

whose antecedents are conditions. Connection syntax in SuperGlue resembles assign-

ments in a C-like language: the left-hand side of a connection is the port that is being

connected, and the right-hand side of a connection is an expression that is connected to

the signal. As an example of a connection, consider the following glue code:

let view = new Label;
view.text = "" + model.temperature;

This code connects the temperature signal exported from the model object to the

text signal imported into the view object. Whenever the temperature measured by the

model object changes, the text displayed in the view object is updated automatically to

reflect this change. As in Java, SuperGlue supports the automatic conversion of integers

to strings when combined with strings in plus expressions.

Conditions guard when connections are able to connect signals. When all the condi-

tions of a connection evaluate to true, the connection is active, meaning that its source

expression may be evaluated and used as the target signal’s value. Condition syntax in
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SuperGlue resembles C-like if statements. As an example of a condition, consider the

following glue code:

if (model.temperature > 90)
view.color = red;

This code connects the color red to the foreground color of the view object when the

current temperature measured by the model object is greater than 90. When the current

temperature is not greater than 90, the condition in this code prevents red from being the

foreground color of the view object.

Although conditions and connections in SuperGlue resemble statements in an imper-

ative language, they behave more like rules in a logic programming language. Condi-

tions are evaluated continuously to determine if the connections they guard are active.

In our example, the current temperature can dynamically go from being below 90 to

being above 90, which causes the view object’s foreground color to become red. In

SuperGlue’s implementation, this continuous evaluation is implemented through event

handlers that activate the connection when the current temperature rises above 90.

2.1.1 Circuits

In SuperGlue, multiple connections can connect to the same signal. Together, these

connections form a circuit that controls how a signal is connected during program exe-

cution. At any given time, any number of connections in a circuit can be active. If all

connections in a circuit are inactive at the time that a signal is used, then a run-time error

occurs. If exactly one connection in a circuit is active at some time, then the circuit’s

signal is connected according to that connection.

It is also possible that multiple connections in a circuit are active at the same time.

Only one of these connections can connect the circuit’s imported signal. To explicitly

prioritize connections in a circuit, SuperGlue supports else clauses. Connections that

are expressed in the body of an else clause are of a lower priority than connections

expressed in the body of the corresponding if clause. As an example, the glue code

in Figure 2.4 continuously connects a different color to the label object’s foreground

color depending on the current temperature. As the current temperature falls below 90,
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let model = new Thermometer;
let view = new Label;
view.text = model.temperature;

if else (model.temperature > 90)
view.color = red;

else if (model.temperature < 40)
view.color = blue;

else if (model.temperature < 40)
view.color = black;

Figure 2.4. Glue code that glues together a view label object and model thermometer
object.

the foreground color of the view label object changes from red to black. Likewise, as

the current temperature falls below 40, the foreground color of the view label object

changes from black to blue.

The color connection code in Figure 2.4 forms a circuit that is illustrated in Figure 2.5.

Conditions, which are triangles in the circuit, activate connection inputs (in) based on

their test (test) inputs. The outputs of these conditions are connected to a switch with

three prioritized input connections from highest priority (hi) to lowest priority (lo).

SuperGlue else clauses can only prioritize connections to the same signal. For ex-

ample, two connections to different signals are not prioritized if they are separated by an

else clause. This behavior differs from if and else clauses in imperative languages,

where code in else clause is only executed if the condition of the corresponding if

clause is false. Under certain circumstances in SuperGlue, a connection expressed in an

else clause can connect a signal even if the conditions in the corresponding if clause

are true.

Connections in a circuit do not always need to be prioritized with respect to each

other. Prioritization might not be necessary because the conditions that guard different

unprioritized connections are never true at the same time. Because there is no general

way to determine if two connections can be active at the same time, run-time checks are

used in SuperGlue to detect ambiguous connections. A run-time error that indicates an

ambiguous connection occurs under the following conditions:
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Figure 2.5. An illustration of a circuit that connects to the color signal of the view
label object; rounded rectangles are objects; boxes that end with triangles are signals;
inverter triangles are conditions; diamonds are tests; and squares are constants.

– A signal is currently being evaluated;

– Two active connections in the signal’s circuit are not prioritized; and

– No other connection in the circuit is active with a higher priority.

The else clauses described in this section can only prioritize connections that are

expressed in the same module. As described in Section 2.2.5, connections in different

modules can be prioritized by the types of their containing objects. In this case, connec-

tions from separate modules can coexist in the same circuit without ambiguity through

the use of natural object-oriented subtyping relationships.

2.2 Object-oriented Signals
With the basic port-connection paradigm, which is supported by the SuperGlue ab-

stractions in Section 2.1, each connection in a program is encoded separately. This

paradigm has two limitations:

– We cannot express programs that deal with stateful graph-like structures such as

lists and trees. Graph-like structures are unbounded in their sizes and therefore

cannot be manipulated with a fixed number of connections.
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– Many connections conform to patterns that are repeated many times within the

same program or across different programs. If each connection must be encoded

separately, then these patterns cannot be modularized and connection code can

become very repetitive.

These limitations effect the construction of real programs. Consider the email client

used as an example in Section 1.1. This email client consists of a tree user-interface tree

that displays a hierarchy of mailboxes and email folders. The limitations of the basic

port-connection paradigm prevent this behavior from being expressed for two reasons:

– The layout of these mailboxes and email folders is unknown until and can change

during program execution. As a result, the number of connections between email

folders and user-interface tree nodes is not statically known.

– The kinds of connections needed between email folders and user-interface tree

nodes conforms to a single pattern. For example, the subfolders of an email folder

are connected to the children of a tree node when the email folder is connected to

the tree node.

To address the two limitations of the port-connection paradigm, we enhance it with

a mechanism to compute new parts of the connection graph according to the structure of

existing parts. In SuperGlue, the types of the values in a connection graph are used to

identify existing connections. SuperGlue supports such type-based pattern matching with

object-oriented abstractions. For example, extension relationships are used to prioritize

connections in circuits. The rest of this section describes SuperGlue’s object-oriented

abstractions.

2.2.1 Inner Objects

Before we can connect an unbounded number of connections, we must first be able

to express connection graphs with an unbounded number of nodes. Such graphs can

be expressed in SuperGlue with the inner object abstraction. Inner objects, which are

members of objects, are similar to objects because they have ports and can undergo
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extension. However, unlike top-level object, inner objects are not instantiated by glue

code and therefore cannot be referred to by their individual identities. Instead, inner

objects are created by objects to serve as constituent parts of the objects’ interfaces.

By creating inner objects, an object can have an unbounded number of ports, which

simplifies the construction of connection graphs with an unbounded number of nodes.

For example, a mailbox object can contain an unbounded number of email folder inner

objects, and a user-interface tree can contain an unbounded number of tree node inner

objects.

Inner object types, which are declared inside class declarations, specify the ports that

are imported and exported by an inner object. The TreeView class, which is declared

in Figure 2.6, contains the declaration of a Node inner object type that represents the

nodes of user-interface trees. A node inner object imports three signals: the text signal

that represents a node’s display text, a child size signal that represents the node’s

number of children, and a child signal that represents the node’s indexed child nodes.

An object of the TreeView class imports a root node signal and exports a selected

node signal. The child, root, and selected signals are all of the Node inner object

type, so the values that pass through these signals are either node inner objects or will be

used to create node inner objects.

Inner objects are created in an object’s implementation when the signals of an entity

contained inside the object are accessed. For example, an object of the TreeView

class in Figure 2.6 creates a node inner object the child signal of a node contained

class TreeView {
inner Node {
import text : String;
import child size : int;
import child(index : int) : Node;

}
import root : Node;
export selected : Node;

}

Figure 2.6. The declarations of the TreeView class and the Node inner object type of
the TreeView class.
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in a user-interface tree is accessed. When an object creates an inner object, a value is

connected to the inner object that distinguishes the inner object from other inner objects

of the same type. The values that an object can connect to its inner objects can be

expressed in the types of the object’s imported signals. For example, in the TreeView

class of Figure 2.6, the types of the imported child and root signals refer to the

Node inner object type, so values obtained through these signals are connected to node

inner objects. Consider the following SuperGlue code, which connects a mailbox object

(whose class is declared in Figure 2.7) to the root node of a tree-view object:

let folderView = new TreeView;
let mailbox = new Mailbox;
folderView.root = mailbox.root folder;

To display a tree of email folders, this code connects the root folder of a mailbox object

to the root node of a folder-view object. The inner object types of the signals involved in

this connection are incompatible: the root folder of a mailbox object is of the Mailbox’s

Folder inner object type, while the root node of a folder view is of the FolderView

class’s Node inner object type. These two inner object types also do not export and

import similar sets of signals. In a connection to an imported signals, inner object types

do not have to match, and in fact should never match in reasonable programs; connecting

an inner object to another inner object of the same class type is not meaningful because

the former inner object becomes inaccessible. Instead, glue code must resolve the in-

class Mailbox {
inner Message {...}
inner Folder {
export sub folders size : int;
export sub folder(i : int) : Folder;

}
export root folder : Folder;

}

Figure 2.7. The declarations of the Mailbox class and the Message and Folder
inner object types of the Mailbox class.
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compatibilities in these signal connections using the connection variable and connection

query mechanisms that are described in Section 2.2.2 and Section 2.2.3.

2.2.2 Connection Variables

Glue code is responsible for connecting the imported signals of any inner object that

is created by a program’s objects. Glue code cannot connect the imported signals of a

specific inner object because the identity of this inner object is encapsulated inside its

creating object. Instead, glue code must connect the imported signals of multiple inner

objects at once by using connection variables, which can abstract over both objects and

inner objects by their types to connect their signals. Connection variables are declared

in SuperGlue code according to the connect-var syntax in Figure 2.8. Connections

expressed through a connection variable apply to all values of the connection variable’s

declared type. As an example, the following glue code connects the children imports

of folder view nodes:

var (node : folderView.Node)
node.child size = 42;

This code declares the node connection variable that abstracts over node inner objects

that are created by the folder-view object. Using the node connection variable as a

target, the code connects 42 to every node inner object’s imported child size signal.

As a result, all node inner objects are configured to have 42 children.

It is often useful to think of a connection variable as a universally quantified variable

because the variable can be bound to any value of its specified type. Connection variables

are only bound according to what connections are being queried, which is similar to how

statement : new | connection | if | block | connect-var
connect-var: var ( var-id : var-type ) statement
var-type : class-id | object-var . inner-id
object-var : var-id | object-id
port-ref : object-var . port-id opt-args

Figure 2.8. The syntax of SuperGlue’s statement language when considered with
connection variables; this syntax builds on the syntax in Figure 2.3.
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procedure arguments are only bound when their containing procedures are called. For

example, the SuperGlue connection described in the previous paragraph provides the

same functionality as the following Java code:

new TreeModel() {
int getChildCount(Object node) {
return 42;

}
...

}

The node parameter of the getChildCount()method is only bound to a value when

is method is called. This binding is similar to how a node connection variable is only

bound when it is used to connect a child size signal. Connection variables improve

on method parameters in two ways. First, connection variables can be used to define

the structure of an object or inner object without a verbose “shell” such as an inner class.

Second, one connection variable can be used to connect multiple ports, while one method

parameter can only be used in the definition of one method.

Because connection variables are bound only when port connections are resolved,

they cannot be used to express iteration. Instead, iterator streams, which are described in

Section 2.3.3, must be used to encode iteration in SuperGlue.

2.2.3 Connection Queries

To reify parts of the connection graph in SuperGlue code, values (constants, objects,

and inner objects) can be connected to inner objects. Inner object connections are es-

tablished through signal connections and are often indicated by the inner object type of

an import. For example, when glue code connects the root folder signal of a mailbox

to the root node signal of a folder view, an email folder inner object of the mailbox is

connected to a tree node inner object of the folder view. The value that is connected to an

inner object can then be queried in glue code, thus revealing existing signal connections.

For example, SuperGlue code can query if a folder is connected to a tree node inner

object, and act on this query to customize how the tree node’s imports are connected.
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Glue code can query what values are connected to inner objects with connection

queries. A connection query is expressed as a condition in an if statement with the

query syntax in Figure 2.9. A connection query tests if a target expression’s evaluation

is of a specified type or a value of this type is connected to the expression’s evaluation.

If a connection query succeeds, it is true and a value of the specified type is bound to the

freshly declared variable. Because connection queries fail if values of their specified type

are not connected to their target expressions, connection query variables are existentially

quantified. The binding of a connection query variable is available to evaluate any

conditions that follow the connection query, or any code that exists in the scope of the

connection query’s if clause. As an example, the following glue code queries if an email

folder is connected to the tree node inner object that is bound to the node connection

variable:

if (folder = <mailbox.Folder> node) ...

If some mailbox folder is connected to the node inner object that is bound to the node

variable, the connection query succeeds, and this mailbox folder is bound to the folder

variable. Otherwise, the folder variable is not bound and the connection that is

guarded by this connection query is not true.

As mentioned in Section 2.2.1, signal connections that involve inner object types are

always incompatible. These incompatibilities are resolved by using connection variables

and connection queries together. Connection variables give glue code access to all inner

objects of some type, while connection queries are used to customize connections to each

of these inner object’s ports based on what values are connected to the inner objects.

As an example, the following glue code connects the sub folders size signals of

condition: expression | query | condition && condition
query : var-id = < var-type > expression

Figure 2.9. The syntax of SuperGlue’s statement language when considered with
connection queries; this syntax builds on the syntax in Figure 2.8.
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email folders to the imported child size signals of the folder view object’s node inner

objects:

var (node : folderView.Node)
if (folder = <mailbox.Folder> node)
node.child size = folder.sub folders size;

In our example, a folder inner object that is connected to a node inner object is used

to provide the subfolders that are connected to the node inner object’s children. This

connection ensures that the number of subfolders in the folder inner object is used as

the number of child nodes in the node inner object. Another connection connects every

subfolder of a folder to a child node of the same index in the node that the folder is

connected to:

var (node : folderView.Node, index : int)
if (folder = <mailbox.Folder> node)
node.child(index) = folder.sub folder(index);

Because the children of a node inner object are also node inner objects, the folder view

object connects folder inner objects to node inner objects whenever this connection is

applied. As a result, this connection can be applied over and over again to create a

hierarchy of signal connections. Although the entire connection graph that can be built

through this connection is potentially unbounded in size,1 termination occurs because

connections are only computed for tree node inner objects that are currently displayed in

the folder view.

Connection queries are similar in functionality and purpose to dynamic type checks

and casts in Java. For example, in Figure 1.2 of Section 1.1, the following Java code is

used to express how many children a tree node has:

Object getChildCount(Object node) {
if (node instanceof Folder)
return ((Folder) node).getSubFolderCount();

...
}

1If every email folder contains ten email subfolders, then there are always tree nodes for the user to
expand.
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Tree nodes in Swing are generic objects in the basic model of a user-interface tree. Java

code handles the case where an email folder is used as a tree node using a dynamic

type check (instanceof) and a cast. This pattern is repeated in many existing Java

components, especially those that conform to the MVC architectures. It is for this reason

that we designed SuperGlue with inner objects, connection variables, and connection

queries. For example, in SuperGlue, glue code can easily identify tree node inner objects

that are connected from email folders.

The example described so far in this section expresses a list abstraction with two

signals, e.g., the child size and child signals are used to express a node inner

object’s list of child nodes. To make our example more realistic, we can use an interface

to express a list abstraction as one signal. The TreeView, Mailbox, and TableView

classes are declared in Figure 2.10 to refer to lists of node inner objects, email folders,

and rows through signals of the List interface type. Interfaces are described in Sec-

tion 2.2.4. For now, assume that the List interface declares a size signal to access the

size of a list and a get signal to access the elements of a list.

The glue code in Figure 2.11 constructs the folder view and message view of an email

client. Glue code for the folder view is similar to the glue code already presented in this

section, except that a List interface reduces the number of connections to use a folder’s

subfolders as a node’s children.

Because connection queries are conditions, they are evaluated continuously to de-

termine if the connections they guard are active. When the expression tested by the

connection query refers to a signal, the connection query’s truth value and the value

that it binds can change during program execution. As an example, consider how the

last connection in Figure 2.11 connects the imported rows signal of a message view

object, which is an object of the TableView class that is declared in Figure 2.10. The

TreeView class in Figure 2.6 declares the exported selected signal, whose type is

a list of node inner objects. The list of nodes that is selected in a tree view depends on

the user, who can select and deselect nodes at any time during program execution. When

a user selects only one node in the folder view tree, and this node is an email folder, the

glue code in Figure 2.11 connects the email messages of this folder to the rows of the
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class TreeView {
inner object Node {
import text : String;
import children : List<Node>;

}
import root : Node;
export selected : List<Node>;

}
class Mailbox {
inner object Message {...}
inner object Folder {
export messages : List<Folder>;
export sub folders : List<Folder>;

}
export root folder : Folder;

}
class TableView {
inner object Row {...}
import rows : List<Row>;
...

}

Figure 2.10. The declarations of the TreeView, Mailbox, and TableView class.

let messageView = new TableView;
let folderView = new TreeView;
let mailbox = new Mailbox;

folderView.root = mailbox.root folder;

var (node : folderView.Node)
if (folder = <mailbox.Folder> node)
node.children = folder.sub folders;

if (folderView.selected.size == 1 &&
folder = <mailbox.Folder> folderView.selected.get(0))

messageView.rows = folder.messages;

Figure 2.11. Code that connects the nodes of a folder view tree and the rows of a message
view table.
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message view table. As an email client executes, different nodes can be selected in the

folder view tree, so different email messages can be displayed in the message view table.

SuperGlue’s support for connection queries and other conditions that refer to signals

solves many of the modularity problems discussed in Chapter 1. As a result, SuperGlue

code can be significantly less complicated than Java code when gluing components

together into an interactive program. For example, the last three lines of glue code

in Figure 2.11 is equivalent in functionality to more than thirty lines of Java code in

Figure 1.4 and Figure 1.5 of Section 1.1.

2.2.4 Interfaces

The next object-oriented abstraction that we discuss is the interface, which addresses

the problem of reusing signal declarations in unrelated object implementations. For

example, a list type consists of multiple signals, such as size and get, that are needed

to represent a list. Redeclaring these signals every time that a list is used in a class

definition is tedious, and different classes can possibly express lists with incompatible

sets of signals. Also, it is often useful to abstract over objects and inner objects without

referring to specific object types. For example, with a Labeled interface, glue code

can express how a generic label signal is connected when an email folder is connected

to any inner object in any object that imports the Labeled interface. Defining a label

connection in this way is useful because there are many kinds of inner objects in different

kinds of user-interface objects that support labeling.

SuperGlue interfaces are analogous to Java interfaces: they describe signals without

describing the implementations of these signals. Interfaces do not specify if their signals

are imported or exported, and the interface’s signals can be used in either way in a class

declaration. Interfaces in SuperGlue can be used in four ways: they can be extended by

other interfaces (discussed in Section 2.2.5), they can be used in signal types, they can

be imported into or exported by a class or inner object type, and they can be used as the

declared types of connection or connection query variables.

Figure 2.12 shows the declarations of three interfaces: the List interface, which

describes lists, and the Labeled interface, which describes objects that can have labels.
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interface List<ENTRY> {
port size : int;
port get(index : int) : ENTRY;
...

}
interface Labeled {
port text : String;
...

}

Figure 2.12. The declarations of the List and Labeled interfaces.

Signals in an interface are declared with the port keyword, and whether the signal is

imported or exported is not specified. The List interface also has a type variable that

describes the list’s entries. Type variables in SuperGlue are similar to type variables in

Java, which are erased before program execution.

If an interface is used as the type of an imported signal, then the interface’s signals

are imported in that class. For example, signals of the List interface are imported under

the children signal in the following declaration of the TreeView class:

class TreeView {
inner object Node {
import children : List<Node>
...

}
...

}

If an interface is used as the type of an exported signal, then the interface’s signals are

exported in that class. For example, signals of the List interface are exported under the

sub folders signal in the following declaration of the Mailbox class:

class Mailbox {
inner object Folder {
export sub folders : List<Folder>;
...

}
...

}
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When two signals of the same interface are connected together, the signals of this inter-

face are connected automatically between these two signals. As an example, consider

the following SuperGlue code:

var (node : folderView.Node)
if (folder = <mailbox.Folder> node)
node.children = folder.sub folders;

The above connection from a sub folders signal to a children signal automati-

cally implies the following connections between signals in the list interface:

node.children.get = folder.sub folders.get;
node.children.size = folder.sub folders.size;

In this way, interfaces not only enable the reuse of signal declarations between different

classes, they also make objects easier to glue together. Interfaces are especially important

when declaring inner object types. Inner object types cannot be shared between unrelated

classes because their implementations are encapsulated in their containing classes. If two

inner object types in different classes share a similar set of signals, the use of interfaces

is the only way to express this similarity in SuperGlue

Interfaces can be used as connection variable types to abstract over objects and inner

objects without referring to specific objects or classes. This usage enables glue code to

express what happens when an object is connected to a general kind of inner object. For

example, the following glue code specifies how an email folder should be labeled:

var (labeled : Labeled)
if (folder = <mailbox.Folder> labeled)
labeled.text = folder.name +
" (" + folder.messages.size + ")";

This glue code declares a connection variable labeled of the imported Labeled in-

terface type, meaning it abstracts over objects or inner objects that import the Labeled

interface. The labeled connection variable is used as the target of a connection query.

If an email folder is connected to an inner object that imports the Labeled interface,

the name of the folder its the number of messages is connected to this object’s text
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signal. Since tree nodes have labels, they can also implement the Labeled interface to

take advantage of connections to signals in objects of the Labeled interface:

class TreeView {
inner object Node imports Labeled { ... }

... }

As a result, whenever an email folder is connected to a tree node, the text label of the

tree node displays the folder’s name and its number of messages.

2.2.5 Extension

Class extension in object-oriented languages allows a class to simultaneously inherit

the type and implementation of another class. To support type reuse, implementation

reuse, and the wrapping of classes written in conventional object-oriented languages,

SuperGlue classes, inner object types, and interfaces also support extension. The seman-

tics of SuperGlue class and inner object extension is analogous to Java class extension:

classes inherit the imports, exports, inner objects, and implementations of extended

classes. Likewise, the semantics of SuperGlue interface extension is analogous to Java

interface extension. Extension enables polymorphism in SuperGlue, where the values of

a type can be used in connections as values of the type’s extended types. Additionally,

connection variables declared with a type abstract over all values of that type, which

includes values of extending types.

As an example of how class and inner object extension is used, consider the user

interface classes declared in Figure 2.13. The Widget class is extended by all user

interface classes. The Widget class declares signals, such as tooltip, that all widgets

export. The Container class is extended by all widgets that contain other widgets. All

containers inherit an Entry inner object type that represents container elements. Values

connected to a container entry must be widgets, which is expressed as a constraint on the

Entry inner object type with the isa keyword. Both the Widget and Container

classes are abstract, which means they are only meant to be extended by other classes

and cannot be used to create objects. The SplitPane class declared in Figure 2.13

is a concrete container that separates two widgets (left and right) with a movable



41

abstract class Widget {
export tooltip : String;

}
abstract class Container extends Widget {
inner object Entry isa Widget {
import scrollable : boolean;

}
}
class SplitPane extends Container {
import left : Entry;
import right : Entry;

}
class TreeView extends Widget {...}
class TableView extends Widget {...}

Figure 2.13. The declarations of the Widget, Container, SplitPane,
TreeView, and TableView classes.

divider. The TreeView and TableView classes, originally declared in Figure 2.6 and

Figure 2.10, are redeclared to be widgets.

With extension, objects can be used polymorphically. As an example consider the

following code:

let folderView = new TreeView;
let messageView = new TableView;
let pane = new SplitPane;
pane.left = folderView;
pane.right = messageView;

The expression “[folderView, messageView]” is a list whose entries are the

folderView and messageView objects. Because the TreeView and TableView

classes both extend the Widget class, the folderView and messageView objects

are both widgets that can be connected to the left and right imported signals of a

split pane container.

Class, inner object, and interface extension are involved in the prioritization of con-

nections in circuits. As described in Section 2.1.1, connection priorities act to resolve

ambiguities when more than one connection is active in a circuit at the same time. The

prioritization described in Section 2.1.1 is locally specified in glue code with else
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clauses. However, a form of global prioritization is also needed to deal with connections

that are not written together and do not exist in the same source code file. In SuperGlue,

this global prioritization is based on class, inner object, and interface types. Extension

relationships are used to determine how specific the target type of a connect is to the

run-time type of a value whose connection is being queried. Connections with types that

are more specific than other connections have a higher priority than these connections.

Rules for prioritizing connections based on types are presented in Section 4.2. Infor-

mally, connections to the ports of specific objects have a higher priority than connections

that target connection variables. Otherwise, extension and implements relationships are

used to prioritize different connections expressed through connection variables.

As an example, consider the following glue code:

var (table : TableView)
table.rows = [];

if (folderView.selected.size == 1 &&
folder = <mailbox.Folder> folderView.selected.get(0))

messageView.rows = folder.messages;

The target of the first connection is the table variable with the TableView type while

the target of the second connection is the messageView instance. Because objects are

more specific than variables with class types, the second connection has a higher priority

than the first connection. As a result, the message view table is connected to an empty

list ([]) only when the first entry of the folder view tree’s selected list does not exist or is

not a folder. In other words, the first connection expresses “default” behavior that applies

to all table view objects, while the second connection “overrides” the first connection for

a specific table view object in a specific situation.

Because connections can be prioritized by extension relationships, object and inner

object behavior can be overridden in an object-oriented way. As an example, consider

the following SuperGlue code:

class Bird {
import flies : boolean;

}
class Penguin extends Bird {}
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var (bird : Bird ) bird .flies = true;
var (penguin : Penguin) penguin.flies = false;

This code expresses that in general birds can fly but penguins, which are also birds,

cannot. The first connection in this code applies to all birds and is therefore of a lower

priority than the second connection, which only applies to penguins.

An additional criterion prioritizes connections based on how connection variables are

used to bind other variables in connection queries. This criterion deals with cases where

values of compatible types are connected to inner objects. As an example, consider code

that defines two connections that connect scrollable signals imported into container

entries:

var (entry : Container.Entry) {
if (widget = <Widget> entry) entry.scrollable = false;
if (tree = <TreeView> entry) entry.scrollable = true;

}

The first connection disables scrolling for container entries that widgets are connected

to. The second connection enables scrolling for container entries that tree views are con-

nected to. Because the target of both connections is an entry connection variable, the

Widget and TreeView class types are compared when prioritizing the connections.

Because the TreeView class extends the Widget class, the second connection in this

code has a higher priority than the first.

The type-based prioritization of connections described here is analogous to virtual

method dispatch in conventional object-oriented languages. Overriding in SuperGlue

involves specifying a new connection with a target whose type is more specific than

existing connections to the same signal. Finally, the ability in SuperGlue to prioritize

connections based on the types of values that are connected to inner objects is analogous

to multiple dispatch in languages that support multimethods [4].

Because arbitrary conditions can be used to guard connections in SuperGlue, it is

difficult and often impossible to determine statically if a signal can be unconnected or

connected ambiguously when the signal can be used. Detecting ambiguity is also an issue

in other object-oriented languages that support predicate dispatch, which can suffer from
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method-not-understood or message-ambiguous errors [14, 29]. Although conservative

algorithms exist for detecting these errors statically, they often depend on global analyses

or limit the power of expressions that guard connections. For these reasons, dynamic type

checking is used in SuperGlue to detect type ambiguity.

2.3 Streams
Signals are abstractions that hide program control flow details from glue code pro-

grammers. Although the use of signals avoid many kinds of modularity problems in

glue code because they hide control flow, many kinds of program behavior that should

be expressed in glue code deal with control flow. Consider the following email client

behavior as an example of how signals are limited: pushing the delete button should

cause all email messages selected in the message view table to be deleted. This behavior

involves three kinds of abstractions that cannot be represented by a signal. First, it

involves an event abstraction that indicates a time instant when a button is pushed.

Second, it involves a command abstraction that deletes an email message at a specified

time instant. Third, it involves an iterator abstraction that iterates over multiple email

messages that are selected in the message view table. Although this message deletion

behavior could be expressed in Java code, doing so would be very inconvenient because

the code required to switch between SuperGlue and Java would dominate the complexity

of this task. Because this behavior involves assembling components together, it must be

possible to implement it in an elegant way with SuperGlue code.

To manipulate control flow details, SuperGlue supports streams, which abstract over

events and commands. Events occur while commands are performed at discrete times in

a program’s execution. SuperGlue streams can be used with signals without sacrificing

the programming benefits of using signals. Streams come in two basic flavors: event

streams that are used to transmit control and data from one caller to multiple callees and

command streams that are used to transmit data and control from multiple callers to one

callee. Event and command streams are described in Section 2.3.1. Event and command

streams can be used to create closures, which can be used to freeze (capture) variable

bindings, create objects, and sequence command execution. Closures are described in
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Section 2.3.2. Event and command streams are also used in iterator streams, which

abstract over sets of data. Iterator streams are described in Section 2.3.3. Finally,

Section 2.3.4 describes how streams are used with signals in SuperGlue code.

2.3.1 Events and Commands

Event and command streams enable the direct manipulation of control flow events in

SuperGlue code. When compared to a conventional programming language, command

streams are analogous to procedures with multiple possible callers and exactly one callee,

while event streams are analogous to callbacks with exactly one caller and multiple pos-

sible callees. Although event and command streams involve similar mechanics, they are

used in different ways: command streams are used to convey that something should be

done, while event streams convey that something has occurred. For example, command

streams can be used to discretely update program state, while event streams can be used

to express the occurrence of an error in a component.

Like signals, streams are ports in objects and inner objects. The syntax of a stream

declaration is similar to the syntax of a signal declaration: a stream declaration is im-

ported or exported, can have arguments, and can have a type. Unlike signals, the type

of a stream can be void, meaning the event or command stream does not return data

when used. The Button and Mailbox class declarations in Figure 2.14 are examples

of how streams are declared. The Button class is a user interface control that declares

an exported pushed event stream. When a user pushes a button, an event is transmitted

through the button’s pushed event stream. The Message inner type of the Mailbox

class describes an email message that exports a delete command stream. To delete

an email message from its mailbox, a command can be transmitted through the email

message’s delete command stream.

The syntax for using streams in glue code is shown in Figure 2.15. Event streams are

accessed in on statements, while command streams are accessed in do statements. Both

on and do statements can be guarded by conditions expressed in if statements. Because

they can be guarded by conditions, do and on statements together often resemble Event-

Condition-Action (ECA) rules. As an example of how do and on statements are used,
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class Button extends Widget {
export event pushed; ...

}
class Mailbox {
class Message {
export command delete : void; ...

} ...
}

Figure 2.14. Declarations of the Button and Mailbox classes.

statement: new | connection | if | block | connect-var |
on | do

on : on ( port-ref ) statement |
on ( var-id = port-ref ) statement

do : do port-ref ; |
do ( port-ref ) statement |
do ( var-id = port-ref ) statement

Figure 2.15. The informal syntax of the SuperGlue statement language when considered
with streams; this syntax builds on the syntax in Figure 2.9.

consider the following SuperGlue code that deletes an email message when a delete

button is pushed:

let delete button = new Button;
/* message is a variable bound to an email message */
on (delete button.pushed)
do message.delete;

The on statement in the above glue code receives an pushed event from the delete

button (delete button) when it is pushed. When the delete button is pushed, the do

statement in the above glue code sends a delete command to the email message that

is bound to the message variable.

Imported streams are connected in circuits in the same way that imported signals

are: stream connection can be guarded by conditions and can be prioritized using else

statements or type specificity. Only an exported stream of the same kind can be directly

connected to an imported stream. To connect a command stream to an event stream or
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vice versa, a special bridge object must be interposed on the connection. For example,

the Function class in SuperGlue’s core library can be used to create function objects

that fire events when commands are performed.

Both event and command streams return values when their types are not void. These

return values are bound to a freshly declared variable. For example, the following code

gets the next random number from a random number factory:

let random = new Random;
do (rnd = random.next)
do sys.println("Random number is " + rnd);

This code also demonstrates how a do statement can specify statements that are executed

after the do statement’s own execution. While on statements will always have statements

that are evaluated when an event occurs, these successive statements are optional for do

statements.

2.3.2 Closures

The statement bodies of all on and do statements are closures with two important

properties. First, a closure inherits an evaluation context that holds variable bindings that

are in effect when the closure is created. A closure uses the variables bindings of this

evaluation context, which foregoes the referential transparency behavior of nonclosure

SuperGlue code. Note that the conditions that guard a closure’s creation could become

false after the closure’s creation. Second, the creation of a closure is an imperative

operation that can lead to the creation of new objects. Connections specified inside a

closure’s definition can then connect the imports of these new objects.

As an example of how closures work, consider the following code that creates a label

when a button is pushed:

let button = new Button;
let sys = new System;
let time = sys.currentTime;
on (my button.pushed) {
let label = new Label;
label.text = "Time is " + time;

}
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In this code, the variable time is declared and bound to the value of a time signal

(sys.time) using the let syntax. When the button created by this code is pushed, a

closure is created with a label whose text displays the time that the button was pushed.

For example, if the button is pushed at 4:32, the string displayed by the label is "Time

is 4:32". If the button in this code is pushed multiple times, multiple labels are

created that each display the time of a different button push. As a contrasting example,

consider this code with the let statement moved to inside the on statement:

let button = new Button;
let sys = new System;
on (my button.pushed) {
let time = sys.currentTime;
let label = new Label;
label.text = "Time is " + time;

}

In this code, the labels that are created when the button is pushed always display the

current time because the let statement undergoes continuous evaluation with respect to

the context in which the closure’s connections are considered. Only variables that are

frozen by a closure do not undergo continuous evaluation inside the closure.

The body of a do statement is a closure that is created after the specified command

finishes executing, which enables the sequencing of commands and provides access to

the command’s return value (if any). A do statement executes if its conditions are true

when its enclosing closure is created. For top-level do statements their enclosing closure

is the containing object.

Streams cannot be accessed in a context where a connection variable is defined

because a connection variable cannot be bound by a stream access. Only objects that

are created within a closure can be connected inside the closure. This means that any

connection variables that are defined inside the closure apply only to objects created by

the closure or other closures that contained by the closure.

When a closure is created, the closure creates and initializes any objects that are

declared inside the closure, executes the do statements that it contains, and enables on

statements so that they can receive events. The order that objects are initialized and do
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statements are performed depends on the lexical order of these operations in the closure’s

definition.

2.3.3 Iterators

Iterator streams are time-varying concrete sets of values. Unlike normal signals,

iterator streams cannot be used to create connections; instead, they can only be used in

stream accesses. The syntax for using an iterator stream is shown in Figure 2.16. An

iterator stream is accessed with the for statement, which causes each of its elements

to be bound to a new variable. This variable can be used in the expression of another

stream access, which is performed (command stream) or enabled (event stream) for each

element of the iterator stream

When an iterator stream is used in a command stream access, a separate closure is

created for each of the iterator stream’s elements. As an example, the following glue code

deletes all messages selected in a message view object when a delete button is pressed:

on (delete button.pushed)
for (row = messageView.selected.all)
if (messages = <mailbox.Message> row)
do message.delete;

The exported selected signal, which is declared in the TableView class of Fig-

ure 2.10, represents a list of rows that are current selected in a table view. The List

interface, which is declared in Figure 2.17, declares an all iterator stream that repre-

sents every value currently in the list. To iterate over all rows that are currently selected

in a message view table, the all iterator stream is referenced in a for statement,

which binds each row selected in the message view table to the row variable in separate

closures. In each closure, this code then deletes a message that is connected to the row.

statement: new | connection | if | block | connect-var |
on | do | for

for: for ( var-id = port-ref ) statement

Figure 2.16. The syntax of SuperGlue’s with iterator streams; this syntax builds on the
syntax in Figure 2.15.
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interface List<ENTRY> {
port size : int;
port get(index : int) : ENTRY;
port next(entry : ENTRY) : ENTRY;

port iterator all : ENTRY;
...

}

Figure 2.17. The signature of the List interface that demonstrates iterator streams; this
is an expanded version of the List interface declared in Figure 2.12.

When an iterator stream is used in an event stream access, the event stream access

receives events for every element of the iterator stream. When an element is added to an

iterator stream, the variable of the for statement is bound to the added element and the

targeted event stream can receive events for this binding. When an element is removed

from an iterator stream, the variable of the for statement is bound to the removed

element and the targeted event stream can no longer receive events for this binding.

As an example of how iterator streams are used in event stream accesses, consider the

following SuperGlue code:

for (element = list.all)
if (button = <Button> element)
on (button.pushed)
do sys.println(button + " pushed");

In the above code, when a button exists in a list object, pushing that button will cause

a message to be printed. The message will not be printed if one of the following is true:

the button has been removed from the list, or the button has not yet been added to the list.

When the keywords begin and end are used under the scopes of for statements,

glue code can directly intercept activation events and deactivation events. As an example,

the following code prints text to the console when a message is selected or deselected:

for (row = messageView.selected.all)
if (messages = <mailbox.Message> row) {
on (begin) do sys.println(" selected: " + message);
on (end ) do sys.println("deselected: " + message);

}
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As described in Section 2.3.4, begin and end on statements are also used to extract

events from signals.

Iterator streams are similar to types only in that they both represent sets of values. A

type represents an immutable set of values that cannot be iterated over, while an iterator

stream represents a mutable set of values that can be iterated over. Because of these

differences, connection variables, which access types, and iterator stream accesses are

used for completely different purposes. Connection variables are used to connect ports

for all values of some type, while iterator stream accesses are used to iterate over all

values in a set.

Our current design of SuperGlue lacks the aggregate operators that would allow

iterator streams to be accessed as signals rather than as lower-level command and event

streams. In other words, for statements cannot guard connections. In the future, we

plan to explore how for statements can guard connections, which would allow for the

filtering and redirection of iterator streams. This future work is described in Section 6.2.

2.3.4 Integration with Signals

Using streams to glue components together does not significantly improve on how

similar glue code operations are expressed in other existing languages. If only streams are

used to glue together components, there is no significant advantage to using SuperGlue.

The benefit of using streams comes from their integration with signals: on, do, and for

statements can be guarded by conditions that refer to signals, signals can be connected in

closures, and there is no need to switch languages when dealing with streams instead of

signals. Streams also form the lower-level parts of a class: a signal is defined in terms of

a command stream and an event stream. The command stream is used to get the signal’s

current value, while the event stream is used to detect changes in the signal’s value.

A signal’s command stream can be accessed through a let statement, where the

resulting variable binding is immediately frozen in a closure. A signal’s event streams

are accessed in SuperGlue code using the closure creation and destruction semantics

that are used with iterator streams. A condition can form a closure that is created when

the condition becomes true, and is destroyed when the condition becomes false. on
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/* list is bound to some list */
/* comparator is bound to some comparator */

for (entry = list.all)
if (entry.index < list.size - 1) {
let next = list.get(entry.index + 1);
if (comparator.compare(entry, next) > 0) {
on (begin) do unsorted count.increment;
on (end) do unsorted count.decrement;

}
}

}
if (unsorted count.result == 0) ... /* list is sorted. */

Figure 2.18. SuperGlue code that detects if a list is sorted.

(begin) and on (end) clauses can then be used to detect when this closure is created

or destroyed. As an example, consider the following code:

if (comparator.compare(entry0, entry1) > 0) {
on (begin) do unsorted count.increment;
on (end) do unsorted count.decrement;

}

This code uses a comparator to compare two values bound to the entry0 and entry1

variables. When they become unsorted, a begin event is transmitted and the un-

sorted count is incremented by one. When they become sorted, an end event is

transmitted and the unsorted count is decremented by one.

As an example of how signals and streams are used together, consider the Super-

Glue code in Figure 2.18, which detects if a list bound to the list variable is sorted.

This code uses the all iterator stream declared in the List interface (Figure 2.17) to

detect when an entry is added to or removed from the list. The compare signal of

the comparator variable is then tested in a condition, which checks if the entry is

sorted with respect to its successor. on (begin) and on (end) clauses detect when

the most inner closure is created or destroyed. This closure is created when all of the

following three conditions become true:
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1. The entry bound to the entry variable is an entry in the list bound to the list

variable;

2. The entry has a successor in the list, which is determined by comparing its

index to the size of the list (note that adding to the end of the list causes the previous

last element to have a successor, and therefore this condition becomes true);

3. With respect to the comparator bound to the comparator variable, the entry

is unsorted with respect to its successor, which is bound to the next variable.

The closure that is created when these three conditions become true causes the unsorted

counter to be incremented by one. When any one of these three conditions becomes

false, the closure is destroyed and the unsorted counter is decremented by one. The

conditions become false when the entry is removed from the list, when it no longer has

a successor, or when it becomes sorted with respect to its successor. The latter condition

occurs when the entry’s state changes, when the successor’s state changes, or when the

entry has a new successor. In a language like Java, each of these situations would often

be coded individually, which results in code that is about five times the size of the code

in Figure 2.18. The SuperGlue code is more concise because it is able to use signals to

encapsulate these situations from glue code.

Note that the code in Figure 2.18 is very time efficient but not space efficient. List

insertion and deletion has a time complexity of O(1) because only the successors of

elements adjacent to the insertion or deletion need to be recomputed. However, this time

complexity comes at the expense of space complexity, which is O(N) because event

handlers are installed on every node of the list. If list element sorting order is immutable,

space complexity can be reduced at the expense of time complexity by checking if a list is

still sorted after every insertion and deletion. This tradeoff cannot easily be expressed in

SuperGlue, which lacks the flexibility of Java code in expressing specialized continuous

evaluation algorithms.
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2.4 Class Implementations
Glue-code programmers do not often need to be concerned with object implemen-

tations because gluing objects together does not often require the creation of new kinds

of objects. When objects are not implemented by the glue-code programmer, a one-

level view of the program is sufficient and easier to understand. However, we provide

class-definition mechanisms to glue code programmers because SuperGlue code can

be reused in the form of classes. Additionally, SuperGlue library implementors need

class-definition mechanisms to create class libraries.

Before describing how classes are defined in SuperGlue, it is useful to describe Su-

perGlue’s code architecture. SuperGlue has a simple module system for organizing class

declarations and definitions, where each module is defined in its own source code file.

Besides containing class declarations and definitions, modules also contain glue code

that connects the imports of these class definitions. These connections are considered

defaults that can be overridden in glue code. For example, the module that declares a

user-interface table class also connects the empty list to all rows of all user-interface

tables. Connections defined in a module are not encapsulated, meaning they are a part

of the module’s public signature, and can be overridden in glue code according to the

prioritization rules described in Section 2.2.5. A module must be imported into the

namespace of another module or class definition before its classes can be referenced.

Module import is analogous to package import in Java. However, module import is not

only a namespace management mechanism, because default connections defined in a

module are added to the circuits of class definitions that import the module.

Within a module, SuperGlue classes are implemented in one of two ways. First, a

class can be implemented with SuperGlue code that glues objects together. Defining

classes that contain SuperGlue code is useful for structuring and reusing glue code, and

eliminates the need for other code-structuring abstractions in SuperGlue. Section 2.4.1

describes how classes are implemented in SuperGlue. Second, a class can be imple-

mented in another programming language. This approach allows SuperGlue classes to

reuse existing code that is not written in SuperGlue. Also, other programming languages

can be better suited than SuperGlue for expressing classes whose implementations must
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deal with low-level control flow issues or are performance sensitive. Section 2.4.2 de-

scribes how SuperGlue classes are implemented in other programming languages.

2.4.1 SuperGlue Implementations

The SuperGlue code of a class glues objects together. Within a class implementation,

the object that is being implemented is referred to with the this keyword. Compared

to an object that is being connected from its outside, the imports and exports of an

object being connected from the inside switch roles: connections connect to the object’s

exported signals, while expressions can reference the object’s imported signals.

As an example of how a class is implemented in SuperGlue, consider the decla-

ration and implementation of the DetectSorted class shown in Figure 2.19. The

DetectSorted class enables the reuse of the SuperGlue code that was originally

shown in Figure 2.18. In this class, the list whose sorting status is being checked and the

comparator used to compare entries are imported as signals, and if the sort status of the

list is exported as a signal. The implementation of the DetectSorted class declares

a Counter object that is created each time the DetectSorted class is instantiated

into an object. The this keyword in the DetectSorted implementation represents

the DetectSorted object that is being implemented. Otherwise, the implementation

code in Figure 2.19 can be understood in the same way as the glue code in Figure 2.18.

Inner objects are created in the SuperGlue implementation of a class through a syntax

that is similar to a connection query. When the target type of a connection query is

specified to be an inner type that is accessed through this, the condition creates a new

inner object that is connected from the target expression of the query. As an example,

consider the following SuperGlue code:

if (entry = <this.Entry> this.list.get(i))
if (entry.accept) ...

The above code creates an entry inner object for the purposes of accessing the inner

object’s accept import. This inner object is created by connecting the first element of

the implemented object’s list import. As demonstrated by this example, inner objects

can be implemented as wrappers around other values, in which case they do not have
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/* Signature of the DetectSorted class. */
class DetectSorted {
import input : List;
import comparator : Comparator;
export sorted : boolean;

} with {
let unsorted count = new Counter;
this.sorted = (unsorted count.result == 0);

on (entry = this.input.all)
if (entry.index < list.size - 1) {
let next = list.get(entry.index + 1);
if (this.comparator.compare(entry, next) > 0) {
on (begin) do unsorted count.increment;
on (end) do unsorted count.decrement;

}
}

}

Figure 2.19. The declaration and implementation of the DetectSorted class.

their own identities or state. It is for this reason that inner objects can flexibly represent

the ports of their containing object.

The SuperGlue implementation of a class is expressed as a closure definition without

an enclosing lexical scope. The creation of an object with a SuperGlue implementation is

similar to the creation of a closure: when the object is created, its constituent objects are

initialized, do statements are performed, and on statements are activated in their lexical

order.

SuperGlue does not need procedures and procedure calls to reuse connection code.

Instead, classes in SuperGlue have most of the qualities of procedures: their declared

imports are the same as procedure parameters, and objects instantiated from classes are

the same as procedure calls. Although the lack of a procedure construct is extremely un-

usual in a programming language, the use of classes in place of procedures in SuperGlue

makes the language smaller and potentially easier to use. However, unlike procedures,

classes in SuperGlue cannot be recursively instantiated. As a result, SuperGlue does

not support general recursion when building connection hierarchies. Instead, only con-
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nection variables can be used to build connection hierarchies of unbounded sizes. The

use of connection variables is less powerful than general recursion because connection

variables provide only limited access to the connection graph.

2.4.2 Drivers

A SuperGlue class that is implemented in Java is referred to as a driver, which is a

wrapper around a Java class. Drivers can extend other drivers in a way that mirrors the ex-

tension relationships of the classes being wrapped. For example, the TableView class

extends the Widget class, and the Swing JTable class wrapped by the TableView

class extends the Swing JComponent class wrapped by the Widget class.

The signals and streams of a driver are represented as Java driver objects. The

Java interfaces implemented by signal driver objects are shown in Figure 2.20. The

SignalCircuit interface represents the behavior of a signal with three methods: a

current() method that is called to get the signal’s current value, an install()

method to install an observer object that observes changes in the signal’s value, and an

uninstall() method that uninstalls a previously installed observer object. Driver

objects that represent imported signals and streams are provided by the run-time to the

driver. Driver objects that represent exported signals and streams are provided by the

driver to the run-time.

interface SignalCircuit {
Value current(Value targ, Value[] args);
void install(Value targ, Value[] args,

Object key, SignalObserver obs);
void uninstall(Value targ, Value[] args,

Object key);
}
interface SignalObserver {
void changed(Value oldValue, Value newValue);
}

Figure 2.20. The SignalCircuit and SignalObserver Java interfaces, which
represent SuperGlue signals in Java code.
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When a driver is instantiated, the driver is called to create a Java object that is then

wrapped by the run-time in a SuperGlue object. After the SuperGlue object is created, the

driver is called to initialize the SuperGlue object. SuperGlue object creation and initialize

occur in different phases, where the signals of other objects can only be accessed by the

driver during the SuperGlue object’s initialization phase. As an example, the Label

driver class’s initialization code is shown in Figure 2.21. The Label driver is a wrapper

around the JLabel class of the Swing user interface library. The initialization code

in Figure 2.21 does two things. First, the initialization code sets the label’s text to the

current value of its imported text signal. The circuit method call on the value that

represents the label object is used to access the circuit of the label object’s imported

text signal. The current method is called on this circuit to get the current value

of the text signal, which can then be used as the label’s text. Second, the initialize

code installs an observer that updates the label whenever the value of the text signal

changes. This observer is installed using the circuit’s install method.

The circuit method of a class driver is called to access object and inner object

exports of the class being being defined. As an example, consider the code for the

Thermometer driver that is shown in Figure 2.22. The Thermometer class exports

class Label extends Driver {
Object create() { return new JLabel(); }
void init(ObjectValue object) {
JLabel label = object.wrapped();
SignalCircuit circuit = object.circuit(null, TEXT);
text = circuit.current(object, null).toString();
label.setText(text);
text = circuit.install(object, null, label,
new SignalObserver() {
void changed(Value oldValue, Value newValue) {
label.setText(newValue.toString());

}
});

}
}

Figure 2.21. The implementation of the Label driver that is declared in Figure 2.2.
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class Thermometer extends Driver {
Object create() { return new Socket(); }
void init(ObjectValue object) {
/* initialize and connect socket */

}
Circuit circuit(InnerType ftype, Member mmbr) {
if (ftype == null && mmbr == TEMPERATURE) {
return TEMPERATURE CIRCUIT;

}
}
Circuit TEMPERATURE CIRCUIT = new SignalCircuit() {
Value current(Value targ, Value[] args) {

int val = ((Socket) targ.wrapped()).read();
return new IntegerValue(val);

}
void install(Value targ, Value[] args, Object key,

SignalObserver obs) { ... }
void uninstall(Value targ, Value[] args, Object key) { ... }

};
}

Figure 2.22. The implementation of the Thermometer driver class that is declared in
Figure 2.2.

a temperature signal that is implemented by reading data through a socket. This

implementation is expressed as a Java object that implements the SignalCircuit

interface in Figure 2.20. The driver returns this objects whenever the circuit for the

Temperature signal is requested.

Drivers usually wrap existing Java classes that are designed to work in an MVC

architecture. Although wrapping such classes to work in SuperGlue is not trivial, it

is usually possible to write class drivers with a reasonable amount of work, which we

define as substantially less work than is needed to rewrite the Java classes being wrapped.

Section 3.1 evaluates how much work it takes to adapt a Java class library to work in

SuperGlue, and what kind of libraries can be reasonably adapted to work in SuperGlue.

The description in this section of how drivers are implemented is the approach of

our current prototype. This approach has two drawbacks. First, driver implementations

are very verbose with the code needed to locate and invoke signals. Although some

convenience methods can help, this code is still very ugly and can be the source of many
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errors. Second, our current driver model does not support compilation. Support for

compilation in our implementation requires encoding additional information on how a

signal can be implemented. We discuss performance issues in Section 4.5.

2.5 Discussion
SuperGlue was designed with the goal of making it as easy to use as possible. To

this end, we have limited SuperGlue to a small set of orthogonal constructs, all of which

have been demonstrated in this chapter. SuperGlue lacks many powerful abstractions

such as procedures, recursion, or looping constructs because SuperGlue’s programming

model requires the hiding of control-flow details. These abstractions obscure continuous

program behavior, interfere with SuperGlue’s declarative semantics, and are often not

needed to express glue code. To deal with the scalability issues of a basic port-connection

paradigm, we introduced new constructs in the form of inner objects, connection vari-

ables, and connection queries. SuperGlue is not the first language to deal with these

problems, and we describe alternative solutions in Chapter 5. Our solution differs from

these other solutions because of our problem domain, which is the gluing together state-

processing components.

Many of the problems we tackled in the design of SuperGlue do not have straightfor-

ward solutions. As a result, our chosen solutions involve making controversial tradeoffs.

We do not claim that our design decisions are optimal, but the tradeoffs we make suit

our domain. Additionally, SuperGlue’s design is incomplete in many areas, such as error

handling. The rest of this section discusses our most controversial design decisions and

areas in the language whose design have not been explored.

2.5.1 Why Inner Objects?

SuperGlue’s inner object abstraction is unique and is not very similar to any other

abstraction in an existing programming language. Inner objects solve the connection

scaling problem in an object-oriented way that does not sacrifice too much of the port-

connection paradigm’s simplicity. Alternative approaches either rely on functions [6] or

combinators [20], or work through more graph-oriented pattern-matching mechanisms.
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These approaches make different tradeoffs: functions are more powerful but obscure

component dependencies, combinators preserve functional purity but are radically dif-

ferent from what Java programmers are used to, and graph-oriented pattern-matching

mechanisms enable direct reasoning about the connection graph but requires building a

concrete connection graph, which cannot be supported with existing Java components.

We specifically designed inner objects to facilitate the reuse of existing Java compo-

nents that conform to MVC architectures, such as Swing user-interface [40] and Java-

Mail [39] components. These Java components often do not maintain the object graphs

that would facilitate a more direct object representation of their members. Instead,

drivers can create inner objects to represent logical public members of an object when

they are exposed by the Java components. If SuperGlue code did not have to interface

with existing Java components, we probably would have chosen an abstraction that is

more conventional than the inner object abstraction. However, we have found that the

flexibility that inner objects provide is useful even if we are building new components

from scratch.

2.5.2 Universal Quantification vs. Iteration

Universal quantification is very different from iteration: universal quantification is

used to describe properties over all values of some set, while iteration is used to ac-

cess all values of some set. SuperGlue has separate abstractions to express universal

quantification and iteration: connection variables, which are universally quantified over

connections to objects or inner objects of specified types, and iterator streams, which

are used to iterate over values. Connection variables can only be used to connect object

ports: they cannot be used to iterate over the objects of a type. Iterator streams cannot be

used to connect the ports of values being iterated over because the identities and circuit

locations of these values cannot be determined. On the other hand, iterator streams can

be used to iterate over a graph of objects and inner objects for a variety of purposes.

However, they must be accessed from the root of the program’s connection graph.
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2.5.3 No Recursion or Loops

SuperGlue has no general-purpose recursion or looping abstractions because these

abstractions would seriously complicate SuperGlue’s semantics without significantly en-

hancing SuperGlue’s purpose as a glue code language. Without recursion or loops,

SuperGlue relies on iterator streams to iterate over sets of values and connection variables

to abstract over port containers. These two abstractions can be used to encode most

of the logic that is often encoded in glue code, while more complicated traversal logic

should often be encoded in component implementations. For example, in Section 3.3,

we describe how generic tree-traversal logic is encoded in component implementations

and configured with inner objects.

2.5.4 Error Handling

SuperGlue does not currently have error-handling abstractions. As supported in

existing object-oriented languages, exception handling does not make much sense in

SuperGlue, which lacks a procedure activation stack. Presently, event streams can be

used to communicate failures that occur at discrete points in time, but are not very elegant

in communicating errors that occur on signals, which include built-in unconnected and

ambiguous connection errors. We have yet to explore what it means for a signal access

to fail, and what kind of recovery should be possible. Section 6.2 describes strategies for

supporting error handling in SuperGlue.

2.5.5 Concurrency

SuperGlue’s programming model naturally supports a form of concurrency that is

based on events and does not involve multithreading. A component in SuperGlue can

independently perform its computations but must communicate changes to other compo-

nents by firing events that are dispatched in one thread. It has been argued that event-

based concurrency is easier to use, is less error prone, and can perform better than multi-

threaded concurrency on single processor machines [10]. For this reason, although Java

provides strong support for multithreading, most of its core and input-output libraries are

based on event-based concurrency. Our design of SuperGlue acknowledges this trend
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by providing better support for events, with abstractions that hide event handling, while

forgoing multithreading abstractions.

Communication between components in SuperGlue must currently occur in a single

thread. Although component implementations can themselves be multithreaded, these

threads cannot directly communicate with other components. SuperGlue’s restriction

on multithreaded communication is similar to the restrictions that most Java libraries

place on multithreaded access. For example, Swing [40] user-interface components

can only be accessed from a program’s user-interface thread. Other threads can indi-

rectly access user-interface components through the invokeAndWait() or invoke-

Later()methods in the SwingUtilities class. In our current implementation, Su-

perGlue code for user-interface programs always executes in a program’s user-interface

thread, and any observable state changes must be performed in the user-interface thread.

In user-interface programs, multithreaded concurrency is necessary to support long

running operations, and so SuperGlue should support some form of multithreading.

However, SuperGlue cannot easily be enhanced to support multithreading. Atomicity

issues, which are described in Section 4.3, become very difficult to deal with when signal

change events can be dispatched from multiple threads. Section 6.2 describes strategies

for supporting multithreading in SuperGlue.



CHAPTER 3

EVALUATION

This chapter evaluates how SuperGlue improves the modularity of programs that

reuse state-processing components. Our evaluation is divided into three case studies:

– The first case study in Section 3.1 explores how libraries of components are im-

plemented in SuperGlue. SuperGlue’s utility depends heavily on well-designed

libraries of components. The main subject of this case study is a user-interface

library that wraps Java’s Swing user-interface library [40]. We show that this li-

brary can be designed in a straightforward way and implemented with a reasonable

amount of code.

– The second case study in Section 3.2 compares how user-interface programs are

implemented in SuperGlue and Java. The subject of this case study is an email

client, which is representative of programs where users interact with state that

changes continuously. We show that SuperGlue can reduce by half the amount of

code needed to implement an email client.

– The third case study in Section 3.3 explores how easily batch-style programs can

be recrafted in SuperGlue with state-processing features. The subjects of this

case study are the parsing and type checking components of a compiler, which

traditionally do not process state. We argue that the amount of code needed to reuse

state-processing parsing and type checking components in SuperGlue is compara-

ble to reusing versions of these components that do not process state.

The initial evaluation presented in this chapter is meant to show that SuperGlue’s use in

program development can be feasible and worthwhile. Although these case studies are
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not very comprehensive, they do show how SuperGlue can improve the modularity of

real programs in popular application areas.

3.1 Libraries
As with any other programming language, SuperGlue’s utility depends heavily on

the existence of well-designed libraries. Only when these libraries exist can we be-

gin to explore how SuperGlue improves program development. Although designing a

good library is challenging for any programming language, library design is especially

challenging in SuperGlue because the library should take advantage of SuperGlue’s

unique abstractions. For this reason, we have come up with three design guidelines

for SuperGlue libraries:

– A substantial amount of a library’s functionality should be exposed as signals

rather than streams. Signals are easier to use than streams because they hide

control-flow details from glue code.

– To promote library interoperability, different SuperGlue libraries should refer to

the same interfaces when describing similar user-defined abstractions.

– Because SuperGlue is an object-oriented language, the functionality of a Super-

Glue library should be organized into a class hierarchy. Each class should imple-

ment as much program functionality as possible, which minimizes the number of

objects that must be explicitly declared and directly connected in a program. The

interface of a class should then be divided into inner objects that are collectively

connected by type in glue code.

Although libraries that do not follow these guidelines are still usable in SuperGlue, they

are not much easier to use than similar libraries in other programming languages.

Following the above three guidelines can be challenging when a SuperGlue library

wraps a library that is implemented in another programming language. Because library

design guidelines in other languages can differ from those in SuperGlue, wrapping such

a library requires some amount of re-architecting to realize SuperGlue’s benefits. In this
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dissertation, we focus on the wrapping of libraries that are implemented in Java. Because

we have designed SuperGlue’s class system to be similar to Java’s class system, a Su-

perGlue library can reuse the class hierarchy of the Java library it is wrapping. However,

the following re-architecting processes still need to be performed when wrapping a Java

library:

– Identify user-defined abstractions in the Java library that should be expressed as

SuperGlue interfaces. This can be straightforward for user-defined abstractions

that are already expressed as Java interfaces or abstract Java classes. However,

there are cases where a useful SuperGlue interface does not correspond directly to

a useful Java interface. In such cases, programmers can write extra code to adapt

different Java abstractions so that they conform to a common SuperGlue interface.

– Identify classes in the Java library that should be SuperGlue classes. Many classes

in a Java library play only supporting roles and so should not be classes in a

SuperGlue library. Supporting Java classes should be represented by inner object

types.

– If possible, Java classes that express small amounts of functionality should be

aggregated into new larger SuperGlue classes that express common usages of the

classes together. While aggregation sacrifices flexibility because only common

uses are supported, it makes SuperGlue libraries easier to use.

– Identify groups of methods in a Java class that should be represented as a signal

or stream in a SuperGlue class. Whenever possible, the types of these signals and

streams should be based on existing interfaces

3.1.1 GlueUI

GlueUI is a user-interface library that wraps Java’s Swing user-interface library The

design of GlueUI demonstrates how libraries should be designed in SuperGlue. GlueUI’s

class hierarchy is shown in Figure 3.1. The core abstraction in the GlueUI library is the

widget, which can display and receive information from a user. Widgets are instances
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Containers

Widget

Panel SplitPanel

Window

TabbedPanel

BorderPanel

BoxPanelLayoutPanel

FlowPanelButtonPanel

Widget TextField/AreaCheckbox

Editor

ValidatingEditor Spinner

Combo
Editors

Property

Slider

WidgetWidget

Controls

ActionButton

FormViewCompoundEditor

TreeView TableView
Compound Editors

Figure 3.1. The class hierarchy of the GlueUI library: boxes are classes, dashed boxes
are abstract classes; dotted boxes are interfaces, pointed arrows point to classes whose
implementations are inherited, and circle arrows point to interfaces that are used in signal
declarations.

of the GlueUI Widget class, which serves as a superclass for most of the classes in

GlueUI. The Widget class wraps Swing’s JComponent class, which is Swing’s core

widget abstraction. The rest of the classes in the GlueUI library fall into four categories:

– Editors, which view and edit elemental state known as properties;

– Containers, which contain other widgets;

– Controls, which perform command-like abstractions known as actions on user

request; and

– Compound editors, which view and edit properties in large or unbounded size

data structures.
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This categorization of GlueUI classes is not exactly reflected in Swing’s class hierar-

chy. Swing does not have explicit editor or compound editor classes, and in many

cases expresses containers and layouts independently. These differences arise because

of GlueUI’s emphasis on ease of use differs from Swing’s emphasis on flexibility.

3.1.2 Signal Identification

As much of a library’s functionality as possible should be available through signals

rather than streams. Although command and event streams can be used to wrap just

about any Java method, they are harder to use because they expose glue code to control

flow. Therefore, streams should only be used to describe functionality that is naturally

imperative.

Signal identification in a Java library involves identifying multiple Java methods that

express different aspects of the same continuous behavior. These methods can often

be identified through naming conventions and design patterns [18], which is the case

in Java’s Swing and JavaMail libraries [39]. For example, the following methods in

JavaMail’s Folder class represent a signal that is a list of email messages:

– getMessageCount();

– getMessage();

– addMessageCountListener(); and

– removeMessageCountListener().

Each of these methods has Message in its name, which means they access email mes-

sage state. The last two methods are involved in an observer design pattern, which is

often used in a Java library to observe changes in state. Collectively, these methods

can be used to implement a signal in a SuperGlue library that describes a list of email

messages.

Once a Java library’s conventions are understood, it can be straightforward to identify

what methods in the library can be used to implement signals. Java methods in Swing

are generally merged into one of three kinds of signals in GlueUI:
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– Exported signals that represent continuous user input, such as the current edit value

of a text field or the current tree node selection in a user-interface tree;

– Imported signals that represent widget configuration options, such as a widget’s

font and foreground color;

– Exported signals that represent modifiable widget properties, such as whether a

window is currently visible.

The last kind of signal is a property, which is a signal that is augmented with a set

command stream. A property in SuperGlue is expressed with the Property interface,

which is declared in Figure 3.2, with the get signal to get and the set command

stream to set the property’s current value. Because properties are common in SuperGlue

libraries, the Property interface is a part of SuperGlue’s core library.

Distinguishing between configuration options and properties in Swing is tricky be-

cause they are expressed by similar kinds of methods. For example, a window’s visibility

is a property that is manipulated through the getVisible() and setVisible()

methods, whereas the a widget’s foreground color is a configuration option that is ma-

nipulated through the getForeground() and setForeground() methods. In a

SuperGlue library, properties and configuration options are best expressed with different

abstractions. A configuration option is easier to use than a property because it can be

configured declaratively by connecting one imported signal, while a property must be set

at some specific point in time. On the other hand, the value of a configuration option

cannot be modified inside its containing object. For this reason, widget foreground

color is a configuration option because widgets never internally change their foreground

interface Property<T> {
port get : T;
port command set(value : T) : void;

}

Figure 3.2. The declaration of the Property interface.
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color, while window visibility is a property because windows can internally change their

visibility in response to user input.

3.1.3 Interface Identification

When similar groups of signals and streams are declared in different classes, these

signals and streams should be expressed in a shared interface. Expressing these groups

of signals and streams as interfaces promotes interoperability by reducing the number of

connections needed to glue objects together. Additionally, because inner types cannot be

used outside of their declaring class, interfaces are the only way to express similarities be-

tween inner type declarations in different classes. Interfaces defined in SuperGlue’s core

library include the List interface, which is used to define list data, and the Property

interface, which is declared in Figure 3.2. Interfaces can also be defined in noncore

libraries. For example, the GlueUI library includes the Action interface, which is

used to express user commands. Although noncore interfaces are unlikely to be used

in unrelated libraries, they can be referred to in reusable connections that describe how

objects in unrelated libraries are glued together.

As an example of how interfaces are used, consider how the Property interface

from Figure 3.2 is used to simplify the use of a GlueUI editor. The abstract Editor

class, which is declared in Figure 3.3, imports an edited property, which represents

the state that is edited and viewed by an editor. The concrete TextField, Checkbox,

and Slider classes can then be used to create editors that respectively view and edit

string, boolean, and integer properties.

abstract class Editor<T> {
import edited : Property<T>;
...;

}
class TextField extends Editor<String> {...}
class Checkbox extends Editor<boolean> {}
class Slider extends Editor<boolean> {...}

Figure 3.3. The declarations of the Editor, TextField, Checkbox, and Slider
classes.
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When another library exports properties through the Property interface, GlueUI

editors can be used to view and edit these properties directly. For example, a SuperGlue

email library can export email message properties with the Property interface, which

occurs in Figure 3.4. Given an email message bound to the message variable, the fol-

lowing SuperGlue code can be used to create an editor that views and edits the message’s

subject property:

let field = new TextField;
field.edited = message.subject;

As with any other programming language, when designing a SuperGlue library, it is

important to identify new interfaces that are reused multiples times in this library. As an

example, user interfaces must often deal with labels in many different contexts:

– Editor fields in a user-interface form are labeled according to the properties being

edited.

– Columns in a user-interface table view are labeled according to the properties being

viewed and edited in that column.

– User-interface actions are labeled according to what command they perform.

– Menus are labeled according to what actions they organize.

class Mailbox {
class Message {
export from : Property<String>;
export to : Property<String>;
export subject : Property<String>;
export received : Property<Date>;
export sent : Property<Date>;
export deleted : Property<boolean>;
export flagged : Property<boolean>;
...

} ...
}

Figure 3.4. The declaration of the Message class nested in the Mailbox class.
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To accommodate each labeling context, a Labeled interface is defined in the GlueUI

library as follows:

interface Labeled {
port text : String;
port icon : Icon;

}

Although this interface is small, it is very useful. Because connection variables can be

typed using interfaces, a connection can specify how objects created from classes in other

libraries are labeled in GlueUI. As an example, the following connection expresses how

an email message subject property is labeled in a user interface:

var (lbl : Labeled)
if (lbl == mail.MESSAGE SUBJECT)
lbl.text = "Subject";

This glue code can label a message subject property whenever labeling is required in a

user interface. In an email client, message subject properties are displayed as columns

in table views, and as fields in form views. In both table views and form views, labels

are computed through the Labeled interface. As a result, this glue code can be used

to derive the column label and field label required when the message subject property is

used in table views and form views.

A SuperGlue library can reuse interface abstractions that are present in the Java

libraries they are wrapping. For example, Swing supports a user-interface action ab-

straction as a Java interface that represents button behavior, menu bar behavior, toolbar

behavior, and so on. A similar action abstraction is supported in GlueUI as the Action

interface, which is declared as follows:

interface Action extends Labeled {
port enabled : boolean;
port tooltip : String;
port command action : void;

}



73

Besides declaring a command that is performed when the action is triggered, the GlueUI

Action interface declares signal that configure when the action is enabled, how it is

labeled, and what tool tip text can describe the action in a user interface.

Given SuperGlue’s emphasis on ease of programming, interfaces should be used

more aggressively in SuperGlue than they are in other object-oriented languages such

as Java. Java libraries often express user-defined abstractions through conventions rather

than interfaces. The benefit of the convention approach is that the user-defined abstrac-

tion allows more efficient use of functionality than is possible through a generic interface.

For example, libraries often express lists through naming conventions rather than through

Java’s core List interface because different lists are more efficiently used in slightly

different ways. The drawback of this approach is that the libraries are harder to use,

which is why we emphasize interface identification in SuperGlue libraries.

3.1.4 Class Identification

As in most other languages, gluing together a small number of objects with coarse-

grained functionality is easier in SuperGlue than gluing together a large number of

objects with fine-grained functionality. Additionally, coarse-grained objects are more

desirable in SuperGlue for two reasons:

– It is very difficult to create a large or unbounded number of objects because Super-

Glue’s connection-based programming model does not support loops or recursion.

– SuperGlue’s support for inner objects, connection variables, connection queries,

and interface abstraction increases the configurability of objects with functionality

that is coarse-grained. As a result, coarse-grained objects can be used flexibly in

programs.

As an example, GlueUI provides classes to create top-level label, editor, and button

objects that can be used to create forms that view and edit lists of properties. With

these objects, forms with a large number of edited properties are difficult to implement

because a large or unbounded number of top-level editor objects, label objects, and button

objects must be connected explicitly in glue code. For this reason, GlueUI provides the
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FormView class, which is declared in Figure 3.5. Form view functionality is coarser-

grained than label, editor, and button objects, whose functionality are aggregated inside

form views. Although form views have coarse-grained functionality, they can still be

used flexibly in user interfaces because they are configurable in the following ways:

– Edited properties are imported into a form view as a list of nested field objects. A

field imports the signals of shared interfaces to obtain the field’s edited property, a

label for this property, and a configured editor object for this property. A field also

imports a signal that controls when it can be edited.

– Form views import subject values, which allow glue code to configure what value’s

properties can be viewed and edited.

– Form views export save and revert command streams, which allow the form’s

functionality to be integrated with other GlueUI objects.

As an example of how form views are used, the glue code in Figure 3.6 creates an

email composition window that views and edits in a form the to (receiver), subject, and

body properties of a newly created email message. A toolbar is used to provide access

to email composition actions, such as the send action. The send action is a composite

that saves the form’s edits to the composed email message, sends the email message, and

closes the email composition window.

class FormView extends CompoundEditor {
inner Field imports PropertyID, Labeled, FindEditor {
import editable : boolean;

}
import fields : List<Field>;
import subject : PropertyContainer;
import editable : boolean;
export save : Action;
export revert : Action;
...

}

Figure 3.5. The declaration of the GlueUI FormView class.
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let window = new Window;
let toolbar = new ToolBar;
let form = new FormView;
let send = new CompositeAction;
let panel = new BorderLayout;

panel.center = form;
panel.north = toolbar;
window.display = panel;

form.fields = [messages.to,
messages.subject, messages.body];

form .subject = new message;
toolbar.subjects = [send, ...];

send.text = "Send";
on (send.activated) {
do form.save;
do new message.send;
do window.visible.set(false);

}

Figure 3.6. Glue code that is used to compose and send an email message.

Form views are compound editors that aggregate the viewing and editing of multiple

properties. Besides form views, other compound editors in GlueUI include tree views

and table views, which were used in the examples in Chapter 2. Compound editors

adhere to SuperGlue’s library design guidelines more strongly than other GlueUI classes.

As a result, a program that can extensively use compound editors is easier to write in

SuperGlue than in other languages.

3.1.5 Comparison

We have so far shown through examples that SuperGlue libraries can be significantly

easier to use than Java libraries with similar functionality. Here we describe how Super-

Glue libraries can be easier to use than Java libraries by comparing libraries based on

their feature sets and number of declarations. In Section 3.2, we compare how a specific

program is implemented in SuperGlue and Java.
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Our comparison involves GlueUI and Swing. Because GlueUI classes represent

widgets, we compare how GlueUI widgets compare to Swing classes. The results of

this comparison are as follows:

– Widget: The base GlueUI widget class has three signals that correspond to three

methods in the Swing class JComponent. The functionality of most methods in

JComponent are not made available in GlueUI’s Widget class, which sacrifices

some flexibility but makes GlueUI easier to use.

– Editors: A base GlueUI editor has seven signals. Editing is not well-defined in

Swing, i.e., there is no common editor base class in Swing. As a result, GlueUI ed-

itors are substantially different from the JCheckBox, JTextField, JSlider,

and JSpinner Swing classes. For property editing tasks, GlueUI editors are eas-

ier to use than these Swing classes because they use abstractions that specifically

support editing. On the other hand, GlueUI editors cannot be very easily used in

the nonediting contexts that these Swing classes can be used in.

– Controls: Both GlueUI controls and Swing control classes are parameterized by

action interfaces. As a result, using controls in GlueUI and Swing is very similar.

– Containers: For ease-of-programming, panel and layout functionality are ex-

pressed in combined GlueUI classes. Menu bar functionality is also combined

with window functionality into a single Window class. Although these combina-

tions are possible in Java, Java’s object model makes them awkward to express so

these functionalities are separated in Swing. SuperGlue’s support for inner objects

makes these functionalities convenient to combine in GlueUI.

– Compound Editors: Swing does not support a form view class. A GlueUI tree

view consists of 11 signals, while Swing’s JTree class requires the use of about

30 methods and 4 supporting classes to use similar features. A GlueUI table view

consists of 10 signals, while Swing’s JTable class requires the use of 25 methods

and 3 supporting classes to use similar features. For reasons mentioned in Sec-
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tion 3.1.4, GlueUI’s compound editors are much simpler than Swing’s compound

editors.

3.1.6 Library Implementations

The driver implementation of a SuperGlue library must translate the abstractions of

the wrapped Java library into effective SuperGlue abstractions. This translation involves

using Java methods to implement SuperGlue signals, streams, and nested objects. In

many cases, drivers must translate library abstractions so they can be represented by

interfaces such as lists, which are shared with other SuperGlue libraries. In GlueUI,

examples of these kinds of translations occur in the following contexts:

– All Swing widget classes are wrapped so that their properties are expressed with

the Property interface.

– Each editor-like widget in Swing is wrapped in a driver so that its target state is

expressed with the Property interface. Each editor is also wrapped so that its

current edited value is expressed as a signal.

– Swing’s JTree class is wrapped in a driver so that its lists of selected and ex-

panded nodes are expressed as signals of the List interface. In both the selection

and expansion cases, extra list data structures must be maintained because selected

and expanded nodes are not accessible as lists.

– Swing’s JTable class is wrapped in a driver so that its lists of selected rows and

columns are expressed as signals of the List interface. As in the JTree class,

extra list data structures must be maintained because row and column selection is

not accessible as lists.

While far from trivial, our wrapping of Swing classes in GlueUI is manageable be-

cause signal-like behavior can be obtained with the observer design pattern, which is used

throughout Swing’s classes. The number of lines of Java code required for each GlueUI

class are listed in Figure 3.7. Most drivers in GlueUI require less then 100 lines of Java

code. The TreeView and TableView classes have the most complicated drivers in
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Class File Line Count

Widget 61

Label 44
Editor 41

TextWidget 84
TextArea 39
TextField 44

Slider 147
Checkbox 82

Control 11
Button 81

Panel 58
LayoutPanel 11

FlowPanel 64
SplitPanel 85
BoxPanel 71

BorderPanel 37
Window 201

CompoundEditor 89
TreeView 444

TableView 611
Form 455

Total 2910

Figure 3.7. A listing of GlueUI Java driver class files.

GlueUI, which require 444 lines of code and 611 lines of Java code, respectively. These

drivers are more complicated than other drivers in GlueUI because these two classes have

a larger number of signals, and the drivers must adapt many abstractions into common

SuperGlue interfaces. These larger drivers are needed because the TreeView and

TableView classes realize SuperGlue’s modularity benefits better than other GlueUI

classes. The driver of the Form class requires 455 lines of Java code because forms

must be implemented from scratch. In total, GlueUI drivers for 21 classes require

2,910 lines of Java code for the feature set we have implemented, which is sufficient
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to express the email client program described in Section 3.2. As a point of comparison,

Swing’s implementation for the features implemented in GlueUI includes 31,000 lines of

code in the javax.swing package, 9,500 lines of code in the javax.swing.tree

package, and 4,700 lines of code in the javax.swing.table package. This code

excludes code that implements the Form class as well as platform-specific code that is

located outside of the javax.swing packages.

3.2 User-interface Programs
This section presents a case study of how SuperGlue can be used in the construction

of a program with a user interface. This case study shows how SuperGlue is useful

in user-interface programs where users view and change volatile data, which includes

programs in many kinds of domains. An email client was also chosen specifically for our

case study because email clients are well understood and widely used.

This case study compares the SuperGlue and Java implementations of an email client.

The SuperGlue email client implementation uses SuperGlue’s core library, the GlueUI

library described in Section 3.1, and a single class SuperGlue library that wraps classes

in Java’s JavaMail library. A screen shot of this email client is shown in Figure 3.8.

The Java email client implementation uses Java’s core libraries, the Swing user-interface

library, and the JavaMail library. Our comparison is organized according to how much

code is needed to express the following email client features:

– Navigation, which allows a user to navigate mailboxes, folders, and messages.

Navigation is divided into three views: a folder-view tree, which views the folders

of installed mailboxes, a message-view table, which views rows of message head-

ers, and a content-view form, which views the contents of a message. In Figure 3.8,

the folder view is in the upper left-hand corner, the message view is in the upper

right-hand corner, and the content view is in the bottom portion of the screen shot.

– Deletion, which allows a user to delete email messages. Deleted messages are

highlighted in the message view table, and the user can expunge deleted messages

in a folder that is selected in the tree view.
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Figure 3.8. A screen shot of an email client that is implemented in SuperGlue.

– Composition, which allows a user to compose and send a new message, and reply

to an existing message.

The methodology used in our comparison involves measuring two metrics in each imple-

mentation: lines of code and number of operations. While line counts are accurate met-

rics in measuring verbosity, they are not very accurate metrics in measuring complexity.

Although verbosity and complexity are loosely related, code that is more verbose can aid

in readability and is not necessarily more complicated. For this reason, we also measure

the number of operations needed to implement a feature. We count only operations that

are defined by libraries and not built into the programming language. We do not count

type declarations, local variable assignments, control flow constructs, and so on, which

contribute to verbosity but do not make a library more difficult to use. For example, a
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method call in Java or connection in SuperGlue are both operations that we count, while

variable uses in Java and SuperGlue are operations that we do not count. Because the

operations we count are related to using a library, they are a more accurate measure of

complexity than line count.

The following SuperGlue operations are counted in our comparison:

– A creation of an object is one operation.

– A connection to a signal or stream is one operation.

– A signal or stream access is one operation plus the number of arguments used in

the access. Accessing a signal through multiple levels of signals does not add to the

number of operations because hierarchical signal organizations in SuperGlue (or,

as we mention later, hierarchical object organizations in Java) are good designs

that do not increase complexity. For example, both table.selected rows

and table.rows.selected count as one operation.

– A connection query is one operation.

– A class declaration counts as one operation. Each import and export of the class is

another operation.

– Declaring a connection variable is one operation. We count connection variables as

operations because they are used in place of higher-order functions and callbacks

in SuperGlue.

– Variable uses, arithmetic operations, and constant uses do not count as operations.

As an example, consider counting the number of operations in the following SuperGlue

code:

val folderView = new TreeView;
var (node : folderView.Node) {
if (folder = <mail.Folder> node) {
node.children = folder.sub folders;
node.text = folder.name +
" (" + folder.unread + ")";

}
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This SuperGlue code contains eight operations: one from an object creation, one from

the declaration of a dispatch variable, one from one connection query, two from two

signal connections, and three from three signal accesses.

The following Java operations are counted in our comparison:

– An creation of an object is one operation plus one operation for each constructor

argument used in the creation.

– A method call, array access, or length access is one operation plus one operation

for each argument used in the call. As in SuperGlue, calling a method through

multiple levels of calls does not add to the number of operations. For example,

the following calls both count as one operation: table.isRowSelected()

and table.getRow().isSelected(). We do not need to use temporary

variables in the Java code we are comparing against, so we do not encounter cases

like row = table.getRow() followed by row.isSelected().

– A class implementation is one operation. A method or constructor implementation

is one operation plus one operation for each of their formal parameters, excluding

this. Each field of a class is one operation.

– An instanceof test counts as one operation. A downcast does not count as an

operation because it does not involve any program logic beyond error detection.

– Local variable declarations, field uses, local variable uses, control flow construct

uses, arithmetic operations, and constant uses do not count as operations.

As an example, consider counting the number of operations in the following Java code:

folderView = new JTree();
folderView.setModel(new TreeModel() {
int getChildCount(Object node) {
if (node instanceof Folder)
return ((Folder) node).list().length;

}
Object getChild(Object node, int index) {
if (node instanceof Folder)
return ((Folder) node).list()[index];



83

}
});

This Java code contains twelve operations: two for creating two objects, one for calling

one method, five for implementing two methods with three arguments, two for two

instanceof tests, one for one array length access, and one for one array element

access.

3.2.1 Results

The results of our comparison are shown in Figure 3.9. By far the largest reduction

in program complexity is obtained in the SuperGlue implementation of the navigation

feature. This reduction is large for two reasons. First, the navigation feature uses

compound editors, which are objects with a large amount of functionality and signals.

Second, the navigation feature involves a lot of continuous behavior that can be expressed

more concisely in SuperGlue than in Java. Besides the navigation feature, other features

involve only a minor amount of continuous behavior, and so their implementations do

not benefit as much from SuperGlue as the navigation feature’s implementation does.

When comparing operations, the composition feature does not benefit from being

implemented in SuperGlue. This is because the composition feature does not involve

very much continuous behavior: a user only hits the compose button, fills out a form,

and hits a send button. Only the parts of a program that involve a significant amount

of state-processing benefit from being implemented in SuperGlue rather than Java. The

composition feature’s implementation is not harmed by being implemented in Super-

Line Counts Operations
Features Java SuperGlue Java

SuperGlue Java SuperGlue Java
SuperGlue

Navigation 147 51 2.8 265 110 2.4
Deletion 24 23 1.0 45 35 1.3

Composition 54 43 1.3 96 76 1.3
Total 225 117 1.9 406 221 1.8

Figure 3.9. A comparison of email client features as they are implemented in SuperGlue
and Java.
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Glue, which is due to effectiveness of streams in expressing imperative and discrete

behavior.

Only the implementation of the navigation feature achieves a significant reduction

in line count and operations when implemented in SuperGlue. Because the navigation

feature is by far the largest feature in the Java program, the overall reduction in line count

and operations when implementing our example email client in SuperGlue is around two.

As a result, the use of SuperGlue in building a program can be worthwhile when only

some of the program’s functionality involves continuous behavior.

The delete and composition features do not involve very much continuous behavior:

message deletion and folder expunging depend on pushing buttons, while message com-

position depends on popping up a form and sending a message on a user’s command.

Both of these behaviors are heavily imperative and therefore programmers do not benefit

very much from implementing the features in SuperGlue. Given a user interface program

that depends heavily on imperative user input and output, such as web-based programs,

SuperGlue’s use is of little benefit to programmers. Only when a user-interface program

has a significant number of continuous user-interface features can SuperGlue be useful

in its construction.

3.3 State-processing Programs
The email client case study in Section 3.2 shows how SuperGlue can reduce the

code needed to implement existing kinds of applications that are assembled from state-

processing components. The case study in this section shows how SuperGlue can be used

to easily recraft existing batch-style applications that are not assembled state-processing

components into interactive applications that are assembled out of state-processing com-

ponents. With signals, the amount of code needed to assemble a state-processing com-

ponent in SuperGlue is comparable to the amount of code needed to assemble a com-

ponent with similar functionality that does not process state. For example, reusing

a state-processing parser component in SuperGlue involves an amount of code that is

comparable to reusing a parser that does not process state.
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The subject of this case study is a compiler that is assembled out of state-processing

components. Such compilers are used to implement language-aware editors, which

provide programmers with immediate feedback about the syntactic and type correctness

of their code. Language-aware editors arose out of research in syntax-directed edit-

ing [42], which advocated editing code as syntax trees rather than text buffers to reduce

programming errors. Unlike syntax-directed editing, language-aware editing does not

overly restrict programmers to expressing syntax tree modifications. Instead, knowledge

about the language’s syntax and semantics is used to continuously examine code as it

is modified by a programmer. This continuous examination is used to detect errors,

compute code completion advice, and enable language-aware search and replace.

The availability of language-aware editors is often limited to popular programming

languages because they are difficult to implement. While the lexers, parsers, and type

checkers of a standard compiler can be implemented as unidirectional data transformers,

these same components in a language-aware editor must process state to continuously

react to changes in the code being edited. Using state-processing compiler components

in a language like Java is very difficult because glue code must deal with many state

consistency details. SuperGlue’s support for signals and objects can be used to improve

language-aware editor implementations in the following ways:

– Source code token lists, parse trees, and symbol tables can be expressed as signals,

which concisely represent how these stateful entities can change during editing.

– The transformation phases of a compiler, such as lexing, parsing, and type check-

ing, can be expressed as rules, which enable flexible modularization of these tasks

in glue code.

– SuperGlue’s object-oriented connection model simplifies the configuration of con-

tinuous tree traversal components. This eases the implementation of type checkers

and other kinds of static analyses.

The case study in this section describes how a language-aware code editor for some lan-

guage can be implemented with SuperGlue libraries that were described in Section 3.1.
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In this case study, we focus on the assembly of components that implement continuous

parsing (Section 3.3.1) and type checking (Section 3.3.2). We show how reusing these

components requires code that is comparable to reusing versions of these components

that only transform data once. Section 3.3.3 discusses how the SuperGlue implementa-

tion of a language-aware editor differs from existing kinds of language-aware editors.

3.3.1 Parsing

Figure 3.10 shows the declaration of the Parser class, which is used to implement

continuous top-down parsers. These parsers are handcrafted, meaning the lookahead

tokens that disambiguate productions must be explicitly specified in glue code. The

drawback of this approach is that the parser is more difficult to write than if a parser

generator language, such as YACC, were used. The benefit of this approach is that

parser expression can use the full power of the SuperGlue language, e.g., to implement

expressive error handling. The Parser class eases continuous parser implementations

in the following ways:

– The token input of the parser is expressed as an imported list signal. As a result,

the list of tokens being parsed can change continuously.

– Parsing is rule-driven, as in popular domain-specific parser construction languages

such as ANTLR [22]. Connection variables are used to express conditional con-

nections to all parse tree nodes in a parser object.

– Parsing is configured by conditionally connecting the imported signals of a parse

tree node. These imports specify the actual production type of the parse tree node,

and the expected production types of its children.

– The expected production type of a parse tree node is connected to the parse tree

node. As a result, glue code can determine the expected production type of a parse

tree node through a connection query, and expected production types are used to

prioritize connections to parse tree node in circuits.
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class Parser {
inner Token {
import text : String;

}
import tokens : List<Token>;

inner Input {
import children : List<Input>;
export lookahead : Token;
import result : Node;

}
import input : Input;

inner Node {
export lookahead : Token;
export children : List<Node>;

}
export root : Node;

inner Error extends Input {}

export errors : List<Error>;
}

Figure 3.10. The declarations of the Parser class, which is used to implement
continuous paring.

– A token lookahead list is associated with each parse tree node, rather than only with

the parser object, because parse tree nodes can be processed simultaneously. The

token lookahead list of a parse tree node is expressed as an exported signal, which

can be used to guard connections to the imported signals of the parse tree node.

As a result, how a parse tree node is parsed, which is determined by its imported

signal connections, can change continuously as the list of tokens changes.

– Parse errors are indicated by signals in a parse tree node that are either unconnected

or ambiguously connected. An error is an inner object whose signals can be

connected to implement error recovery. Errors are also exported from the parser

object as a list signal, which can be used to annotate errors in a text editor. When
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an error is fixed through text editing, it is automatically removed from the exported

error list.

– Different kinds of inner objects can be used to build a parse tree (Input objects)

and to traverse the built parse tree (Node objects). For example, child nodes are

imported during parse tree construction and exported during parse tree traversal.

This separation also prevents cycles from accidentally being created between im-

ported and exported signals.

Figure 3.11 shows an example of how a continuous parser is implemented with the

Parser class in Figure 3.10. This code expresses rules to parse SuperGlue statements.

The input connection variable is bound to a parser Input inner object that represents

a position in the editor’s token stream. The token at this position is accessible through

the Input inner object’s lookahead signal, which is used to compute the node result

and children for the position. In the code of Figure 3.11, different parsing actions are

taken if the Input inner object’s lookahead token is bound to the "let" string or the

"var" string.

The code in Figure 3.11 has a structure that is similar to the structure of hand-coded

parsers that are assembled out of nonstate processing components. This provides evi-

dence to our claim that the amount of code needed to use state-processing components

in SuperGlue is similar to the amount code needed to use components with similar

functionality but do not process state. In this case, configuring a state-processing parser

component in SuperGlue is similar to configuring a normal parser component, which

would look similar to the code in Figure 3.11.

3.3.2 Type Checking

Type checking involves one or more traversals of a parse tree to populate a symbol

table and to compute if parse tree nodes are well typed. Type checking over a parse

tree that changes continuously must also occur continuously. As a result, a traditional

noncontinuous tree traversal algorithm, which visits nodes once in some specified order,

cannot be used to implement type checking. Instead, a continuous tree traversal algo-
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let lexer = new Lexer;
let parser = new Parser;

lexer.buffer = editor.buffer;
parser.tokens = lexer.tokens;

parser.input = STATEMENTS;
var (input : parser.Input) {
if (input == STATEMENT) {
if (input.lookahead == "let") {
node.result = L VAR;
node.children = ["let", ID, ’=’, EXPR, ’;’];

}
if (input.lookahead == "var") {
node.result = C VAR;
node.children =
["var", ’(’, ID, ’:’, VTYPE, ’)’, STATEMENT];

}
...

}
...

}

Figure 3.11. Part of a parser implemented by configuring a Parser object.

rithm is expressed as a transformation of a tree into a single value or a list values. How

this value or list is constructed depends on the functionality of the traversal.

The TreeToSet class, which is declared in Figure 3.12, implements a tree traversal

algorithm that is generic with respect to the kind of tree being traversed and the kind of

set produced to represent the result of a traversal. This class eases the implementations

of continuous tree traversals in the following ways:

– The tree being traversed is expressed as a set of imported signals, meaning its

changes are automatically propagated to the TreeToSet object.

– Traversal nodes are the inner objects of a TreeToSet object. Connections to

traversal nodes configure what nodes are traversed in the traversal. The expression

of a traversal is rule driven: connections to traversal nodes are specified through

connection variables.
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class TreeToSet {
inner Result {}
inner Node {
import children : List<Node>;
import result : Result;

}
import root : Node;
export results : Set<Result>;

}

Figure 3.12. The declaration of the TreeToSet class, which is used to implement
continuous tree traversals.

– The tree node being traversed is connected to traversal node inner objects. As a

result, traversed nodes can be accessed in glue code through connection queries,

which can guard connections to traversal nodes.

– The result of a traversal is a set of result inner objects that are connected to the

result imports of all traversal node inner objects computed from the tree being

traversed. As the tree changes, different values can be connected to result

imports, and the set of result inner objects changes automatically.

Figure 3.13 shows an example of how a continuous undefined-symbol type checker is

implemented using the TreeToSet class. This code creates two TreeToSet objects:

the symbol table (symtab) object to track what variables have been defined, and the

undefined object to track uses of variables that are not defined in the symbol table.

Both TreeToSet objects traverse the parse tree. The symbol table object creates a set

of variable names that have been defined by putting variable names declared by L VAR

and C VAR statements into the symbol table’s set. The undefined object then checks the

token used in each variable use (VAR USE expressions) is in the symbol table set. If the

variable use is not in the symbol table set, the use is added to the undefined set, which

causes the token to be colored red in the editor.

The code in Figure 3.13 does not consider position of a variable use with respect

to declaration ordering and scoping. Such behavior cannot be obtained by depending on

traversal order, which is not fixed in a continuous traversal. Instead, we must annotate the
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let symtab = new TreeToSet;
symtab.root = parser.root;

var (node : symtab.Node) {
if (node == L VAR)
node.result = node.children.get(1);

else if (node == C VAR)
node.result = node.children.get(2);

else node.result = null;
}

let undefined = new TreeToSet;
undefined.root = parser.root;

var (node : undefined.Node)
if (node == VAR USE &&

!symtab.contains(node.children.get(0))) {
node.result = node.children.get(0);

} else node.result = null;

var (token : lexer.Token)
if (undefined.results.contains(token))
token.color = colors.red;

else token.color = colors.black;

Figure 3.13. Code that implements continuous undefined-symbol type checking.

symbol table with positional information, which is checked when considering whether a

variable use is undefined. Implementing and using these annotations only requires extra

bookkeeping and does not fundamentally change the structure of the code in Figure 3.13.

As with continuous parsing, continuous type checking automatically changes its

outputs, which in Figure 3.13 is the set signal of the undefined object, according

to changes in the parse tree. As a buffer is edited and the parse tree changes, the set

of declared and used variables can change, causing tokens to be added or removed

from the undefined set. As a token moves into or out of the undefined set, its color

changes immediately to reflect its new status, which provides immediate feedback to

programmers.
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Although our implementation of a continuous traversal is different from a conven-

tional ordered tree traversal, the encoding of these two kinds of traversals are comparable

in their code size. The traversal described in Figure 3.13 is similar in structure to

the visitor pattern, which is commonly used to implement type checking with nonstate

processing components.

3.3.3 Discussion

Unlike the case study in Section 3.2, we do not quantitatively compare the Super-

Glue implementation of an language-aware editor to implementation in other languages

for the following two reasons. First, we are unaware of any general Java libraries

for implementing language-aware editors with continuous parsing features. Although

Eclipse [21] provides libraries for implementing language-aware editors, and provides a

Java editor that supports something like continuous parsing, there is no special support

for implementing a continuous parser in another language-aware editor. Second, the

architectures of existing language-aware editors are substantially different from the one

we describe in this section. As our primary example, continuous parsing in Eclipse oc-

curs by re-invoking a noncontinuous but incremental parser as edits are made. Although

Eclipse’s approach is more difficult to implement than the continuous compiler approach

we use, they can manage parsing state at a very fine granularity, which potentially allows

their approach to be more scalable.

The worst-case time performance of a language-aware editor described in this section

is related to the depth of the parse tree of the code being edited. As with Wagner’s in-

cremental parsing algorithm [43], performance is seriously affected by how the grammar

is specified. Performance is very bad when low-level Brakus Normal Forms (BNFs) are

used to describe a language, because BNFs must describe repetition through recursion,

rather than repetition operators, which leads to very deep parse trees. Worst-case space

performance is related to the size of the code being edited because a constant number of

event handlers are installed on every node in the parse tree.



CHAPTER 4

SEMANTICS, SYNTAX, AND

IMPLEMENTATION

To simplify our presentation of SuperGlue’s semantics and implementation, Super-

Glue’s abstractions can be divided into multiple language layers, which are illustrated in

Figure 4.1. These layers are described as follows:

– The core layer, which is SuperGlue’s lowest layer, supports discrete rule-based

reasoning. When this layer is considered alone, SuperGlue resembles a simple

deterministic declarative programming language: programs are expressed as rule-

like connections, which are discretely evaluated to compute relations that describe

how component ports are connected.

– The object layer contains SuperGlue’s object-oriented abstractions, which are used

to organize component ports and prioritize connections. The object layer is not

heavily involved in program evaluation, and most of its semantics can be expressed

by translation into the core layer.

– The signal layer extends the core layer to support the continuous evaluation of sig-

nal expressions, which ensures that program behavior is automatically consistent

with current signal values. Continuous evaluation is SuperGlue’s most complicated

feature because it involves nontrivial semantics and complicated implementation

details.

– Finally, the stream layer contains SuperGlue’s support for streams and closures,

which enable imperative programming in SuperGlue. By enabling the manipula-

tion of discrete events, the stream layer provides a robust escape mechanism from

the pure declarative programming that is supported by the core and signal layers.



94

Core Layer

Object Layer Signal Layer Stream Layer

Figure 4.1. An illustration of how SuperGlue is layered as a language.

All of the nonroot layers are built on top of the core layer and almost always interact

through the core layer, with some minor exceptions. For example, signal expressions

can be transformed into event streams through the on (begin) and on (end) state-

ments.

This chapter describes the semantics of these language layers and the implementa-

tion of these semantics in our prototype. We describe semantics only informally and,

when it is useful, clarify our description with pseudocode of an ideal and inefficient

implementation that glosses over many details that are present in a real implementation.

This pseudocode is written in a simple functional language without objects or implicit

state. Types in our pseudocode language are indicated by naming convention, e.g., e

is an expression while c is a connection. To describe behavior that varies according

to different kinds of data types, our pseudocode language supports guarded dispatch on

argument types. For example, if e.p is a port expression and e0 + e1 is an arithmetic

expression, then separate definitions of an EVAL(e) function can resolve calls over e.p

and e0 + e1 arguments. We also use this approach to describe structural induction. For

example, if [x|−→xS] is a list with at least one element and ε is the empty list, then separate

TRAVERSE function definitions can resolve calls over [x|−→xS] and ε arguments. Finally,

in our pseudocode language, stateful behavior is expressed through continuation passing

and iteration is expressed through recursion. Continuations and recursion are very useful

when we discuss continuous evaluation in Section 4.3, because this evaluation is spread

out over time and requires treating current evaluation state and position as data.

We demonstrate how SuperGlue’s semantics are implemented with a prototype im-

plementation that we have constructed. Our prototype of SuperGlue is an unsophisticated

interpreter that is implemented in around 4,000 lines of Java code and 500 lines of
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ANTLR (parser) code. Our prototype implements SuperGlue’s semantics in the most

direct way possible, which significantly hurts its performance. For example, we have

found that for primitive operations, SuperGlue is on the order of 100 times slower than

equivalent Java code. This performance is adequate for programs that execute glue

code only very rarely, which include many user-interface programs. As a result, our

prototype’s performance is adequate to execute the real programs in Chapter 3.

The rest of this chapter is organized as follows. The semantics and implementation of

SuperGlue’s core, object, signal, and stream language layers are presented in Section 4.1,

Section 4.2, Section 4.3, and Section 4.4, respectively. The last two sections of this

chapter describe issues related to the entire language. Section 4.5 describes SuperGlue’s

performance issues. Section 4.6 presents the syntax for the SuperGlue language and

describes SuperGlue’s syntactic sugar.

4.1 Core Layer
SuperGlue’s core layer defines core connection and circuit abstractions, which are

used to create relations between component ports. The core layer also supports the

discrete evaluation of connections and circuits, which computes the value of a port at

a single point in time. During a single time point, all signal values are frozen, and muta-

tions do not need to be considered. Changes in mutable state are handled by the signal

layer, which is presented in Section 4.3. The rest of this section details connections,

circuits, and discrete evaluation.

4.1.1 Connections

A connection in SuperGlue is a rule with a consequent that expresses an equivalence

relationship between two ports (signal or stream) and antecedents that are conditions that

guard when the connection can be used. A connection is expressed in the context of a

class implementation, which we say “contains” the connection. The port relationship

established by a connection (left-hand side) must be to a sink, which is one of the

following kinds of ports:

– An import of an object created in the containing class implementation;
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– An import accessed through a connection variable whose type is a class;

– An import accessed through a connection variable whose type is the inner object

of an object created in the containing class implementation;

– An import accessed through a connection variable whose type is the inner object

accessed through another connection variable, where the type of this latter connec-

tion variable is a class;

– An export of the object being implemented in the containing class implementation,

which is accessed through this; and

– An export accessed through a connection variable whose type is an inner object of

the object being implemented (this).

All nonsink ports are sources. Source signals can be used in expressions, which can be

used as conditions or connected to sink signals. Source streams can only be used in the

on, do, or for clauses, and can only be connected to similar kinds of sink streams, e.g.,

a source command stream can only be connected to a sink command stream.

A connection can be guarded by multiple conditions that are either boolean ex-

pressions or connection queries. We describe connection queries in Section 4.2.3. A

connection is guarded by all conditions expressed in any if clauses that enclose the con-

nection’s consequent up until a closure boundary, which is indicated by a stream access

(Section 4.4.1). The conditions of multiple nested if clauses are conceptually conjoined

together in order. For example, “if (a) if (b) foo.x = y;” is equivalent to

“if (a && b) foo.x = y;.” Besides conjunction, conditions that are boolean

expressions can be composed through negation and disjunction.

Connections are type checked according to the primitive and class types of con-

nection’s sink and source. Inner object and interface types are never examined by the

static type checker, because their incompatibilities are checked and resolved at run-time.

Primitive types must match exactly during static type checking. For example, only an

integer expression can be connected to an integer sink signal. For class types, the source

type of a connection can be a class that extends the sink type of the connection. For
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example, an expression of class type Foo can be connected to a sink signal of class type

Bar if class Foo extends class Bar. An argument binding is type checked in the same

way, where the type of the argument expression is the source type and the argument’s

expected type is the sink type of the connection.

In our pseudocode implementation, the structure of a signal connection is as follows:

if (
−→
d ) e

In this pseudocode, e identifies an expression, d identifies a condition (boolean expres-

sion or connection query), and the right arrow over bar (−−→...) expresses a list, i.e.,
−→
d is a

list of conditions. As a simplification, we do not consider signals that require arguments,

which require more verbose semantics but do not fundamentally affect our discussion.

The sink of a connection is not expressed inside the connection itself. Instead, the sink

of multiple connections are specified in circuits as described in Section 4.1.2. The source

expression of the connection is e.

A connection is active if and only if all of its conditions evaluate to true. Discrete

evaluation can determine if a connection is active at some point in time. As a connection’s

conditions are evaluated, variables can be bound through connection queries. These vari-

able bindings are available to successive conditions and can ultimately be used to evaluate

the connection’s source expression. A variable binding environment is expressed as Θ.

In our pseudocode, an active connection is described by the ACTIVE(Θ, c) function,

which is defined over a variable binding environment (Θ) and a connection (c) as follows:

ACTIVE(Θ, if ([d|−→dX]) e) =
let <Θ’, v> = NOWCOND(Θ, d) in
if (v == false) <Θ, false>;
else ACTIVE(Θ’, if

−→
dX e)

ACTIVE(Θ, if (ε) e) = <Θ, true>;

In our pseudocode language, the [d|−→dX] cons operator matches nonempty lists, where

the first element is bound to d and a sublist that does not include the first element is

bound to
−→
dX; and ε is the empty list. This is similar to how unification occurs in

Prolog [36]. The NOW COND(Θ, d) function, which will be defined later, evaluates a
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condition and therefore returns two values: a new variable environment (Θ’) that can

convey new variable bindings, and the boolean result of the evaluation (v). Pair values

are expressed inside angle brackets; e.g., <Θ, false> indicates a pair with Θ as its

first value and false as its second value. A let clause can be used to bind single or pair

values to variables, e.g., let <Θ’, v> = ... binds the values of a pair to Θ’ and

v. The ACTIVE function returns a variable binding environment (Θ), which indicates

how variables are bound if the connection is active, and a truth value that indicates if

the connection is active. The evaluation of conditions that are connection queries is

described in Section 4.2.3. Conditions that are expressions are evaluated according to

the following pseudocode:

NOWCOND(Θ, e) = <Θ, NOWEXPR(Θ, e)>;

The NOW EXPR(Θ, e) function evaluates an expression. Because variables never be-

come bound in expressions, the NOW EXPR function only returns the current value of the

evaluated expression.

The discrete evaluation of primitive expressions in SuperGlue occurs in the traditional

way. For example, the pseudocode NOW EXPR(Θ, 2 + 2) evaluates to 4. The discrete

evaluation of an expression of the form e.p, where p is a signal that is implemented as a

circuit, involves locating and evaluating circuits according to semantics that are described

in Section 4.1.2. The discrete evaluation of binary boolean operation short circuits,

meaning the second operand of the operation is not evaluated if the operations value

can be determined by the value of the right operand. Short circuiting is also mandatory

for the evaluation of a connection’s conditions because they are conjoined.

For a signal implemented as a Java driver, discrete evaluation calls the now() driver

method (described in Section 2.4.2) to access its value. We express this evaluation in

pseudocode as follows:

NOWEXPR(Θ, e.j) = NOWJAVA(NOWEXPR(Θ, e), j);

In this pseudocode, j indicates a signal that is implemented with a Java driver. Because

the NOW JAVA function calls a Java method, it is a base case that cannot be defined in

pseudocode.
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4.1.2 Circuits

A circuit in SuperGlue is an organization of connections that connect to the same

port in an object or inner object. Connections are prioritized in a circuit according to the

types of their targets or through explicit else clauses. Connections that appear under

the scope of an if clause have priority over connections that appear under the scope

of a corresponding else clause. Unfortunately, our current interpretation of else-based

prioritization is not similar to else clauses in languages with explicit control flow: a

connection that appears under an else clause is not necessarily guarded by the negation

of the conditions in the corresponding if clause. Such nonintuitive behavior occurs

when if and else clauses are nested. As an example, consider the following code:

if (clock.time % 2 == 0) {
if else (model.temperature > 90)
view.color = red;

else if (model.temperature < 40)
view.color = blue;

} else view.color = black;

When time is even, the view is black if the current temperature is between 40 and 90.

This behavior is counter-intuitive to standard if-else semantics, where the view’s color

would be unconnected. We chose priority-only else clause semantics because it can be

implemented more efficiently than standard if-else semantics and behaves as expected in

common cases. However, because standard if-else semantics are always more intuitive,

we should change this in the future when better compilation techniques can be used to

mitigate the performance penalty of standard if-else semantics.

The structure of a port’s circuit is a two-dimensional list of connections, or
−→−→c , where

c is a connection of the structure described in Section 4.1.1. The first dimension of this

list is ordered according to connection priority, where lists of connections with higher

priorities appear earlier in this list. The second dimension of this list is unordered and

contains connections with the same priority. For example, the circuit [[c1, c2],

[c3, c4, c5], [c6]], which is illustrated in Figure 4.2, contains six connections.

In this circuit, the c1 and c2 connections have the same priority, which is the highest in
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d13d12d11 e1if ( )c1
d23d22d21 e2if ( )c2

d33d32d31 e3if ( )c3
d43d42d41 e4if ( )c4
d53d52d51 e5if ( )c5

d63d62d61 e6if ( )c6

Figure 4.2. An illustration of a circuit: connections are labeled in circles, dashed lines
indicate priority boundaries.

the circuit. The c3, c4, and c5 connections also have the same priority, which is in the

middle of the circuit. Finally, the c6 connection has the lowest priority in the circuit.

Each object and inner object contains a circuit for each of their ports that is not

implemented as a driver. Evaluating the expression e.p involves evaluating e into an

object or inner object value (o) and locating the circuit for p in this value, which is

expressed by the pseudocode for the NOW EXPR(Θ, e.p) function in Figure 4.3. In this

NOW EXPR function, the FIND-CIRCUIT(v, p) function (pseudocode not shown) is

used to locate a circuit given an object or inner object value and a port. The NOW CIRC(
−→−→c )

function (pseudocode shown) is then used to find the current value of the circuit.

The behavior of the NOW CIRC function, which is defined by pseudocode in Figure 4.3,

is best illustrated through an example. Figure 4.4 illustrates how the circuit in Figure 4.2

can undergo discrete evaluation. The NOW CIRC function traverses each connection until

it locates an active connection, which is determined by the ACTIVE function that was

defined in Section 4.1.1. In Figure 4.4, the circuit’s c1 connection is checked first and is

found not to be active because its d12 condition evaluates to false. Likewise, the circuit’s

next c2 and c3 connections are found not to be active because they have conditions that

evaluate to false. The c4 connection is found to be active because all its conditions

evaluate to true.

The NOW CIRC function defined in Figure 4.3 can get “stuck,” meaning it can be

undefined. First, the NOW CIRC function gets stuck on circuits with no remaining con-
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NOWEXPR(Θ, e.p) =
let <Θ’, if (

−→
d ) e’> =

NOWCIRC(FIND-CIRCUIT(NOWEXPR(Θ, e), p))
in NOWEXPR(Θ’, e’);

NOWCIRC([c|[
−→
cX|

−→−→
cY]]) =

let <Θ, v> = ACTIVE(ε, c) in

if (!v) NOWCIRC([
−→
cX|

−→−→
cY]);

else if (NOT-ACTIVE(
−→
cX)) <Θ, c>;

NOWCIRC([ε|
−→−→
cY]) = NOWCIRC(

−→−→
cY);

NOT-ACTIVE(Θ, [c|−→cX]) =
let <Θ’, v> = ACTIVE(Θ, c) in !v && NOT-ACTIVE(Θ, −→

cX);

NOT-ACTIVE(Θ, ε) = true;

Figure 4.3. The discrete evaluation of a signal expression in SuperGlue.

d13d12d11 e1if ( )c1
d23d22d21 e2if ( )c2

d63d62d61 e6if ( )c6

d33d32d31 e3if ( )c3

d53d52d51 e5if ( )c5

d41if (c4 d43d42 ) e4

Figure 4.4. An illustration of discrete evaluation over the circuit that was illustrated in
Figure 4.2: white-on-black conditions have evaluated to true, white-on-gray conditions
have evaluated to false, black-on-white conditions have not been evaluated, and a bold
black box is used to indicate the source expression whose evaluation is used as the
circuit’s current value.
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nections to traverse, which means the targeted port is unconnected. Second, the NOW CIRC

function gets stuck if more than one connection of the same priority is active, which

means the targeted port is ambiguously connected. For example, in Figure 4.4, even

though the NOW CIRC function has found the c4 connection to be active, it must still

traverse connection c5 to check if the targeted signal is connected unambiguously. In

the pseudocode definition of the NOW CIRC function in Figure 4.3, ambiguity is checked

for with the NOT-ACTIVE function, which returns true if no other connection that shares

the active connection’s priority is active. Connection errors are easy to detect at run-time,

but are very difficult to detect statically. As a result, our semantics do not require the

static detection of connection errors, and our prototype only detects connection errors at

run-time. Recovery in the presence of a connection error (unconnected or ambiguous) is

not currently supported by SuperGlue’s semantics. When a connection error is detected,

our prototype simply terminates the program. SuperGlue currently lacks the abstractions

to adequately recover from connection errors.

As with the evaluation of a connection’s conditions, the evaluation of a circuit’s

connections also short circuits: a lower priority connection is not evaluated unless every

higher priority connection is not active. For example, the lowest priority c6 connection in

Figure 4.4 is not evaluated at all because the active c4 connection has a higher priority. As

a result, higher priority active connections can guard against the erroneous evaluation of

lower priority connections. On the other hand, if a connection of one priority is evaluated,

then all other connections in the circuit of the same priority are also evaluated. This

behavior is necessary to detect ambiguity.

4.1.3 Implementation

Our current prototype implementation of SuperGlue’s discrete evaluation traverses

circuits and connections in a way that is similar to the functions in this section. Given its

simple semantics, discrete evaluation is also amenable to compilation, which we describe

in Section 6.1.
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4.2 Object Layer
SuperGlue’s object layer is primarily concerned with the organization of connec-

tions according to extensible object types. The object layer enhances SuperGlue with

classes, inner objects, and interfaces. Classes are object templates that enable object

implementation reuse through class extension; inner objects allow objects to contain an

unbounded number of ports; and interfaces enable the reuse of compound port types.

Class, inner object, and interface types can be used to declare connection variables,

which allow programs to abstract over connections. Values can be connected to inner

objects, which allows port connections to be analyzed at run-time through connection

queries. The combination of inner objects, connection variables, and connection queries

allow connection graphs to grow in complex and unbounded ways according to only a

small number of rule-like connections.

The object layer has little effect on the evaluation semantics defined in the core,

signal, and stream layers. Most of the object layer’s semantics can be described as a

translation from object layer code into core layer code. The rest of this section describes

the semantics and implementation details of abstractions in the object layer.

4.2.1 Inner Object

A inner object is created on demand by an object implementation to import or export

additional ports. Creation of an inner object is straightforward: SuperGlue or Java

driver code specifies a value that is connected to a new inner object. An inner object

has no identity: its imports can only be connected through connection variables, whose

semantics are described in Section 4.2.2, and an inner object can only be distinguished

from other inner objects of similar types through connection queries, whose semantics

are described in Section 4.2.3. As a result, the semantics of an inner object are closely

related to these two abstractions.

4.2.2 Connection Variables

Connection variables parameterize connections in a way that is similar to how ar-

guments parameterize procedures. The type of a connection variable determines what
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objects and inner objects a referring connection applies to. Given an object or inner

object value of type S and a connection that targets a port in a connection variable of

type T , then this connection applies to the value if S is a subtype of T . Conceptually,

each object or inner object value is associated with its own set of circuits, where target

connection variables are replaced with the object or inner object value. For example,

if o is an object of type T , v is a connection variable of type S, and v.p = x is a

connection, then the connection o.p = x belongs to the circuit for port p in object o.

Because connection variables can be eliminated in a connection through replacement,

evaluation semantics do not need to consider them. However, the type of a connection

variable is used to prioritize a referring connection in a circuit in a way that is described

Section 4.2.4. To conserve memory in our prototype, connections are not duplicated

for every object and inner object value that is created. Instead, connection variable

replacement occurs as parameter binding when a connection is evaluated.

4.2.3 Connection Queries

Connection queries are used to query at run-time what value is connected to an inner

object. Because connection queries bind variables, they can only be used as expressions

in conjoined conditions in connections, i.e., connection queries cannot be negated or used

in disjunctions. The discrete evaluation semantics of a connection query is defined in the

NOW COND function as follows:

NOWCOND(Θ, u = <T> e) =
QUERY(Θ, NOWEXPR(Θ, e), u, T);

QUERY(Θ, v, u, T) =
if (ISA(v, T)) <BIND(Θ, u, v), true>;
else if (!HAS-FROM(v)) <Θ, false>;
else QUERY(Θ, GET-FROM(v), u, T);

The QUERY function performs the connection query after the queried expression has

been discretely evaluated. The HAS-FROM function returns true only if it is called over

an inner object value that is connected from another value; and the GET-FROM function

returns this value. The BIND function (pseudocode not shown) creates a new variable
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binding environment that combines a specified variable binding with an existing variable

binding environment.

Beyond having evaluation semantics, connection queries are also involved in the

prioritization of their containing connections. Prioritization through connection queries

is very useful because often inner objects of the same type must behave differently de-

pending on what values are connected to them. We discuss prioritization with connection

queries in Section 4.2.4.

Finally, equality statements in SuperGlue are connection queries that determine if a

value is or is connected to another value. With these semantics, inner objects are truly

identified by the values that they are connected from.

4.2.4 Type-based Prioritization

Besides the else-based prioritization described in Section 4.1.2, connections can also

be prioritized by the declaration types of the connection variables that contain their target

ports. Type-based prioritization in SuperGlue is based on subtyping: if the target type of

connection ca is S and the target type of connection cb is T , and S is a subtype of T , then

ca has priority over cb in a circuit. These semantics are similar to how method overriding

occurs in other object-oriented languages. The main difference here is that the declared

target types involved can interface or inner object types in addition to class types.

The subtyping rules used to prioritize connections in circuits are shown in Figure 4.5.

Most of these rules express conventional subtyping behavior based on transitivity, class,

interface, and inner object extension relationships (extends), and interface import and

export relationships (imports and exports). Priority subtyping for inner objects

is tricky because it must account for extension of both the inner object type and the

containing class. Connections that are expressed over more specific class types must

have priority over connections expressed over more specific inner object types because

this is the only way to override inner object behavior. Therefore, the rules in Figure 4.5

ensure that class extension is considered before inner object extension. Finally, the last

rule in Figure 4.5 states that an object is a type that is a subtype of its creating class. In
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∆ `t Tx < Ty, Ty < Tz

∆ `t Tx < Tz

T extends S ∈ ∆

∆ `t T < S

T imports I ∈ ∆

∆ `t T < I

T exports I ∈ ∆

∆ `t T < I

∆ `t C < D,F <= E

F, E ∈ inner(D, ∆)

∆ `t C.F < D.E

F extends E ∈ ∆

F ∈ inner(C, ∆)

∆ `t C.F < C.E

o = new C ∈ ∆

∆ `t o < C

Figure 4.5. Rules that define priority subtyping between class, interface, and inner object
types; ∆ is the typing environment.

other words, connections expressed directly to an object have priority over connections

that are expressed through connection variables.

When the target types of two connections are the same, then the types of connection

queries over their target connection variables can be used to prioritize the connections.

The same subtyping rules in Figure 4.5 are used to determine how the connection query

types prioritize the connections. If one of these connections does not contain a connec-

tion query, then an implicit “any” type is assumed so that the other connection that is

guarded by a connection query has priority over it. If a connection has multiple connec-

tion queries over its target connection variable, then only if one connection query type

in one connection is a subtype of another connection query type in the other connection

does the former connection have priority over the latter connection.

Type-based prioritization works across different class implementations when con-

necting exports. As a result, the implementation of a subclass can override how the export

of a superclass is connected. SuperGlue currently lacks the three mechanisms needed

to effectively manage this behavior: a “final” mechanism that can prevent subclasses

from overriding how an export is connected, a “super” mechanism that can be used to
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access a lower priority export connection specified in a superclass, and a “protected”

mechanism to specify exports that can only be accessed in subclasses. Figuring out how

these mechanisms work in SuperGlue should be straightforward, and they should be

added to a future revision of the language.

Because else-based prioritization always occurs locally within one source file, it is

considered before type-based prioritization, which can occur globally across multiple

source files and modules. In other words, else statements can always be used to

override object-oriented prioritization for connections that are expressed in the same

source file.

4.2.5 Interfaces

As described in Figure 4.5, interface types are involved in the type-based prioriti-

zation of connections in circuits. Because a class or inner object can import or export

multiple interfaces, it is possible for two connections with different target types that

include the same target to have no type-based priority relationship with each other. In

this case, the connections exist in the same priority bank of a circuit unless else-based

prioritization is used.

Interfaces do not specify if their ports are imported or exported. Instead, whether

an interface’s ports are imported or exported is specified by the implementing class

or inner object type. This now leads to the following issue of when interfaces are

specified as types in connection variables and connection queries: should the resulting

variables import or export the interface’s ports? Because exports are connected through

the this keyword, connection variables are always used to connect imports. As a result,

a connection variable with an interface type is bound to values that import the ports of

this interface. On the other hand, imports can never be connected through a variable

defined by a connection query. As a result, a connection query variable with an interface

type is bound to values that export the ports of this interface.

Special connections are automatically added to the circuit of an inner object that

implements the interface and contains the interface’s ports as sinks. These connections

handle the case where a value that is connected to the inner object contains the interface’s
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ports as source ports. In this case, the source interface ports of the value can be connected

to the sink interface ports of the inner object. All other connections have a higher priority

than these connections.

4.2.6 Modules

Connections can be packaged into a module so that they can be reused in multi-

ple programs. When a program depends on a module, connections specified in that

module are automatically added to the program. This behavior allows a module to

provide default connections to the imports of the classes it defines. For example, the

GlueUI module defines the TableView class and specifies the default connection of

connecting the empty list to the rows import of TableView objects. Modules can be

used to reuse adapter connections that integrate two unrelated modules. For example,

a mail.glueui module can contain connections that specify how email objects are

manipulated in a user interface.

A module’s dependencies with other modules are explicitly specified in the module’s

definition, and a module can only refer to definitions from these modules. As with Java’s

package system, a module cannot automatically refer to definitions contained in any

indirect dependencies. Likewise, a class implementation contains connections that are

specified in its implementation, the module that contains it, and the modules that are

directly used by this module. A class implementation does not contain connections in

modules that it indirectly depends on. For example, if module a directly depends on

module b, and module c directly depends on module b, then a class implementation

in module c can use definitions from module b but not module a. Additionally, any

connection specified in module b, but not module a, is included in the circuits of the

class implementation. This design decision is somewhat controversial because one might

expect that indirect module dependencies would be treated the same as direct module

dependencies. However, because we are emulating Java’s package system with our

design, indirect module dependencies are ignored.
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4.3 Signal Layer
Continuous evaluation ensures that components are always consistent with the values

of the state that they are viewing. True continuous evaluation cannot be implemented

efficiently with discrete computations. Instead, continuous evaluation is often simulated

with event handling, where components are notified through events of changes in state

after the changes have occurred. When compared to discrete evaluation, SuperGlue’s

implementation of continuous evaluation is substantially more complicated because it

must manage event handling behavior. This complexity represents a significant amount

of programming effort that would be replaced by repetitive code if performed manually.

Because SuperGlue uses event handling to propagate changes in state, its support for

continuous evaluation is asynchronous, where components’ views of state can be incon-

sistent while state changes are propagating through the system. Asynchronous change

propagation is not very clean semantically and leads to atomicity issues that must be

addressed in our implementation and Java-based component drivers. We describe these

atomicity issues in Section 4.3.2. Some functional-reactive programming languages,

such as Yampa [20], support synchronous continuous evaluation, which is less efficient

but semantically cleaner (no atomicity issues) than asynchronous continuous evaluation.

We discuss Yampa as related work in Section 5.1.1.

A Java-based component driver initiates continuous evaluation on an imported sig-

nal’s circuit by installing a Java-based target event handler on the circuit. The target event

handler of a signal access is called when the signal’s value changes. The installation of

a target event handler involves installing switching event handlers on the conditions of

the circuit’s connections that detect when the circuit’s connections become active and

inactive. Switching event handlers perform the switching behavior that changes what

source expression a target event handler is installed on. As an example, the circuit from

Figure 4.2 undergoes continuous evaluation in Figure 4.6. To support short-circuiting

semantics, switching event handlers are installed on conditions that do not follow false

conditions in connections that are not lower-priority than an active connection. For

example, switching event handlers are installed on the d11 and d12 conditions in the c1

circuit, but because the d12 condition is false, a switching event handler is not installed
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d13d12d11 e1if ( )c1
d23d22d21 e2if ( )c2

d63d62d61 e6if ( )c6

d33d32d31 e3if ( )c3

d53d52d51 e5if ( )c5

d41if (c4 d43d42 ) e4

Figure 4.6. An illustration of the circuit in Figure 4.2 undergoing continuous evaluation:
switching handlers are installed on white-on-black conditions (which currently evaluate
to true), switching handlers are installed on white-on-gray conditions, which currently
evaluate to false, black-on-white conditions have not been evaluated and switching
handlers are not installed on them, the target event handler is installed on the connection
source expression that is surrounded by a bold box.

on the d13 condition. Also, switching conditions are not installed on any conditions in

the c6 connection because the c4 connection is active.

As with discrete evaluation, continuous evaluation fails if a signal becomes uncon-

nected or connected ambiguously. To detect when state changes cause a circuit to become

connected ambiguously, switching event handlers are installed on conditions in connec-

tions that have the same priority as the found active connection. In Figure 4.6, switching

event handlers are installed on conditions in the c3 and c5 connections because they have

the same priority as the active c4 connection. Unconnected and ambiguous connections

detected either during discrete or continuous evaluation are treated as programming

errors and cause our prototype to terminate execution immediately.

Switching occurs during continuous evaluation when one of the conditions of the

highest-priority active connection becomes false. In this case, this connection yields

to an active connection of a lower priority, meaning that the target event handler is

uninstalled on the higher-priority connection’s source expression and installed on the

lower-priority connection’s source expression. As an example, the continuous evaluation

of the circuit in Figure 4.6 evolves to Figure 4.7 when the d42 condition in the c4

connection becomes false, which is detected by its installed switching event handler.
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d13d12d11 e1if ( )c1
d23d22d21 e2if ( )c2

d63d62d61 e6if ( )c6

d32 d33 e3)d31if (c3
d42 d43 e4)d41if (c4
d52 d53 e5)d51if (c5

Figure 4.7. An illustration of the continuous evaluation in Figure 4.6 after the d42

condition in the c4 connection becomes false: an ’x’ over a condition indicates that
the condition has just become false.

Two interesting behaviors occur in this figure. First, the switching event handler that

was installed on the d43 condition is uninstalled because d43 cannot be evaluated if

d42 is false. Second, switching event handlers are installed on the conditions of the

c6 connection, which is also found to be the new highest-priority connection of this

circuit. As a result, the target event handler is uninstalled on the e4 source expression

and installed on the e6 source expression.

Switching occurs during continuous evaluation when all of the conditions of a con-

nection that has a higher-priority than the current highest-priority active connection be-

come true. In this case, the higher-priority connection preempts the lower-priority con-

nection to become the circuit’s new highest-priority active connection. As an example,

the continuous evaluation of the circuit in Figure 4.6 evolves to Figure 4.8 when the d12

condition in the c1 connection becomes true, which is detected by its installed switching

event handler, and the d13 condition is already true when d12 is true. Three interesting

behaviors occur in this figure:

– The switching and ambiguity event handlers installed on the conditions of the c3,

c4, and c5 connections are uninstalled because these connections follow an active

connection of a higher priority;
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d33d32d31 e3if ( )c3
d43d42d41 e4if ( )c4
d53d52d51 e5if ( )c5

d63d62d61 e6if ( )c6

d13d12d11if ( )c1
d23d22d21 e2if ( )c2

e1

Figure 4.8. An illustration of the continuous evaluation in Figure 4.6 after the d12

condition in the c1 connection becomes true; a ’+’ over a condition indicates that the
condition has just become true.

– A switching event handler is installed on the d13 condition because the d12 condi-

tion is now true and d13 can now be evaluated; and

– The target event handler is uninstalled on the e4 source expression and installed

on the e1 source expression.

Because conditions in SuperGlue can refer to signal expressions, the installation of

a switching event handler on a connection condition can initiate continuous evaluation

on other circuits. In this recursive case, the switching event handler becomes the target

event handler of this continuous evaluation. As a base case, the continuous evaluation

of a signal that is implemented as a Java-based driver occurs by calling the driver’s

install() and uninstall() methods. In the same way, recursive continuous

evaluation also occurs when target event handlers are installed on connection source

expressions.

A Java-based component driver terminates continuous evaluation on an imported

signal’s circuit by uninstalling the event handler it originally installed on an imported

signal’s circuit. Termination of continuous evaluation involves uninstalling all switching

and ambiguity event handlers on connection conditions and uninstalling the target event

handler on the source expression of the current highest-priority active connection. Unin-
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stallation of an event handler on expression can recursively terminate other continuous

evaluations as well.

4.3.1 Pseudocode

The pseudocode in Figure 4.9 defines the INSTALL CIRC(Σ, Θ,
−→−→c , h) func-

tion, which initiates continuous evaluation on a circuit (
−→−→c ) by installing a target event

handler (h) on that circuit. The INSTALL CIRC function finds the highest priority con-

nection of a circuit by traversing each of the circuit’s connections, and each of a con-

nection’s conditions. As in discrete evaluation, traversal of a connection’s conditions

stops when a false condition is encountered, and traversal of a circuit’s connections stops

when an active connection is detected. Unlike discrete evaluation, the INSTALL CIRC

function installs switching event handlers on connection conditions that are instances of

the handleswitch constructor. Switching event handlers track the current binding en-

vironment (Θ), the current position of the evaluation ([[if ([d|−→dX]) e|−→cX]|
−→−→
cY]),

and the target event handler (h) that is being installed. When switching event handlers

are dispatched, they use these values to recreate continuous evaluation context. The

pseudocode in Figure 4.9 also defines the INSTALL AMBG(Σ, Θ, −→c , h) function,

which installs ambiguity event handlers on connection conditions that follow the highest-

priority active connection. Ambiguity event handlers are instances of the handleambg

constructor.

Besides a variable binding environment, the INSTALL CIRC and INSTALL AMBG func-

tions also manipulate an event handling environment (Σ), which tracks what event han-

dlers are installed on Java-based drivers. In our pseudocode, the event handling envi-

ronment is updated as a continuation: INSTALL functions create new event handling

environments with additional installed event handlers, while the UNINSTALL functions

create new event handling environments where existing event handlers are no longer

installed.

The INSTALL EXPR(Σ, Θ, e, h) function used in Figure 4.9 installs an event

handler (h) that listens for changes in an expression (e). The INSTALL EXPR function is

defined over expressions to listen for changes in operand expressions and to recompute
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INSTALLCIRC(Σ, Θ, [[if ([d|−→dX]) e|−→cX]|
−→−→
cY], h) =

let h’ = handleswitch(Θ, [[if ([d|−→dX]) e|−→cX]|
−→−→
cY], h);

in let Σ’ = INSTALLEXPR(Σ, Θ, d, h’);
in let <Θ’, v> = NOWCOND(Θ, d);

in if (v == false) INSTALLCIRC(Σ’, ε, [
−→
cX|

−→−→
cY], h);

else INSTALLCIRC(Σ’, Θ’, [[if (
−→
dX) e|−→cX]|

−→−→
cY], h);

INSTALLCIRC(Σ, Θ, [[if (ε) e|−→cX]|
−→−→
cY], h) =

INSTALLEXPR(INSTALLAMBG(Σ, ε,
−→
cX), Θ, e, h);

INSTALLCIRC(Σ, Θ, [ε|
−→−→
cY], h) = INSTALLCIRC(Σ, ε,

−→−→
cY, h);

INSTALLAMBG(Σ, Θ, [if ([d|−→dX]) e|−→cX]) =

let h = handleambg(Θ, [if ([d|−→dX]) e|−→cX])
in let Σ’ = INSTALLEXPR(Σ, Θ, d, h)
in let <Θ’, v> = NOWCOND(Θ, d)
in if (v == false) INSTALLAMBG(Σ’, ε,

−→
cX);

else INSTALLAMBG(Σ’, Θ’, [if (
−→
dX) e|−→cX]);

INSTALLAMBG(Σ, Θ, [if (ε) e|−→cX]) = INSTALLAMBG(Σ, ε,
−→
cX);

INSTALLAMBG(Σ, Θ, ε) = Σ;

Figure 4.9. Pseudocode for the INSTALL CIRC and INSTALL AMBG event handler instal-
lation functions, which are respectively used to detect changes that cause a circuit to
become active or to be connected ambiguously: Σ is the event handling environment,
which internally maintains what event handlers are installed on signals implemented as
drivers.

the value of the expression based on the operation’s semantics. For example, the pseudo-

code INSTALL EXPR(Σ, Θ, e + 2, h) evaluates to an event handling environment

where h is notified of a new value for e + 2whenever the value of e changes. Installing

an event handler on an expression whose value never changes simply resolves to a no-

op operation where the event handling environment is unmodified. For example, the

pseudocode INSTALL EXPR(Σ, Θ, 2 + 2, h) evaluates to Σ.

The INSTALL EXPR function is defined for signal accesses (e.p) with the following

pseudocode:

INSTALLEXPR(Σ, Θ, e.p, h) =
INSTALLCIRC(INSTALLEXPR(Σ, Θ, e, handleexpr(p, h)),
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FIND-CIRCUIT(NOWEXPR(Θ, e), p), h);

In this pseudocode, the handleexpr event handler, whose behavior will be defined later,

detects when the target expression changes and re-installs the targeted event handler (h).

The INSTALL EXPR function installs the target handler for a known object value, which

involves calling the INSTALL CIRC function on the circuit for the target port (p) in this

value.

If a signal is not defined as a circuit, then it is defined as a Java driver. Installing an

event handler on a driver directly produces a new environment, which is expressed in the

following code:

INSTALLEXPR(Σ, Θ, e.j, h) =
let Σ’ = INSTALLEXPR(Σ, Θ, e, handleexpr(j, h))
in INSTALLJAVA(Σ’, NOWEXPR(Σ, e), j, h);

The INSTALL JAVA function installs an event handler on a signal (j) that is implemented

as a driver rather than as a circuit.

Uninstallation functions simply reverse the behavior of installation functions. For

each function that begins with INSTALL, a corresponding function that begins with

UNINSTALL exists with the similar code that calls UNINSTALL functions instead of

INSTALL functions.

We define the AFTER(Σ, h, v) function to propagate new driver signal values

to event handlers that are installed on these signal drivers. The pseudocode of this

propagation is as follows:

NOTIFYJAVA(Σ, o.j, v) = PROPAGATE(Σ, INSTALLED(o.j), v);

PROPAGATE(Σ, [h|−→hX], v) =

PROPAGATE(AFTER(Σ, h, v),
−→
hX, v);

PROPAGATE(Σ, ε, v) = Σ;

The NOTIFY JAVA function detects a change in the value of a driver signal j in value o

for some current event handling environment; the INSTALLED function returns a list

of all event handlers that are installed on a signal driver; and the PROPAGATE function
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is used to traverse these event handlers (producing new event handling environments as

usual). The AFTER function is defined over specific kinds of event handlers.

Figure 4.10 presents pseudocode for the handleswitch switching event handler and

handleambg ambiguity event handler. The handleswitch switching event handler de-

tects when yielding or preemption should occur in a circuit. When a condition being

observed by a switching event handler becomes true, the connection either becomes

active or is closer to becoming active. The ADVANCE COND(Σ, Θ,
−→−→c ) function installs

switching event handlers on conditions that follow the newly true condition until a false

condition is encountered. If all remaining conditions in the connection are true, or

there are no remaining conditions, then the ADVANCE COND function performs connection

preemption. When a condition being observed by a switching event handler becomes

true, the connection either becomes inactive or becomes farther away from being active.

The ADVANCE COND function uninstalls switching event handlers on all conditions that

follow the newly false condition until a false condition. If all following conditions

in the connection were previously true, or there are no remaining conditions, then the

ADVANCE COND function performs connection yielding.

The handleexpr event handler listens for changes in the target of a signal expres-

sion. The following pseudocode expresses handleexpr behavior over a signal that is

implemented as a circuit:

BEFORE(Σ, handleexpr(p, h), v) =
UNINSTALLCIRC(Σ, FIND-CIRCUIT(v, p), h);

AFTER(Σ, handleexpr(p, h), v) =
INSTALLCIRC(Σ, FIND-CIRCUIT(v, p), h);

The BEFORE function (pseudocode not shown) is called before a change in a signal’s

value occurs, which allows us to uninstall the targeted handler (h) from the old circuit.

The AFTER function is called after the change has occurred, which allows us to install

the targeted event handler on the new circuit.
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AFTER(Σ, handleswitch(Θ, [[if ([d|−→dX]) e|−→cX]|
−→−→
cY], h), v) =

let (Θ’, v’) = NOWCOND(Θ, d)

in ADVANCECOND(Σ, Θ’ [if (
−→
dX) e|[−→cX|

−→−→
cY]], v, h);

ADVANCECOND(Σ, Θ, [[if ([d|−→dX]) e|−→cX]|
−→−→
cY], v, h)

let (Σ’, v’) = NOWCOND(Σ, d)

in let h’ = handleswitch([[if ([d|−→dX]) e|−→cX]|
−→−→
cY], h)

in let Σ’’ = if (v) INSTALLEXPR(Σ’, Θ, h’)
else UNINSTALLEXPR(Σ’, Θ, h’)

in if (v’)

ADVANCECOND(Σ’’, Θ, [if (
−→
dX) e|[−→cX|

−→−→
cY]], v, h);

else Σ’’;

ADVANCECOND(Σ, Θ, [if (ε) e|[−→cX|
−→−→
cY]], v, h) =

if (!v) let Σ’ = UNINSTALLEXPR(Σ, Θ, e, h)
in let Σ’’ = UNINSTALLAMBG(Σ’ Θ, −→

cX)

in INSTALLCIRC(Σ’’,
−→−→
cY, Θ, h);

else if (NOT-ACTIVE(Σ, −→
cX))

let Σ’ = INSTALLEXPR(Σ, Θ, e, h)
in let Σ’’ = INSTALLAMBG(Σ’, Θ, −→

cX)

in UNINSTALLCIRC(Σ’’, Θ,
−→−→
cY, h);

AFTER(Σ, handleambg(Θ, −→
cX), v) = ADVANCEAMBG(Σ, Θ, −→

cX);

ADVANCEAMBG(Σ, Θ, [if ([d|−→dX]) e|−→cX]) =

let Σ’ = INSTALLEXPR(Σ, d, handleambg([if (
−→
dX) e|−→cX]))

in let (Θ’, v) = NOWCOND(Σ’ , Θ, d)
in if (!v) Σ’;
else ADVANCEAMBG(Σ’, Θ’, [if (

−→
dX) e|−→cX]);

Figure 4.10. Pseudocode that defines the event propagation AFTER function over the
handleswitch and handleambg event handlers.
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4.3.2 Atomicity

Although the pseudocode in Section 4.3.1 describes the basic algorithm involved

in implementing continuous evaluation, an implementation must deal with a couple of

atomicity issues. The pseudocode in Section 4.3.1 is not correct when two situations are

considered. First, the pseudocode is not correct when another event occurs while another

event’s changes are being processed. When the latter event causes a condition to become

false in a previously active connection where the former event has already caused an

earlier condition to become false, the pseudocode can fail to be correct because it can

miss detecting that the connection was previously active. Second, the pseudocode is not

correct when the same event causes changes in multiple expressions that are contained

inside the same circuit. In addition to the problem incurred in the first situation, a circuit

can incorrectly become unconnected or ambiguous because event handler processing

order is not well defined.

Having another event occur while another event’s changes are being processed does

not involve multiple threads, which are not supported by SuperGlue. Instead, a change

in one signal can trigger changes in other signals, which cause new events to be posted.

In SuperGlue code, these changes will involve command streams that are described in

Section 4.4. Changes to an import signal with a Java-based driver implementation could

also change other signals.

As an example of how the same event can effect multiple expressions in one circuit,

consider the following SuperGlue code:

if (is celsius.get)
view.text = ((3 * thermometer.temperature) / 8) + "C";

else if (!is celcius.get)
view.text = thermometer.temperature + "F";

In this code, the circuit that implements the view.text signal contains two connec-

tions whose conditions depend on the value of the is celsius.get signal. When

is celsius.get becomes true, the second lower-priority connection becomes in-

active while the first higher-priority connection becomes active. If the lower-priority
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connection becomes inactive before the higher-priority connection becomes active, the

view.text signal becomes incorrectly unconnected.

The solution to atomicity issues in SuperGlue involves serializing state changes and

ordering how dispatch of event handlers that are installed on the same Java-based signal

driver. First, we must track variable bindings used for individual instances of circuit

continuous evaluation. This allows us to uninstall event handlers from conditions without

re-evaluating other conditions, which may provide incorrect results when the state of

these conditions is changing. Second, we must order the dispatch of event handlers that

are installed in the same continuous evaluation context on the same Java-based signal

driver. This ordering ensures that conditions and connections are evaluated without spu-

rious errors. Given two event handlers ha and hb that are installed in the same continuous

evaluation context on the same Java-based signal driver, ha must be dispatched before

hb if one of the following two criteria is true:

– The expression affected by ha occurs in a connection of a higher priority than the

expression affected by hb; or

– The expressions affected by ha and hb occur in the same connections, and the

condition affected by ha occurs later than the condition affected by hb.

Because continuous evaluation can involve multiple circuits, a signal event handler can

affect multiple expressions in multiple circuits. As a result, event handler ordering

involves traversing a hierarchy of circuits being evaluated. These rules do not work for

event handlers that affect expressions in different connections of the same priority. In our

prototype, when a connection becomes active or inactive during continuous evaluation,

the conditions of all connections of the same priority must be re-evaluated to ensure they

are also not becoming true or false. We do not show the pseudocode for this re-evaluation.

We require that an event cannot occur during the processing of another event if it

affects the same circuit evaluation. When an event’s processing is delayed, the state

change that causes the event must also be delayed; otherwise discrete and continuous

evaluation will become inconsistent with each other. We must implement this delay in

command streams and Java-based signal drivers that change state. We describe how we
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deal with streams in Section 4.4.4. For Java-based signal drivers, state changes that affect

signals are queued to be processed after the event being processed has occurred.

4.4 Stream Layer
As with signals, streams can have circuits that determine how they are evaluated,

or can be implemented directly in Java code. The connections in stream circuits are

prioritized in the same way as signal circuits. Streams also share some of the evaluation

semantics described in Section 4.1 and Section 4.3. The evaluation of a command stream

access involves discrete evaluation to determine if the command should be executed. The

evaluation of an event stream access involves continuous evaluation to switch what event

source is being listened to. Beyond these similarities, stream accesses are very different

semantically from signal connections: a stream access is imperative and exposes Super-

Glue code to control flow details, while connections are declarative and hide control flow

details.

Stream semantics are intertwined with closure semantics. Stream accesses are or-

ganized in closures and do not do anything until their containing closures are created.

Closures are also related to SuperGlue’s object model, where all objects are created in

closures and exist as closures.

4.4.1 Closures

SuperGlue closures are used in two cases. First, object closures are used to express

the instantiation context of an object. Second, stream access closures are used to capture

the context of a handled event or performed command. Both kinds of closures maintain

the following lists:

– A closure has a list of objects that are instantiated when the closure is created

at run-time. These closures also maintain the circuits for these objects. For this

reason, connections expressed in a closure will not affect objects created outside

of the closure.

– A closure has a list of command stream accesses that are conditionally executed

when the closure is created. Command stream accesses can be guarded by the
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same kinds of conditions that guard connections. Each command stream access

of a closure is executed only if its conditions are true at the time of the closure’s

creations.

– A closure has a list of event stream accesses that are conditionally activated af-

ter the closure is created. An activated event stream access receives events that

are transmitted through the event stream. Like command stream accesses, event

stream accesses can also be guarded by the same kinds of conditions that guard

connections. An event stream access is activated when its conditions become true

after the closure’s creation, and is deactivated when its conditions become false

after the closure’s creation.

Closure creation is a two-step process in SuperGlue. A closure first allocates all of

its objects. When an object is allocated, it cannot access other objects that are defined

in the closure. For objects with Java driver implementations, object allocation involves

calling the driver create() method, which returns a Java object to hold the SuperGlue

object’s identity and state. For objects with SuperGlue implementations, object alloca-

tion involves recursively allocating the object’s closure. After a closure is allocated, the

closure undergoes initialization, which performs the following tasks in order:

– The closure’s objects are initialized. During initialization, objects can install event

handlers on other objects, even if these objects have not been initialized yet. For

objects with Java driver implementations, object initialization involves calling the

driver init() method with an object that represents the allocated SuperGlue

object. For objects with SuperGlue implementations, object initialization involves

recursively initializing the object’s own closure.

– The closure’s command stream accesses are performed if their guarding conditions

are true when the closure is created. If a command stream access involves creating

a closure, this closure is allocated and initialized before the containing closure’s

initialization continues.
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– The closure’s event stream accesses are activated whenever their guarding condi-

tions are true after the closure is created. This involves continuous evaluation of the

conditions that guard an event stream access according to the semantics presented

in Section 4.3.

Ideally, the order that the objects of a closure are initialized in should not be important.

Order is not important for objects with SuperGlue implementations that do not use

driver classes that are outside of SuperGlue’s core library. Unfortunately, this is not

the case for many classes in GlueUI, which depend on Swing class implementations

that are sensitive to initialization order. The problem is that many Java objects begin

to initialize themselves as event handlers, which can cascade to the point that an object

eventually is not able to satisfy a signal request because it has yet to be initialized. Object

initialization order in a closure is fixed as object declaration order in a closure definition,

so programmers can modify object initialization order as needed.

4.4.2 Command Streams

Command stream accesses are only evaluated when their enclosing closures are cre-

ated. As with a connection, a command stream access can be guarded by multiple

conditions. When the enclosing closure of the command stream access is created, these

conditions are evaluated to determine if the command stream should be executed. If

a command stream is executed, and the command stream is implemented as a circuit,

then this circuit is evaluated to determine what other command stream should be exe-

cuted. If a command stream is implemented with Java code, then the command stream’s

execute() method is called upon its execution. All of this is very similar to the

discrete evaluation of a signal, which is described in Section 4.1.

Command streams can update state when they are accessed. If a command stream

executes because of an event that also affects the continuous evaluation of a signal, its

resulting state changes will not be visible until after continuous evaluation has completely

processed the event.
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4.4.3 Event Streams

As with a connection, an event stream access can be guarded by multiple conditions.

After an event stream access’s containing closure is created, the access will receive events

from the event stream when its guarding conditions are true. This involves installing

event handlers on conditions that guard the event stream access to detect if they are all

true. When all of its guarding conditions are true, the event stream access is activated so it

can receive events. As soon as one or more of its guarding conditions becomes false, the

event stream access is deactivated so it no longer receives events. The semantics of this

activation and deactivation are very similar to the activation and deactivation of a signal

connection in a circuit, which is expressed by the INSTALL COND function in Figure 4.9.

Likewise, the evaluation of an event stream circuit is similar to the continuous evaluation

of a signal circuit, which is also expressed by the INSTALL COND function in Figure 4.9.

If an event stream is implemented as a Java-based driver, then activation and deactivation

occurs by directly calling the event stream driver methods.

4.4.4 Signals as Streams

Signals are used as event streams withon (begin) and on (end) clauses, which

transform signal value-change events into event stream events. An on (begin) clause

is an event stream access that detects when its guarding conditions become true. To

implement this behavior, an event is dispatched when the event stream access is activated.

An on (end) clause is an event stream access that detects when one of its guarding

conditions becomes false. To implement this behavior, an event is dispatched when the

event stream access is deactivated.

When a signal is used as an event stream, its change events can be used to both

update circuits and execute state-changing command streams. This leads to an atomicity

issue: the execution of state-changing command streams can cause additional changes to

conditions in the circuits being updated. To ensure that only one event at a time affects a

circuit update, our prototype requires that event stream event handlers are not dispatched

until after circuit updating event handlers are dispatched.
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4.4.5 Iterator Streams

Iterator streams can be accessed as either command streams or event streams. Access-

ing an iterator stream as a command stream is straightforward: the access is executed for

each element of the iterator. If an iterator stream is accessed as an event stream, a closure

is created for each element that is added to the stream. This closure is different from a

normal stream access closure in that it is destroyed when the element it was created for is

removed from the iterator stream. When a closure is destroyed, all event stream accesses

activated inside the closure are immediately deactivated. Closure destruction will also

transmit events to on (end) clauses expressed inside the closure.

4.5 Performance
Our prototype implementation of SuperGlue is very unsophisticated, and so it does

not perform very well. To determine what the performance penalty is for using Su-

perGlue, we use a series of microbenchmarks. Although these microbenchmarks do not

measure the real performance of real programs, they can give us an idea of what programs

cannot yet be effectively implemented in SuperGlue.

The first microbenchmark that we consider measures how the performance of a dis-

crete evaluation of a signal compares to the performance of a method call in Java. Calling

a method in Java takes between .05 and .06 microseconds on a 867 MHz PowerBook G4

running Java 1.4.2 with Hotspot enabled. We ensure that the method is being accessed

virtually by deciding dynamically what test object is created. Accessing the current value

of a signal takes between 7.2 and 7.8 microseconds, so a signal access in SuperGlue is

about 144 times slower than a method call in Java. The SuperGlue code involved in this

benchmark simply makes one signal connection between two objects:

let m = new Mock;
let d = new Discrete;
d.signal = m.signal;

The second microbenchmark that we consider measures how the performance of a

continuous evaluation of a signal compares to the performance of event handling in Java.

Receiving a simple event in Java takes between 1.2 and 1.3 microseconds. Receiving
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a simple event in SuperGlue takes between 2.6 and 2.9 microseconds, which is only

two times as slow as Java. The reason for this is that once an event handler is installed

on an object, the two objects can communicate directly through the event handler. As

a result, the only extra overhead the SuperGlue code must deal with are extra method

calls and some data translation (boxing integers). When considering a circuit with two

connections that are constantly switched during continuous evaluation, SuperGlue’s per-

formance slows down considerably because the interpreter is always involved in the

switching. Receiving an event in Java with conditional switching takes between 1.3 and

1.5 microseconds. Receiving an event in SuperGlue with conditional switching takes

around 110 microseconds, meaning that SuperGlue is about 84 times slower than Java in

this microbenchmark.

Another major performance problem in SuperGlue is its inability to aggregate the

viewing of state embedded in iterator elements. For example, the JavaMail library

provides an interface for listening to changes in email messages based on what folder

they are in. However, this interface cannot be used in SuperGlue because our driver

interface can only provide the value for exactly one email message when an event handler

is installed on an email message property. To listen for changes in all messages of an

email folder, Java code can install one event handler on the email folder, while SuperGlue

code installs event handlers for each message of the email folder. The problem with Su-

perGlue’s approach is that it incurs a linear performance penalty that increases with the

same of the set being viewed. Solving this performance problem requires re-architecting

SuperGlue’s driver interface to provide drivers with more flexibility in where they install

event handlers. We describe iterator stream enhancements in Section 6.2.

In many user interface programs, SuperGlue code executes rarely because state does

not change very rapidly. As an example, in the email client of Section 3.2, SuperGlue

code only executes when a mailbox is modified or a user manipulates some widget. In

these programs, SuperGlue’s performance is acceptable because signals are not being

invoked very often. For example, response time in our email client does not appear to be

much slower than response time in a typical Swing application. In programs where state

changes more often, for example in a simulation of a physical environment, the perfor-
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mance of our prototype will not be acceptable. Although constant factor improvements

in performance can likely be obtained by tuning our interpreter, compilation techniques

will be needed to satisfy the performance requirements of compute-intensive or resource-

constrained applications. We describe the viability of SuperGlue code compilation in

Section 6.1.

4.6 Syntax
Conceptually, SuperGlue can be divided into two languages: a signature language

for declaring modules, classes, interfaces, and inner objects, and a statement language

for expressing connections and implementing classes. Although these languages are

separated for discussion purposes, they are actually used together in the same source

files. The rest of this chapter describes SuperGlue’s signature syntax (Section 4.6.1),

statement syntax (Section 4.6.2), and important syntactic sugar (Section 4.6.3) that makes

SuperGlue’s use less frustrating.

4.6.1 Signature Syntax

The complete syntax of SuperGlue’s signature language is shown in Figure 4.11. At

the top level, a SuperGlue module is defined in its own file that is named after the module.

A module begins by declaring what other modules it will use definitions from (using the

use keyword) and then defines its own classes and interfaces. A class can be defined

with the native keyword, which means it is implemented in Java as a driver, or as

abstract, which means it cannot be instantiated. Next, a class declaration specifies

the class’s superclass, interfaces, ports, and inner objects. If a class is not native, then

it must be implemented with SuperGlue code following the class’s declaration, where

the class’s implementation is preceded by the with keyword. Interface and inner type

declarations are basically the same as was described in Section 2.2.

4.6.2 Statement Syntax

The complete syntax of SuperGlue’s statement language is shown in Figure 4.12.

Statements are defined at the top level to be object instantiations, connections, statement
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module: module module-id { (use-decl)* (class | interface)* }
use-decl: use module-id;

class: native? abstract? class class-id
(extends class-id)? (imports intfs)? (exports intfs)?
{ (((import | export) port-decl) | inner-decl)* }
(with { (use-decl)* statement })?

interface: interface interface-id
(extends interface-id (, interface-id)*)?
{ (port port-decl)* }

port-decl : (event | command | iterator)? port-id : port-type
port-type : primitive | void | class-id |

interface-id | inner-id

inner-decl: inner inner-id (extends facaide-id)?
(imports intfs)? (exports intfs)? { (port-decl)* }

intfs: interface-id (, intfs)?

Figure 4.11. The syntax of SuperGlue’s signature language; the * and ? regular-expres-
sion operators respectively express zero or many repetition and zero or one optionality.

blocks, variable declarations, and stream accesses. Connections are to ports (left-hand

side) and from either other ports (for stream accesses) or expressions (for signals).

4.6.3 Syntactic Sugar

SuperGlue has many forms of syntactic sugar that are designed to decrease verbosity

in SuperGlue code. First, simple unguarded connections can be expressed when an object

is created in a constructor-like way. For example, consider the task of configuring a

timer object to tick every 500 milliseconds. Without syntactic sugar, the timer’s

tick signal is connected and timer is instantiated in separate statements:

let timer = new Timer;
timer.tick = 500;
timer.tick = 2;
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statement : new | connection | if | block | connect-var |
let | on | do | for

new : let object-id = new class-id;
connection: port-ref = (expression | port-ref);
port-ref : object-var . port-id

(( expression (, expression)* ))?
if : if ( condition ) statement |

if ( condition ) statement else statement
condition : expression | query | condition && condition
expression: port-ref | object-id | var-id |

constant | binary | ...
binary : expression bin-op expression | ...
bin-op : < | > | == | || | && | ...
block : { statement* }

connect-var: var ( var-id : var-type ) statement
var-type : class-id | object-var . inner-id |

interface-id | primitive
object-var : var-id | object-id
query : var-id = < var-type > expression

let: let var-id = expression;
on : on ( port-ref ) statement |

on ( var-id = port-ref ) statement
do : do port-ref ; |

do ( port-ref ) statement |
do ( var-id = port-ref ) statement

for: for ( var-id = port-ref ) statement

Figure 4.12. The syntax of SuperGlue’s statement language.

Writing down two statements is overly verbose because tick and mode never change.

Instead, we can connect tick and mode in the new statement using constructor-like

syntax:

let timer = new Timer(tick = 500, mode = 2);

Constructor-like syntax allows simple unguarded connections to be expressed in object

instantiations with less typing because the target object is not specified. Additionally,

more complicated guarded connections are more prominent because they are not mixed

with numerous simple connections.
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In Section 4.2.6, we mentioned that connections can be specified in modules in order

to express default behavior. Additional syntactic sugar eases the expression of default

connections by allowing them to be expressed in signal declarations. For example,

consider the rows of a user-interface table view, which are connected to an empty list

by default. Without syntactic sugar, the rows declaration and connection of an empty list

to table rows are expressed separately:

class TableView extends CompoundEditor {
import rows : List<Row>;
...

}
var (table : TableView) table.rows = [];

With syntactic sugar, the signal declaration can be combined with the default connection:

class TableView extends CompoundEditor {
import rows : List<Row> = [];
...

}

Implicitly, a connection variable is defined in each class that is typed by that class. When

a default connection is expressed to a port, it is simply transformed into a connection that

targets this connection variable.

Our final form of syntactic sugar eases the expression of connections to ports declared

in interface and inner types. Without syntactic sugar, expressing a connection to a port

that is contained in a port requires two things: the former port must have a unique inner

object (i.e., the inner type used by any other port), and a connection variable must be

used to abstract over this unique inner type. For example, consider declaring the insets

for rows and columns of a table view:

interface Dim<T> extends List<T> {
import insets : int;

}
class TableView extends CompoundEditor {
inner Rows imports Dim {}
inner Columns imports Dim {}

import rows : Rows;
import columns : Columns;
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...
}

Although rows and columns have the same structure, they have different types so their

insets can be connected individually. Connecting insets for rows and columns then

requires the use of two connection variables:

let table = new TableView;
var (rows : table.Rows ) rows .insets = 3;
var (columns : table.Columns) columns.insets = 5;

This code is overly verbose for two reasons. First, TableView must define two inner

types that do not add any additional ports. Second, two inner object variables must be

declared for each connection even though they are both used to abstract over exactly one

value. Syntactic sugar in SuperGlue implicitly defines a unique inner type for each port

that is typed by an interface or inner object. This type is then used to implicitly define a

connection variable for any connection to a port that is accessed through this port. As a

result, we do not need to explicitly declare unique inner types for the rows and columns

of a table view:

class TableView extends CompoundEditor {
import rows : Dim;
import columns : Dim;
...

}

We can then directly connect the insets for rows and columns through port accesses:

table.rows.insets = 3;
table.columns.insets = 3;

This kind of syntactic sugar allows inner objects and interfaces to be used without the

verbosity of additional types and connection variables.



CHAPTER 5

RELATED WORK

SuperGlue is closely related to languages in the following five areas:

– Functional-reactive programming languages: SuperGlue’s signal abstractions

are similar to signal abstractions in functional-reactive programming languages.

We compare SuperGlue to these languages in Section 5.1.

– Object-oriented programming languages: SuperGlue’s object-oriented abstrac-

tions are similar to dispatch and inheritance mechanisms in object-oriented lan-

guages. We compare SuperGlue to these languages in Section 5.2.

– Logic programming languages: SuperGlue’s use of rules to connect signals is

similar to how rules are used in logic programming languages. We compare Su-

perGlue to these languages in Section 5.3.

– Constraint-imperative programming languages: SuperGlue’s signal connec-

tions are similar to simple constraint expressions that are supported in constraint-

imperative programming languages. We compare SuperGlue to these languages in

Section 5.4.

– Component programming languages: SuperGlue is based on a port and connec-

tion paradigm, which is the basis for many other kinds of component programming

languages. We compare SuperGlue to these languages in Section 5.5.

5.1 Functional-reactive Programming
Functional-reactive programming (FRP) systems integrate continuous and discrete

abstractions for viewing state into a functional programming language. The idea behind
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FRP is that functions can be “lifted” to transform signals. For example, if X is a signal

and f() is a function, then f(X) changes as X’s value changes. We compare SuperGlue

to the following three very different FRP systems:

– Yampa [20] is the most recent Haskell-based FRP system. Yampa is synchronous,

which means continuous evaluation of signals occurs according to a clock with

an explicit representation in the program. For modularity and efficiency reasons,

signals in Yampa are second-class values, which means they cannot be directly

organized into graph-like structures. As a result, Yampa supports special switch-

ing and collection abstractions to deal with the resulting connection scalability

problem. SuperGlue is compared to Yampa in Section 5.1.1.

– FatherTime [6] (FrTime) is a Scheme-based FRP system. Unlike Yampa, FrTime

is not synchronous. Also, unlike Yampa, signals in FrTime are first-class values.

As a result, FrTime does not suffer from connection scalability problems, and

does not require special abstractions to organize signals into graph-like structures.

SuperGlue is compared to FrTime in Section 5.1.2.

– Frappé [7] is an implementation of FRP for the Java programming language.

Frappé’s unique feature is that signals are integrated with the JavaBeans [38] event

and property model. SuperGlue is compared to Frappé in Section 5.1.3.

5.1.1 Yampa

Yampa is the most recent of many Haskell-based FRP systems that began with the

Fran animation system [13]. Yampa, Fran, and their variations have been shown to be

useful in domains such as animation [13], user interfaces [8, 12, 35], video games [9],

and robotics [20, 33].

All Haskell-based FRP systems are synchronous because the goal of these systems

is to preserve the purity of the functional programming paradigm, which requires that

state and time be modeled explicitly. Synchronous evaluation has many advantages: pro-

grams are easier to reason about, support general time-based transformations, and cannot

exhibit race conditions. Also, synchronous evaluation is more suitable for interactive
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programs that require accurate time-based numerical computations such as integration.

However, synchronous code cannot interact very easily with imperative code or any

state outside of the program that is not synchronous. For this reason, SuperGlue is not

synchronous: synchronization is the responsibility of object implementations and glue

code, and time-based numerical computations can only be approximated.

Fran, an early Haskell-based FRP system that preceded Yampa, supported the use of

signals as first-class Haskell values. However, the use of signals as first-class values in

Fran leads to space-time leaks [11], which occur when an unbounded amount of time-

based delayed computation needs to be caught up at some point in a program’s execution.

As a result, in Yampa, signals are second-class values and only signal functions, which

cannot be curried, are first-class values. SuperGlue signals are also second-class values,

but for a different reason: the true identity of an object that contains a signal must be

known when organizing the signal’s connections in a circuit. Signals in SuperGlue can

only be connected through objects or connection variables, which is analogous to the

second-class status of signals in Yampa.

Because of the second-class status of signals in Yampa and objects in SuperGlue,

state in these languages cannot be organized directly into graph-like structures such

as trees or lists. As described in Section 2.2, SuperGlue deals with state in graph-

like structures through object-oriented abstractions such as inner objects and connection

variables. Yampa deals with state in graph-like structures through dynamic collection

abstractions [30]. Dynamic collections are collections of stateful signal functions that

support the following operations:

– An input signal can be broadcast to all the signal functions of a collection. Al-

ternatively, a routing function can be specified that determines what input signal

is delivered to each signal function of a collection. This feature compares to

connection variables in SuperGlue, which can connect multiple objects and inner

objects of a specified type. Routing functions are similar to conditions that guard

connections through connection variables.



134

– Signal functions can be added to or removed from a collection on the direction

of discrete events without disturbing the state of other signal functions in the

collection. In SuperGlue, collection updates are encapsulated inside objects with

imperative implementations. A generic mutable collection can be expressed as an

object of the ListCell class in SuperGlue’s core library.

Directly comparing SuperGlue’s object-oriented abstractions to Yampa’s dynamic col-

lection abstractions is difficult because of their different design goals. SuperGlue’s

object-oriented abstractions are designed to abstract over multiple signal connections

that are used in Java-based object implementations. For example, glue code can ab-

stractly specify how node inner objects of a GlueUI tree view are connected, but the Java

implementation of a tree view must create the node inner objects for these connections to

be useful. In other words, SuperGlue programs depend on a lot of “magic” in the form of

Java-based object implementations. On the other hand, Yampa’s dynamic collections are

designed to maintain purity of the functional programming paradigm. For this reason,

SuperGlue is a more practical but less theoretically grounded language than Yampa.

5.1.2 FatherTime

FatherTime (FrTime) is a Scheme-based FRP system that differs significantly from

Haskell-based FRP systems like Yampa. Unlike Yampa and similar to SuperGlue, Fr-

Time is not synchronous. As a result, FrTime code can integrate with imperative Scheme

code in a way that is similar to how SuperGlue code integrates with Java code. Unlike

Yampa and SuperGlue, signals in FrTime are first-class values, which means they can

be used like normal Scheme values in Scheme code. Because the full power of Scheme

can be used to manipulate signals, graph-like state can be expressed and used directly

in FrTime code. As a result, unlike SuperGlue and Yampa, FrTime does not require

any special abstractions to deal with graph-like state. For example, a tree of nodes can

be expressed by a higher-order function that represents a tree node and provides access

to the higher-order functions that represents the node’s children. As a result, an email

client’s folder view tree described in Section 1.1 could be defined in FrTime code as

follows:
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(define folder-view
(new-tree-view mailboxes
(lambda (node)
(if (isa-mailbox node)
(get-root-folders node)
(get-sub-folders node)))))

In this code, a higher-order function is used to configure the nodes of a tree view. Higher-

order functions in FrTime replace the functionality of SuperGlue’s connection variables

in abstracting over connections. Besides using a higher-order function rather than a

connection variable, this code is similar in structure and complexity to the SuperGlue

code that defines the same folder view tree in Section 2.2.

Conditions in FrTime can refer to values that are signals. As a result, conditions that

depend on state can be expressed directly in FrTime, as they can be in SuperGlue. For

example, the following FrTime code displays as rows in a message view table the email

messages of a folder under the conditions that only one node is selected in the folder

view tree and that node is a folder:

(define message-view
(new-table-view
(if (and (== 1 (size (selected folder-view)))

(isa-folder (get (selected folder-view) 0)))
(get-messages (get (selected folder-view) 0))
(empty-list)) ...))

As in SuperGlue, the conditions of this FrTime code are re-evaluated as selection in the

folder view tree changes. As with the definition of the folder view tree, this FrTime code

is similar in structure and complexity to SuperGlue code that defines a message view tree

in Section 2.2.

FrTime is clearly more powerful than SuperGlue because FrTime code can leverage

the full power of recursion and higher-order functions when manipulating signals. How-

ever, it is not clear how this power translates into useful expressiveness when gluing

together components in interactive programs. The FrTime examples in [6] do not make

use of recursion and only use higher-order functions to iterate or abstract over data.
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Because SuperGlue’s abstractions focus on expressing signal connections between

objects, its design decisions differ from FrTime’s. In particular, connections in Super-

Glue are expressed through rules, where signal connections to the same object do not

need to be expressed in the same file. In FrTime, an object’s fields must be initialized

to signals when it is created, meaning that all of the object’s signal connections are

expressed at this time. Although FrTime is powerful enough to support rules that connect

its objects (via a rule interpreter encoded in Scheme), the use of rules would change the

paradigm in which FrTime programs are written.

5.1.3 Frappé

Frappé is an implementation of FRP in Java. Code in Frappé can integrate with Java

code in the following ways:

– Any JavaBeans component can receive or provide signals.

– The JavaBeans event model is used to propagate signal changes.

With these two integration features, JavaBeans components can be connected together

using signals into assemblies, which can be reused as JavaBeans components.

JavaBeans’ bounded properties play a critical role in Frappé. As discussed in Sec-

tion 3.1, properties describe state that can be mutated by multiple entities. Bounded

properties in JavaBeans are properties with methods for accessing their current values,

for listening to changes in their values, and for changing their values. Frappé can

automatically convert bounded properties into signals. A signal can then be used in

“lifted” methods calls, which call a Java method whenever the signal’s value changes.

Frappé and SuperGlue have a similar goal: to utilize signals to improve how Java

components are glued together. Frappé can be easier to use than SuperGlue because

signals are easy to create from existing Java code. Converting bounded properties in

SuperGlue involves writing more adapter code than in Frappé. However, we could

provide special support for bounded properties in the same way that Frappé does. The

primary problem with Frappé is that a lot of interesting signals in existing Java code are

not properties. As discussed in Section 3.1, these signals can be configuration options



137

(e.g., foreground color) or internally managed state (e.g., current selection). SuperGlue

provides a more general way than Frappé of using Java code through signals, which is

more flexible but can be more difficult to use.

Frappé lacks a separate syntax for using signals; instead signals are used through

a special object-based Java API. As a result, signal programming in Frappé is very

verbose. As future work, the author talks about designing a separate Fran-like [13]

language for using signals in Frappé [7]. This separate language approach is already

used in SuperGlue. The problem with their proposed approach is that it would enforce

a Haskell-like programming model to glue together Java code. When compared to

SuperGlue, their proposed approach would result in a language that is unfriendly to Java

programmers, and could not easily represent Java class hierarchies to glue code.

5.2 Object-oriented Programming
SuperGlue supports graph-like state with object-oriented abstractions. We are cur-

rently unaware of any object-oriented language that supports something similar to Su-

perGlue’s inner object abstraction. The problem domain of SuperGlue’s inner object

abstraction is similar in scope to the problem domains of the fly-weight, facade, visitor,

and adapter design patterns [18], which are commonly used in object-oriented programs.

Inner objects enable new signals to be related to a value: an inner object that a value is

connected to conceptually wraps the value with new signals. As a result, inner objects

can enhance the functionality of an existing value through new signals. The use of

inner object abstractions in this way makes them similar to mixin [3] or open class [5]

abstractions, which are used in object-oriented languages to add new methods to existing

classes. The type of a value that is connected to an inner object can also act as a secondary

prioritization mechanism. The use of a secondary type in prioritizing connections is

analogous to how calls to multimethods [4] can be dispatched according to argument

types.

Arbitrary conditions in SuperGlue can guard the applicability of signal connections,

which is analogous to how conditions can guard method dispatch in languages that

support predicate dispatch [14, 29]. However, SuperGlue does not perform any static
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checking to ensure exactly one connection is usable at any given time, where such

checking is common for methods in object-oriented languages that support predicate

dispatch. Static checking is not possible in SuperGlue because conditions are not simple

arithmetic expressions and can refer to signals whose implementations are encapsulated.

Additionally, the use of a signal being connected inside an object implementation may

also be guarded by other conditions that are encapsulated inside the object implementa-

tion. For this reason, run-time checking of ambiguous signal connections is used in our

current implementation. As future work, Section 6.2 proposes enhancing SuperGlue with

a type system that would enable the static and modular detection of signal connection

errors.

5.3 Logic Programming
SuperGlue code encodes signal connections through rules that are similar to rules

in logic programming languages such as Prolog [36], which are based on mathematical

logic. Similar to Prolog, signal evaluation in SuperGlue involves backward chaining:

evaluation of one signal can involve evaluating other signals referred to in conditions that

guard the former signal’s connections. Unlike Prolog, the evaluation of rules in Super-

Glue are deterministic. However, SuperGlue’s support for continuous evaluation relies

on something like backtracking to reconnect signals as conditions that guard connec-

tions change their values. SuperGlue also does not support anything similar to variable

unification.

With signals, SuperGlue supports the concepts of state and time in a purely declara-

tive way. Many logic programming languages also provide support for reasoning about

state and time; see [32] for a comprehensive survey. In temporal logic languages, the

validity of a fact can be parameterized with a time range. Unlike SuperGlue, time is

modeled explicitly in temporal logic languages, which limits how these languages can

be used in interactive programs.

Kernel Prolog [41] supports a fluent abstraction, which are stateful objects that are

represented as infinite “sources of answers” to Prolog rule evaluations. Similar to Super-
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Glue’s signals, fluents can be composed and can be implemented in Java code. Unlike

SuperGlue signals, fluents do not support continuous evaluation.

5.4 Constraint-imperative Programming
Constraint variables have values that are determined by what constraints are placed

on them. When compared to SuperGlue, constraint variables are similar to signals and

constraints are similar to connections between signals. However, constraints are more

powerful than signals: a constraint variable is multidirectional, which means that it is

not restricted to being an output or input, and a constraint variable can be placed under

multiple constraints at the same time. In contrast, a signal is unidirectional and must

always be specified as either an import or export.

Constraint imperative programming (CIP) languages [16, 17] support constraint vari-

ables whose constraints can change during program execution via imperative updates. As

a result, the value of a constraint variable can change dynamically, which is similar in

behavior to a signal. CIP languages also support the control flow and mutable variable

constructs needed to perform general-purpose programming tasks. The Kaleidoscope

language [16, 17] supports CIP with object-oriented abstractions. In particular, Kalei-

doscope can be used to create constraints over complex user-defined objects, which is

similar to connecting signals in SuperGlue-implemented objects.

Although constraints are more expressive than SuperGlue connections, Kaleidoscope

programs often create constraints that are used in connection-like ways: each of these

constraints is permanent and is the sole constraint of a constraint variable. As an example,

consider the example Kaleidoscope code in Figure 5.1 from [23], which implements a

simple user interface. In this code, the always keyword is used to create constraints that

hold forever, while the assert keyword creates a constraint that holds for the duration

of its enclosing while loop. SuperGlue code equivalent to the code in Figure 5.1

is shown in Figure 5.2. The SuperGlue and Kaleidoscope code are almost the same.

The problem with CIP is that the additional power of a constraint over a connection,

which is gained through a constraint solver, is not often useful, while the extra power can

also make constraints more difficult to use. In particular, programmers must explicitly
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always: temperature = mercury.height / scale;
always: white triangle.top = thermometer.top;
always: white triangle.bottom = mercury.top;
always: mercury.bottom = thermometer.bottom;
while (mouse.button = down)
assert mercury.top = mouse.location.y;

end while;

Figure 5.1. Kaleidoscope code that allows a user to drag the mercury of a thermometer
up and down with a mouse.

let temperature = mercury.height / scale;
white triangle.top = thermometer.top;
white triangle.bottom = mercury.top;
mercury.bottom = thermometer.bottom;
if (mouse.button == down)
mercury.top = mouse.location.y;

Figure 5.2. SuperGlue code that is equivalent to the Kaleidoscope code in Figure 5.1.

manage the duration of the constraint (always, once, or assert), and programmers

must explicitly manage the constraint’s direction, which determines what variables can

be updated by the constraint.

Kaleidoscope can be useful in numerical domains where multiway constraints are

useful. Layout managers in user-interface libraries often involve multiway constraints,

which can directly be expressed with Kaleidoscope code but not with SuperGlue code.

However, user-interface program do not involve many kinds of these constraints. There-

fore, SuperGlue connections are often expressive enough for glue code tasks while being

easier to use than Kaleidoscope’s constraints.

Through general purpose control-flow constructs, Kaleidoscope supports imperative

programming in a much more seamless way than SuperGlue. Although the mostly free

mixing of imperative and declarative code complicates Kaleidoscope’s semantics and

implementation, programmers are mostly able treat Kaleidoscope as a standard object-

oriented language with constraint programming extensions. Compared to Kaleidoscope,

SuperGlue’s support for imperative programming is not as fluid because streams can-
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not directly influence port connections, and programmers cannot view SuperGlue as a

conventional object-oriented language with connection and signal extensions. For this

reason, SuperGlue does not support imperative programming as nicely as Kaleidoscope,

but neither does it suffer from the complexity of mixing imperative and declarative

abstractions.

5.5 Component Programming
As mentioned in Section 1.3, the port-connection paradigm is often used in compo-

nent (and module) systems because of its support for component dependencies that are

explicit and configurable. In contrast to connections, dependencies that are expressed

with more powerful procedure calls are more difficult to reason about and change. The

drawback of the port-connection paradigm is that connections are not very expressive,

and are often only good at representing coarse-grained or abstract (conceptual) depen-

dencies.

Module systems are well-suited to connections because module dependencies are

usually of a coarse grain. For example, connections were very effective in Jiazzi [27],

which was a Java module system designed by this author and is based on program

units [15]. Jiazzi supports module dependencies that are explicitly specified and con-

figured through connections. Connection expressibility problems are not a big issue in

Jiazzi because connections are specified between coarse-grained packages of classes.

Besides being used in module systems, connections are often used to describe de-

pendencies between components in software architectures. One such language is Arch-

Java [2], where components have ports that are explicitly connected together in glue code.

Type-correct ArchJava programs adhere to the property of communication integrity [24],

which ensures that intercomponent communication conforms to the program’s specified

architecture. With alias annotations, ArchJava can enforce communication integrity even

when components communicate through shared objects. Similar to ArchJava, SuperGlue

also enforces communication integrity, but does not track communication through shared

objects. ArchJava and SuperGlue differ in how they support dynamic architectures,

where connections can change during run-time. ArchJava allows connections to be
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created at run-time as long as they conform to statically verified connection patterns. In

contrast to ArchJava, SuperGlue supports dynamic architectures through circuits, which

can switch how a port is connected dynamically; closures, which enable the creation of

new objects with a specification of their connections; and connection variables, which

allow connections to be specified without targeting specific objects and inner objects.



CHAPTER 6

CONCLUSION

SuperGlue combines signal, object, and rule abstractions into a novel language for

building programs out of state-processing components. SuperGlue improves on estab-

lished languages, such as Java, with signals that ease how state-processing components

are glued together. When compared to other languages that support signals, SuperGlue is

unique in its use of object-oriented abstractions to deal with graph-like state. SuperGlue

makes a different set of tradeoffs from these languages. SuperGlue does not support

abstractions such as recursive higher-order functions; instead, it supports object-oriented

abstractions that are easier to use but less expressive. Despite being less expressive,

SuperGlue can still accommodate many component assembly tasks.

Section 3.2 shows that SuperGlue can reduce by half the number of operations needed

to implement a realistic user-interface program. We showed that when dealing with user-

interface features that process state, SuperGlue’s use is very beneficial when compared

to Java. Only a small number of features in most user-interface programs process state:

the other features only react to user input, which does not involve processing state. As

a result, SuperGlue can benefit the implementations of only a few features in most user-

interface programs, although the dominating complexity of how these features are im-

plemented in existing languages can still make SuperGlue’s use worthwhile. Section 6.3

describes why state-processing components can be used more often in user-interface

programs, where SuperGlue’s use is more worthwhile in these programs.

Beyond building user interfaces, SuperGlue can also be used in implementing tasks

that traditionally process data as state-processing programs. For example, Section 3.3

demonstrates how SuperGlue can be used to implement a language-aware editor with

state-processing parsing and type-checking components. Building state-processing com-
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ponents is naturally more difficult than building data-processing components. However,

once state-processing components are built in SuperGlue, gluing them together is similar

in complexity to gluing together data processing components.

SuperGlue can be improved in many ways. First, SuperGlue’s implementation and li-

braries need to be polished so that it can be released and undergo user testing. Otherwise,

SuperGlue can also be improved in three areas:

– SuperGlue’s run-time can be improved to support better performance, more flex-

ibility, and enhanced development tool support (e.g., debugging). This work is

described in Section 6.1.

– SuperGlue’s language abstractions can be evolved and improved to make Super-

Glue more complete, easier to use, and more expressive. This work is described in

Section 6.2.

– New SuperGlue libraries can be built to expand and enhance the kinds of programs

that can be easily implemented in SuperGlue. In particular, we can look at new

kinds of programs whose state-processing implementations are too complicated in

existing languages. This work is discussed in Section 6.3.

6.1 Technology Enhancements
Our current prototype implementation of SuperGlue is unsophisticated. Code is

evaluated with a recursion-based interpreter that is inefficient even by interpretation stan-

dards. The performance of our prototype implementation is suitable for user-interface

programs, where glue code does not execute very often. However, if SuperGlue is to be

used in compute-intensive or resource-limited programs, it will need an implementation

with better performance.

The easiest way to improve SuperGlue’s performance is through compilation: circuit

evaluation currently involves a lot of work that does not change over time. Given a

circuit with a static structure, generating code to implement discrete and continuous state

viewing is only a matter of generating numerous condition statements. The difficult part

of supporting code generation in SuperGlue is in the implementation of drivers: instead
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of simply adapting between SuperGlue and Java code, each driver must be implemented

as a code generator. To make drivers easier to implement as code generators, we must

develop a SuperGlue extension that allows quoted Java code to be expressed with Java

code.

Besides exploring a faster implementation, we can explore how connections can

be added to or removed from a circuit during program execution, which can facilitate

interactive development and dynamic program updates. Changing a circuit at run-time

can allow a programmer to quickly try out new ideas or fix bugs. Supporting dynamic

circuit modifications with a language-aware editor of the kind as described in Section 3.3

can form the basis of a very powerful development environment for SuperGlue.

Development environments should also support the debugging of SuperGlue code.

Because SuperGlue is a declarative rule-based language, conventional debugger break-

points cannot be used in SuperGlue. Instead, more data-centric watchpoints would be

used instead to monitor changes in signal values. A development environment must also

support the debugging of Java code and SuperGlue code at the same time, because bugs

may exist in driver implementations. For this reason, we plan to explore how a SuperGlue

debugger can be built on top of Eclipse’s Java debugger [21].

6.2 Language Enhancements
Although SuperGlue is complete enough to be used in the construction of realistic

programs, it still lacks polishing features needed for realistic software development.

First, SuperGlue lacks a very strong static type system, and many kinds of assembly

errors cannot be detected until run-time. Also, as mentioned in Section 2.5, SuperGlue

currently lacks error handling and multithreading abstractions. Finally, as mentioned

in Section 2.3 and Section 4.5, SuperGlue’s support for aggregate data cannot take

advantage of signal-based code reduction and adversely affect SuperGlue’s scalability

with respect to performance. The rest of this section describes strategies for resolving

these issues.
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6.2.1 Static Type Checking

SuperGlue’s current support for static type checking is very unsophisticated: signal

existence is checked by the static type of a containing expression, and signal connections

are checked to see if primitive and class types match. Two kinds of type errors can occur

in SuperGlue program that are only detected at run-time:

– A signal can be unconnected or connected ambiguously when used. These er-

rors usually occur because a condition guarding a connection is false when the

programmer expected it to be true, or because independently developed modules

unknowingly connect the same signals using similar types.

– A programmer expresses the wrong type in a connection query, causing the query

to always be false as a condition. Mistyped connection queries do not directly

cause run-time errors. In the best case, mistyped connection queries lead to uncon-

nected signal errors because the connections they guard as conditions cannot occur.

In the worst case, mistyped connection queries cause lower priority connections to

be used, forcing the programmer to wonder why their program is not behaving

correctly.

A traditional static type system could not detect these errors without severely limiting

expressiveness. Instead, we could rely on a general-purpose theorem prover or bug

checking system to detect cases where signals are connected in bad ways. Because signal

accesses are so powerful, these systems would probably be unsound, meaning they might

not be able to detect all problems. In this case, dynamic type checking would still be used

to ensure safety at run-time.

6.2.2 Error Handling

SuperGlue currently has no special abstractions for detecting or recovering from

built-in or user-defined signal errors. It is debatable whether special abstractions are

actually needed. For example, failures that are not due to programming errors, which

involve error handling rather than debugging, often occur because of resource failures.

The status of a resource can be indicated by a another signal, which can guard access to
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the resource and can be used to handle conditions where the resource has failed. To make

this approach more convenient, an “exception” signal can be associated with normal

signals through special syntax that resembles throws clauses in Java. For example, a

read signal can be declared to embed an IOException signal that communicates the

read signal’s current input-output status. Static type checking can also ensure that the

use of a signal is always guarded by its embedded exception signal.

6.2.3 Multithreading

It is sometimes necessary for the SuperGlue code of a program to execute in multiple

threads. For example, a long running operation in a user-interface should not execute

in the user-interface thread. In this case, SuperGlue component assemblies that are

executing in different threads could communicate through messaging mechanisms that

are not very high-performance but can easily be automated in the run-time. Supporting

high-performance multithreading, where threads communicate through shared memory

rather than messages, in SuperGlue is not currently a priority because SuperGlue is

not currently a high performance language. Also, SuperGlue’s support for state com-

munication through signals conflicts with how state is communicated through shared

memory. When state is viewed through a signal, the viewer can automatically be notified

of changes in the state, so it always has a consistent view of the state. On the other hand,

shared memory depends on various forms of locking to ensure state is not modified while

it is being viewed. It is not obvious why or how both of these schemes would work

together.

6.2.4 Iterators

Iterator streams as described in Section 2.3.3 can only be used as event or command

streams: they cannot be used in conditions like signals. SuperGlue can currently only

communicate values one at a time, and iterators represent an aggregate of multiple values.

To use aggregate values in SuperGlue, they must first be split up into multiple single

value contexts. This split requires programmers to deal with control-flow details, and

has serious performance problems. For example, viewing a property in every element of
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an iterator requires installing a separate event handler on each element, even if property

changes are communicated for each element from a single event source.

We plan to replace iterator streams with iterator signals that can be accessed as

signals rather than as command and event streams. Doing this would require allowing

one variable to represent an aggregate of multiple values that can be filtered directly in

if statements. For example, the following code could filter out all messages that are

deleted in a message view:

for (msg = folder.messages.all)
if (!msg.deleted.get)
messageView.rows = new IterationToList(input = msg);

The msg variable is bound to all of the messages that are contained in an email folder.

These messages would then be filtered by a condition that guards against deleted email

messages. Finally, remaining undeleted messages would be connected to the input sig-

nal of a IterationToList object, which transforms the messages from an iteration

into a list that can be viewed as rows in a user-interface table. The use of an iterator

signal in this example allows the filtering of deleted messages to be expressed in a very

concise way. The code in this example can also performs adequately when the targeted

email folder has thousands of messages. In this case, the detection of when a message is

deleted or undeleted involves installing only one event handler on the email folder rather

than a separate event handler for each email message contained in the folder.

We have not added iterator signals to SuperGlue yet because our prototype requires

substantial changes to handle variables that can possibly be bound to multiple values.

More significantly, SuperGlue’s driver model must be changed to take advantage of

iterator signals by supporting event handlers that listen to changes in more than one

element. These changes will add substantial complexity to the driver model, and so we

must think them through very carefully.

6.3 Applications
SuperGlue’s success as a programming language depends on what new kinds of

programs it enables. Beyond conventional user-interface programs, we envision Super-
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Glue being useful in the development of software agents, which autonomously organize,

integrate, and react to changing data sources on behalf of a user. Agents are especially

important in ubiquitous computing [44], which focuses on how software can become

invisible to users that benefit from them. We also envision SuperGlue being used to build

user-interfaces that use state-processing components so they are more interactive than

current user-interface programs.

6.3.1 Ubiquitous Computing

Agents are analogous to robots that operate in information-centric rather than phys-

ical environments. Currently, the most popular kinds of agents operate on web-based

data that change infrequently. Such agents cannot benefit significantly from SuperGlue

implementations because they process immutable data and not state. However, informa-

tion that changes often is becoming increasingly available through technologies such as

wireless networks, cheap sensors, global position systems (GPS), and radio frequency

identifiers. In ubiquitous computing, agents automatically and continuously process and

reason about this information on behalf of a user. Because such agents process state, they

would benefit significantly from SuperGlue implementations.

As an example of a ubiquitous computing scenario, an agent could notify a user when

a desired public bus is predicted to arrive at some location within the time it takes for

the user to walk to that location. In such a scenario, the locations of the user and buses

would be tracked using GPS, and traffic conditions would be tracked using cameras.

Locations and traffic conditions would be transmitted at regular intervals to the agent

over a wireless network. The agent would use the information to select a best bus, which

would get the user to a desired location within a certain time frame. As the user moves,

the buses move, and traffic conditions change, the agent continuously computes what the

best bus is. Finally, when the best bus approaches walking range of the user’s current

location, the agent would alert the user to start walking to a certain bus stop.

Implementing a ubiquitous computing agent involves the following tasks, which

would significantly benefit from SuperGlue implementations:
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– Filtering: because network and computation resources are limited, an agent must

avoid receiving and processing unneeded information. In our example, the agent

only needs to receive over a wireless network information about buses that are

going to a certain location, and can possibly come within walking distance of

a user. In SuperGlue, filtering is expressed through conditions that guard what

state is viewed by a program. Limiting what state is viewed by a program saves

resources because a program, as a client, does not need to receive the state over a

network.

– Integration: an agent must integrate information from unrelated sources. In

our example, the agent must extrapolate the future position of a bus at some

time using the bus’s current position and traffic conditions. SuperGlue eases how

integration is implemented through signal expressions that also behave like signals.

For example, the SuperGlue expression that predicts a bus’s current position is a

signal whose value is automatically recomputed whenever the bus’s position or

traffic conditions change.

– Notification: an agent must detect events that require actions to be performed.

In our example, the agent must detect when the best bus is close enough to a

user. SuperGlue eases how notification is implemented with stream operations (on

(begin) in Section 2.3) can detect when signal-referencing conditions become

true or false.

Supporting ubiquitous computing in SuperGlue requires building new libraries that sup-

port the collection, aggregation, and communication of sensor data. Other more domain-

specific libraries are needed to process sensor data in specific applications, e.g., libraries

are needed in our example to extrapolate bus positions.

6.3.2 Improving User Interfaces

Many user-interface programs are not very interactive because they heavily depend

on imperative, or modal, forms of user input and output. For example, many enterprise

user-interface programs are currently implemented as web-based user interfaces. Al-
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though web-based programs are easier than desktop programs to develop and deploy, a

user’s experience suffers because web pages are less interactive than desktop widgets.

The designers of the Morphic user-interface toolkit refers to support for interactive be-

havior as liveness [26], which is described by John Maloney [25]:

Morphic is inspired by another property of the physical world: liveness.

Many objects in the physical world are active: clocks tick, traffic lights

change, phones ring. Similarly, in Morphic any morph can have a life of its

own: object inspectors update, piano rolls scroll, blobs crawl around. Just as

in the real world, morphs continue to run while the user does other things. In

stark contrast to user interfaces that wait passively for the next user action,

Morphic becomes an equal partner in what happens on the screen.

With a user-interface library that is more like Morphic than Swing in its design philos-

ophy, SuperGlue could be used to build user-interface programs that are highly interac-

tive. When components in this library are combined with state-processing networking

components, SuperGlue could become a very nice platform for programming interactive

network-based programs.
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[7] A. Courtney. Frappé: Functional reactive programming in Java. In Proceedings of
Practical Applications of Declarative Languages (PADL), volume 1990 of Lecture
Notes in Computer Science, pages 29–44. Springer, 2001.

[8] A. Courtney. Functionally modeled user interfaces. In International Workshop
on Design, Specification and Verification of Interactive Systems, volume 2844 of
Lecture Notes in Computer Science, pages 107–123. Springer, 2003.

[9] A. Courtney, H. Nilsson, and J. Peterson. The Yampa arcade. In Proceedings of
the ACM SIGPLAN Haskell Workshop, pages 7–18. ACM, 2003.

[10] F. Dabek, N. Zeldovich, F. Kaashoek, D. Mazières, , and R. Morris. Event-driven
programming for robust software. In Proceedings of the SIGOPS European Work-
shop. ACM, 2002.



153

[11] C. Elliott. Functional implementations of continuous modeled animation. In Inter-
national Symposium on Object Technologies for Advanced Software and Algebraic
and Logic Programming, volume 1490 of Lecture Notes in Computer Science,
pages 284–299. Springer, 1998.

[12] C. Elliott. Declarative event-oriented programming. In Proceedings of Inter-
national Conference on Principles and Practice of Declarative Programming
(PPDP), pages 56–67. ACM, 2000.

[13] C. Elliott and P. Hudak. Functional reactive animation. In Proceedings of Interna-
tional Conference on Functional Programming (ICFP), volume 32 (8) of SIGPLAN
Notices, pages 263–273. ACM, 1997.

[14] M. Ernst, C. Kaplan, and C. Chambers. Predicate dispatching: A unified theory
of dispatch. In Proceedings of European Conference on Object-oriented Pro-
gramming (ECOOP), volume 1445 of Lecture Notes in Computer Science, pages
186–211. Springer, 1998.

[15] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. In Proceed-
ings of Programming Language Design and Implementation (PLDI), volume 33 (5)
of SIGPLAN Notices, pages 236–248. ACM, 1998.

[16] B. N. Freeman-Benson. Kaleidoscope: Mixing objects, constraints and imperative
programming. In Proceedings of Object-oriented Programming Systems, Lan-
guages, and Applications (OOPSLA) and European Conference on Object-oriented
Programming (ECOOP), volume 25 (10) of SIGPLAN Notices, pages 77–88. ACM,
1990.

[17] B. N. Freeman-Benson and A. Borning. Integrating constraints with an object-
oriented language. In Proceedings of European Conference on Object-oriented
Programming (ECOOP), volume 615 of Lecture Notes in Computer Science, pages
268–286. Springer, 1992.

[18] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design patterns:
Abstraction and reuse of object-oriented design. In Proceedings of European
Conference on Object-oriented Programming (ECOOP), volume 707 of Lecture
Notes in Computer Science, pages 406–431, 1993.

[19] A. Goldberg and D. Robson. SmallTalk-80: The Language and its Implementation.
Addison Wesley, Boston, MA, USA, 1983.

[20] P. Hudak, A. Courtney, H. Nilsson, and J. Peterson. Arrows, robots, and functional
reactive programming. In Advanced Functional Programming, volume 2638 of
Lecture Notes in Computer Science, pages 159–187. Springer, 2002.

[21] IBM. The Eclipse project. http://www.eclipse.org/.

[22] JGuru. The ANTLR parsing system. http://www.antlr.org/.



154

[23] G. Lopez, B. N. Freeman-Benson, and A. Borning. Implementing constraint
imperative programming languages: The Kaleidospace’93 virtual machine. In Pro-
ceedings of Object-oriented Programming Systems, Languages, and Applications
(OOPSLA), volume 29(10) of SIGPLAN Notices, pages 259–271. ACM, 1994.

[24] D. C. Luckham, J. Vera, and S. Meldal. Three concepts of system architecture.
Technical report, Stanford University, 1995.

[25] J. Maloney. An Introduction to Morphic: the Squeak User Interface Framework,
chapter 2, pages 39–68. Prentice Hall, Upper Saddle River, NJ, USA, 2002.

[26] J. H. Maloney and R. B. Smith. Directness and liveness in the Morphic user in-
terface construction environment. In ACM Symposium on User Interface Software
and Technology, pages 21–28. ACM, 1995.

[27] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-age components for
old-fashioned Java. In Proceedings of Object-oriented Programming Systems,
Languages, and Applications (OOPSLA), volume 37 (11) of SIGPLAN Notices,
pages 211–222. ACM, 2001.

[28] N. Medvidovic, P. Oreizy, and R. N. Taylor. Reuse of off-the-shelf components
in C2-style architectures. In Proceedings of International Conference on Software
Engineering (ICSE), pages 692–700. IEEE Computer Society, 1997.

[29] T. Millstein. Practical predicate dispatch. In Proceedings of Object-oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 345–364.
ACM, 2004.

[30] H. Nilsson, A. Courtney, and J. Peterson. Functional reactive programming,
continued. In Proceedings of the ACM SIGPLAN Haskell Workshop, pages 51–64.
ACM, Oct. 2002.

[31] D. Notkin, D. Garlan, W. G. Griswold, and K. J. Sullivan. Adding implicit
invocation to languages: Three approaches. In International Symposium on Object
Technologies for Advanced Software, volume 742 of Lecture Notes in Computer
Science, pages 489–510. Springer, 1993.

[32] M. A. Orgun and W. Ma. An overview of temporal and modal logic programming.
In Proceedings of International Conference on Temporal Logic (ICTL), volume 827
of Lecture Notes in Computer Science, pages 445–479. Springer, 1994.

[33] J. Peterson, P. Hudak, and C. Elliott. Lambda in motion: Controlling robots
with Haskell. In Proceedings of Practical Applications of Declarative Languages
(PADL), volume 1551 of Lecture Notes in Computer Science, pages 91–105.
Springer, 1999.

[34] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: Component com-
position for systems software. In Proceedings of Operating System Design and
Implementation (OSDI), pages 347–360. USENIX Association, 2000.



155

[35] M. Sage. FranTk - a declarative GUI language for Haskell. In Proceedings of
International Conference on Functional Programming (ICFP), volume 35(9) of
SIGPLAN Notices, pages 106–117. ACM, 2000.

[36] L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming Techniques.
MIT Press, Cambridge, MA, USA, 1986.

[37] Sun Microsystems, Inc. The Java Collections API. http://java.sun.com/j2se/1.5.0/-
docs/guide/collections/.

[38] Sun Microsystems, Inc. The JavaBeans Components API. http://java.sun.com/-
products/javabeans/.

[39] Sun Microsystems, Inc. The JavaMail API. http://java.sun.com/j2se/1.5.0/docs/-
guide/collections/.

[40] Sun Microsystems, Inc. The Swing API. http://java.sun.com/products/jfc/.

[41] P. Tarau. Fluents: A refactoring of Prolog for uniform reflection an interoperation
with external objects. In Computational Logic, pages 1225–1239, 2000.

[42] T. Teitelbaum and T. W. Reps. The Cornell program synthesizer: A syntax-directed
programming environment. Communications of the ACM, 24(9):563–573, 1981.

[43] T. A. Wagner and S. L. Graham. Efficient and flexible incremental parsing. ACM
Transactions on Programming, Languages, and Systems, 20(5):980–1013, 1998.

[44] M. Weiser. Some computer science issues in ubiquitous computing. Communica-
tions of the ACM, 36(7):74–84, 1993.


